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Abstract The Bruss-Robertson inequality gives a bound on the maximal number
of elements of a random sample whose sum is less than a specified value. The ex-
tension of that inequality which is given here neither requires the independence of
the summands nor requires the equality of their marginal distributions. A review is
also given of the applications of the Bruss-Robertson inequality, especially the appli-
cations to problems of combinatorial optimization such as the sequential knapsack
problem and the sequential monotone subsequence selection problem.
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1. Bruss-Robertson Inequality. Here, at first, we consider a finite
sequence of non-negative independent random variables Xi, i = 1, 2, . . . , n
with a common continuous distribution function F , and, given a real value
s > 0, we are primarily concerned with the random variable

M∗n(s) = max{ |A| :
∑
i∈A

Xi ≤ s}, (1)

where, as usual, we use |A| to denote the cardinality of the subset of inte-
gers A ⊂ [n] = {1, 2, . . . , n}. We call M∗n(s) the Bruss-Robertson maximal
function, and, one should note that in terms of the traditional order sta-
tistics, Xn,1 < Xn,2 < · · · < Xn,n, one can also write M∗n(s) = max{k :
Xn,1 +Xn,2 + · · ·+Xn,k ≤ s}.

In Bruss and Robertson(1991,p. 622) it was found that the expectation of
the maximal function M∗n(s) has an elegant bound in terms of the distribution
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4 The Bruss-Robertson Inequality

function F and a natural threshold value t(n, s) that one defines by the
implicit relation

n

∫ t(n,s)

0
x dF (x) = s. (2)

Specifically, one learns from Bruss and Robertson(1991,p. 622) that

E[M∗n(s)] ≤ nF (t(n, s)), (3)

and the main goal here is to explore this inequality with an eye toward its
mastery, its extensions and its combinatorial applications.

To gain a quick appreciation of the potential of the bound (3), it is useful
to take F to be the uniform distribution on [0, 1]. By (2) we have t(n, s) =
(2s/n)1/2 provided that (2s/n)1/2 ≤ 1, so for s = 1 we find from (3) that for
uniformly distributed random variables one always has

E[max{|A| :
∑

i∈A⊂[n]

Xi ≤ 1}] ≤
√
2n. (4)

This tidy bound already points the way to some of the most informative
combinatorial applications of the Bruss-Robertson inequality (3).

The next section elaborates on the proof of the Bruss-Robertson maxi-
mal inequality, and in Section 3 we then see how the argument of Section
2 needs only minor modifications in order to provide an inequality of unex-
pected generality. After illustrating this new inequality with three examples
in Section 4, we turn in Section 5 to the combinatorial applications. Finally,
Section 6 recalls other applications of the Bruss-Robertson maximal function,
including recent applications to the theory of resource dependent branching
processes and the mathematical models of societal organization.

2. An Elaboration of the Original Proof. The original proof of the
Bruss-Robertson inequality (3) is not long or difficult, but by a reformulation
and elaboration of that proof one does gain some concrete benefits. These
benefits are explained in detail in the next section, so, for the moment, we
just focus on the proof of (3).

First, by the continuity of the joint distribution of (Xi : i ∈ [n]), one finds
that there is a unique set A ⊂ [n] that attains the maximum in the definition
(1) of M∗n(s). We denote this subset by A(n, s), and we also introduce a
second set B(n, s) ⊂ [n] that we define by setting

B(n, s) = {i : Xi ≤ t(n, s)}, (5)

where t(n, s) is the threshold value determined by the implicit relation (2).
The idea behind the proof of the maximal inequality (3) is to compare

the sets A(n, s) and B(n, s), together with their associated sums,

SA(n,s) =
∑

i∈A(n,s)

Xi and SB(n,s) =
∑

i∈B(n,s)

Xi. (6)
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Here it is useful to note that by the definitions of these sums one has the
immediate relations

SA(n,s) ≤ s and E[SB(n,s)] = n

∫ t(n,s)

0
x dF (x) = s. (7)

Now, by its definition, SA(n,s) is a partial sum of order statistics. More-
over, since the summands of SB(n,s) consist precisely of the values Xn,i with
Xn,i ≤ t(n, s), we see that SB(n,s) is also equal to a partial sum of order statis-
tics of the order statistics of {X1, X2, . . . , Xn}. These observations will help
us with estimations that depend on the relative sizes of the two sums SA(n,s)
and SB(n,s), since, in particular, one must have either A ⊂ B or B ⊇ A.

If SB(n,s) ≤ SA(n,s) then one has B(n, s) ⊂ A(n, s). Moreover, the sum-
mands Xi with i ∈ A(n, s) \ B(n, s) are all bounded below by t(n, s), so we
have the bound

SB(n,s) + t(n, s){|A(n, s)| − |B(n, s)|} ≤ SA(n,s) if SB(n,s) ≤ SA(n,s).

Similarly, if SA(n,s) ≤ SB(n,s) then A(n, s) ⊂ B(n, s) and the summands Xi

with i ∈ B(n, s) \ A(n, s) are all bounded above by t(n, s); so, in this case,
we have the bound

SB(n,s) ≤ SA(n,s) + t(n, s){|B(n, s)| − |A(n, s)|} if SA(n,s) ≤ SB(n,s).

Taken together, the last two relations tell us that whatever the relative sizes
of SA(n,s) and SB(n,s) may be, one always has the key relation

t(n, s){|A(n, s)| − |B(n, s)|} ≤ SA(n,s) − SB(n,s). (8)

Here t(n, s) > 0 is a constant, |A(n, s)| = M∗n(s), and by (7) the right-hand
side has non-positive expectation, so taking the expectations in (8) gives us

E[M∗n(s)] ≤ E[|B(n, s)|] = E[
n∑
i=1

1(Xi ≤ t(n, s))] = nF (t(n, s)),

and the proof of the Bruss-Robertson inequality (3) is complete.

3. Extension of the Bruss-Robertson Inequality. The preceding
argument has been organized so that it may be easily modified to give a
bound that is notably more general. Specifically, one does not need indepen-
dence for the Bruss-Robertson inequality (3). Moreover, after an appropriate
modification of the definition of t(n, s), one does not need to require that the
observations have a common distribution.
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Theorem 3.1 (Extended Bruss-Robertson Inequality) If for each i ∈
[n] the non-negative random variable Xi has the continuous distribution Fi,
and if one defines t(n, s) by the implicit relation

s =
n∑
i=1

∫ t(n,s)

0
x dFi(x), (9)

then one has

E[max
{
|A| :

∑
i∈A⊂[n]

Xi ≤ s
}
] ≤

n∑
i=1

Fi(t(n, s)). (10)

When the random variables Xi, i ∈ [n], have a common distribution, then
the defining condition (9) for t(n, s) just recaptures the classical definition (2)
of the traditional threshold value. In the same way, the upper bound in (10)
also recaptures the upper bound of the original Bruss-Robertson inequality
(3).

The proof of Theorem 3.1 requires only some light modifications of the
argument of Section 2. Just as before, one defines B(n, s) by (5), but now
some additional care is needed with the definition of A(n, s).

To keep as close as possible to the argument of Section 2, we first define
a total order on the set {Xi : i ∈ [n]} by writing Xi ≺ Xj if either one has
Xi < Xj , or if one has both Xi = Xj and i < j. Using this order, there is now
a unique permutation π : [n] → [n] such that Xπ(1) ≺ Xπ(2) ≺ · · · ≺ Xπ(n),
and one can then take A(n, s) to be largest set A ⊂ [n] of the form

A = {π(i) : Xπ(1) +Xπ(2) + · · ·+Xπ(k) ≤ s}. (11)

Given these modifications, one can then proceed with the proof of key
inequality (8) essentially without change. We use the same definitions (6) for
the sums SA(n,s) and SB(n,s), so by the new definition (9) of t(n, s), one now
has

E[SB(n,s)] =
n∑
i=1

∫ t(n,s)

0
x dFi(x) = s.

Since we still have SA(n,s) ≤ s, the expectation on the right side of (8) is
non-positive, and one can complete the proof of Theorem 3.1 just as one
completed the proof (3) in Section 2.

As the organization of Section 2 makes explicit, none of the required cal-
culations depend on the joint distribution of (Xi : i ∈ [n]). More specifically,
one just needs to note that the argument of Section 2 depends exclusively on
pointwise bounds and the linearity of expectation.

4. Three Illustrative Examples. There are times when it is difficult
to solve the non-linear relation (9) for t(n, s). Nevertheless, there are also
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informative situations where this does not pose a problem, and here we con-
sider three examples. The first example shows that one can deal quite easily
with uniformly distributed random variables with multiple scales. The other
two examples show that when one considers dependent random variables,
some curious new phenomena can arise.

Example 4.1 Basic Benefits. Here, for each i ∈ [n] we take Xi to be
uniformly distributed on the real interval [0, i], but we do not require that
these random variables to be independent. If we also take 0 < s ≤ 1 and
take n ≥ 4 (for later convenience), then the defining condition (9) tells us

s =
1

2

n∑
i=1

1

i
t2(n, s) =

1

2
t2(n, s)Hn or t(n, s) =

√
2s/Hn, (12)

where as usual Hn denotes the n’th harmonic number. In particular, for
s = 1 the bound (10) tells us that

E[max
{
|A| :

∑
i∈A

Xi ≤ 1
}
] ≤

n∑
i=1

Fi(t(n, 1)) =
n∑
i=1

1

i
(2/Hn)

1/2 = (2Hn)
1/2,

where we use n ≥ 4 to assure that Hn > 2 so the formula (12) gives us
an s ∈ (0, 1). This bound offers an informative complement to (4), and,
here again, one may underscore that no independence is required for this
inequality. The bound depends only on the marginal distributions of the Xi,
i ∈ [n].

Example 4.2 Extreme Dependence. Here we takeX to have the uniform
distribution on [0, 1], and we set Xi = X for all i ∈ [n]. For specificity, we
take s = 1, and from (9) we find that one has t(n, s) = (2s/n)1/2. Thus, just
as one found for a sample of n independent, uniformly distributed random
variables, the upper bound provided by (10) is given by (2n)1/2.

Nevertheless, in this case the bound is not at all sharp. To see how poorly
it does, we first note that

M∗n(1) = max{|A| :
∑
i∈A

Xi ≤ 1|] = min{n, b1/Xc}. (13)

To evaluate the expectation of M∗n(1), we first recall that there is a useful
variation of the usual formula for Euler’s constant γ = 0.5772 . . . which was
discovered by Pólya(1917) and which tells us that∫ 1

0

{
1

x
−
⌊
1

x

⌋}
dx = 1− γ.
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Consequently, if we write the domain of integration as [0, 1/n] ∪ [1/n, 1] and
note that the integrand is bounded by 1, then we have∫ 1

0

{
min(n,

1

x
)−min(n, b1

x
)c)
}
dx = 1− γ +O(

1

n
).

The integral of the first term equals 1 + log n, so upon returning to (13) one
finds

E[M∗n(1)] = E[min{n, b1/Xc}] = log n+ γ −O(
1

n
). (14)

When we compare this to the (2n)1/2 bound that we get from (10), we see that
it falls uncomfortably far from the actual value of E[M∗n(1)]. This illustrates
in a simple way that there is a price to be paid for the generality of Theorem
3.1.

One could have come to a similar conclusion with estimates that are less
precise than (14). Nevertheless, there is some independent benefit to seeing
Euler’s constant emerge from the knapsack problem. More critically, this
example illustrates the reason for the more refined definition of A(n, s) that
was introduced in (11). Here the maximum in (13) is typically attained
for many different choices of A ⊂ [n]. Nevertheless, with help from the total
order ≺ one regains uniqueness in definition of A(s, n), and, as a consequence,
the logic of Section 1 serves one just as well as it did before.

Example 4.3 Beta Densities and a Long Monotone Sequence. Now,
for each i ∈ [n] we take Xi to have the Beta(i, n−i+1) density, so in particu-
lar, Xi has the same marginal distribution as the i’th smallest value U(i) in a
sample {U1, U2, . . . , Un} of n independent random variables with the uniform
distribution on [0, 1]. Still, for the moment we make no assumption about
the joint distribution of (Xi : i ∈ [n]). By the condition (9) we then have

s =

n∑
i=1

∫ t(n,s)

0
x dFi(x) = E

[ n∑
i=1

U(i)1[U(i) ∈ [0, t(n, s)]
]

= E
[ n∑
i=1

Ui1[Ui ∈ [0, t(n, s)]
]
=

1

2
t2(n, s)n,

so in this case we again find t(n, s) = (2s/n)1/2. Thus, by (10) we have the
upper bound (2n)1/2 when s = 1, and our bound echoes what we know from
the classical inequality (4).

This inference depends only on our assumption about the marginal dis-
tributions, but we can go a bit further if we assume the equality of the joint
distributions (Xi : i ∈ [n]) and (U(i) : i ∈ [n]). In particular, one finds in this
case that our upper bound (2n)1/2 is essentially tight.
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It is also evident in this case that one has X1 < X2 < · · · < Xn, and
this observation would be quite uninteresting, except that in the next section
we will find in that in the independent case there is a remarkable link be-
tween monotone subsequences of maximal length and the Bruss-Robertson
inequality. Thus, it is something of a curiosity to see how thoroughly this
connection can be broken while still retaining the bound given by the general
inequality of Theorem 3.1.

5. Sequential Subsequence Selection Problems. A basic source of
interest in the Bruss-Robertson inequality (3) and its generalization (10) is
that these results lead to a priori upper bounds for two well-studied problems
in combinatorial optimization. In particular, in the classical case of indepen-
dent uniformly distributed random variables, the Bruss-Robertson inequality
(3) gives bounds that are that are essentially sharp for both the sequential
knapsack problem and the sequential increasing subsequence selection pro-
blem.

In the sequential knapsack problem, one observes a sequence of n inde-
pendent non-negative random variables X1, X2, . . . , Xn with a fixed, known
distribution F . One is also given a real value x ∈ [0,∞) that one regards as
the capacity of a knapsack into which selected items are placed. The obser-
vations are observed sequentially, and, at time i, when Xi is first observed,
one either selects Xi for inclusion in the knapsack or else Xi is rejected from
any future consideration. The goal is to maximize the expected number of
items that are included in the knapsack. Since the Bruss-Robertson maximal
function (1) tells one how well one could do if one knew in advance all of the
values {Xi : i ∈ [n]}, it is evident that no strategy for making sequential
choices can ever lead to more affirmative choices than Mn(x).

The sequential knapsack problem is a Markov decision problem that is
known to have an optimal sequential selection strategy that is given by a uni-
que non-randomized Markovian decision rule. When one follows this optimal
policy beginning with n values to be observed and with an initial knapsack
capacity of x, the expected number of selections that one makes is denoted
by vn(x). This is called the value function for the Markov decision problem,
and, it can be calculated by the recursion relation

vn(x) = (1−F (x))vn−1(x)+
∫ x

0
max{vn−1(x), 1+ vn−1(x− y)} dF (y). (15)

Specifically, one begins with the obvious relation v0(x) ≡ 0, and one computes
vn(x) by iteration of (15).

This is called the Bellman equation (or optimality equation) for the se-
quential knapsack problem, and it is easy to justify. The first term comes
from the possibility that X1 is too large to fit into the knapsack, and this
event happens with probability 1 − F (x). In this case, one cannot accept
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X1, so one is left with the original capacity x and there are only n− 1 more
values to be observed. This gives one the first term of (15).

For the more interesting second term of (15), we consider the case where
one has X1 = y ≤ x, so one has the option either to accept or to reject X1.
If we reject X1, we have no increment to our knapsack count and we have
the value vn−1(x) for the expected number of selections from the remaining
values. On the other hand, if we accept X1, we have added 1 to our knapsack
count. We also have a remaining capacity of x − y, and we have n − 1
observations to be seen. One takes the better of these two values, and this
gives us the second term of (15).

Now we consider the problem of sequential selection of a monotone de-
creasing subsequence. Specifically, we observe sequentially n independent
random variables X1, X2, . . . , Xn with the common continuous distribution
F , and we make monotonically decreasing choices

Xi1 > Xi2 > · · · > Xik .

Our goal here is to maximize the expected number of choices that we make.
Again we have a Markov decision problem with an unique optimal non-
randomized Markov decision policy. Here, prior to making any selection,
we take the state variable x to be the supremum of the support of F , which
may be infinity. After we have made at least one selection, we take the state
variable x to be the value of the last selection that was made.

Now we write ṽn(x) for the expected number of selections made under the
optimal policy when the state variable is x and where there are n observations
that remain to be observed. In this case the Bellman equation given by
Samuels and Steele(1981) can be written as

ṽn(x) = (1− F (x))ṽn−1(x) +
∫ x

0
max{ṽn−1(x), 1 + ṽn−1(y)} dF (y), (16)

where again one has the obvious relation ṽn(x) ≡ 0 for the initial value. In
(16) the decision to select X1 = y would move the state variable to y, so
here we have 1 + ṽn−1(y) where earlier we had the term 1 + vn−1(x − y) in
the knapsack Bellman equation (15). In knapsack problem the state variable
moves from x to x− y when X1 = y is selected.

In general, the solutions of (15) and (16) are distinct. Nevertheless, Coff-
man et al.(1987) observed that vn(x) and ṽn(x) are equal when the observa-
tions are uniformly distributed. This can be proved formally by an inductive
argument that uses the two Bellman equations (15) and (16).

Proposition 5.1 If F (x) = x for 0 ≤ x ≤ 1, then one has

vn(x) = ṽn(x) for all n ≥ 0 and 0 ≤ x ≤ 1.
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Proof For n = 0 we have v0(x) = ṽ0(x) = 0 for all x ∈ [0, 1], and this gives
us the base case for an induction. To make the inductive step from n−1 to n,
we first use the Bellman equation (15) and then use the induction hypothesis
to get

vn(x) = (1− x)vn−1(x) +
∫ x

0
max{vn−1(x), 1 + vn−1(x− y)} dy

= (1− x)ṽn−1(x) +
∫ x

0
max{ṽn−1(x), 1 + ṽn−1(x− y)} dy

= (1− x)ṽn−1(x) +
∫ x

0
max{ṽn−1(x), 1 + ṽn−1(y)} dy = ṽn(x),

where in passing to the last line one uses the symmetry of the uniform me-
asure on [0, x] ⊂ [0, 1]. Naturally, for the last equality one just needs to use
the second Bellman equation (16). �

Despite the equality of the value functions established by this proposi-
tion, no one has yet found any direct choice-by-choice coupling between the
sequential knapsack problem and the sequential monotone subsequence se-
lection problem. Nevertheless, one can create a detailed linkage between these
two problems that does yield more than just the equality of the associated
expected values.

The first step is to note that the equality of the value functions permits
one to construct optimal selection rules that can be applied simultaneously
to the same sequence of observations. The selections that are made will
be different in the two problems, but one still finds useful distributional
relationships.

5.1. Threshold Strategies from Value Functions. The essential
observation is that the second term of the Bellman equation (16) leads one
almost immediately to the construction of an optimal selection strategy for
the monotone subsequence problem. These strategies lead one in turn to
a more detailed understanding of the number of values that one actually
selects.

First, one notes that it is easy to show (cf. Samuels and Steele(1981))
that there is a unique y ∈ [0, 1] that solves the “equation of indifference”:

ṽn−1(x) = 1 + ṽn−1(y).

We denote this solution by αn(x), and we use its values to determine the rule
for making the sequential selections.

At the moment just before Xi is presented, we face the problem of se-
lecting a monotone sequence from among the n−i+1 values Xi, Xi+1, . . . , Xn,
and if we let S̃i−1 denote the last of the values X1, X2, . . . , Xi−1 that has been
selected so far, then we can only select Xi if it is not greater than the most
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recently selected value S̃i−1. In fact, one would choose to select Xi if and
only if it falls in the interval [Si−1, Si−1 − αn−i+1(S̃i−1)]. Thus, the actual
number of values selected out of the original n is the random variable given
by

Ṽn
def
=

n∑
i=1

1(Xi ∈ [S̃i−1, S̃i−1 − αn−i+1(S̃i−1)]).

By the same logic, one finds that in the sequential knapsack problem the
number of values that are selected by the optimal selection rule can be written
as

Vn
def
=

n∑
i=1

1(Xi ∈ [0, αn−i+1(Si−1)]),

where now Si−1 denotes the capacity that remains after all of the knapsack
selections have been made from the set of values X1, X2, . . . , Xi−1 that have
already been observed.

By this parallel construction and by Proposition 5.1, we have

E[Vn] = vn(1) = ṽn(1) = E[Ṽn],

but considerably more is true. Initially, one has S0 = 1 = S̃0, so, one further
finds the equality of the joint distributions of the vectors

(S0, S1, . . . , Sn−1) and (S̃0, S̃1, . . . , S̃n−1),

since the two processes {Si : 0 ≤ i ≤ n} and {S̃i : 0 ≤ i ≤ n} are (temporally
non-homonomous) Markov chains that have the same transition kernel at
each time epoch.

This equivalence tells us in turn that the partial sums

Vn,k
def
=

k∑
i=1

1(Xi ∈ [0, αn−i+1(Si−1)]) and

Ṽn,k
def
=

k∑
i=1

1(Xi ∈ [S̃i−1, S̃i−1 − αn−i+1(S̃i−1)]),

satisfy the distributional identity

Vn,k
d
= Ṽn,k for all 1 ≤ k ≤ n. (17)

Nevertheless, the two processes {Vn,k : 1 ≤ k ≤ n} and {Ṽn,k : 1 ≤ k ≤
n} are not equivalent as processes. Despite the equality of the marginal
distributions, the joint distributions are wildly different.

5.2. Classical Consequences. The Bruss-Robertson inequality (4)
tells us directly that E[Vn] ≤

√
2n, so, by the distributional identity (17), we

find indirectly that
E[Ṽn] ≤

√
2n for all n ≥ 1. (18)
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It turns out that (18) can be proved by a remarkable variety of methods.
In particular, Gnedin(1999) gave a direct proof of (18) where one can even
accommodate a random sample size N and where the upper bound of (18) is
replaced with the natural proxy (2E[N ])1/2. More recently, Arlotto, Mossel
and Steele(2015)gave two further proofs of (18) as consequences of bounds
that were developed for the quickest selection problem, a sequential decision
problem that provides a kind of combinatorial dual to the classical sequential
selection problem.

The distributional identity (17) can also be used to make some notable
inferences about the knapsack problem from what has been discovered in the
theory of sequential monotone selections. For example, by building on the
work of Bruss and Delbaen(2001) and Bruss and Delbaen(2004), it was found
in Arlotto, Nguyen and Steele(2015) that one has

Var[Ṽn] ∼
1

3

√
2n and

Ṽn −
√
2n

3−1/2(2n)1/4
⇒ N(0, 1). (19)

Thus, as a consequence of the distributional identity (17) one has the same
results for the knapsack variable Vn for independent observations with the
uniform distribution on [0, 1].

It seems quite reasonable to conjecture that there are results that are
analogous to (19) for the sequential knapsack problem where the driving
distribution F is something other than the uniform. Nevertheless, proofs
of such results are unlikely to be easy since the proofs of the relations (19)
required a sustained investigation of the Bellman equation (16).

Finally, one should also recall the non-sequential (or clairvoyant) selection
problem where one studies the random variable

Ln = max{k : Xi1 < Xi2 < . . . < Xik , 1 ≤ i1 < i2 < · · · < ik ≤ n}.

This classic problem has a long history that is beautifully told in Romik(2014).
Here the most relevant part of that story is that Baik et al.(1999) found the
asymptotic distribution of Ln, and, in particular, they found that one has
the asymptotic relation

E[Ln] = 2
√
n− αn1/6 + o(n1/6) where α = 1.77108... (20)

Ironically, it is still not known if the map n 7→ E[Ln] is concave, even
though this seems like an exceptionally compelling conjecture. The estimate
(20) certainly suggests this, and, moreover, we already know from Arlotto,
Nguyen and Steele(2015,p. 3604) that for the analogous sequential problems
the corresponding map n 7→ E[Ṽn] = E[Vn] is indeed concave.

6. Further Connections and Applications. Here the whole goal has
been to explain, extend, and explore the upper bound given by the Bruss-
Robertson inequality. Still, there is a second side to the Bruss-Robertson
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maximal function, and both lower bounds and asymptotic relations have
been developed in investigations by Coffman et al.(1987), Bruss and Ro-
bertson(1991), and Rhee and Talagrand(1991). Furthermore, Boshuizen and
Kertz(1999 have even established the joint convergence in distribution of the
(suitably normalized) Bruss-Robertson maximal function and a sequence of
approximate solutions to the sequential knapsack problem, although this re-
sult does not seem to speak directly to the problem of proving a wider analog
of (19).

The applications that have been considered here were all taken from com-
binatorial optimization. Nevertheless, there are several other areas where
the Bruss-Robertson maximal function (1) has a natural place. For exam-
ple,Gribonval et al.(2012) use bounds from Bruss and Robertson(1991) in
their study of compressibility of high dimensional distributions.

Finally, one should note that the bounds of Bruss and Robertson(1991)
have a natural role in the theory of resource dependent branching processes,
or RDBPs. This is a rich theory that in turn takes a special place in the recent
work of Bruss and Duerinckx(2015) on new mathematical models of societal
organization. These models have been further explained for a broader (but
still mathematical) audience in Bruss(2014), where the theory of Bruss and
Duerinckx(2015) is also applied to two contemporary European public policy
issues.
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Nierówność Brussa-Robertsona: modyfikacje, rozszerzenia i
zastosowania

Streszczenie Nierówność Bruss-Robertson szacuje maksymalna liczbę elementów w
próbie której suma jest ograniczona przez zadaną liczbę. Uogólnienia tej nierówności
podane w tej pracy nie wymagają założenia niezalezności składników sumy ani tego,
by były o tym samym rozkładzie. Podano także przegląd zastosowań nierówności
Brussa-Robertsona, a zwłaszcza zastosowania do problemów kombinatorycznych ta-
kich jak sekwencyjny problem upakowania i wybór monotonicznego podciągu.

2010 Klasyfikacja tematyczna AMS (2010): 60C05, 60G40, 90C40; Secondary:
60F99, 90C27, 90C39.

Słowa kluczowe: nierówności dla statystyk rangowych • sekwencyjny problem upa-
kowania • wybór sekwencyjny • markowski problem decyzyjny • proces gałązkowy
• równanie Bellman.
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