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EFFICIENT EMPIRICAL BAYES PREDICTION UNDER
CHECK LOSS USING ASYMPTOTIC RISK ESTIMATES

By Gourab Mukherjee∗, Lawrence D. Brown† and
Paat Rusmevichientong∗

University of Southern California∗ and University of Pennsylvania†

We develop a novel Empirical Bayes methodology for prediction
under check loss in high-dimensional Gaussian models. The check loss
is a piecewise linear loss function having differential weights for mea-
suring the amount of underestimation or overestimation. Prediction
under it differs in fundamental aspects from estimation or predic-
tion under weighted-quadratic losses. Because of the nature of this
loss, our inferential target is a pre-chosen quantile of the predictive
distribution rather than the mean of the predictive distribution. We
develop a new method for constructing uniformly efficient asymptotic
risk estimates which are then minimized to produce effective linear
shrinkage predictive rules. In calculating the magnitude and direction
of shrinkage, our proposed predictive rules incorporate the asymmet-
ric nature of the loss function and are shown to be asymptotically
optimal. Using numerical experiments we compare the performance
of our method with traditional Empirical Bayes procedures and ob-
tain encouraging results.

1. Introduction. We consider Empirical Bayes (EB) prediction under check
loss (see Chapter 11.2.3 of Press, 2009 and Koenker and Bassett Jr, 1978) in high-
dimensional Gaussian models. The check loss (sometimes also referred to as tick
loss) is linear in the amount of underestimation or overestimation and the weights
for these two linear segments differ. The asymmetric check loss function often
arises in modern business problems as well as in medical and scientific research
(Koenker, 2005). Statistical prediction analysis under asymmetric loss functions
in fixed dimensional models have been considered by Zellner and Geisel (1968),
Aitchison and Dunsmore (1976), Zellner (1986) and Blattberg and George (1992).
Here, we consider the multivariate prediction problem under an agglomerative
co-ordinatewise check loss as the dimensionality of the underlying Gaussian lo-
cation model increases. In common with many other multivariate problems we
find that empirical Bayes (shrinkage) can provide better performance than simple
coordinate-wise rules; see James and Stein (1961), Zhang (2003), and Greenshtein
and Ritov (2009) for some background. However, prediction under the loss func-
tion here differs in fundamental aspects from estimation or prediction under the

Keywords and phrases: Shrinkage estimators, Empirical Bayes prediction, Asymptotic opti-
mality, Uniformly efficient risk estimates, Oracle inequality, Pin-ball loss, Piecewise linear loss,
Hermite polynomials
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weighted quadratic losses considered in most of the previous literature. This ne-
cessitates different strategies for creation of effective empirical Bayes predictors.

We begin by considering a Gaussian hierarchical Bayes structure, with unknown
hyperparameters. We develop an estimate of the hyperparameters that is adapted
to the shape of the concerned loss function. This estimate of the hyperparameters
is then substituted in the Bayes formula to produce an EB predictive rule. This
yields a co-ordinatewise prediction that we prove is overall asymptotically optimal
as the dimension of the problem grows increasingly large. The hyperparameters
are estimated by minimizing asymptotically efficient risk estimates. Due to the
asymmetric nature of the loss function, direct construction of unbiased risk esti-
mates which is usually done under weighted quadratic losses is difficult here. We
develop a new asymptotically unbiased risk estimation method which involves an
appropriate use of Hermite polynomial expansions for the relevant stochastic func-
tions. Cai et al. (2011) used such an expansion for a different, though somewhat
related, problem involving estimation of the L1 norm of an unknown mean vector.
In other respects our derivation logically resembles that of Xie, Kou and Brown
(2012, 2015) who constructed empirical Bayes estimators built from an unbiased
estimate of risk. However their problem involved estimation under quadratic loss,
and the mathematical formulae they used provide exactly unbiased estimates of
risk, and are quite different from those we develop.

The remainder of Section 1 describes our basic setup and gives formal statements
of our main asymptotic results. Section 2 provides further details. It explains the
general mathematical structure of our asymptotic risk estimation methodology and
sketches the proof techniques used to prove the main theorems about it. Sections 4
and 5 contain further narrative to explain the proofs of the main results, but
technical details are deferred to the Appendices. Section 3 reports on some simula-
tions. These clarify the nature of our estimator and provide some confidence that
it performs well even when the dimension of the model is not extremely large.

1.1. Basic Setup. We adopt the statistical prediction analysis framework of Aitchi-
son and Dunsmore (1976) and Geisser (1993). We consider a one-step, n dimen-
sional Gaussian predictive model where for each i = 1, . . . , n, the observed past Xi

and the unobserved future Yi are distributed according to a normal distribution
with an unknown mean θi; that is,

Xi = θi +
√
νp,i · ε1,i for i = 1, 2, . . . , n(1.1)

Yi = θi +
√
νf,i · ε2,i for i = 1, 2, . . . , n ,(1.2)

where the noise terms {εj,i : j = 1, 2; i = 1, . . . , n} are i.i.d. from a standard
normal distribution, and the past and future variances νp,i, νf,i are known for
all i. Note that, in multivariate notation X ∼ N(θ,Σp) and Y ∼ N(θ,Σf ) where
Σp and Σf are n dimensional diagonal matrices whose ith entries are νp,i and
νf,i, respectively. If the mean θi were known, then the observed past Xi and future
Yi would be independent of each other.
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Our objective is to compute q̂ = {q̂i(X) : 1 ≤ i ≤ n} based on the past data X
such that q̂ optimally predicts Y . As a convention, we use bold font to denote
vectors and matrices, while regular font denotes scalars. For ease of exposition, we
will use ̂ to denote data-dependent estimates, and we will sometimes write q̂ or
its univariate version q̂i without an explicit reference to X.

When we predict the future Yi by q̂i, the loss corresponding to the ith coordinate
is bi · (Yi − q̂i)+ + hi · (q̂i − Yi)+. This loss is related to the pin-ball loss function
(Steinwart and Christmann, 2011), which is widely used in statistics and machine
learning for estimating conditional quantiles. For each X = x, the associated
predictive loss is given by

li(θi, q̂i(x)) = EYi∼N(θi , νf,i)

[
bi(Yi − q̂i(x))+ + hi(q̂i(x)− Yi)+

]
,(1.3)

where the expectation is taken over the distribution of the future Yi only. We use
the notation N(µ, ν) to denote a normal random variable with mean µ and variance
ν. Since Yi is normally distributed with mean θi, it follows from Lemma 2.1 that

li(θi, q̂i) =
√
νf,i (bi + hi)G( (q̂i − θi)/

√
νf,i , bi/(bi + hi) ), where

G(w, β) = φ(w) + wΦ(w)− βw for w ∈ R, β ∈ [0, 1] ,
(1.4)

where φ(·) and Φ(·) are the standard normal PDF and CDF, respectively. Thus,
given X, the cumulative loss associated with the n dimensional vector q̂ is

Ln(θ, q̂) =
1

n

n∑
i=1

li(θi, q̂i) .

An Example: The Newsvendor problem. As a motivation for the check loss, con-
sider the inventory management problem of a vendor who sells a large number
of products. Consider a one-period setting, where based on the observed demand
X in the previous period, the vendor must determine the stocking quantity q̂i of
each product in the next period. He has to balance the tradeoffs between stocking
too much and incurring high inventory cost versus stocking too little and suffering
lost sales. If each unit of inventory incurs a holding cost hi > 0, and each unit of
lost sale incurs a cost of bi > 0, the vendor’s cost function is given by (1.3). Usu-
ally, the lost sales cost is much higher than the inventory cost leading to a highly
asymmetric loss function. This problem of determining optimal stocking levels is
a classical problem in the literature on inventory management (Arrow, Harris and
Marschak, 1951, Karlin and Scarf, 1958, Levi, Perakis and Uichanco, 2011, Rudin
and Vahn, 2015) and is referred to as the multivariate newsvendor problem. In
Appendix D, using a data-informed illustration on newsvendor problem we study
estimation under (1.4).

Hierarchical Modeling and Predictive Risk. We want to minimize the expected
loss EX [Ln(θ, q̂)] over the class of estimators q̂ for all values of θ. If θ were
known, then by Lemma 2.1, the optimal prediction for each dimension i is given
by θi +

√
νf,i Φ−1(bi/(bi + hi)). In absence of such knowledge, we consider hierar-

chical modeling and the related Empirical Bayes (EB) approach (Robbins, 1964,
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Zhang, 2003). This is a popular statistical method for combining information and
conducting simultaneous inference on multiple parameters that are connected by
the structure of the problem (Efron and Morris, 1973a,b, Good, 1980).

We consider the conjugate hierarchical model and put a prior distribution πη,τ on
each θi, under which θ1, θ2, . . . , θn are i.i.d. from N(η, τ) distribution. Here, η and
τ are the unknown location and scale hyperparameters, respectively. The predictive
risk associated with our estimator q̂ is defined by

Rn(θ, q̂) = EX∼N(θ,Σp) [Ln(θ, q̂)] ,

where the expectation is taken over X. Note that the expectation over Y is al-
ready included in L via the definition of the loss `i. Because of the nature of
the check loss function, our inferential target here is a pre-chosen quantile of
the predictive distribution rather than the mean of the predictive distribution
which is usually the object of interest in prediction under quadratic loss. By
Lemma 2.2, the Bayes estimate – the unique minimizer of the integrated Bayes
risk Bn(η, τ) =

∫
Rn(θ, q̂)πη,τ (θ) dθ – is given for i = 1, . . . , n by

(1.5) q̂Bayesi (η, τ) = αi(τ)Xi + (1− αi(τ))η +
√
νf,i + αi(τ)νp,i Φ−1(bi/(bi + hi)),

where, for all i, αi(τ) = τ/(τ + νp,i) denotes the shrinkage factor of coordinate i.

Standard parametric Empirical Bayes methods (Efron and Morris, 1973b, Lindley,
1962, Morris, 1983, Stein, 1962) suggest using the marginal distribution of X to
estimate the unknown hyperparameters. In this paper, inspired by Stein’s Unbiased
Risk Estimation (SURE) approach of constructing shrinkage estimators (Stein,
1981), we consider an alternative estimation method. Afterwards, in Section 1.2,
we show that our method outperforms standard parametric EB methods which are
based on the popular maximum likelihood and method of moments approaches.

Class of Shrinkage Estimators: The Bayes estimates defined in (1.5) are based on
the conjugate Gaussian prior and constitute a class of linear estimators (Johnstone,
2013). When the hyperparameters are estimated from data, they form a class of
adaptive linear estimators. Note that these estimates themselves are not linear but
are derived from linear estimators by the estimation of tuning parameters, which,
in this case, correspond to the shrinkage factor αi(τ) and the direction of shrinkage
η. Motivated by the form of the Bayes estimate in (1.5), we study the estimation
problem in the following three specific classes of shrinkage estimators:

• Shrinkage governed by Origin-centric priors: Here, η = 0 and τ is es-
timated based on the past data X. Shrinkage here is governed by mean-zero
priors. This class of estimators is denoted by S0 = {q̂(τ) | τ ∈ [0,∞]}, where for
each τ , q̂(τ) = {q̂i(τ) : i = 1, . . . , n}, and for all i,

q̂i(τ) = αi(τ)Xi +
√
νf,i + αi(τ)νp,i Φ−1 (bi/(bi + hi)) .

We can generalize S0 by considering shrinkage based on priors with an a priori
chosen location η0. The corresponding class of shrinkage estimators SA(η0) =
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{q̂(η0, τ)|τ ∈ [0,∞]}, where η0 is a prefixed location, consists of

q̂i(η0, τ) = αi(τ)Xi + (1− αi(τ))η0 +
√
νf,i + αi(τ)νp,i Φ−1 (bi/(bi + hi)) .

As these estimators are location equivariant (Lehmann and Casella, 1998) the
estimation problem in SA(η0) for any fixed η0 reduces to an estimation problem
in S0. Hence, we do not discuss shrinkage classes based on a priori centric priors
as separate cases.

• Shrinkage governed by Grand Mean centric priors: In this case, η =
X̄n := n−1

∑n
i=1Xi, and τ is estimated based on the past data. Shrinkage here

is governed by priors centering near the grand mean of the past X. This class
of estimators is denoted by SG =

{
q̂G(τ) | τ ∈ [0,∞]

}
, where for all τ ∈ [0,∞]

and i = 1, . . . , n,

q̂Gi (τ) = αi(τ)Xi + (1− αi(τ))X̄n +
√
νf,i + αi(τ)νp,i Φ−1 (bi/(bi + hi)) .

• Shrinkage towards a general Data-Driven location: In the final case,
we consider the general class of shrinkage estimators where both η and τ are
simultaneously estimated. We shrink towards a data-driven location while si-
multaneously optimizing the shrinkage factor; this class is denoted by S =
{q̂(η, τ) | η ∈ R, τ ∈ [0,∞]}, where

q̂i(η, τ) = αi(τ)Xi + (1− αi(τ))η +
√
νf,i + αi(τ)νp,i Φ−1 (bi/(bi + hi)) .

1.2. Main Results. For ease of understanding, we first describe the results for the
class S0 where the direction of shrinkage is governed by mean-zero priors so that
η = 0. The results for the other cases are stated afterwards; see Section 1.5. By
definition, estimators in S0 are of the form: for i = 1, . . . , n,

q̂i(τ) = αi(τ)Xi +
√
νf,i + αi(τ)νp,i Φ−1 (bi/(bi + hi)) ,(1.6)

where αi(τ) = τ/(τ+νp,i) is the shrinkage factor, and the tuning parameter τ varies
from [0,∞]. We next describe the reasonable and mild conditions that we impose
on the problem structure. These assumptions mainly facilitate the rigorousness of
the theoretical proofs and can be further relaxed for practical use.

Assumptions

A1. Bounded weights of the loss function. To avoid degeneracies in our loss func-
tion, which can be handled easily but require separate case by case inspections,
we impose the following condition on the weights of the coordinatewise losses:

0 < inf
i
bi/(bi + hi) ≤ sup

i
bi/(bi + hi) < 1 and sup

i
(bi + hi) <∞ .

A2. Bounded parametric space. We assume that average magnitude of θ is bounded:

lim sup
n→∞

1

n

n∑
i=1

|θi| <∞.(1.7)
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Note that, both A1 and A2 are benign structural assumptions necessary for clear
statements of the proofs.

A3. Sufficient historical data. We assume the following upper bound on the ratio
of the past to future variances for all the coordinates:

sup
i

νp,i/νf,i < 1/(4e) .(1.8)

To understand the implication of this assumption, consider a multi-sample pre-
diction problem where we observe m i.i.d. past data vectors from a n-dimensional
Gaussian location model. Using sufficiency argument in the Gaussian setup, we
can reduce this multi-sample past data problem to a vector problem by averaging
across the m observations. The variance of the averaged model is proportional to
m−1, and in this case, we will have νp,i/νf,i = m−1 for each i. Therefore, if we
have a lot of independent historical records, the above condition will be satisfied.
As such (1.8) holds if we have 11 or more independent and identically distributed
past records. Conditions of this form are not new in the predictive literature, as
the ratio of the past to future variability controls the role of estimation accuracy in
predictive models (George, Liang and Xu, 2006, Mukherjee and Johnstone, 2015).
Simulation experiments (see Section 3) suggest that the constant in (1.8) can be
reduced but some condition of this form is needed. Also, to avoid degeneracies in
general calculations with the loss function (which can be easily dealt by separate
case analysis), we impose very mild assumptions on the variances: supi νf,i < ∞
and infi νp,i > 0.

Our Proposed Shrinkage Estimate: The predictive risk of estimators q̂(τ) of the
form (1.6) is given by Rn(θ, q̂(τ)) = Eθ [Ln(θ, q̂(τ))], where the expectation is
taken over X ∼ N(θ,Σp). Following Stein (1981), the idea of minimizing un-
biased estimates of risk to obtain efficient estimates of tuning parameters has a
considerable history in statistics (Efron and Morris, 1973b, George and Strawder-
man, 2012, Hoffmann, 2000, Stigler, 1990). However, as shown in Equation (1.4),
our loss function l(·, ·) is not quadratic, so a direct construction of unbiased risk
estimates is difficult. Instead, we approximate the risk function τ 7→ Rn(θ, q̂(τ))

by an Asymptotic Risk Estimator (ARE) function τ 7→ ÂREn(τ), which may be
biased, but it approximates the true risk function uniformly well for all τ , partic-
ularly in large dimensions. Note that ÂREn(τ) depends only on the observed X
and τ and is not dependent on θ. The estimation procedure is fairly complicated
and is built on a Hermite polynomial expansion of the risk. It is described in the
next subsection (See (1.11)). Afterward, we show that our risk estimation method
not only adapts to the data but also does a better job in adapting to the shape
of the loss function when compared with the widely used Empirical Bayes MLE
(EBML) or method of moments (EBMM) estimates. The main results of this paper
are built on the following theorem.

Theorem 1.1 (Uniform Point-wise Approximation of the Risk). Under Assump-
tions A1 and A3, for all θ satisfying Assumption A2 and for all estimates q̂(τ) ∈
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S0, we have

lim
n→∞

a8
n

{
sup

τ∈[0,∞]
E
(
ÂREn(τ)−Rn(θ, q̂(τ))

)2}
= 0 , where an = log log n

and the expectation is taken over the random variable X ∼ N(θ,Σp).

The above theorem shows that our proposed ARE method approximate the true
risk in terms of mean square error uniformly well at each hyperparameter value.
Next, we have a useful property of our class of predictors S0 which we will use
along with Theorem 1.2. It shows that for each member of S0 the loss function
Ln(θ, q̂(τ)) uniformly concentrates around its expected value, which is the risk
Rn(θ, q̂(τ)).

Theorem 1.2 (Uniform Concentration of the Loss around the Risk). Under As-
sumption A1, for any θ obeying Assumption A2,

lim
n→∞

E
[

sup
τ∈[0,∞]

∣∣Rn(θ, q̂(τ))− Ln(θ, q̂(τ))
∣∣] = 0 .

The above two theorems have different flavors; Theorem 1.2 displays uniform L1

convergence where as Theorem 1.1 shows convergence of the expected squared
deviation at the rate of a8

n uniformly over all possible τ values. Proving the uniform
L1 convergence version of Theorem 1.1 as is usually done in establishing optimality
results for estimation under quadratic loss, is difficult here due to the complicated
nature of the ARE estimator. Also, the rate of convergence a8

n (which is used to
tackle the discretization step mentioned afterwards) is not optimal and can be
made better. However, it is enough for proving the optimality of our proposed
method which is our main interest.

Combining the above two theorems, we see the average distance between ÂRE
and the actual loss is asymptotically uniformly negligible and so, we expect that
minimizing ÂRE would lead to an estimate with competitive performance. We
propose an estimate of the tuning parameter τ for the class of shrinkage estimates
S0 as follows:

(ARE Estimate) τ̂ARE
n = arg min

τ∈Λn

ÂREn(τ) .

where the minimization is done over a discrete sub-set Λn of [0,∞]. Ideally, we
would have liked to optimize the criterion over the entire domain [0,∞] of τ .

The discretization is done for computational reasons as we minimize ÂRE by
exhaustively evaluating it across the discrete set Λn which only depends on n and
is independent of x. Details about the construction of Λn is provided in Section A
of the Appendix. Λn contains countably infinite points as n→∞. We subsequently
show that the precision of our estimates is not hampered by such discretization of
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the domain. To facilitate our discussion of the risk properties of our ARE Estimate,
we next introduce the oracle loss (OR) hyperparameter

τOR
n = arg min

τ∈[0,∞]
Ln(θ, q̂(τ)) .

Note that τOR
n depends not only on x but also on the unknown θ. Therefore, it

is not an estimator. Rather, it serves as the theoretical benchmark of estimation
accuracy because no estimator in S0 can have smaller risk than q̂

(
τOR
n

)
. Unlike

the ARE estimate, τOR
n involves minimizing the true loss over the entire domain

of τ . Note that q̂Bayes ∈ S0, and thus, even if the correct hyperparameter τ were
known, the estimator q̂

(
τOR
n

)
is as good as the Bayes estimator. The following

theorem shows that our proposed estimator is asymptotically nearly as good as
the oracle loss estimator.

Theorem 1.3 (Oracle Optimality in Predictive Loss). Under Assumptions A1
and A3, for all θ satisfying Assumption A2 and for any ε > 0,

lim
n→∞

P
{
Ln
(
θ, q̂(τ̂ARE

n )
)
≥ Ln(θ, q̂(τOR

n )) + ε
}

= 0 .

The above theorem shows that the loss of our proposed estimator converges in
probability to the optimum oracle value Ln(θ, q̂(τOR

n )). We also show that, under
the same conditions, it is asymptotically as good as τOR

n in terms of the risk
(expected loss).

Theorem 1.4 (Oracle Optimality in Predictive Risk). Under Assumptions A1
and A3 and for all θ satisfying Assumption A2,

lim
n→∞

Rn
(
θ, q̂(τ̂ARE

n )
)
− E

[
Ln(θ, q̂(τOR

n ))
]

= 0 .

We extend the implications of the preceding theorems to show that our proposed
estimator is as good as any other estimator in S0 in terms of both the loss and risk.

Corollary 1.1. Under Assumptions A1 and A3, for all θ satisfying Assump-
tion A2, for any ε > 0, and any estimator τ̂n ≥ 0,

I. lim
n→∞

P
{
Ln
(
θ, q̂(τ̂ARE

n )
)
≥ Ln(θ, q̂(τ̂n)) + ε

}
= 0

II. lim
n→∞

Rn
(
θ, q̂(τ̂ARE

n )
)
−Rn(θ, q̂(τ̂n)) ≤ 0.

Next, we present two very popular, standard EB approaches for choosing esti-
mators in S0. The Empirical Bayes ML (EBML) estimator q̂(τ̂ML) is built by
maximizing the marginal likelihood of X while the method of moments (EBMM)
estimator q̂(τ̂MM) is based on the moments of the marginal distribution of X.
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Following Xie, Kou and Brown (2012, Section 2) the hyperparameter estimates
are given by

τ̂ML
n = arg min

τ∈[0,∞]

1

n

n∑
i=1

(
X2
i

τ + νp,i
+ log(τ + νp,i)

)

τ̂MM
n = max

{
1

n

p∑
i=1

(
X2
i − νp,i

)
, 0

} .(1.9)

For standard EB estimates q̂(τ̂EB
n ), such as those in (1.9) the hyperparameter esti-

mate τ̂EB
n does not depend on the shape of the individual loss functions {(bi, hi) :

1 ≤ i ≤ n}. We provide a complete definition of ÂREn and τ̂ARE
n in the next

section from where it will be evident that our asymptotically optimal estimator
τ̂ARE
n depends on the ratios {bi/(bi + hi) : 1 ≤ i ≤ n} in an essential way that

remains important as n → ∞. Hence, even asymptotically, the ML and MM es-
timates do not always agree with τ̂ARE, particularly in cases when the ratios are
not all the same. In the homoscedastic case it is easy to check that the loss func-
tion L(θ, q̂(τ)) has a unique minima in τ for any θ obeying assumption A2; and
so, by Theorems 1.1 and 1.3, it follows that any estimator as efficient as the OR
estimator must asymptotically agree with τ̂ARE. Hence, unlike our proposed ARE
based estimator, EBML and EBMM are not generally asymptotically optimal in
the class of estimators S0. In Section 3.1, we provide an explicit numerical example
to demonstrate the sub-optimal behavior of the EBML and EBMM estimators.

1.3. Construction of Asymptotic Risk Estimates. In this section, we describe the
details for the construction of the Asymptotic Risk Estimation (ARE) function

τ 7→ ÂREn(τ), which is the core of our estimation methodology. The estimators
in class S0 are coordinatewise rules, and the risk of such an estimate q̂(τ) is

Rn(θ, q̂(τ)) =
1

n

n∑
i=1

ri(θi, q̂i(τ)) ,

where ri(θi, q̂i(τ)) is the risk associated with the ith coordinate. By Lemma 2.2,
we have that

ri(θi, q̂i(τ)) = (bi + hi)
√
νf,i + νp,iα2

i (τ)G
(
ci(τ) + di(τ)θi, b̃i

)
,(1.10)

where for all i, αi(τ) = τ/(τ + νp,i), b̃i = bi/(bi + hi), and

ci(τ) =

√
1 + αi(τ)νp,i
1 + αi(τ)2νp,i

Φ−1(b̃i) and di(τ) = − 1− αi(τ)√
νf,i + νp,iαi(τ)2

.

The function G(·) is the same function as that associated with the predictive
loss and was defined in (1.4). The dependence of ci(τ) and di(τ) on τ is only
through αi. Note that, the risk ri(θi, q̂i(τ)) is non-quadratic, non-symmetric and
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not centered around θi. However, it is a C∞ function of θi which we will use
afterwards. We propose an estimate ÂREn(τ) of the multivariate risk Rn(θ, q̂(τ))
by using coordinate-wise estimate T̂i(Xi, τ) of G(ci(τ) + di(τ)θi; b̃i); that is,

ÂREn(τ) =
1

n

n∑
i=1

(bi + hi)
√
νf,i + νp,iαi(τ)2 T̂i(Xi, τ) .(1.11)

Defining the Coordinatewise Estimate T̂i(Xi, τ) – Heuristic Idea. Temporarily
keeping the dependence on τ and i implicit, we now describe how we develop an
estimate of the non-linear functional G(c+ d θ, b̃) of the unknown parameter θ.

Depending on the magnitude of c + d θ we use two different kinds of estimation
strategy for G(c+ d θ, b̃). If |c+ dθ| is not too large we approximate the functional
by GK(c+ d θ, b̃) – its K order Taylor series expansion around 0:

GK(c+ d θ, b̃) = G(0, b̃) +G′(0, b̃)(c+ d θ) + φ(0)
K−2∑
k=0

(−1)kHk(0)

(k + 2)!
(c+ d θ)k+2 ,

where Hk is the kth order probabilists’ Hermite polynomial (Thangavelu, 1993, Ch.
1.1). If W ∼ N(µ, ν) denotes a normal random variable with mean µ and variance
ν, then we can construct an unbiased estimator of the truncated functional GK by
using the following property of Hermite polynomials:

If W ∼ N(µ, ν), then νk/2 Eµ
{
Hk(W/

√
ν)
}

= µk for k ≥ 1.(1.12)

Now, if |c+dθ| is large, then the truncated Taylor’s expansion GK(·) would not be a
good approximation of G(c+d θ, b̃). However, in that case, as shown in Lemma 2.3,
we can use linear approximations with

G(c+ d θ, b̃) ≈ (1− b̃)(c+ d θ)+ + b̃(c+ d θ)− ,

and their corresponding unbiased estimates can be used. Note that for all x ∈ R,
x+ = max{x, 0} and x− = max{−x, 0}.

The Details. We need to combine the aforementioned estimates together in a data-
driven framework. For this purpose, we use threshold estimates. We use the idea
of sample splitting. We use the observed data to create two independent samples
by adding white noise Z = {Zi : i = 1, . . . , n} and define

Ui = Xi +
√
νp,iZi, Vi = Xi −

√
νp,iZi for i = 1, . . . , n.

Noting that Ui and Vi are independent, we will use Vi to determine whether or not
ci(τ)+di(τ) θ is large, and then use Ui to estimateG(ci(τ)+di(τ) θ, b̃) appropriately.
For any fixed τ ∈ [0,∞] and i = 1, . . . , n, we transform

Ui(τ) = ci(τ) + di(τ)Ui, Vi(τ) = ci(τ) + di(τ)Vi.
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Note that Ui(τ) ∼ N(ci(τ) + di(τ)θi , 2νp,i d
2
i (τ)). By Lemma 1.12, we construct

an unbiased estimate of GK(ci(τ) + di(τ)θi, b̃i) as

Si(Ui(τ)) =G(0, b̃i) +G′(0, b̃i)Ui(τ)

+ φ(0)

Kn(i)−2∑
k=0

(−1)kHk(0)

(k + 2)!

(
2νp,id

2
i (τ)

)(k+2)/2
Hk+2

(
Ui(τ)

(2νp,id2
i (τ))1/2

)
.

We use a further truncation on this unbiased estimate by restricting its absolute
value to n. The truncated version

S̃i(Ui(τ)) = Si(Ui(τ)) I{|Si(Ui(τ))| ≤ n} + n I{Si(Ui(τ)) > n} − n I{Si(Ui(τ)) < −n}
= sign (Si(Ui(τ))) min {|Si(Ui(τ))| , n}

is biased. But, because of its restricted growth, it is easier to control its variance,
which greatly facilitates our analysis.

Threshold Estimates. For each coordinate i, we then construct the following coor-
dinatewise threshold estimates:

T̂i(Xi, Zi, τ) =


−b̃i Ui(τ) if Vi(τ) < −λn(i)

S̃i(Ui(τ)) if −λn(i) ≤ Vi(τ) ≤ λn(i)

(1− b̃i)Ui(τ) if Vi(τ) > λn(i)

for i = 1, . . . , n

with the threshold parameter

λn(i) = γ(i)
√

2 log n ,(1.13)

where γ(i) is any positive number less than
(

1/
√

4e−
√
νp,i/νf,i

)
. Assumption

A2 ensures the existence of γ(i) because νp,i/νf,i < 1/(4e) for all i.

The other tuning parameter that we have used in our construction process is the
truncation parameter Kn(i), which is involved in the approximation of G and is
used in the estimate S̃. We select a choice ofKn(i) that is independent of τ ∈ [0,∞],
and is given by

Kn(i) = 1 +

⌈
e2
(
γ(i) +

√
2νp,i/νf,i

)2
(2 log n)

⌉
.(1.14)

Rao-Blackwellization. T̂i(Xi, Zi, τ) are randomized estimators as they depend on
the user-added noise Z. And so, in the final step of the risk estimation procedure
we apply Rao-Blackwell adjustment (Lehmann and Casella, 1998, Theorem 7.8,

Page 47) to get T̂i(Xi, τ) = E
[
T̂i(Xi, Zi, τ)|X

]
. Here, the expectation is over the

distribution of Z, which is independent of X and follows N(0, In).

1.3.1. Bias and Variance of the coordinatewise Risk Estimates. The key result
that allows us to establish Theorem 1.1 is the following proposition (for proof see
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Section 2.3) on estimation of the univariate risk components G(ci(τ) + di(τ)θi, b̃i)
defined in (1.10). It shows that the bias of T̂i(Xi, Zi, τ) as an estimate of G(ci(τ)+
di(τ)θi, b̃i) converges to zero as n→∞. The scaled variance of each of the univari-
ate threshold estimates T̂i(Xi, Zi, τ) also converges to zero.

Proposition 1.1. Under Assumptions A1 and A3, we have for all i = 1, . . . , n

I. lim
n→∞

sup
τ∈[0,∞], θi∈R

a8
n Biasθi(T̂i(Xi, Zi, τ)) = 0 ,

II. lim
n→∞

sup
τ∈[0,∞], θi∈R

n−1a8
n Varθi(T̂i(Xi, Zi, τ)) = 0 , where an = log log n

and the random vectors X and Z are independent, with X following (1.1) and Z
has N(0, I) distribution.

1.4. Background and Previous Work. Here, we follow the compound decision the-
ory framework introduced in Robbins (1985). In the statistics literature, there has
been substantial research on the construction of linear EB estimates in such frame-
works (Morris, 1983, Zhang, 2003). Since the seminal work by James and Stein
(1961), shrinkage estimators are widely used in real-world applications (Efron and
Morris, 1975). Stein’s shrinkage is related to hierarchical empirical Bayes methods
(Stein, 1962), and several related parametric empirical Bayes estimators have been
developed (Efron and Morris, 1973b). As such, Stein’s Unbiased Risk Estimate
(SURE) is one of the most popular methods for obtaining the estimate of tuning
parameters. Donoho and Johnstone (1995) used SURE to choose the threshold
parameter in their SureShrink method. However, most of these developments have
been under quadratic loss or other associated loss functions (Berger, 1976, Brown,
1975, Dey and Srinivasan, 1985), which admit unbiased risk estimates. DasGupta
and Sinha (1999) discussed the role of Steinien shrinkage under L1 loss, which is
related to our predictive loss only when b = h. If b 6= h, their proposed estimator
do not incorporate the asymmetric nature of the loss function and are sub-optimal
(See Corollary 1.1). To construct risk estimates that are adapted to the shape of
the cumulative check loss functions, we develop new methods for efficiently esti-
mating the risk functionals associated with our class of shrinkage estimators. In
our construction, we concentrate on obtaining uniform convergence of the esti-
mation error over the range of the associated hyperparameters. This enables us
to efficiently fine-tune the shrinkage parameters through minimization over the
class of risk estimates. Finally, in contrast to quadratic loss results (Xie, Kou and
Brown, 2012, Section 3), we develop a more flexible moment-based concentration
approach that translates our risk estimation efficiency into the decision theoretic
optimality of the proposed shrinkage estimator.

1.5. Further Results. We now describe our results for efficient estimation in class
S, where we shrink towards a data-driven direction η, and the hyperparameters η
and τ are simultaneously estimated. Here, we restrict the location hyperparameter
η to lie in the set M̂n = [m̂n(α1), m̂n(α2)] where m̂n(α) = quantile{Xi : 1 ≤ 1 ≤
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n;α} is the α th quantile of the observed data and α1 = inf{bi/(bi+hi) : 1 ≤ i ≤ n}
and α2 = sup{bi/(bi + hi) : 1 ≤ i ≤ n}. By Lemma 2.1, we know that if the true
distributions were known, the optimal predictor for dimension i is given by the
bi/(bi+hi) quantile. In this context, it make sense to restrict the shrinkage location
parameter η in the aforementioned range as we do not want to consider non-robust
estimators that shrink toward locations that lie near undesired periphery of the
data.

The predictive risk of estimators q̂(η, τ) of the form (1.5) is given byRn(θ, q̂(η, τ)) =

Eθ [Ln(θ, q̂(η, τ))]. We estimate the risk function by (η, τ) 7→ ÂRE
D

n (η, τ). The esti-
mation procedure and the detailed proof for the results in this section are presented
in Section 4. We estimate the tuning parameters τ and η for the class of shrinkage

estimates S by minimizing the ÂRE
D

n (η, τ) criterion jointly over the domain of τ
and η. Computationally, it is done by minimizing over a discrete grid:(

η̂D
n , τ̂

D
n

)
= arg min

(η,τ)∈(Λn,1∩M̂n)⊗Λn,2

ÂRE
D

n (η, τ) ,

where Λn,2 is a discrete grid spanning [0,∞] and Λn,1 is a discrete grid spanning
[−an, an] with an = log log n. Both, Λn,1 and Λn,2 do not depend on X but only
on n. The minimization is conducted only over η values in Λn,1 which lie in the set
M̂n. Details on the construction of the grid is presented in Section 4. We define
the oracle loss estimator here by

(ηDOR
n , τDOR

n ) = arg min
τ∈[0,∞], η∈[m̂n(α1),m̂n(α2)]

Ln(θ, q̂(η, τ))

The following theorem shows that our risk estimates estimate the true loss uni-
formly well.

Theorem 1.5. Under Assumptions A1 and A3, for all θ satisfying Assump-
tion A2 and for all estimates q̂(η, τ) ∈ S,

lim
n→∞

sup
τ∈[0,∞], |η|≤an

a4
n E
∣∣∣∣ÂRE

D

n (η, τ)− Ln(θ, q̂(η, τ))

∣∣∣∣ = 0 where an = log log n.

Based on the above theorem, we derive the decision theoretic optimality of our
proposed estimator. The following two theorems show that our estimator is asymp-
totically nearly as good as the oracle loss estimator, whereas the corollary shows
that it is as good as any other estimator in S.

Theorem 1.6. Under Assumptions A1 and A3, and for all θ satisfying Assump-
tion A2, we have, for any fixed ε > 0,

lim
n→∞

P
{
Ln
(
θ, q̂(η̂D

n , τ̂
D
n )
)
≥ Ln

(
θ, q̂(ηDOR

n , τDOR
n )

)
+ ε
}

= 0 .
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Theorem 1.7. Under Assumptions A1 and A3, and for all θ satisfying Assump-
tion A2,

lim
n→∞

Rn
(
θ, q̂(η̂D

n , τ̂
D
n )
)
− E

[
Ln
(
θ, q̂(ηDOR

n , τDOR
n )

)]
= 0.

Corollary 1.2. Under Assumptions A1 and A3, for all θ satisfying Assump-
tion A2 and for any estimator τ̂n ≥ 0 and η̂n ∈ [m̂n(α1), m̂n(α2)],

I. lim
n→∞

P
{
Ln
(
θ, q̂(η̂D

n , τ̂
D
n )
)
≥ Ln

(
θ, q̂(η̂n, τ̂n)

)
+ ε
}

= 0 for any fixed ε > 0.

II. lim
n→∞

Rn
(
θ, q̂(η̂D

n , τ̂
D
n )
)
−Rn

(
θ, q̂(η̂n, τ̂n)

)
≤ 0.

The EBML estimate of the hyperparameters are given by

τ̂ML
n = arg min

τ∈[0,∞]

1

n

n∑
i=1

(
(Xi − f(τ))2

τ + νp,i
+ log(τ + νp,i)

)
and η̂ML

n = f(τ̂ML
n ) ,

where f(τ) = f1(τ) I{f1(τ) ∈ [m̂n(α1), m̂n(α2)]} + m̂n(α1) I{f1(τ) < m̂n(α1)} +
m̂n(α2) I{f1(τ) > m̂n(α2)} and f1(τ) = (

∑n
i=1(τ + νp,i)

−1Xi)/(
∑n

i=1(τ + νp,i)
−1).

The method of moments (MM) estimates are roots of the following equations:

τ =
1

n− 1

( n∑
i=1

(
Xi − η

)2 − (1− 1/n)νp,i

)
+

and η = f(τ).

Unlike (η̂D
n , τ̂

D
n ), the EBML and EBMM estimates of the hyperparameters do not

depend on the shape of the loss functions {(bi, hi) : 1 ≤ i ≤ n}. Thus, the EBML
and EBMM estimators q̂(η̂ML, τ̂ML) and q̂(η̂MM, τ̂MM) do not always agree with
the ARE based estimator q̂(η̂D, τ̂D).

Results on Estimators in SG. Following (1.5), the class of estimators with shrinkage
towards the Grand Mean (X̄) of the past observations is of the following form: for
i = 1, . . . , n,

q̂Gi (τ) = αi(τ)Xi + (1− αi(τ))X̄ + (νf,i + αi(τ)νp,i)
1/2 Φ−1(b̃i) ,(1.15)

where τ varies over 0 to∞, and αi(τ), and b̃i are defined just below Equation (1.5).
For any fixed τ , unlike estimators in S, q̂G(τ) is no longer a coordinatewise inde-
pendent rule. In Section 5, we develop an estimation strategy which estimates the
loss of estimators in SG uniformly well over the grid Λn of Section 1.2.

Theorem 1.8. Under Assumptions A1 and A3, for all θ satisfying Assumption
A2 and for all estimates q̂G(τ) ∈ SG,

lim
n→∞

E
{

sup
τ∈Λn

∣∣∣∣ÂRE
G

n (τ)− Ln(θ, q̂G(τ))

∣∣∣∣ } = 0 .

We propose an estimate τ̂AREG

n = arg minτ∈Λn ÂRE
G

n (τ) for the hyperparameter
in this class and compare its asymptotic behavior with the oracle loss τGOR

n =



EB PREDICTION UNDER CHECK LOSS 15

arg minτ∈[0,∞] Ln(θ, q̂G(τ)). Like the other two classes, based on Theorem 1.8,
here we also derive the asymptotic optimality of our proposed estimate in terms
of both the predictive risk and loss.

Theorem 1.9. Under Assumptions A1, A3, for all θ satisfying Assumption A2

(A) comparing with the oracle loss estimator, we have the following:

I. lim
n→∞

P
{
Ln
(
θ, q̂G(τ̂AREG

n )
)
≥ Ln

(
θ, q̂G(τGOR

n )
)

+ ε
}

= 0 for any fixed ε > 0.

II. lim
n→∞

Rn
(
θ, q̂G(τ̂AREG

n )
)
− E

[
Ln
(
θ, q̂G(τGOR

n )
)]

= 0.

(B) for any estimate τ̂n ≥ 0 of the hyperparameter, we have the following:

I. lim
n→∞

P
{
Ln
(
θ, q̂G(τ̂AREG

n )
)
≥ Ln

(
θ, q̂G(τ̂n)

)
+ ε
}

= 0 for any fixed ε > 0.

II. lim
n→∞

Rn
(
θ, q̂G(τ̂AREG

n )
)
−Rn

(
θ, q̂G(τ̂n)

)
≤ 0 .

1.6. Organization of the Paper. In Section 2, we provide a detailed explanation
of the results involving the class of estimators S0. Treating this class as the fun-
damental case, through the proof of Theorem 1.1, Section 2 explains the general
principle behind our asymptotic risk estimation methodology and the proof tech-
niques used in this paper. The proofs of Theorems 1.2, 1.3 and 1.4 and Corollary 1.1
are provided in Appendix A. Section 3 discusses the performance of our prediction
methodology in simulation experiments. Section 4 and its associated Appendix B
provide the proofs of Theorems 1.5, 1.6 and 1.7 and Corollary 1.2, which deal with
estimators in class S. The proofs of Theorems 1.8 and 1.9 involving class SG are
provided in Section 5 and Appendix C. In Table 5 of the Appendix, a detailed list
of the notations used in the paper is provided.

2. Proof of Theorem 1.1 and Explanation of the ARE Method. In this
section, we provide a detailed explanation of the results on the estimators in S0.
This case serves as a fundamental building block and contains all the essential
ingredients involved in the general risk estimation method. In subsequent sections,
the procedure is extended to S and SG. We begin by laying out the proof of
Theorem 1.1. The decision theoretic optimality results – Theorems 1.3 and 1.4 and
Corollary 1.1 – follow easily from Theorems 1.1 and 1.2; their proofs are provided
in Appendix A. To prove Theorem 1.2, we use the fact that the parametric space
is bounded (Assumption A2) and apply the uniform SLLN argument (Newey and
McFadden, 1994, Lemma 2.4) to establish the desired concentration. The detailed
proof is in the Appendix A.

2.1. Proof of Theorem 1.1. We will use Proposition 1.1 in the proof. Let ÂREn(Z, τ)
denote a randomized risk estimate before the Rao-Blackwellization step in Sec-
tion 1.3. For any fixed τ , {T̂i(Xi, Zi, τ) : 1 ≤ i ≤ n} are independent of each other,
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so the Bias-Variance decomposition yields

E
[(
Rn(θ, q̂(τ))− ÂREn(Z, τ)

)2]
≤ An

{(
1

n

n∑
i=1

Bias(Ti(Xi, Zi, τ))

)2

+
1

n2

n∑
i=1

Var(Ti(Xi, Zi, τ))

}
,

(2.1)

where An = sup{(bi+hi)
2(νf,i+αi(τ)νp,i) : i = 1, . . . , n} and αi(τ) = τ/(τ + νp,i).

By Assumption A1 and A3, supnAn < ∞. From Proposition 1.1, both terms on
the right hand side after being scaled by a8

n uniformly converge to 0 as n → ∞.
This shows that

lim
n→∞

a8
n sup
τ∈[0,∞]

E
[(
Rn(θ, q̂(τ))− ÂREn(Z, τ)

)2]
= 0 ,

where the expectation is over the distribution of Z and X. As ÂREn(τ) =

E[ÂREn(Z, τ)|X], using Jensen’s inequality for conditional expectation, we have

E[(Rn(θ, q̂(τ)) − ÂREn(Z, τ))2] ≥ E[(Rn(θ, q̂(τ)) − ÂREn(τ))2] for any n, θ and
τ . Thus,

lim
n→∞

a8
n sup
τ∈[0,∞]

E
[(
Rn(θ, q̂(τ))− ÂREn(τ)

)2]
= 0 .

Thus, to complete the proof, it remains to establish Proposition 1.1, which shows
that both the bias and variance converge to zero as dimension of the model in-
creases. We undertake this in the next section. Understanding how the bias and
variance is controlled will help the reader to appreciate the elaborate construction
process of ARE estimates and our prescribed choices of the threshold parameter
λn(i) and truncation parameter Kn(i).

2.2. Proof of Proposition 1.1 Overview and Reduction to the Univariate Case.
In this section, we outline the overview of the proof techniques used to establish
Proposition 1.1. It suffices to consider a generic univariate setting and consider each
coordinate individually. This will simplify our analysis considerably. In addition, we
will make use of the following two results about the property of the loss function G.
The proof of these lemmas are given in Appendix A.

Lemma 2.1 (Formula for the Loss Function). If Y ∼ N(θ, ν), then

Eθ
[
b(Y − q)+ + h(q − Y )+

]
= (b+ h)

√
ν G

(
(q − θ)/

√
ν , b̃

)
,(2.2)

where b̃=b/(b+h) and for all w ∈ R and β ∈ [0, 1], G(w, β) = φ(w)+wΦ(w)−βw.
Also, if θ is known, the loss l(θ, q) is minimized at q = θ +

√
νΦ−1(b̃) and the

minimum value is (b+ h)
√
νφ(Φ−1(b̃)).

The next lemma gives an explicit formula for the Bayes estimator and the corre-
sponding Bayes risk in the univariate setting.
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Lemma 2.2 (Univariate Bayes Estimator). Consider the univariate prediction
problem where the past X ∼ N(θ, νp), the future Y ∼ N(θ, νf ) and θ ∼ N(η, τ).
Consider the problem of minimizing the integrated Bayes risk. Then,

min
q

∫
R(θ, q)π(η,τ)(θ |x)dθ = (b+ h)

√
νf + ανp φ(Φ−1(b̃)) ,

where b̃ = b/(b + h), α = τ/(τ + νp), and π(η,τ)(θ | x) is the posterior density

of θ given X = x. Also, the Bayes estimate q̂Bayes(η, τ) that achieves the above
minimum is given by

q̂Bayes(η, τ) = αx+ (1− α)η +
√
νf + ανp Φ−1(b̃) .

Finally, the risk r(θ, q̂Bayes(η, τ)) of the Bayes estimator is

(b+ h)
√
νf + α2νpG(cτ + dτ (θ − η), b̃) ,

where

cτ =
√

(1 + ανp)/(1 + α2νp) Φ−1(b̃) and dτ = −(1− α)/
√
νf + α2νp.

By Lemma 2.1, note that the loss function is scalable in νf . Also by Lemma 2.2,
we observe that the risk calculation depends only on the ratio νp/νf and scales
with b+h. Thus, without loss of generality, henceforth we will assume that νf = 1,
b+h = 1 and write ν = νp and b̃ = b/(b+h) = b. As a convention, for any number
β ∈ [0, 1], we write β̄ = 1− β.

Reparametrization and some new notations. In order to prove the desired result,
we will work with generic univariate risk estimation problems where X ∼ N(θ, ν)
and Y ∼ N(θ, 1). Note that Assumption A3 requires that ν < 1/(4e). For ease
of presentation, we restate and partially reformulate the univariate version of the
methodology stated in Section 1.3. We conduct sample splitting by adding inde-
pendent Gaussian noise Z:

U = X +
√
νZ, V = X −

√
νZ.

Instead of τ ∈ [0,∞], we reparameterize the problem using α = τ/(τ + ν) ∈ [0, 1].
By Lemma 2.2 and the fact that νf = 1 and b+h = 1, the univariate risk function
(with η = 0) is given by α 7→ G(cα + dαθ, b), where b < 1 and

cα = Φ−1(b)
√

(1 + αν)/(1 + α2ν) and dα = −ᾱ/
√

1 + α2ν .

Now, consider Uα = cα + dαU, Vα = cα + dαV and θα = cα + dαθ. By construction
(Uα, Vα) ∼ N(θα, θα, 2νd

2
α, 2νd

2
α, 0) and α 7→ G(θα, b) is estimated by the ARE

estimator α 7→ T̂α,n(X,Z), where

T̂α,n(X,Z) = −b Uα I{Vα<−λn} + S̃(Uα) I{|Vα|≤λn} + b̄ Uα I{Vα>λn} ,
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where b̄ = 1− b, and the threshold is given λn = γ
√

2 log n, where γ is any positive
number less than

√
2ν
(
( 1/
√

4eν )− 1
)

= (1/
√

2e) −
√

2ν, which is well-defined
by Assumption A3 because ν < 1/(4e).

The estimator S̃(Uα) is the truncated Taylor series expansion of G(θα, b), defined
as follows. Let

Kn = 1 +
⌈
e2
(
γ +
√

2ν
)2

(2 log n)
⌉
.

Let GKn(θα, b) denote the the Kth
n order Taylor series expansion of G(θα, b). Let

S(Uα) denote an unbiased estimate of GKn(θα, b); that is,

S(Uα) = G(0, b) +G′(0, b)Uα

+ φ(0)

Kn−2∑
l=0

(−1)lHl(0)

(l + 2)!

(√
2νd2

α

)l+2
Hl+2

(
Uα√
2νd2

α

)
,

(2.3)

and finally, we have S̃(Uα) = sign(S(Uα)) min{|S(Uα)|, n}, which is the truncated
version of S(Uα). This completes the definition of the estimator T̂α,n(X,Z). This
reparametrization allows us to deal with the stochasticity of the problem only
through the random variables {Uα, Vα : α ∈ [0, 1]} and saves us the inconvenience
of dealing with the varied functionals of X and Z separately.

Proof Outline. We partition the univariate parameter space into 3 cases: Case 1:

|θα| ≤ λn/2, Case 2: λn/2 < |θα| ≤
(
1 +
√

2ν/γ
)
λn and Case 3: |θα| >

(
1 +√

2ν/γ
)
λn. We present a heuristic argument for considering such a decomposition.

The following lemma, whose proof is provided in Appendix A, establishes a bound
on the bias in different regimes.

Lemma 2.3 (Bias Bounds). There is an absolute constant c such that for all
b ∈ [0, 1] and α ∈ [0, 1],

I. |G(y, b)−GKn(y, b)| ≤ c n
−(e2−1)(γ+

√
2ν)2

e4(γ +
√

2ν)2
for all |y| ≤

(
1 +
√

2ν/γ
)
λn .

II. |G(y, b)− b̄y| ≤ e−y
2/2

y2
for all y > 0 .

III. |G(y, b)− (−by)| ≤ e−y
2/2

y2
for all y < 0 .

Thus, we would like to use linear estimates when |w| is large and S(Uα) otherwise.
The choice of threshold λn is chosen such that this happens with high probability.
As we have a normal model in Case 3, which includes unbounded parametric
values, we will be mainly using the linear estimates of risk because when |θα| ≥(
1 +
√

2ν/γ
)
λn, the probability of selecting S̃ over the linear estimates is very

low. Similarly, in Case 1, we will be mainly using S̃. Case 2 is the buffering zone
where we may use either S̃ or the linear estimates.
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We also need to control the variances of the 3 different kind of estimates used in
T̂α,n(X,Z). While the variances of the linear estimators are easily controlled, we
needed to pay special attention to control the variance of S(Uα). In the following
lemma, we exhibit an upper bound on the quadratic growth of the estimator S(Uα).
The choice of the truncation parameter Kn in S̃(Uα) was done is such a way that
both its bias and squared growth are controlled at the desired limits.

Lemma 2.4 (Variance Bounds). For any b ∈ [0, 1] and an = log log n,

lim
n→∞

sup
α : |θα| ≤ (1 +

√
2ν/γ)λn

n−1 a8
n Eθα

[
{S(Uα)}2

]
= 0 ,

where the expectation is over the distribution of Uα, which has N(θα, 2νd
2
α) distri-

bution for all α ∈ [0, 1].

Our proof also makes use of the following large deviation bounds.

Lemma 2.5 (Large Deviation Bounds).

For Case 1, lim
n→∞

sup
α : |θα| ≤ λn/2

a8
n λ

2
n · Pθα{|Vα| > λn} = 0 .

For Case 2,

lim
n→∞

sup
α :λn/2 < θα ≤ (1 +

√
2ν/γ)λn

a8
n |θα| · Pθα{Vα < −λn} = 0 .

lim
n→∞

sup
α :−(1+

√
2ν/γ)λn ≤ θα < −λn/2

a8
n |θα| · Pθα{Vα > λn} = 0 .

For Case 3,

lim
n→∞

sup
α : |θα| > (1 +

√
2ν/γ)λn

na8
n · P {|Vα| ≤ λn} = 0 .

lim
n→∞

sup
α : |θα| > (1 +

√
2ν/γ)λn

a8
n θ

2
α · P {|Vα| ≤ λn} = 0 .

lim
n→∞

sup
α : θα > (1 +

√
2ν/γ)λn

a8
n θ

2
α · Pθα{Vα < −λn}= 0 .

lim
n→∞

sup
α : θα < −(1 +

√
2ν/γ)λn

a8
n θ

2
α · Pθα{Vα > λn} = 0 .

The proofs of the above three lemmas are presented in Appendix A.

2.3. Detailed Proof of Proposition 1.1.

Bounding the Bias: As E[Uα] = θα, by definition |Biasθα(T̂α,n)| equals∣∣∣E[S̃(Uα)]−G(θα, b)
∣∣∣ · P {|Vα| ≤ λn}+ |E[S̃(Uα)]−G(θα, b)| · P {|Vα| > λn} .
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We will now show that each of the two terms on the RHS converges uniformly in
α as n increases to infinity.

First Term: Consider θα in Cases 1 and 2; that is, |θα| ≤
(
1 +
√

2ν/γ
)
λn. Since

ES(Uα) = GKn(θα, b), by our construction, we have that

|ES̃(Uα)−G(θα, b)| ≤ |ES̃(Uα)− ES(Uα)|+ |GKn(θα, b)−G(θα, b)|,

and it follows from Lemma 2.3 that limn→∞ supα : |θα|≤(1+
√

2ν/γ)λn a
8
n |GKn(θα, b)−

G(θα, b)| = 0. By Markov’s Inequality,

|ES̃(Uα)− ES(Uα)| ≤ E
[
|S(Uα)| I{|S(Uα)|≥n}

]
≤ E

[
S2(Uα)

]
/n ,

whose a8
n multiplied version converges to zero uniformly in α as n → ∞ by

Lemma 2.4.

Now, consider Case 3, where |θα| >
(
1 +
√

2ν/γ
)
λn. By definition, |S̃(Uα)| ≤ n,

and by Lemma E.5, G(θα, b) ≤ φ(0) + max{b̄, b}|θα|. From Lemma 2.5, we have
that limn→∞ supα : |θα| > (1 +

√
2ν/γ)λn a

8
n max{n, θ2

α} ·P {|Vα| ≤ λn} = 0 , and thus,

lim
n→∞

sup
α : |θα| > (1 +

√
2ν/γ)λn

a8
n

∣∣∣E[S̃(Uα)]−G(θα, b)
∣∣∣ · P {|Vα| ≤ λn} = 0 .

Therefore, in all three cases, the first term of the bias multiplied by a8
n converges

to zero.

Second Term: The second term in the bias formula is equal to

Bα,n ≡ |b̄θα −G(θα, b)| · P {Vα > λn}+ |G(θα, b)− (−bθα)| · P {Vα < −λn} .

For θα in Case 1 with |θα| ≤ λn/2, note that by Lemma E.5,

max{|b̄θα −G(θα, b)| , |G(θα, b)− (−bθα)|} ≤ |θα|+ φ(0) + |θα| ≤ λn + φ(0) ,

and thus Bα,n ≤ (λn + φ(0))P{|Vα| > λn}. The desired result then follows from
Lemma 2.5 for Case 1.

Now, consider θα in Case 2; that is, λn/2 < |θα| ≤ (1+
√

2ν/γ)λn. We will assume
that λn/2 < θα ≤ (1 +

√
2ν/γ)λn; the case −(1 +

√
2ν/γ)λn < θα < −λn/2 follows

analogously. Since θα > λn/2, it follows from Lemma 2.3 that

|b̄θα −G(θα, b)| ≤ e−θ
2
α/2/θ2

α ≤ 4 e−λ
2
n/8/λ2

n = 4n−γ
2/4/λ2

n .

Also, by Lemma E.5, |G(θα, b)− (−bθα)| ≤ 2|θα|+ φ(0). Therefore,

Bα,n ≤ 4 c n−γ
2/4/λ2

n + (2|θα|+ φ(0))P {Vα < −λn} ,

and the desired result then follows from Lemma 2.5 for Case 2.
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Now, consider θα in Case 3; that is, |θα| > (1 +
√

2ν/γ)λn. We will assume that
θα > (1+

√
2ν/γ)λn; the case θα < −(1+

√
2ν/γ)λn follows analogously. As before,

it follows from Lemma 2.3 that

|b̄θα−G(θα, b)| ≤ c e−(1+
√

2ν/γ)2λ2n/2/
(
(1+
√

2ν/γ)2λ2
n

)
= c n−(γ+

√
2ν)2/

(
(γ+
√

2ν)2(2 log n)
)
.

By Lemma E.5, |G(θα, b)− (−bθα)| ≤ 2|θα|+ φ(0). Therefore,

Bα,n ≤
c n−(γ+

√
2ν)2

(γ +
√

2ν)2(2 log n)
+ (2|θα|+ φ(0))P {Vα < −λn} ,

and the desired result then follows from Lemma 2.5 for Case 3. Note that in
Case 3, |θα| ≤ θ2

α for sufficiently large n. Thus, in all three cases, the first term of
the bias multiplied by a8

n converges to zero and we have the desired result for the
bias terms in proposition.

Bounding the Variance: According to the definition of T̂α,n, it follows from
Lemma E.10 that

Varθα(T̂α,n) ≤ 4Var(A1
α,n) + 4Var(A2

α,n) + 4Var(A3
α,n), where

A1
α,n = S̃(Uα)I{|Vα|<λn}, A

2
α,n = −bUαI{Vα<−λn}, and A3

α,n = b̄UαI{Vα>λn}.
(2.4)

To establish the desired result, we will show that each term on the RHS is o(n)
uniformly in α; that is, for i = 1, 2, 3, limn→∞ a

8
n n
−1 supα∈[0,1] Var(Aiα,n) = 0.

Case 1: |θα| ≤ λn/2. Since S̃(Uα) = sign(S(Uα)) min{|S(Uα)|, n}, it follows from
Lemma E.3 that Var

(
A1
α,n

)
≤ EθαS̃2(Uα) ≤ EθαS2(Uα) = o(n), where the last

equality follows from Lemma 2.4. Again, by Lemma E.3,

Var(A2
α,n) + Var(A3

α,n)

≤ b2E
[
U2
α

]
· P{Vα < −λn}+ b̄2

[
U2
α

]
· P{Vα > λn} ≤ E

[
U2
α

]
P{|Vα| > λn}

=
(
θ2
α + 2νd2

α

)
P{|Vα| > λn} ≤

(
λ2
n/4 + 2ν

)
P{|Vα| > λn} ,

where the equality follows from the definition of Uα. The desired result then follows
from Lemma 2.5 for Case 1.

Case 2: λn/2 < |θα| ≤ (1+
√

2ν/γ)λn. Suppose that λn/2 < θα ≤ (1+
√

2ν/γ)λn;
the proof for the case where −(1 +

√
2ν/γ)λn ≤ θα < −λn/2 is the same. By

Lemma E.3,
Var(A1

α,n) ≤ ES̃2(Uα) ≤ ES2(Uα) = o(n) ,

where the equality follows from Lemma 2.4. By Lemma E.3,

Var(A2
α,n) ≤ b2 E

[
U2
α

]
P{Vα < −λn} ≤

(
2ν + θ2

α

)
P{Vα < −λn} .

For the range of θα in Case 2, θα/n→ 0 uniformly in α, and it follows that

lim
n→∞

sup
α :λn/2 < θα ≤ (1 +

√
2ν/γ)λn

a8
n n
−1Var(A2

α,n) = 0 ,
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where the equality follows from Lemma 2.5 for Case 2. Note that Var(A3
α,n) ≤

4E[b2U2
α]P{Vα < −λn} ≤ 4E[b2U2

α] ≤ 4
(
2ν + θ2

α

)
= o(n) uniformly in α.

Case 3: |θα| > (1 +
√

2ν/γ)λn. Note that

Varθα(A1
α,n) ≤ E[S̃2(Uα)I{|Vα|<λn}] ≤ n

2P{|Vα| < λn} ,

and by Lemma 2.5 for Case 3, limn→∞ supα:|θα|>(1 +
√

2ν/γ)λn
Varθα(A1

α,n)/n = 0.

Note that E[Uα] = θα and Var(Uα) = 2νd2
α ≤ 2ν. By Lemma E.3,

Varθα(A2
α,n) ≤ E[U2

α]P{Vα < −λn} ≤ (2ν + θ2
α)P{Vα < −λn}

Varθα(A3
α,n) ≤ Var(b̄Uα) + (E[b̄Uα])2P{Vα ≤ λn} ≤ 2ν + (2ν + θ2

α)P{Vα ≤ λn}
= 2ν + (2ν + θ2

α)P{|Vα| ≤ λn}+ (2ν + θ2
α)P{Vα < −λn} ,

which implies that

Varθα(A2
α,n)+Varθα(A3

α,n) ≤ 2ν+(2ν+θ2
α)P{|Vα| ≤ λn}+(2ν+θ2

α)P{Vα < −λn} .

Note that, by Lemma 2.5 for Case 3, both supα:|θα|>(1 +
√

2ν/γ)λn a
8
n θ

2
α·P {|Vα| ≤ λn}

and supα:θα>(1 +
√

2ν/γ)λn a
8
nθ

2
α·P {Vα < −λn} converge to zero as n increases. Thus,

we have that limn→∞ supα : |θα| > (1 +
√

2ν/γ)λn
a8
n

(
Varθα(A2

α,n) + Varθα(A3
α,n)

)
/n =

0, which is the desired result.

This completes the proof of Proposition 1.1. We end this section with a remark
on the choice of threshold. The proof will work similarly for

√
2 log n thresholds

that are scalable with
√
νp,i and |dα| for 1 ≤ i ≤ n, α ∈ [0, 1]. Our choice λn being

uniform over τ ∈ [0,∞], however, yields a comparatively cleaner proof.

3. Simulation Experiments. In this section, we study the performances of
our proposed estimators through numerical experiments. In the first example, we
display a case where the performance of our proposed ARE-based estimate is close
to that of the oracle estimator, but the traditional EBML and EBMM estimators
perform poorly. It supports the arguments (provided below Corollaries 1.1 and 1.2)
that as the formulae of the ML and MM estimates of the hyper parameters do not
depend on the shape of the loss functions, they can be significantly different from
the ARE-based estimates and hence sub-optimal. We calculate the inefficiency of an
estimate τ of the shrinkage hyperparameter of members in S0 by comparing it with
its corresponding Oracle risk-based estimator: τ̃OR = arg minτ∈[0,∞]Rn(θ, q̂(τ)).
We define:

Inefficency of τ̂ =
Rn(θ, q̂(τ̂))−Rn(θ, q̂(τ̃OR))

maxτ≥0Rn(θ, q̂(τ))−minτ≥0Rn(θ, q̂(τ))
× 100 %.

The measures for the other classes are defined analogously. In the other two exam-
ples, we study the performance of our proposed estimators as we vary the model
parameters. Throughout this section, we set νf,i = 1 and bi + h1 = 1 for all
i = 1, . . . , n. The R codes used for these simulation experiments can be down-
loaded from http://www-bcf.usc.edu/~gourab/inventory-management/.

http://www-bcf.usc.edu/~gourab/inventory-management/
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3.1. Example 1. Here, we study a simple setup in a homoskedastic model where
νp,i = 1/3 for all i = 1, . . . , n. We consider two different choices of n (a) n = 20,
which yields comparatively low dimensional models, and (b) n = 100, which is large
enough to expect our high-dimensional theory results to set in. We consider only
two different values for the θi: 1/

√
3 and −3

√
3. Also, we design the setup such that

bi is related to the θi: when θi = 1/
√

3, bi = 0.51 and when θi = −3
√

3, bi = 0.99.
For the case when n = 20, we consider (θ, b) with 18 replicates of the (θi, bi) pair
of (1/

√
3, 0.51) and 2 replicates of (−3

√
3, 0.99). For n = 100, we have 90 replicates

of the former and 10 replicates of the latter. Note that in both the cases, the mean
of θ across dimensions is 0.

In this homoskedastic setup, the MM and ML estimates of the hyperparameter
are identical. In Table 1, we present their relative inefficiencies as well as that
of the ARE with respect to the Oracle risk estimate. For computation of the
ARE risk estimates, 5 Monte-Carlo simulations were used for the evaluation of the
unconditional expectation in the Rao-Blackwellization step. In Table 1, based on 50
independent simulation experiments, we report the mean and standard deviation of
the estimates as well as their inefficiency percentages. The EBML/EBMM perform
very poorly in both cases. When n = 100, the ARE-based estimates are close to
the Oracle risk-based estimates and are quite efficient. When n = 20, the ARE
method is not as efficient as before but still performs remarkably better than the
EBML/EBMM methods. The plots of the univariate risks of q̂i(τ) for the (θi, bi)
pairs (1/

√
3, 0.51) and (−3

√
3, 0.99) (as αi = τ/(τ + νp,i) varies) are very different

(see Figure 1). For the former, the oracle minimizer is at αOR = 0.51; that is,
τOR = 0.35. For the latter, the oracle minimizer is at αOR = 1; that is, τOR =∞.
The multivariate risk plot of our setup is different than those of the two univariate
risk plots but is closer to the former than to the later. ARE approximates this
multivariate risk function well and does a good job in estimating the shrinkage
parameter. However, the ML/MM estimate of the hyperparameter is swayed by
the extremity of fewer (θi, bi) = (−3

√
3, 0.99) cases and fail to properly estimate

the shrinkage parameter in the combined multivariate case.

Table 1
Comparison of the performances of ARE-, MM- and ML-based estimates with the Oracle risk

estimator in Example 1. The mean and standard deviation (in parentheses) across 50
independent simulation experiments are reported.

METHODS n = 20 n = 100

Inefficiency (%) τ̂ Inefficiency (%) τ̂

ARE 16.78 (30.42) 1.214 (4.823) 1.15 (2.57) 0.344 (0.079)

MM/ML 48.01 (3.55) 0.037 (0.006) 47.96 (2.01) 0.037 (0.003)

ORACLE - 0.296 (0.000) - 0.296 (0.000)
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Fig 1. From left to right we have the following: the plots of the univariate risks of q̂i(τ) for the
(θi, bi) pairs (1/

√
3, 0.51) and (−3

√
3, 0.99), respectively, as αi = τ/(τ + νp,i) varies and the plot

of the multivariate risk of q̂(τ) for the (θ, b) choices described in Example 3.1.

3.2. Example 2. We consider homoskedastic models with νf,i = 1 and νp,i = νp
for all i = 1, . . . , n. We vary νp to numerically test the performance of the ARE
methodology when Assumption A3 of Section 1.2 is violated. We generate {θi :
i = 1, . . . , n} independently from N(0, 1), and {bi : i = 1, . . . , n} are generated
uniformly from [0.51, 0.99]. Table 2 reports the mean and standard deviation (in
brackets) of the inefficiency percentages across 20 simulation experiments from
each regime. We see that the ARE methodology does not work for larger values
of the ratio νp/νf and starts performing reasonably when νp/νf ≤ 1/3, which is
quite higher than the prescribed theoretical bound in (1.8).

Table 2
Inefficiency (%) of ARE estimators in Example 2 as the ratio νp/νf varies.

νp/νf n = 20 n = 100

1/1 75.34 (28.55) 88.88 (14.70)

1/2 31.70 (20.85) 27.81 (07.95)

1/3 19.21 (14.44) 12.91 (03.63)

1/4 06.93 (03.58) 07.43 (02.07)

1/5 05.56 (03.93) 04.36 (01.38)

1/6 04.07 (03.06) 03.06 (00.97)

3.3. Example 3. We now study the performance of our proposed AREG method-
ology in 6 heteroskedastic models, which are modified predictive versions of those
used in Section 7 of Xie, Kou and Brown (2012). Here, {bi : i = 1, . . . , n} are
generated uniformly from [0.51, 0.99] and νf,i = 1 for all i. Also, based on Exam-
ple 2, we impose the constraint max{νp,i/νf,i : 1 ≤ i ≤ n} ≤ 1/3. Next, we outline
the 6 experimental setups by describing the parameters used in the predictive
model of (1.1):
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Case I. θ are i.i.d. from Uniform(0,1), and νp,i are i.i.d. from Uniform(0.1,1/3).

Case II. θ are i.i.d. from N(0,1), and νp,i are i.i.d. from Uniform(0.1,1/3).

Case III. Here, we bring in dependence between νp,i and θ. We generate {νp,i : 1 ≤
i ≤ n} independently from Uniform(0.1,1/3) and θi = 5 νp,i for i = 1, . . . , n.

Case IV. Instead of uniform distribution in the above case, we now generate {νp,i :
1 ≤ i ≤ n} independently from Inv-χ2

10, which is the conjugate distribution for
normal variance.

Case V. This model reflects grouping in the data. We draw the past variances
independently from the 2-point distribution 2−1(δ0.1 + δ0.5), and the θi are drawn
conditioned on the past variances:

(θi|νp,i = 0.1) ∼ N(0, 0.1) and (θi|νp,i = 0.5) ∼ N(0, 0.5).

Thus, there are two groups in the data.

Case VI. In this example, we assess the sensitivity in the performance of the
AREG estimators to the normality assumption by allowing X to depart from the
normal model of (1.1). We generate {νp,i : 1 ≤ i ≤ n} independently from Uni-
form(0.1,1/3) and θi = 5 νp,i for i = 1, . . . , n. The past observations are generated
independently from

Xi ∼ Uniform
(
θi −

√
3 νp,i, θi +

√
3 νp,i

)
for i = 1, . . . , n.

Table 3 reports the mean and standard deviation (in brackets) of the inefficiency
percentages of our methodology in 20 simulation experiments from each of the 6
models. The AREG estimator performs reasonably well across all 6 scenarios.

Table 3
Inefficiency (%) of AREG estimators in 6 different heteroskedastic models of Example 3.

n = 20 n = 100

Case I 02.79 (02.70) 01.81 (01.83)

Case II 12.90 (21.16) 11.31 (01.73)

Case III 13.90 (19.21) 07.84 (02.08)

Case IV 08.75 (14.26) 10.47 (20.65)

Case V 03.80 (04.32) 01.52 (03.13)

Case VI 06.20 (08.45) 08.74 (03.19)

4. Explanations and Proofs for Estimators in S. We first describe the

ÂRE
D

(η, τ) risk estimation procedure. Note that, by Lemma 2.2, for any fixed
η ∈ R, the risk of estimators in S is related to risk of estimators in S0 as
Rn(θ, q̂(η, τ)) = Rn(θ − η, q̂(τ)). We rewrite the ARE risk estimate defined in
(1.11) by explicitly denoting the dependence on X as

ÂREn(τ,X) =
1

n

n∑
i=1

(bi + hi)(νf,i + νp,iα
2
i )

1/2 T̂i(Xi, τ).(4.1)
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The ÂRE
D

risk estimate is defined as ÂRE
D

n (η, τ,X) = AREn(τ,X − η). Hence-

forth, whenever we use the relation between ÂRE
D

and ARE, we will explicitly
denote the dependence of the risk estimates on the data. Otherwise, we will stick
to our earlier notation where the dependence on the data is kept implicit. We next
prove Theorem 1.5.

4.1. Proof of Theorem 1.5. The proof follows from the following two lemmas. The
first one shows that our proposed risk estimate does a good job in estimating the
risk of estimators in S. This lemma holds for all estimates q(η, τ) in S and does
not need any restrictions on θ. The second lemma shows that the loss is uniformly
close to the risk. It needs the restriction |η| ≤ an on estimates in S and also the
assumption A2 on θ.

Lemma 4.1. Under Assumptions A1 and A3 with an = log log n, for all θ,

lim
n→∞

sup
τ∈[0,∞], η∈R

a8
n E
[(

ÂRE
D

n (η, τ)−Rn(θ, q̂(η, τ))
)2]

= 0 .

Lemma 4.2. Under Assumption A1, for all θ satisfying Assumption A2,

lim
n→∞

sup
τ∈[0,∞],|η|≤an

a4
n E
∣∣Rn(θ, q̂(η, τ))− Ln(θ, q̂(η, τ))

∣∣ = 0 where an = log log n.

The proof of Lemma 4.1 is provided in Appendix B. For the proof of Lemma 4.2,
we show uniform convergence of the expected absolute loss over the set of location
parameters {|η| ≤ an} by undertaking a moment-based approach. Here, we show
that for any θ obeying Assumption A2

sup
τ∈[0,∞],|η|≤an

a8
nVarθ(Ln(θ, q̂(η, τ))→ 0 as n→∞ ,

from which the proof of the lemma follows easily. Now, note that, due to indepen-
dence across coordinates, we have

Varθ (Ln(θ, q̂(η, τ)) = n−2
n∑
i=1

Varθi (li(θi, q̂i(η, τ))) ≤ n−2
n∑
i=1

Eθi
[
l2i (θi, q̂i(η, τ))

]
.

By definition of the predictive loss, we have the following relation between the loss
of estimators in S and S0: Eθi [l2i (θi, q̂i(η, τ))] = Eθi [l2i (θi−αi(τ)η, q̂i(τ))] and using
the inequality in Equation (A.7) of the Appendix we see that it is dominated by
O(1 + E[θi − αi(τ)η]2) ≤ O(1 + 2Eθi [θ2

i + η2]) as |αi(τ)| ≤ 1 for any τ ∈ [0,∞].
Thus, we have

Varθ (Ln(θ, q̂(η, τ)) ≤ O
(
n−2

n∑
i=1

θ2
i + n−1a2

n

)
for all τ ∈ [0,∞], |η| ≤ an.

For any θ satisfying assumption A2, both the terms in the RHS, even after being
multiplied by a8

n uniformly converge to 0, which completes the proof of Lemma 4.2.



EB PREDICTION UNDER CHECK LOSS 27

We next present the proof of the decision theoretic properties of our estimators. We
first define discretized set Λn used in the construction of the ARE estimator. Λn =
Λn,1⊗Λn,2 is constructed as a product grid over the space of η and τ . We consider an
invertible transformation on τ and re-parametrize it by τ̃ = τ/(τ + 1). As τ varies
over [0,∞], τ̃ is contained in [0, 1]. We construct an equi-spaced discretized set
{0 = τ̃1 ≤ τ̃2 ≤ · · · ≤ τ̃m ≤ 1} with this transformed variable where τ̃i = (i+ 1)δn,2
and m = d1/δn,2e where

δn,2 =
{

2C1C2(2φ(0) + C3 +
√
anC4 + an + a2

n)
}−1

where an = log log n(4.2)

and C1, C2 and C3 are defined in (A.1). We retransform the aforeconstructed grid
on τ̃ back to get the set Λn,1 on τ ∈ [0,∞]. On η the grid, Λn,1 is equispaced in
the interval [−an, an] with the spacing equalling δn,1 = (2C1an)−1. The cardinality
of the set Λn is: |Λn| = |Λn,1| × |Λn,2| = 2an/δn,1 × δ−1

n,2 = O(a4
n) as n→∞. We

conduct our computations for the ARE estimate by restricting this larger grid Λn
to the smaller set (Λn,1 ∩ M̂n)⊗ Λn,2 where the η values lie in the set M̂n defined
in Section 1.5.

We define the corresponding discretized version of the oracle estimator as

(ηΛ
n , τ

Λ
n ) = arg min

(η,τ)∈(Λn,1∩M̂n)⊗Λn,2

Ln(θ, q̂(η, τ)) .

The following lemma whose proof is presented in the Appendix B shows that the
difference between Ln(θ, q̂(ηΛ

n , τ
Λ
n )) and the original oracle loss Ln(θ, q̂(ηDOR

n , τDOR
n ))

is asymptotically controlled at any prefixed level.

Lemma 4.3. For any fixed ε > 0,

I. P
{
Ln(θ, q̂(ηΛ

n , τ
Λ
n ))− Ln(θ, q̂(ηDOR

n , τDOR
n )) > ε

}
→ 0 as n→∞ and ,

II. E|Ln(θ, q̂(ηΛ
n , τ

Λ
n ))− Ln(θ, q̂(ηDOR

n , τDOR
n ))| → 0 as n→∞.

We now present the proof of the decision theoretic properties of our estimators.

4.2. Proof of Theorem 1.6. We know that:

P
{
Ln(θ, q̂(η̂D

n , τ̂
D
n )) ≥ Ln(θ, q̂(ηDOR

n , τDOR
n )) + ε

}
≤ P

{
Ln(θ, q̂(η̂D

n , τ̂
D
n )) ≥ Ln(θ, q̂(ηΛ

n , τ
Λ
n )) + ε/2

}
+ P

{
Ln(θ, q̂(ηΛ

n , τ
Λ
n )) ≥ Ln(θ, q̂(ηDOR

n , τDOR
n )) + ε/2

}
.

the second term converegs to 0 by Lemma 4.3. We concentrate on the first term.

Note, by construction, ÂRE
D

n (η̂D
n , τ̂

D
n ) ≤ ÂRE

D

n (ηΛ
n , τ

Λ
n ). Thus, for any fixed ε > 0,

the first term is bounded above by

P
{
An(θ, η̂D

n , τ̂
D
n ) ≥ Bn(θ, ηΛ

n , τ
Λ
n ) + ε/2

}
, where

An(θ, η̂D
n , τ̂

D
n ) = Ln(θ, q̂(η̂D

n , τ̂
D
n ))− ÂRE

D

n (η̂D
n , τ̂

D
n ), and

Bn(θ, ηΛ
n , τ

Λ
n )Ln(θ, q̂(ηΛ

n , τ
Λ
n ))− ÂRE

D

n (ηΛ
n , τ

Λ
n ).
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Now, using Markov inequality, we have

P
{
An(θ, η̂D

n , τ̂
D
n ) ≥ Bn(θ, ηΛ

n , τ
Λ
n ) + ε/2

}
≤ 2ε−1E|An(θ, η̂D

n , τ̂
D
n )−Bn(θ, ηΛ

n , τ
Λ
n )|,

which, again, by the triangle inequality is less than

4ε−1E
[

sup
(η,τ)∈(Λn,1∩M̂n)⊗Λn,2

|ÂRE
D

n (η, τ)− Ln(θ, q̂(η, τ))|
]
.

We can bound the supremum by the sum of the absolute loss over the grid and so,
the above term is less than:

4ε−1|Λn| sup
(η,τ)∈Λn

E
[
|ÂRE

D

n (η, τ)− Ln(θ, q̂(η, τ))|
]

= O(ε−1a4
n sup
τ∈[0,∞],|η|≤an

E
[
|ÂRE

D

n (η, τ)− Ln(θ, q̂(η, τ))|
]
)

which, by Theorem 1.5 converges to 0 as n→∞, and we have the required result.

4.3. Proof of Theorem 1.7. We decompose Ln(θ, q̂(η̂D
n , τ̂

D
n ))−Ln(θ, q̂(ηDOR

n , τDOR
n ))

into two positive components:

{Ln(θ, q̂(η̂D
n , τ̂

D
n ))− Ln(θ, q̂(ηΛ

n , τ
Λ
n ))}+ {Ln(θ, q̂(ηΛ

n , τ
Λ
n ))− Ln(θ, q̂(ηDOR

n , τDOR
n ))}.

The expectation of the second term converges to 0 by Lemma 4.3. For the first
term we decompose the difference of the losses into 3 parts:

Ln(θ, q̂(η̂D
n , τ̂

D
n ))− Ln(θ, q̂(ηΛ

n , τ
Λ
n )

=

(
Ln(θ, q̂(η̂D

n , τ̂
D
n ))− ÂRE

D

n (η̂D
n , τ̂

D
n )

)
−
(
Ln(θ, q̂(ηΛ

n , τ
Λ
n )} − ÂRE

D

n (ηΛ
n , τ

Λ
n )

)
+

(
ÂRE

D

n (η̂D
n , τ̂

D
n )− ÂRE

D

n (ηΛ
n , τ

Λ
n )

)
.

As the third term is less than 0, so E
[
Ln(θ, q̂(η̂D

n , τ̂
D
n ))− Ln(θ, q̂(ηΛ

n , τ
Λ
n ))
]

is

bounded above by 2E{sup(η,τ)∈Λn

∣∣ÂRE
D

n (η, τ)−Ln(θ, q̂(η, τ))
∣∣} which is less than

2E
{ ∑

(η,τ)∈Λn

∣∣ÂRE
D

n (η, τ)− Ln(θ, q̂(η, τ))
∣∣}.

It converges to 0 by Theorem 1.5. Hence, the result follows.

4.4. Proof of Corollary 1.1. The results follow directly from Theorems 1.6 and
1.7 as (ηDOR

n , τDOR
n ) minimizes the loss Ln(θ, q̂(η, τ)) among the class S.
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5. Explanations and Proofs for Estimators in SG. By (1.4), the predictive
loss an estimator q̂G(τ) in SG is given by Ln(θ, q̂G(τ)) = 1

n

∑n
i=1 li(θi, q̂

G
i (τ)),

where

li(θi, q̂
G
i (τ)) = ν

1/2
f,i (bi + hi)G(ν

−1/2
f,i (q̂i(τ) + (1− αi)X̄ − θi), b̃).

We define a surrogate of the loss by plugging in θ̄ – the mean of the unknown
parameter θ in the place of X̄: L̃n(θ, q̂G(τ)) = 1

n

∑n
i=1 l̃i(θi, q̂

G
i (τ)), where

l̃i(θi, q̂
G
i (τ)) = ν

1/2
f,i (bi + hi)G(ν

−1/2
f,i (q̂i(τ) + (1− αi)θ̄ − θi), b̃).

The following lemma, whose proof is provided in Appendix C, shows the surrogate
loss is uniformly close to the actual predictive loss.

Lemma 5.1. For any θ ∈ Rn and q̂G(τ) ∈ SG, we have

lim
n→∞

E

[
sup

τ∈[0,∞]

∣∣Ln(θ, q̂G(τ))− L̃n(θ, q̂G(τ))
∣∣] = 0 .

We define the associated surrogate risk by r̃i(θi, q̂
G
i (τ)) = Eθ l̃i(θi, q̂G

i (τ)). From
Lemma 2.2, it follows that this surrogate risk is connected with the risk function of
estimators in S as: r̃i(θi, q̂

G
i (τ)) = r(θi− θ̄, q̂(τ)). Thus, the associated multivariate

surrogate risk R̃i(θ, q̂
G(τ)) =

∑n
i=1 r̃i(θi, q̂

G
i (τ)) equals Rn(θ − θ̄, q̂(τ)). Also by

Lemma 5.1, it follows that for any θ ∈ Rn

lim
n→∞

E

[
sup

τ∈[0,∞]

∣∣Rn(θ, q̂G(τ))− R̃n(θ, q̂G(τ))
∣∣] = 0 .(5.1)

Now we will describe our proposed AREG estimator. Explicitly denoting the de-
pendence of the estimators on the data, for any fixed value of τ ∈ [0,∞], we

define ÂRE
G

n (τ,X) = ÂREn(τ,X − η)|η=X̄ . Note that X and X̄ are correlated,
and X − X̄ has a normal distribution with a non-diagonal covariance structure.
However, we can still use the asymptotic risk estimation procedure described in
Section 2 by just plugging in the value of X̄. We avoid the complications of in-
corporating the covariance structure in our calculations by cleverly using the con-
centration properties of X̄ around θ̄. To explain this approach, we again define a
surrogate to our AREG estimator ÂREn(τ,X−η)|η=X̄ =

∑n
i=1 ci T̂i(Xi−η, τ)|η=X̄

by

ÃREn(τ,X − θ̄) =
n∑
i=1

ci T̃i(Xi − θ̄, τ) ,

where we plugin θ̄ in the place of X̄. Here, ci = (bi + hi)
√
νf,i + νp,iαi(τ)2. Note

that ÃRE and T̃ have the same functional form as ÂRE and T̂ , respectively, but
with X̄ replaced by θ̄ and so are not estimators. We now present the proof of
Theorem 1.8.
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Proof of Theorem 1.8. We will prove the theorem by establishing

(a) lim
n→∞

E
{

sup
τ∈Λn

∣∣Ln(θ, q̂G(τ))−Rn(θ, q̂G(τ))
∣∣} = 0 and,

(b) lim
n→∞

E
{

sup
τ∈Λn

∣∣Rn(θ, q̂G(τ))− ÂRE
G

(τ)
∣∣} = 0.

For the proof of (a), based on (5.1) and Lemma 5.1, it suffices to show

lim
n→∞

E
{

sup
τ∈Λn

∣∣L̃n(θ, q̂G(τ))− R̃n(θ, q̂G(τ))
∣∣} = 0 .

We will prove it by showing:

lim
n→∞

|Λn| sup
τ∈[0,∞]

E
∣∣L̃n(θ, q̂G(τ))− R̃n(θ, q̂G(τ))→ 0 as n→∞.

Recalling, |Λn| = O(an), we show that as n→∞, a2
nVarθ(L̃n(θ, q̂G(τ))) converges

to 0 uniformly over τ for any θ satisfying Assumption A3 . Again, as in the proof
of Lemma 4.1, we have the bound

Varθ(L̃n(θ, q̂G(τ))) ≤ O
(

1

n2

n∑
i=1

Eθi(θi − αi(τ)θ̄)2

)
.

As |αi(τ)| ≤ 1 for all τ ∈ [0,∞], the RHS above is at most O(n−2
∑n

i=1 θ
2
i + θ̄2/n).

Even after being scaled by a2
n, it converges to 0 as n → ∞ for any θ satisfying

Assumption A3.

Now for the proof of (b), using (5.1) as n→∞, we have

E
{

sup
τ∈Λn

∣∣Rn(θ, q̂G(τ))− ÂRE
G

(τ)
∣∣}→ E

{
sup
τ∈Λn

∣∣R̃n(θ, q̂G(τ))− ÂRE
G

(τ,X)
∣∣}

≤ |Λn| sup
τ∈[0,∞]

E
∣∣Rn(θ − θ̄, q̂(τ))− ÂRE

G
(τ,X)

∣∣ ,
which is bounded above by the sum of |Λn| supτ∈[0,∞] Eθ|ÃREn(τ,X−θ̄)−AREG(τ)|
and |Λn| supτ∈[0,∞] Eθ|Rn(θ − θ̄, q̂(τ))− ÃREn(τ,X − θ̄)|. Again, by Lemma 4.1,
the second term converges to 0 as n→∞. The first term is bounded above by

|Λn| sup
τ∈[0,∞]

1

n

n∑
i=1

ci Eθ
∣∣∣∣(X̄ − θ̄) ·

[
∂

∂η
T̂i(Xi − η, τ)

]
η=µi

∣∣∣∣ ,
where each {µi : 1 ≤ i ≤ n} lies between θ̄ and X̄. Using Cauchy-Schwarz inequal-
ity, the above term is less than

lim
n→∞

|Λn| sup
τ∈[0,∞]

1

n

n∑
i=1

ci

{
Eθ(X̄ − θ̄)2 · Eθ

[
∂

∂η
T̂i(Xi − η, τ)

]2

η=µi

}1/2

= 0 .

As ci are bounded by Assumptions A1 and A3 and |Λn| = O(an), the asymptotic
convergence above follows by using Eθ(X̄ − θ̄)2 = n−1 and the following lemma,
whose proof is provided in Appendix C.
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Lemma 5.2. For any θ ∈ Rn and µi lying in between X̄ and θ̄ for all i = 1, . . . , n

lim
n→∞

n−1 a2
n

{
sup

1≤i≤n
sup

τ∈[0,∞]
Eθ
[
∂

∂η
T̂i(Xi − η, τ)

]2

η=µi

}
= 0 .

This completes the proof of Theorem 1.8.

The proof of Theorem 1.9 follows similarly from the proofs of Theorems 1.6, 1.7
and Corollary 1.2 and is not presented here to avoid repetition.

6. Discussion. Here, we have developed an Empirical Bayes methodology for
prediction in large dimensional Gaussian models. Our proposed method involves
the calibration of the tuning parameters of skrinkage estimators by minimizing risk
estimates that are adapted to the shape of the loss function. It produces asymp-
totically optimal prediction. Our risk estimation method and its proof techniques
can also be used to construct optimal empirical Bayes predictive rules for general
piecewise linear and related asymmetric loss functions, where we do not have any
natural unbiased risk estimate. In this paper, we have worked in a high-dimensional
Gaussian model. Though normality transformations exist for a wide range of high-
dimensional models (Brown, 2008), future works in extending the methodology
to non-Gaussian models, particularly discrete setups, would be interesting. Ex-
tending our Empirical Bayes approach from the one-period predictive setup to a
multi-period setup would be another interesting future direction.

APPENDIX

Appendices A, B and C associated with Sections 2, 4 and 5 are provided here.
Appendix D exhibits online retail data based numerical experiments which shows
encouraging performance of our proposed methodology when applied to the mul-
tivariate newsvendor problem. A glossary of all the notations as well as a list of
all basic results used in the paper are also presented here.

APPENDIX A: PROOF DETAILS FOR ESTIMATORS IN THE CLASS S0

AND THE LEMMAS USED IN SECTION 2

We begin this section by first discussing about the discretization step conducted
in the ARE estimation. We define the oracle estimator over any discretized set Λn
as

τOR
n [Λ] = arg min

τ∈Λn

Ln(θ, q̂(τ)) .

Next, we show that under the assumptions A1-A3, this discretization step does
not change the precision of our estimator by constructing a discrete set Λn such
that the resultant loss from the oracle estimator over that discrete set is very close
to that of the oracle estimator τOR

n computed over the entire domain of τ . The
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rationale for such construction of Λn is described in the proof of the following
lemma.

Lemma A.1. There exists a discrete set Λn such that for any ε > 0,

I. P
{
Ln(θ, q̂(τOR

n [Λn]))− Ln(θ, q̂(τOR
n )) > ε

}
→ 0 as n→∞ and ,

II. E|Ln(θ, q̂(τOR
n [Λn]))− Ln(θ, q̂(τOR

n ))| → 0 as n→∞.

Construction of the Discrete Set Λn which attains the any prefixed ε-
precision: First note that, by Assumption A1-A3 there exists dimension indepen-
dent constants C1, C2, C3 and C4 such that for all large n we have:

sup
1≤i≤n

(bi + hi) ≤ C1,(A.1)

max{ sup
1≤i≤n

νp,i, sup
1≤i≤n

ν−1
p,i } ≤ C2,(A.2) (

sup
1≤i≤n

νp,i/νf,i

)
×
(

sup
1≤i≤n

|Φ−1(b̃i)|
)
≤ C3 and,(A.3)

sup
θ∈Θn

1

n

n∑
1=1

|θi| ≤ C4(log log n)1/2(A.4)

where Θn ⊆ Rn contains all θ obeying assumption A3. Define,

δn =
{

2C1C2(2φ(0) + C3 +
√
anC4 + an)

}−1
where an = log log n.(A.5)

We consider an invertible transformation on τ and re-parametrize it by τ̃ = τ/(τ+
1). As τ varies over [0,∞], τ̃ is contained in [0, 1]. We construct an equi-spaced
discretized set {0 = τ̃1 ≤ τ̃2 ≤ · · · ≤ τ̃m ≤ 1} with this transformed variable
where τ̃i = (i + 1)δn and m = d1/δne. We will invert it back to get the set Λn
on τ ∈ [0,∞]. The role of the re-parametrization is to restrict the domain of the
variable of interest (which in this case is τ̃) to a bounded set.

The cardinality of the set Λn is: |Λn| = an(1 + o(1)) as n→∞. We conduct our
computations for the ARE estimate based on the grid with Λn.

Proof of Lemma A.1. Using the above constructed grid, we prove the lemma.
Note that, the only τ dependent quantity in the expression of q̂i(τ) in (1.6) is αi
which can be expressed as τ̃ /(τ̃ + (1− τ̃)νp,i). The univariate predictive loss is:

li(θi, q̂i(τ̃)) = (bi + hi) νf,i
1/2G

(
αiZi + (νf,i + αiνp,i)

1/2Φ−1(b̃i)− ᾱiθi
νf,i1/2

; b̃i

)
where Zi and has N(0, νp,i) distribution. Note, li(θi, q̂i(τ̃)) is a.e. differentiable in
τ̃ and ∣∣∣∣ ∂∂τ̃ li(θi, q̂i(τ̃))

∣∣∣∣ ≤ (bi + hi) ·
∣∣∣∣C(θi, Zi, τ̃)

∣∣∣∣× sup
ω∈R

∣∣∣∣ ∂∂ωG(ω, b̃i)

∣∣∣∣
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where

C(θi, Zi, τ̃) =
∂

∂αi

{
αiZi + (νf,i + αiνp,i)

1/2Φ−1(b̃i)− ᾱiθi
}
· ∂αi
∂τ̃

.

Noting that ∂αi/∂τ̃ = νp,i/(τ̃ + (1 − τ̃)νp,i)
2 which is bounded in magnitude by

max{νp,i, ν−1
p,i } we arrive at

|C(θi, Zi, τ̃)| ≤ {|Zi|+ νp,i/νf,i · |Φ−1(b̃i)|+ |θi|} ·max{νp,i, ν−1
p,i }.

Again, ∣∣∣∣ ∂∂ωG(ω, b̃i)

∣∣∣∣ = |Φ(ω)− b̃i| ≤ 2,

and so, the derivative of the predictive loss is bounded above by:

∣∣∣∣ ∂∂τ̃ li(θi, q̂i(τ̃))

∣∣∣∣ ≤ 2(bi + hi) max{νp,i, ν−1
p,i }| · (|Zi|+ |θi|+ νp,i/νf,i · |Φ−1(b̃i)|).

(A.6)

As Ln(θ, q̂(τ̃)) = n−1
∑n

i=1 li(θi, q̂i(τ̃)), we have:

|Ln(θ, q̂(τ̃))−Ln(θ, q̂(τ̃j))| ≤ Dn|τ̃−τ̃j | where Dn = sup
τ̃∈[0,1]

n−1
n∑
i=1

∣∣∣∣ ∂∂τ̃ li(θi, q̂i(τ̃))

∣∣∣∣.
Thus, we have inf τ̃j∈Λn |Ln(θ, q̂(τ̃))− Ln(θ, q̂(τ̃j))| ≤ Dnδn which implies:

|Ln(θ, q̂(τOR
n [Λn,ε]))− Ln(θ, q̂(τOR

n ))| ≤ Dnδn.

Again from (A.6), it follows that

Dn ≤ 2C1C2

(
1

n

n∑
i=1

|Zi|+
1

n

n∑
1=1

|θi|+ C3

)
where C1, C2 and C3 are defined in (A.1).

Now note that n−1
∑n

i=1 |Zi| ∼ N(2φ(0), n−1). Thus, by definition (A.5) we have:
P (Dnδn > ε) → 0 as n → ∞, and E(Dn)δn → 0 as n → ∞. Thus, the result
follows.

A.1. Proof of Theorem 1.3. We know that

P
{
Ln(θ, q̂(τ̂ARE

n )) ≥ Ln(θ, q̂(τOR
n )) + ε

}
≤ P

{
Ln(θ, q̂(τ̂ARE

n )) ≥ Ln(θ, q̂(τOR
n [Λ])) + ε/2

}
+ P

{
Ln(θ, q̂(τOR

n [Λ])) ≥ Ln(θ, q̂(τOR
n )) + ε/2

}
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and the second term converges to 0 as n→∞ by Lemma A.1. Next, we concentrate
on the first term. By construction ÂREn(τ̂ARE

n ) ≤ ÂREn(τOR
n ). So, for any fixed

ε > 0 we have:

P
{
Ln(θ, q̂(τ̂ARE

n )) ≥ Ln(θ, q̂(τOR
n [Λ])) + ε/2

}
≤ P

{
An(θ, τ̂ARE

n ) ≥ Bn(θ, τOR
n [Λ]) + ε/2

}
where An(θ, τ̂ARE

n ) = Ln(θ, q̂(τ̂ARE
n ))− ÂREn(τ̂ARE

n )

and Bn(θ, τOR
n [Λ]) = Ln(θ, q̂(τOR

n [Λ]))− ÂREn(τOR
n [Λ]).

Now, using Markov inequality we get:

P
{
An(θ, τ̂ARE

n ) ≥ Bn(θ, τOR
n [Λ]) + ε/2

}
≤ 2ε−1E|An(θ, τ̂ARE

n )−Bn(θ, τOR
n [Λ])|

which again is less than 4ε−1E{supτ∈Λn |ÂREn(τ) − Ln(θ, q̂(τ))|}. It is upper
bounded by

4ε−1E{ sup
τ∈Λn

|ÂREn(τ)−Rn(θ, q̂(τ))|}+ 4ε−1E{ sup
τ∈[0,∞]

|Ln(θ, q̂(τ))−Rn(θ, q̂(τ)|}

The second term convereges to 0 by Theorem 1.2 and the first term is bounded
above by

4ε−1E
{ ∑
τ∈Λn

|ÂREn(τ)−Rn(θ, q̂(τ))|
}
≤ 4ε−1|Λn| sup

τ∈[0,∞]
E{|ÂREn(τ)−Rn(θ, q̂(τ))|}

where |Λn| is the cardinality of Λn. By construction of Λn, |Λn| = O(an) and by
Theorem 1.1 the above expression converge to 0 as n → ∞. Thus, we have the
required result.

A.2. Proof of Theorem 1.4. We upper bound Ln(θ, q̂(τ̂ARE
n ))−Ln(θ, q̂(τOR

n ))
by:

{Ln(θ, q̂(τ̂ARE
n ))− Ln(θ, q̂(τOR

n [Λ]))}+ {Ln(θ, q̂(τ̂ARE
n [Λ]))− Ln(θ, q̂(τOR

n ))}.

The expectation of the second term converges to 0 by Lemma A.1. For the first
term, we decompose the difference of the losses into the following 3 parts:

Ln(θ, q̂(τ̂ARE
n ))− Ln(θ, q̂(τOR

n [Λ]))

= {Ln(θ, q̂(τ̂ARE
n ))− ÂREn(τ̂ARE

n )} − {Ln(θ, q̂(τOR
n [Λ])} − ÂREn(τOR

n [Λ]))

+ {ÂREn(τ̂ARE
n )− ÂREn(τOR

n [Λ])}.

Now, by construction the third term is less than 0 and so,

E
[
Ln(θ, q̂(τ̂ARE

n ))− Ln(θ, q̂(τOR
n [Λ]))

]
≤ 2E

{
sup
τ∈Λn

∣∣ÂREn(τ)− Ln(θ, q̂(τ))
∣∣}

≤ 2E
{ ∑
τ∈Λn

∣∣ÂREn(τ)−Rn(θ, q̂(τ))
∣∣}+ 2E

{
sup
τ∈Λn

∣∣Ln(θ, q̂(τ)−Rn(θ, q̂(τ))
∣∣}

≤ 2|Λn| sup
τ∈[0,∞]

E
{∣∣ÂREn(τ)− Ln(θ, q̂(τ))

∣∣}+ 2E
{

sup
τ∈Λn

∣∣Ln(θ, q̂(τ)−Rn(θ, q̂(τ))
∣∣}

which converges to 0 by Theorems 1.1 and 1.2. Hence, the result follows.
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A.3. Proof of Corollary 1.1. The results follows directly from Theorems 1.3
and 1.4 as τOR

n minimizes the loss Ln(θ, q̂(τ)) among the class of all linear estimates
with shrinkage towards the origin.

A.4. Proof of Theorem 1.2. We need to prove:

sup
τ∈[0,∞]

∣∣Rn(θ, q̂(τ))− Ln(θ, q̂(τ))
∣∣→ 0 in L1 as n→∞.

In our proof we will use a version of the uniform SLLN (Newey and McFadden,
1994, Lemma 2.4). Based on form the loss functions in (1.4) and the form of
the linear estimators in (1.6), we can reparametrize this problem with respect to
τ̃ = τ/(τ + 1) instead of τ . The only τ dependent quantity in the expression of
q̂i(τ) in (1.6) is αi which is reparametrized to τ̃ /(τ̃ + (1− τ̃)νp,i). As τ̃ ∈ [0, 1], the
supremum here is actually over compact set. Also, li(θi, q̂i(τ̃)(x)) is continuous at
each τ̃ for all most all x and θ. Also,

li(θ, q̂i(τ̃)) = (bi + hi) νf,i
1/2G

(
αizi + (νf,i + αiνp,i)

1/2Φ−1(b̃i)− ᾱiθi
νf,i1/2

; b̃i

)
where and zi = xi − θi and has N(0, νp,i) distribution. By Lemma E.5 we know
G(y, b̃) ≤ φ(0) + (1 − b̃)|y| and we use αi ∈ [0, 1] to arrive at: for each θi and for
all τ̃ ∈ [0, 1] we have,

li(θi, q̂i(τ)) ≤ (bi + hi)
[
ν

1/2
f,i φ(0) + (1− b̃i)

{
|zi|+ (νf,i + νp,i)

1/2Φ−1(b̃i) + |θi|
}]
.

(A.7)

So, for any θ and τ ∈ [0,∞] we have:

Ln(θ, q̂(τ)) ≤ An
(
φ(0) + n−1

n∑
i=1

|Φ−1(b̃i)|
)

+Bn

(
n−1

n∑
i=1

|zi|+ n−1
n∑
i=1

|θi|
)(A.8)

where An = sup{(bi + hi)ν
1/2
f,i : i = 1, . . . , n} and Bn = sup{bi + hi : i = 1, . . . , n}.

By Assumptions A1, A3 we have lim supnAn ≤ ∞ and lim supnBn < ∞. So,
the expectation of the RHS in (A.8) is finite under Assumption A2. As all the
conditions of Newey and McFadden (1994, Lemma 2.4) hold, we can apply the
SLLN uniformly. So, the loss converge to the risk and we have:

sup
τ∈[0,∞]

∣∣Rn(θ, q̂(τ))− Ln(θ, q̂(τ))
∣∣→ 0 in P as n→∞.

Now, noting that the upper bound in (A.8) is uniformly integrable as
∑n

i=1 |zi| is
U.I. by the extra integrability condition (See Lemma E.6). So, supτ∈[0,∞] |Rn(θ, q̂(τ))−
Ln(θ, q̂(τ))

∣∣ is U.I. and we also have L1 convergence. Hence, the result follows.

Next, we provide proofs of all the main lemmas used in Section 2.3.
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A.5. Proof of Lemma 2.1. As both the L.H.S. and R.H.S. scale in (b + h)
without loss of generality we assume b + h = 1. We will first prove the result
for ν = 1 before proceeding to the general case. Noting that for all y and q,
(y − q)+ = y − q + (q − y)+, we have:

bE[Y − q]+ + hE[q − Y ]+ = b(θ − q) + (b+ h)E[q − θ − Z]+

where Z is standard normal random variable. Direct calculation yields:

E[q − θ − Z]+ =

∫ q−θ

−∞
(q − θ − x)φ(x)dx

= (q − θ)Φ(q − θ) +

∫ q−θ

−∞
−xφ(x)dx = (q − θ)Φ(q − θ) + φ(q − θ) ,

which gives the desired result. Also, note that in this case ∂wG(w, b) = Φ(w)− b.
So, G(w, b) is minimized at Φ−1(b) and the minimum value is φ(Φ−1(b)).

For general ν we rewrite the L.H.S. using Y
d
= ν1/2Z + θ where Z is a standard

normal random variable to obtain:

ν1/2{bE[Z − ν1/2(q − θ)]+ + hE[ν1/2(q − θ)− Z]+}.

Now, the result stated in the lemma follows by using the already proven result for
the unit variance case.

A.6. Proof of Lemma 2.2. With out loss of generality we can assume that
bi + hi = 1 as the univariate loss is just scaled by that factor. Now, the minimizer
of the the Bayes risk B1(η, τ) is given by

q̂(η, τ)(x) = arg min
q̂

∫
l(θ, q̂(x))π(θ|x) dθ.

The posterior distribution π(θ|x) ∼ N(αx+ ᾱη, ανp). So, for any fixed x we have∫
l(θ, q̂(x))π(θ|x) dθ = ν

1/2
f E

{
G

(
q̂ − T
√
νf

, b

)}
where the expectation is over T which follows N(αx + ᾱη, ανp). The above ex-

pectation equals ν
1/2
f EG(ν

−1/2
f {q̂(x)− (αx+ +ᾱη + α1/2ν

1/2
p Z)}, b) where Z is a

standard normal random variable. To evaluate the aforementioned expression we
now use the identity in (2.2) with Y ∼ N(a(x), νf ) and a(x) = αx + ᾱη − q̂(x).
Finally we get

∫
l(θ, q̂(x))π(θ|x) dθ equals

EZ∼N(0,1)

{
EY∼N(a(x),νf )

(
b (Y + α1/2ν1/2

p Z)+ + h (−Y − α1/2ν1/2
p Z)+

)}
= E

{
b
(
a(x) + (νf + ανp)

1/2Z
)+

+ h
(
− a(x)− (νf + ανp)

1/2Z
)+}

.
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As Y + α1/2ν
1/2
p Z ∼ N(−a(x), νf + ανp) the above equality follows using Y +

(ανp)
1/2Z

d
= a(x) + (νf + ανp)

1/2Z. Again, using change of variable, the problem
can be ultimately reduced to finding the minimizer for:

(νf + ανp)
1/2
{
bE{Z − ã(x)}+ + hE{ã(x)− Z}+

}
where ã(x) = −a(x)(νf + ανp)

−1/2. By Lemma 2.1, it is minimized when ã(x) =
Φ−1(b) which implies q̂α(x) = αx+ ᾱη + (νf + ανp)

1/2Φ−1(b). Also, the minimum
value is (νf + ανp)

1/2φ(Φ−1(b)) which gives us the expression for the Bayes risk.

The risk of the Bayes estimate q̂(η, τ) is given by:

b·Eθ
(
Y−αX−ᾱη−(νf+ανp)

1/2Φ−1(b)
)+

+h·Eθ
(
αX+ᾱη+(νf+ανp)

1/2Φ−1(b)−Y
)+

where X ∼ N(θ, νp), Y ∼ N(θ, νf ) and given θ, X ⊥ Y . And so, the above equals,

(νf + α2νp)
1/2

{
b · E0

(
Z − J

)+
+ hE0

(
Z − J

)−}
= (νf + α2νp)

1/2G(J, b)

where J = (νf +α2νp)
−1/2{−ᾱ(θ− η) + (νf +ανp)

1/2Φ−1(b)}. This completes the
proof.

A.7. Proof of Lemma 2.3. By Taylor’s Theorem,

|GKn(y, b)−G(y, b)| = φ(ζ) |HKn−1(ζ)| |ζ|Kn+1

(Kn + 1)!
,

where ζ lies between 0 and y. Noting that φ(ζ) ≤ 1 for all ζ. By Lemma E.1, there
exists an absolute constant c such that:

|HKn−1(ζ)| ≤ c eζ2/4(Kn − 1)!(Kn − 1)−1/3 {(Kn − 1)/e}−(Kn−1)/2

which provide us with the following error bound:

|GKn(y, b)−G(y, b)| ≤ c ey
2/4

(Kn + 1)!
× (Kn − 1)!

(Kn − 1)1/3 ((Kn − 1)/e)(Kn−1)/2
× |y|Kn+1

= c

(
e y2

Kn − 1

)(Kn−1)/2
ey

2/4 y2

(Kn − 1)1/3(Kn + 1)Kn
.

(A.9)

By definition of Kn just before Equation (2.3), Kn − 1 ≥ e2(γ +
√

2ν)2(2 log n).
Since |y| ≤ (1 +

√
2ν/γ)λn = (γ +

√
2ν)
√

2 log n,(
e y2

Kn − 1

)(Kn−1)/2

≤ e−(Kn−1)/2 ≤ e−e2(γ+
√

2ν)2 logn = n−e
2 (γ+

√
2ν)2

y2

(Kn − 1)1/3(Kn + 1)Kn
≤ y2

(Kn − 1)2
≤ 1

e4(γ +
√

2ν)2(2 log n)

ey
2/4 ≤ e(γ+

√
2ν)2(logn)/2 = n(γ+

√
2ν)2/2 ≤ n(γ+

√
2ν)2 ,
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which implies that

sup
|y|≤(1+

√
2ν/γ)λn

|GKn(y, b)−G(y, b)| ≤ c n
−(e2−1)(γ+

√
2ν)2

e4(γ +
√

2ν)2
,

which is the desired result.

The second part follows because G(y, b) = φ(y)− yΦ̃(y) + b̄y, and thus,

|G(y, b)− b̄y| = |φ(y)− yΦ̃(y)| ≤ φ(y)

y2
≤ e−y

2/2

y2
,

where the first inequality follows from Lemma E.4. For the proof of the third
statement, note that for y < 0,

G(y, b) = φ(y)− yΦ̃(y) + b̄y = φ(−y)− (−y)Φ̃(−y)− by

and we can then apply Lemma E.4 as before because −y is now positive.

A.8. Proof of Lemma 2.4. By Lemma E.8, E
[
S2(Uα)

]
is bounded above by(

G(0, b) + |G′(0, b)|
√

EU2
α +

Kn∑
l=0

|Hl(0)|
(l + 2)!

(2νd2
α)(l+2)/2

√
EH2

l+2

(
Uα√
2νd2

α

) )2

We will now bound each of the term in the above expression. Note that G(0, b) =
φ(0), G′(0, b) = 1

2 − b, and EU2
α = 2νd2

α + θ2
α. So, the first two terms are o(

√
n) as

n→∞. Thus, it suffices to show that the last term is also o(
√
n). Let mα = 2eνd2

α.
Then, by Lemma E.2, we have that for all l ≥ 0

(2νd2
α)(l+2)/2

√
EH2

l+2

(
Uα√
2νd2

α

)
= (2νd2

α)(l+2)/2(l + 2)(l+2)/2

(
1 +

θ2
α

2νd2
α(l + 2)

)(l+2)/2

=

(
l + 2

e

)(l+2)/2(
mα +

θ2
αmα

2νd2
α(l + 2)

)(l+2)/2

≤
(
l + 2

e

)(l+2)/2(
1 +

θ2
αmα

2νd2
α(l + 2)

)(l+2)/2

≤
(
l + 2

e

)(l+2)/2

eθ
2
αmα/(4νd

2
α) ,

where the first inequality follows from mα ≤ 2eν < 1 because |dα| ≤ 1 and
Assumption A3 implies that ν < 1/(4e). The final inequality follows Lemma E.7.
Since |θα| ≤ (1 +

√
2ν/γ)λn = (γ +

√
2ν)
√

2 log n and mα/(2νd
2
α) = e,

θ2
αmα

4νd2
α

≤ e(γ +
√

2ν)2 log n = ne(γ+
√

2ν)2
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Using the above abound and Lemma E.1, it follows that there exists an absolute
constant c such that

Kn∑
l=0

|Hl(0)|
(l + 2)!

(2νd2
α)(l+2)/2

√
EH2

l+2

(
Uα√
2νd2

α

)

≤ ne(γ+
√

2ν)2
Kn∑
l=0

|Hl(0)| (l + 2)(l+2)/2

(l + 2)! e(l+2)/2

≤ c ne(γ+
√

2ν)2
Kn∑
l=1

(l + 2)(l+2)/2

(l + 2)! e(l+2)/2
× l!

l1/3
(
l
e

)l/2
≤ c ne(γ+

√
2ν)2

Kn∑
l=1

1

l4/3
,

where the last inequality follows from Lemma E.7 because

(l + 2)(l+2)/2

(l + 2)! e(l+2)/2
× l!

l1/3
(
l
e

)l/2 =
1

e

(
l + 2

l

)l/2 1

(l + 1)l1/3
≤ 1

(l + 1)l1/3
≤ 1

l4/3

Note that
∑∞

l=1
1
l4/3

<∞. Also, by our definition, 0 < γ < (1/
√

2e)−
√

2ν, which

implies that e(γ +
√

2ν)2 < 1/2. So, a8
nn
−1E[S(Uα)]2 ≤ O(a8

nn
e(γ+

√
2ν)2) = o(

√
n),

which completes the proof.

A.9. Proof of Lemma 2.5. Since Vα = θα +
√

2νd2
αZ and d2

α ≤ 1, for Case 1
where |θα| ≤ λn/2,

P{|Vα| > λn} ≤ 2P
{
λn/2 +

√
2νd2

αZ > λn

}
≤ 2P

{
Z > λn/(2

√
2ν)
}

= 2Φ̃
(
γ
√

log n/(4ν)
)
≤

2φ
(
γ
√

log n/(4ν)
)

γ
√

log n/(4ν)
≤ 2n−γ

2/(8ν)

γ
√

log n/(4ν)
,

where the next to last inequality follows from Lemma E.4. Thus,

lim
n→∞

sup
α : |θα| ≤ λn/2

a8
n λ

2
n · P{|Vα| > λn} = 0 ,

which is the desired result.

For Case 2, we will assume that λn/2 < θα ≤ (1 +
√

2ν/γ)λn; the proof for the
other case is the same by symmetry. Since Vα = θα +

√
2νd2

αZ and d2
α ≤ 1,

P{Vα < −λn} ≤ 2P
{
λn/2 +

√
2νd2

αZ < −λn
}
≤ P

{
Z < −3λn/(2

√
2ν)
}

≤
φ
(
γ
√

9 log n/(4ν)
)

γ
√

9 log n/(4ν)
≤ n−9γ2/(8ν)

γ
√

9 log n/(4ν)
,
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and since θα ≤ (1 +
√

2ν/γ)λn = (γ +
√

2ν)
√

2 log n, we have that

lim
n→∞

sup
α :λn/2 < θα ≤ (1 +

√
2ν/γ)λn

a8
n |θα| · P{Vα < −λn} = 0 ,

which is the desires result.

For Case 3, suppose that θα >
(
1 +

√
2ν/γ

)
λn; the proof for the other case is

the same. Since Vα = θα +
√

2νd2
αZ and d2

α ≤ 1,

P {|Vα| ≤ λn} ≤ P {Vα ≤ λn} ≤ P
{(

1 +
√

2ν/γ
)
λn +

√
2νd2

αZ ≤ λn
}

≤ P
{
Z ≤ −(

√
2ν/γ)λn/(

√
2ν)
}
≤ φ (λn/γ)

λn/γ
=

n−1

√
2 log n

,

which implies that limn→∞ supα : |θα| > (1 +
√

2ν/γ)λn na
8
n ·P {|Vα| ≤ λn} = 0. Also,

P {|Vα| ≤ λn} ≤ P {Vα ≤ λn} ≤ P
{
θα +

√
2νd2

αZ ≤ λn
}
≤ P

{
Z ≤ −(θα − λn)/(

√
2ν)
}

≤
φ
(
(θα − λn)/(

√
2ν)
)

(θα − λn)/(
√

2ν)
=

e
−θ2α

(
1−λn

θα

)2
/(4ν)

θα

(
1− λn

θα

)
/(
√

2ν)
≤ e−θ

2
α/(2(γ+

√
2ν)2)

θα/(γ +
√

2ν)
,

where the last inequality follows from the fact that θα >
(
1 +

√
2ν/γ

)
λn, which

implies that 1 > 1 − (λn/θα) >
√

2ν/(γ +
√

2ν). Note that for any a > 0,
maxx≥0 xe

−ax = 1/(ea), which implies that

θ2
α · P {|Vα| ≤ λn} ≤

θ2
αe
−θ2α/(2(γ+

√
2ν)2)

θα/(γ +
√

2ν)
≤ 2(γ +

√
2ν)2/e

θα/(γ +
√

2ν)
=

2(γ +
√

2ν)3/e(
1 +

√
2ν/γ

)
λn

,

which implies that limn→∞ supα : |θα| > (1 +
√

2ν/γ)λn a
8
nθ

2
α · P {|Vα| ≤ λn} = 0,

which is the desired result. To complete the proof for Case 3, we will show that

lim
n→∞

sup
α : θα > (1 +

√
2ν/γ)λn

a8
n θ

2
α · P{Vα < −λn} = 0 .

This follows immediately from the above analysis as P{Vα < −λn} ≤ P{Vα < λn},
and we have just shown that limn→∞ supα : θα > (1 +

√
2ν/γ)λn

a8
nθ

2
α ·P {Vα ≤ λn} = 0.

APPENDIX B: PROOF DETAILS FOR ESTIMATORS IN THE CLASS S
AND THE LEMMAS USED IN SECTION 4

B.1. Proof of Lemma 4.1. Using the relation between ÂRE and ÂRE
D

it
follows that

E
[(

ÂRE
D

n (η, τ)−Rn(θ, q̂(η, τ))
)2]

= E
[(

ÂREn(τ,X − η)−Rn(θ − η, q̂(τ))
)2]

.
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Now, similarly as in the proof of Theorem 1.1, following the Bias-Variance decom-
position and the argument below (2.1) we upper bound the RHS above by

An

{(
1

n

n∑
i=1

Biasθi(Ti(Xi − η, Zi, τ))

)2

+
1

n2

n∑
i=1

Varθi(Ti(Xi − η, Zi, τ))

}

= An

{(
1

n

n∑
i=1

Biasθi−η(Ti(Xi, Zi, τ))

)2

+
1

n2

n∑
i=1

Varθi−η(Ti(Xi, Zi, τ))

}
where Z = {Z1, . . . , Zn} follows N(0, In); Ti(Xi − η, Zi, τ) are randomized rules
defined in Section 1.3; An = sup{(bi + hi)

2(νf,i + αiνp,i) : i = 1, . . . , n} which by
Assumptions A1, A3 satisfies supnAn ≤ ∞. Now, using Lemma 1.1 we get the

required result: supτ∈[0,∞],η∈R a
8
n E
(
ÂRE

D

n (η, τ)−Rn(θ, q̂(η, τ))
)2 → 0 as n→∞.

B.2. Proof of Lemma 4.3.. We need the following lemma to prove Lemma 4.3.

Lemma B.1. For any fixed 0 < α1 < α2 < 1, an = log log n, the event Mn(X) =
{[m̂n(α1), m̂n(α2)] ⊆ [−an, an]} satisfies:

I. P
{
Mn

}
→ 1 as n→∞ and ,

II. E
{
|Ln(θ, q̂(ηΛ

n , τ
Λ
n ))− Ln(θ, q̂(ηDOR

n , τDOR
n ))| · I{M c

n(X)}
}
→ 0 as n→∞.

Proof. For any α th quantile of X with εi i.i.d. from standard normal, note that

|m̂n(α)| = |quantile{θi +
√
νp,i εi : 1 ≤ i ≤ n; α}|

≤ quantile{|θi|+
√
νp,i |εi| : 1 ≤ i ≤ n;α} ∨ quantile{|θi|+

√
νp,i |εi| : 1 ≤ i ≤ n; 1− α}

≤ quantile{|θi|+ c|εi| : 1 ≤ i ≤ n;α} ∨ quantile{|θi|+ c |εi| : 1 ≤ i ≤ n; 1− α}

where c = {supi νp,i}1/2. Also note that for any β th quantile

quantile{|θi|+ c |εi| : 1 ≤ i ≤ n; β}
≤ quantile{|θi| : 1 ≤ i ≤ n; (1 + β)/2}+ c · quantile{|εi| : 1 ≤ i ≤ n; (1 + β)/2}.

For any β ∈ (0, 1), by assumption A3 the quantile{|θi| : 1 ≤ i ≤ n; (1 + β)/2} is
asymptotically bounded and n1/2(quantile{|εi| : 1 ≤ i ≤ n; (1 + β)/2} − Φ−1((3 +
β)/4)) has an asymptotic normal distribution as n → ∞. Therefore, for any α ∈
(0, 1), anP (|m̂n(α)| > an) → 0 as n → ∞. The first result of the lemma follows
directly by using it.

As on M c
n(X), Ln(θ, q̂(ηΛ

n , τ
Λ
n ) ≥ Ln(θ, q̂(ηDOR

n , τDOR
n )) ≥ 0, for the second result

of the lemma it is enough to show that:

E
{
Ln(θ, q̂(ηΛ

n , τ
Λ
n )) · I{M c

n(X)}
}
≤ {EL2

n(θ, q̂(ηΛ
n , τ

Λ
n )) · P (M c

n(X))}1/2

where the above inequality uses the Cauchy-Schwarz inequality. By equation (A.8),
it follows EL2

n(θ, q̂(ηΛ
n , τ

Λ
n )) = o(an) and by the above calculations we have anP (M c

n(X))→
0 as n→∞. Thus, second result of the lemma is also proved.
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Proof of Lemma 4.3. The univariate predictive loss in this case is:

li(θi, q̂i(η, τ̃)) = (bi+hi) νf,i
1/2G

(
αiZi + (νf,i + αiνp,i)

1/2Φ−1(b̃i)− ᾱi(θi − η)

νf,i1/2
; b̃i

)
where αi = τ̃ /(τ̃ + (1 − τ̃)νp,i) and Zi is N(0, νp,i) distributed. li(θi, q̂i(τ̃)) is a.e.
differentiable in τ̃ and η, and by calculations similar to the proof of Lemma A.1
we have:∣∣∣∣ ∂∂τ̃ li(θi, q̂i(η, τ̃))

∣∣∣∣ ≤ 2(bi + hi) max{νp,i, ν−1
p,i }| · (|Zi|+ |θi|+ |η|+ νp,i/νf,i · |Φ−1(b̃i)|)∣∣∣∣ ∂∂η li(θi, q̂i(η, τ̃))

∣∣∣∣ ≤ 2(bi + hi)

As Ln(θ, q̂(η, τ̃)) = n−1
∑n

i=1 li(θi, q̂i(η, τ̃)), we have:

|Ln(θ, q̂(η, τ̃))− Ln(θ, q̂(ηk, τ̃l))| ≤ Dn,1|η − ηk|+Dn,2|τ̃ − τ̃l| where,

Dn,1 = sup
τ̃∈[0,1],|η|≤an

n−1
n∑
i=1

∣∣∣∣ ∂∂η li(θi, q̂i(η, τ̃))

∣∣∣∣ and,

Dn,2 = sup
τ̃∈[0,1],|η|≤an

n−1
n∑
i=1

∣∣∣∣ ∂∂τ̃ li(θi, q̂i(η, τ̃))

∣∣∣∣.
Thus, for the grid Λn = Λn,1 ⊗ Λn,2 we have for any pair (η, τ̃) with |η| ≤ an and
τ̃ ∈ [0, 1]:

inf
(ηk,τ̃l)∈Λn

|Ln(θ, q̂(η, τ̃))− Ln(θ, q̂(ηk, τ̃l))| ≤ Dn,1δn,1 +Dn,2δn,2

which implies on the set Mn(X) = {[m̂n(α1), m̂n(α2)] ⊆ [−an, an]} we have

|Ln(θ, q̂(ηΛ
n , τ

Λ
n ))− Ln(θ, q̂(ηDOR

n , τDOR
n ))| ≤ Dn,1δn,1 +Dn,2δn,2.

By the bounds on the respective partial derivaties it follows that:

Dn,1 ≤ 2C1 and Dn,2 ≤ 2C1C2

(
1

n

n∑
i=1

|Zi|+
1

n

n∑
1=1

|θi|+ an + C3

)
where C1, C2 and C3 are defined in (A.1).

Now note that n−1
∑n

i=1 |Zi| ∼ N(2φ(0), n−1). Thus, by definition of Λn we have:
P (Dn,1δn,1 +Dn,2δn,2 > ε and Mn(X))→ 0 as n→∞, and
E[(Dn,1δn,1 +Dn,2δn,2)I{Mn(X)}]→ 0 as n→∞. These coupled with Lemma B.1
provide us the desired result.
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APPENDIX C: PROOF DETAILS FOR ESTIMATORS IN THE CLASS SG
AND THE LEMMAS USED IN SECTION 5

C.1. Proof of Lemma 5.1. By a first order Taylor series expansion we have:

l̃i(θi, q̂
G
i (τ)) = li(θi, q̂

G
i (τ)) +ai (X̄− θ̄)

[
∂

∂η
G(ν

−1/2
f,i (q̂i(τ) + (1−αi)η− θi), b̃)

]
η=µi

where µi lies between X̄ and θ̄ and ai = ν
1/2
f,i (bi+hi). Again, based on the definition

of G from Equation (1.4) we have for any τ ≥ 0 and any η ∈ R:∣∣∣∣ ∂∂ηG(ν−1/2
f,i (q̂i(τ) + (1− αi)η − θi), b̃

)∣∣∣∣ ≤ ν−1/2
f,i for all i = 1, . . . , n.

Thus, for the multivariate versions we have:

sup
τ∈[0,∞]

|Ln(θ, q̂G(τ))− L̃n(θ, q̂G(τ))| ≤ |X̄ − θ̄| · 1

n

n∑
i=1

(bi + hi)

which converges to 0 in L1 as X̄ ∼ N(θ̄, n−1) and n−1
∑n

i=1(bi + hi) is bounded
by Assumption A1. This completes the proof.

C.2. Proof of Lemma 5.2. From the description of the ARE procedure in
Section 1.3, recall that, T̂i(Xi− η, τ) = E{T̂i(Xi− η,Z, τ)} where the expectation
is over Z which is independent of X and follows N(0, In) distribution. And,

T̂i(Xi − η, Zi, τ) =


−b̃i Ui(η, τ) if Vi(η, τ) < −λn(i)

S̃i(Ui(η, τ)) if |Vi(η, τ)| ≤ λn(i)

(1− b̃i)Ui(η, τ) if Vi(η, τ) > λn(i)

for i = 1, . . . , n

where the threshold parameter defined in (1.13) and

Ui(η, τ) = ci(τ) + di(τ)(Xi − η + ν
1/2
p,i Zi), Vi(η, τ) = ci(τ) + di(τ)(Xi − η − ν1/2

p,i Zi)

with |di(τ)| is less than ν
−1/2
f,i . S̃i(Ui(η, τ)) is a truncated version of

Si(Ui(η, τ)) =G(0, b̃i) +G′(0, b̃i)Ui(η, τ)

+ φ(0)

K−2∑
k=0

(−1)kHk(0)

(k + 2)!

(
2νp,id

2
i (τ)

) k+2
2 Hk+2

(
Ui(η, τ)√
2νp,id2

i (τ)

)
.

So, the derivative exists almost everywhere and for all i = 1, . . . , n:∣∣∣∣ ∂∂η T̂i(Xi − η, Zi, τ)

∣∣∣∣ ≤
 ν

−1/2
f,i |S̃

′
i(Ui(η, τ))| if |Vi(η, τ)| < λn(i)

ν
−1/2
f,i if |Vi(η, τ)| > λn(i)

.(C.1)
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Noting that for Hermite polynomials of order k the derivative satisfies: H ′k(x) =
kHk−1(x), we have S̃′i(Ui(η, τ)) exempting the two discontinuity points is either 0
or given by:

ν
−1/2
f,i

{
G′(0, b̃i) + φ(0)

K−2∑
k=0

(−1)kHk(0)

(k + 1)!

(
2νp,id

2
i (τ)

) k+1
2 Hk+1

(
Ui(η, τ)√
2νp,id2

i (τ))

)}
.

(C.2)

Define, θi(η, τ) = ci(τ) + di(τ)(θi − η) and Λi(η, τ) = (1 +
√

2νp,i/γi)λn(i). Now,
by exactly following the proof technique used in Lemma 2.4, it can be shown that:

sup
τ≥0

sup
|θi(η,τ)|≤Λi(η,τ)

a2
n Eθi(η,τ)

{
S̃′i(Ui(η, τ))

}2
= o(n) as n→∞,(C.3)

where γi is defined below Equation (1.13) and the expectation is over the distri-
bution of Ui(η, τ) which follows N(θi(η, τ), 2d2

i (τ)νp,i). So, by (C.1) for all values
of η, τ and θi such that |θi(η, τ)| ≤ Λi(η, τ) we have:

a2
n Eθi

(
∂

∂η
T̂i(Xi − η, Zi, τ)

)2

= o(n)

where the expectation is over the joint distribution of Xi and Zi.

We now concentrate on all values of η, τ and θi such that |θi(η, τ)| > Λi(η, τ).
For this note that for all large n, |S̃′i(Ui(η, τ)| ≤ n a.e. It follows as: S̃i(Ui(η, τ)
is truncated above ±n and so by definition of derivative we have |S̃′i(Ui(η, τ)| ≤
n for all |Ui(η, τ)| ≥ 1; and when |Ui(η, τ)| < 1, using uniform approximation
bounds (Szegö, 1939) on the Hermite polynomials in the expression (C.2), we have
|S̃′i(Ui(η, τ)| ≤ n. So, using (C.1) for all values of η,τ and θi such that |θi(η, τ)| >
Λi(η, τ) we have the following upper bound:

Eθi

(
∂

∂η
T̂i(Xi − η, Zi, τ)

)2

≤ ν−1
f,i

{
n2P

(
|Vi(η, τ)| < λn(i)

)
+ P

(
|Vi(η, τ)| > λn(i)

)}
where Vi(η, τ) has N(θi(η, τ), 2d2

i (τ)νp,i) distribution. Also from Lemma 2.5 we
know that: sup|θi(η,τ)|>Λi(η,τ) a

2
nn

2P (|Vi(η, τ)| < λn(i)) = o(n) which produces the
desired bound for |θi(η, τ)| > Λi(η, τ). Thus, we have:

sup
i

sup
τ∈[0,∞]

a2
n Eθi

(
∂

∂η
T̂i(Xi − η, Zi, τ)

)2

= o(n).

As T̂i(Xi − η, τ) = E{T̂i(Xi − η,Z, τ)}, by Jensen’s inequality we have:

Eθi

(
∂

∂η
T̂i(Xi − η, Zi, τ)

)2

≥ Eθi

{
E
(
∂

∂η
T̂i(Xi − η, Zi, τ)

∣∣∣∣Xi

)}2

and the result of the lemma in terms of T̂i(Xi − η, τ) follows.
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APPENDIX D: DATA-INFORMED NUMERICAL EXPERIMENTS ON THE
NEWSVENDOR PROBLEM

In this section, we conduct numerical experiments based on sales data from the
books department of an online retailer. We apply our proposed asymptotic risk
estimation methodology to estimate the inventory levels that retailer’s should stock
to optimize their future sales and operational costs. Before proceeding further, we
present a brief introduction to the newsvendor problem studied here as well as its
associated statistical challenges.

Brief Introduction to the Newsvendor problem. The newsvendor problem appeared
in Edgeworth (1888) in connection with optimizing cash reserves in a bank. Based
on a subsequent formulation in Arrow, Harris and Marschak (1951), the classical
inventory theory has been developed assuming the demand distribution is known
in advance, and the optimal solution is the newsvendor quantile of the underlying
demand distribution (Karlin and Scarf, 1958). In contrast, here we work in a predic-
tive setup where the demand distribution is unknown and must be estimated from
past data. Within the inventory literature, when the information on the demand
distribution is not available, the most common approach is the use of Bayesian
updates (Azoury, 1985, Lariviere and Porteus, 1999). Under this approach, the
inventory manager has limited access to demand information; in particular, she
knows the family of distributions to which the underlying demand belongs, but
she is uncertain about its parameters. She has an initial prior belief regarding the
uncertainty of the parameter values, and this belief is continually updated based
on historical realized demands by computing posterior distributions. Bayesian up-
dates assume that the distribution of the prior belief is known and given in advance
so that Bayesian updates can be computed explicitly. In contrast, in our paper,
we assume that the prior distribution of θi is N(η, τ) for all i, but the parameters
η and τ are unknown and must be estimated from data. Note that when η and τ
are unknown, traditional Bayesian updates cannot be computed.

Data-informed Numerical Experiments. We consider books sold by the online re-
tailer during the month of June, 2005. During that month 1.25 million books
spanning across 274,558 book titles were sold. There was a wide variability in the
sales across the booktiles. The average number of books sold per title was 5.06
and the standard deviation was 74.47. Around 47.4% of book titles had only one
book sold in that month. In practice, separate models are used to model different
categories of books but joint modeling is done for each category. To simplify our
analysis here we only consider a selection of 200 book titles. Each of these book
titles had at least 10 sales. Our group consisted of 25% book titles with very high
volume sales (over 100 books sold per month). The rest, 75% of the items in the
group were moderately (M) sold with sales lying between 10 and 30.

Our Model. We consider a one-step ahead prediction model for the multivariate
newsvendor problem. Based on observing the past two months sales data X1 and
X2 and we would like to select an inventory level q̂ that would minimize the next
month’s cumulative lost sales and holding costs across the 200 book titles. We
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use the retail data to judge the values of the true demands, which along with the
associated prices of the books are used to form the data-informed parameter based
on which our simulation experiments were set. In our numerical experiments we
set the true demand θ of the book titles equal to the monthly sales observed in
retail data. It should be noted that θ no longer obeys any normal prior structure
but is governed by the form of the sales data. The selling prices p of the books
are calculated based on their corresponding average unit price over the month.
Now, based on our Gaussian predictive model (1.1) we generate the past sales
data X1,X2 and the future month’s demand Y based on the model:

X1,X2 and Y
iid∼ N(θ, νI),

where, ν is assumed to be known and is set equal to variation of sales in the data.
For each product i, we assume that each unit of inventory incurs a holding cost
hi > 0, and each unit of lost sale incurs a cost of bi > 0. When we estimate the
future demand Yi by q̂i, the loss corresponding to the ith product is bi·(Yi−q̂i)++hi·
(q̂i − Yi)+. We would like to minimize the total cost associated with the n = 200
stocking quantities. Based on X1 and X2, we make estimates of the stocking
quantities based on the (a) canonical unshrunken (US) linear estimator (b) EB-
MLE which is close to the James-Stein direction of shrinkage in this homeskedastic
case (c) ARE based methodology.

Evaluation and Results. Given any inventory estimate q̂(x1,x2) based on the past
data, in our simulation experiment we evaluate its performance by the future loss
on y:

L̂n(q̂) =
1

n

n∑
i=1

bi(yi − q̂i(x1,x2))+ + hi(q̂i(x1,x2)− yi)+ .

The simulation experiment is conducted for 50 independent repetitions and the
percentage reduction in loss over the cannonical unshrunken estimator is calcu-
lated. In Table 4 we provide the relative efficiency of the EBMLE and ARE based
methods compared to the canonical non-shrunken estimator:

ARE efficiency over US = (Ln(θ, q̂US))− Ln(θ, q̂ARE))/Ln(θ, q̂US))

EBMLE efficiency over US = (Ln(θ, q̂US))− Ln(θ, q̂EBMLE))/Ln(θ, q̂US)).

Figure 2 shows the plot of these efficiency measures. The difference between the
two aforementioned efficiency measures is reported in the table as ARE efficiency
over EBMLE. The summary statistics of the distribution of these efficacy mea-
sures over the 50 independent simulation experiments are also reported along with
the p-value of the Wilcoxon singed rank test for the alternative hypothesis that
the efficacy levels are indeed positive. It was seen that the EBMLE method on
avergage produced inventory levels much worse than the unshrunken estimator.
This is due to the fact that the EBMLE method overestimated the magnitude of
shrinkage. The ARE based inventory estimation strategy had on average around
7% better relative prediction error than the EBMLE based method and around
3% better error rates than the unshrunken estimator. In both the comparisons,
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we had significant p-values in the Wilcoxon test clearly proving on average better
performance of the ARE based method in the 50 experiments. Around 92% of the
cases, the ARE based method is better than the EBMLE and around 72% of the
cases it is better than the unshrunken estimator.

Table 4
Comparison of the performances of ARE, EBMLE and the unshrunken (US) estimators. The
summary statistics of their relative efficiency (in %) over 50 independent simulation scenarios

are reported. We also report the p-value based on Wilcoxon Signed Rank test with the alternative
hypothesis being that the reported relative efficiency is positive.

Relative Summary Statistics P value for

Efficiency (in %) Min. Q1 Median Mean Q3 Max. HA : Efficiency > 0

ARE over EBMLE -10.56 2.94 6.86 7.15 9.97 26.60 2 · 10−08

ARE over US -15.42 -0.73 3.43 2.83 8.34 15.53 0.0031

EBMLE over US -42.02 -10.07 -1.77 -4.32 2.17 24.81 0.9868

We end this section by discussing the choice of weights bi and hi that we used
here. The weights are determined by the internal revenue mechanism and busi-
ness policy of the retailer and were not available with the data. Hence, we made
a judicious choice for the weights based on common business practice. Consider a
book title whose procurement cost is $1 per unit to the retailer. Here, we assume
that the retailer reviews the system and replenishes its inventory once a month,
and sells the product at $(1 + m) per unit, where m represents the mark-up. The
lost sales cost bi in this case is at least $m per unit and it does not include any
loss in customer goodwill (reputation costs) due to unfulfilled demand. Hence, for
a book whose selling price is pi, we have bi ≥ m/(1 + m)pi. Here, we assume a
uniform 15% mark up on all books which is quite common in many retail envi-
ronments. Unless there is depreciation in the product, the holding cost hi per unit
per period is simply the cost of holding $1 in the inventory for a month. Hence,
at a cost of capital of 15% per year, we have hi = bi · 0.15/12 per unit per period.
Following the aforementioned logic, the weights for the moderately sold book titles
are set. However, the book titles in very high volume sales category need special
attention. Usually, more sensitivity is associated with items having high volume
of transactions and customer loyalty is encouraged through quicker services and
discounts to ward off competitors. In this context, apart from the above mark-up
dependent costs, we also attach a flat rate for the reputation and depreciation
costs (with the ratio still being much larger than 1) for the high volume cate-
gory. The data and the code used for these experiments can be downloaded from
http://www-bcf.usc.edu/~gourab/inventory-management/.

APPENDIX E: AUXILIARY LEMMAS

The following lemma provides an upper bound on Hermite polynomial.

http://www-bcf.usc.edu/~gourab/inventory-management/
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Fig 2. In red and blue we have respectively the efficiency of the EBMLE and our proposed ARE
based method relative to the unshrunken linear estimator.

Lemma E.1. There is an absolute constant c such that for all k ≥ 1 and x ∈ R,

|Hk(x)| ≤ c ex2/4 k!

k1/3 (k/e)k/2
.

Proof of Lemma E.1

Krasikov (2004) shows that for k ≥ 6,

(2k)1/62k max
x∈R

(Hk(x))2e−x
2/2 ≤ 2

3
Ck exp

(
15

8

(
1 +

12

4(2k)1/3 − 9

))
,

where

Ck =


2k
√

4k−2 (k!)2√
8k2−8k+3 ((k/2)!)2

, if k is even,

√
16k2−16k+6 k!(k−1)!√

2k−1 ((k−1)/2)!2
, if k is odd,
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Note that for k ≥ 6, 2
3e

15
8

(
1+ 12

4(2k)1/3−9

)
is decreasing in k and

Ck ≤


2
√
k × (k!)2

((k/2)!)2
, if k is even,

4
√
k × k!(k−1)!

((k−1)/2)!2
, if k is odd,

≤


2
√
k × (k!)2(√

2π( k2 )
(k+1)/2

e−k/2
)2 , if k is even,

4
√
k × (k!)2

k
(√

2π( k−1
2 )

k/2
e−(k−1)/2

)2 , if k is odd,

=


2
√
k × (k!)2

k
2

(2π)
(
( k2 )

k/2
e−k/2

)2 , if k is even,

4
√
k × (k!)2

ke(2π)
(
( k2 )

k/2×(1− 1
k )
k/2×e−k/2

)2 , if k is odd,

=


4
√
k × (k!)2

k(2π)
(
( k2 )

k/2
e−k/2

)2 , if k is even,

4
√
k × (k!)2

ke(2π)(1− 1
k )
k
(
( k2 )

k/2
e−k/2

)2 , if k is odd,

where the second equality follows from Sterling’s bound. It is easy to verify that
(1 − 1

k )k is increasing in k and approaches 1
e as k approaches infinity. Putting

everything together, we conclude that there is an absolute constant a1 such that
for all k ≥ 6 and x ∈ R,

|Hk(x)| ≤ a1e
x2/4 k!

k1/3 2k/2
(
k
2e

)k/2 = a1e
x2/4 k!

k1/3
(
k
e

)k/2
Since the results hold for k ≥ 6, it is easy to verify that it also holds for all k ≥ 1,
by choosing appropriately large constant a1.

Lemma E.2. If X ∼ N(θ, 1) then

EH2
k(X) ≤ kk(1 + θ2/k)k.

Proof. See Lemma 3 of Cai et al. (2011).

Lemma E.3. If Y and IA are independent random variables then:

• Var(Y IA) = Var(Y )P (A) + (E[Y ])2P (A)P (Ac)
• Var(Y IA) ≤ E[Y 2]P (A)
• Var(Y IA) ≤ Var(Y ) + (E[Y ])2P (Ac)

Proof. Using the independence between Y and IA we have Var(Y IA) equals E[Y 2]P (A)−
(E[Y ]P (A))2 = Var(Y )P (A) + (E[Y ])2P (A) − (E[Y ]P (A))2 from which we have
the identity in the lemma. The inequalities immediately follow from it.
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Lemma E.4. Mills Ratio and Gaussian Tails: For any a > 0 we have:

−a−3φ(a) ≤ Φ̃(a)− a−1φ(a) ≤ 0.

Proof. See Exercise 8.1, Chapter 8 in Johnstone (2013).

Lemma E.5. For any w ∈ R and b ∈ (0, 1), let G(w, b) be defined as in Equa-
tion (1.4). Then, G(w, b) ≤ φ(0) + max{1− b , b}|w|.

Proof. By definition G(w, b) = φ(w) +wΦ(w)− bw. Since φ(w) ≤ φ(0) for all w,
the result follows.

Lemma E.6. Extra Integrability condition. If family {Xt : t ∈ T} is such that
supt∈T E|Xt|1+δ <∞ for some δ > 0 then {Xt : t ∈ T} is uniformly integrable.

Proof. See Billingsley (2008).

Lemma E.7. For any fixed m > 0 we have(
1 +

m

k

)k
≤ em for all k ≥ 1

Proof. We know that for any x > 0, log(1 + x) ≤ x and taking logarithm and
dividing both sides by m the statement in the lemma reduces to log(1 + m/k) ≤
m/k.

The following well known random variable lemmas have been used in our proofs.

Lemma E.8. For random variables W1, . . . ,Wn we have:

E

( n∑
i=1

Wi

)2
 ≤ ( n∑

i=1

√
E(W 2

i )

)2

Lemma E.9. For any random variable X and λ > 0, we have

E{XI{X ≥ λ}} ≤ |λ|−1EX2.

Lemma E.10. For any finite l ≥ 1 we have

Var

( l∑
i=1

Xi

)
≤ 2l−1

l∑
i=1

Var(Xi).

APPENDIX F: GLOSSARY

In Table 5, we briefly list the notations that have been used repeatedly in the
current paper. As a convention, multivariate vectors, expressions and estimates
are represented in bold.
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Table 5
List of important notations used in the current paper.

Notation Description

n dimension of the problem
i coordinate index
an log logn
θi unknown mean of coordinate i
νp,i variance of the past data of coordinate i
νf,i variance of the future data of coordinate i
Xi past data for coordinate i with Xi ∼ N(θi, νp,i)
Yi future data of coordinate i with Yi ∼ N(θi, νf,i)
bi per-unit underestimation cost associated with coordinate i
hi per-unit overestimation cost associated with coordinate i
Λn Grid over which ARE criterion is optimized

b̃i the critical ratio bi/(bi + hi) of the weights of the check loss
li(θi, q̂i(x)) loss associated with coordinate i under the policy q̂i when X = x is observed
Ln(θ, q̂) average loss over n coordinates under the prediction policy q̂
ri(θi, q̂i) risk associated with coordinate i under the prediction policy q̂i
Rn(θ, q̂) average risk of n coordinates under the prediction policy q̂
(η, τ) hyperparameters for the prior distribution of θi, with θi ∼ N(η, τ)

q̂Bayesi (η, τ) bayes estimate for N(η, τ) prior; see (1.5) for definition
αi(τ) shrinkage factor in our estimates, with αi(τ) = τ/(τ + νp,i) for all i
S0 class of shrinkage estimators q̂(τ) based on origin-centric priors
SG class of shrinkage estimators q̂G(τ) based on grand-mean centric priors
S class of data driven shrinkage estimators q̂(η, τ)

ÂRE our proposed estimate of the risk function Rn(θ, q̂(τ)) of estimators in S0

ÂRE
G

our proposed estimate of the risk function Rn(θ, q̂G(τ)) of estimators in SG

ÂRE
D

our proposed estimate of the risk function Rn(θ, q̂(η, τ)) of estimators in S
τOR
n , τGOR

n Oracle estimates of the hyperparameter τ for S0 and SG, respectively

τ̂ARE
n , τ̂AREG

n ARE-based estimate of τ for S0 and SG, respectively

(ηDOR
n , τDOR

n ) oracle estimates of the hyperparameter in S; ARE estimates are η̂Dn , τ̂
D
n

T̂i(Xi, τ) coordinate-wise estimator used in our risk estimation method; see (1.11)
λn(i) threshold parameter used in our risk estimation method; see (1.13)
Kn(i) truncation parameter used in our risk estimation method; see (1.14)
G(ω, β) describes the predictive loss function; see (1.4)
O(·), o(·) denote the Big O and the little-o mathematical notations, respectively
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