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Computational and Statistical Boundaries for Submatrix Localization in a
Large Noisy Matrix

Abstract
We study in this paper computational and statistical boundaries for submatrix localization. Given one
observation of (one or multiple nonoverlapping) signal submatrix (of magnitude λ and size km×kn)
embedded in a large noise matrix (of size m × n), the goal is to optimal identify the support of the signal
submatrix computationally and statistically.

Two transition thresholds for the signal-to-noise ratio λ/σ are established in terms of m, n, km and kn. The first
threshold, SNRc, corresponds to the computational boundary. We introduce a new linear time spectral
algorithm that identifies the submatrix with high probability when the signal strength is above the threshold
SNRc. Below this threshold, it is shown that no polynomial time algorithm can succeed in identifying the
submatrix, under the hidden clique hypothesis. The second threshold, SNRs, captures the statistical boundary,
below which no method can succeed in localization with probability going to one in the minimax sense. The
exhaustive search method successfully finds the submatrix above this threshold. In marked contrast to
submatrix detection and sparse PCA, the results show an interesting phenomenon that SNRc is always
significantly larger than SNRs, which implies an essential gap between statistical optimality and
computational efficiency for submatrix localization.
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COMPUTATIONAL AND STATISTICAL BOUNDARIES
FOR SUBMATRIX LOCALIZATION IN A LARGE NOISY

MATRIX

By T. Tony Cai∗,‡, Tengyuan Liang‡ and Alexander Rakhlin†,‡

University of Pennsylvania‡

We study in this paper computational and statistical boundaries
for submatrix localization. Given one observation of (one or multiple
non-overlapping) signal submatrix (of magnitude λ and size km×kn)
embedded in a large noise matrix (of size m × n), the goal is to
optimal identify the support of the signal submatrix computationally
and statistically.

Two transition thresholds for the signal to noise ratio λ/σ are es-
tablished in terms of m, n, km and kn. The first threshold, SNRc,
corresponds to the computational boundary. We introduce a new lin-
ear time spectral algorithm that identifies the submatrix with high
probability when the signal strength is above the threshold SNRc. Be-
low this threshold, it is shown that no polynomial time algorithm can
succeed in identifying the submatrix, under the hidden clique hypoth-
esis. The second threshold, SNRs, captures the statistical boundary,
below which no method can succeed in localization with probability
going to one in the minimax sense. The exhaustive search method
successfully finds the submatrix above this threshold. In marked con-
trast to submatrix detection and sparse PCA, the results show an
interesting phenomenon that SNRc is always significantly larger than
SNRs, which implies an essential gap between statistical optimality
and computational efficiency for submatrix localization.

1. Introduction. The “signal + noise” model

X = M + Z,(1.1)

where M is the signal of interest and Z is noise, is ubiquitous in statistics
and is used in a wide range of applications. Such a “signal + noise” model
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trix localization

1

http://www.imstat.org/aos/
http://arxiv.org/abs/arXiv:0000.0000


2 CAI, LIANG & RAKHLIN

has been well studied in statistics in a number of settings, including non-
parametric regression where M is a function, and the Gaussian sequence
model where M is a finite or an infinite dimensional vector. See, for ex-
ample, [35, 27] and the references therein. In nonparametric regression, the
structural knowledge on M is typically characterized by smoothness, and
in the sequence model the structural knowledge on M is often described by
sparsity. Fundamental statistical properties such as the minimax estimation
rates and the signal detection boundaries have been established under these
structural assumptions.

For a range of contemporary applications in statistical learning and sig-
nal processing, M and Z in the “signal + noise” model (1.1) are high-
dimensional matrices [37, 22, 19, 15, 12]. In this setting, many new inter-
esting problems arise under a variety of structural assumptions on M and
the distribution of Z. Examples include sparse principal component analysis
(PCA) [41, 6, 7, 10, 11], low-rank matrix de-noising [19], matrix factorization
and decomposition [15, 12, 1], non-negative PCA [44, 32], submatrix detec-
tion and localization [8, 9], synchronization and planted partition [26, 17],
among many others. In the conventional statistical framework, the goal is de-
veloping optimal statistical procedures (for estimation, testing, etc), where
optimality is understood with respect to the sample size and parameter
space.

When the dimensionality of the data becomes large as in many contempo-
rary applications, the computational concerns associated with the statistical
procedures come to the forefront. After all, statistical methods are useful in
practice only if they can be computed within a reasonable amount of time. A
fundamental question is: Is there a price to pay for statistical performance if
one only considers computable (polynomial-time) procedures? This question
is particularly relevant for non-convex problems with combinatorial struc-
tures. These problems pose a significant computational challenge because
naive methods based on exhaustive search are typically not computation-
ally efficient. Trade-off between computational efficiency and statistical ac-
curacy in high-dimensional inference has drawn increasing attention in the
literature. In particular, [14] and [42] considered a general class of linear
inverse problems, with different emphasis on geometry of convex relaxation
and decomposition of statistical and computational errors. [13] studied an
approach for trading off computational demands with statistical accuracy
via relaxation hierarchies. [5, 30, 45] focused on computational difficulties
for various statistical problems, such as detection and regression.

In the present paper, we study the interplay between computational ef-
ficiency and statistical accuracy in submatrix localization based on a noisy
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observation of a large matrix. The problem considered in this paper is for-
malized as follows.

1.1. Problem Formulation. Consider the matrix X of the form

X = M + Z, where M = λ · 1Rm1TCn
(1.2)

and 1Rm ∈ Rm denotes a binary vector with 1 on the index set Rm and zero
otherwise. Here, the entries Zij of the noise matrix are i.i.d. zero-mean sub-
Gaussian random variables with parameter σ (defined formally in Equation
(1.5)). Given the parameters m,n, km, kn, λ/σ, the set of all distributions
described above – for all possible choices of Rm and Cn – forms the submatrix
model M(m,n, km, kn, λ/σ).

This model can be further extended to multiple submatrices where

M =
r∑
s=1

λs · 1Rs1
T
Cs

(1.3)

where |Rs| = k
(m)
s and |Cs| = k

(n)
s denote the support set of the s-th subma-

trix. For simplicity, we first focus on the single submatrix and then extend
the analysis to the model (1.3) in Section 2.5.

There are two fundamental questions associated with the submatrix model
(1.2). One is the detection problem: given one observation of the X matrix,
decide whether it is generated from a distribution in the submatrix model
or from the pure noise model. Precisely, the detection problem considers
testing of the hypotheses

H0 : M = 0 v.s. Hα : M ∈M(m,n, km, kn, λ/σ).

The other is the localization problem, where the goal is to exactly recover
the signal index sets Rm and Cn (the support of the mean matrix M). It is
clear that the localization problem is at least as hard (both computationally
and statistically) as the detection problem. The focus of the current paper is
on the localization problem. As we will show in this paper, the localization
problem requires larger signal to noise ratio, as well as novel algorithm and
analysis to exploit the submatrix structure.

1.2. Main Results. To state our main results, let us first define a hierar-
chy of algorithms in terms of their worst-case running time on instances of
the submatrix localization problem:

LinAlg ⊂ PolyAlg ⊂ ExpoAlg ⊂ AllAlg.
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The set LinAlg contains algorithms A that produce an answer (in our case,
the localization subset R̂Am, Ĉ

A
n ) in time linear in m× n (the minimal com-

putation required to read the matrix). The classes PolyAlg and ExpoAlg
of algorithms, respectively, terminate in polynomial and exponential time,
while AllAlg has no restriction.

Combining Theorem 3 and 4 in Section 2 and Theorem 5 in Section 3,
the statistical and computational boundaries for submatrix localization can
be summarized as follows. The notations %,-,� are formally defined in
Section 1.5.

Theorem 1 (Computational and Statistical Boundaries). Consider the
submatrix localization problem under the model (1.2). The computational
boundary SNRc for the dense case when min{km, kn} % max{m1/2, n1/2} is

SNRc �
√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn
,

in the sense that

lim
m,n,km,kn→∞

inf
A∈LinAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
= 0, if

λ

σ
% SNRc

lim
m,n,km,kn→∞

inf
A∈PolyAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
> 0, if

λ

σ
- SNRc

(1.4)

where (1.4) holds under the Hidden Clique hypothesis HCl (see Section 2.1).
For the sparse case when max{km, kn} - min{m1/2, n1/2}, the computa-
tional boundary is SNRc = Θ∗(1), more precisely

1 - SNRc -

√
log

m ∨ n
kmkn

.

The statistical boundary SNRs is

SNRs �
√

log n

km
∨ logm

kn
,

in the sense that

lim
m,n,km,kn→∞

inf
A∈ExpoAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
= 0, if

λ

σ
% SNRs

lim
m,n,km,kn→∞

inf
A∈AllAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
> 0, if

λ

σ
- SNRs

under the minimal assumption max{km, kn} - min{m,n}.



SUBMATRIX LOCALIZATION BOUNDARIES 5

If we parametrize the submatrix model as m = n, km � kn � k =
Θ∗(nα), λ/σ = Θ∗(n−β), for some 0 < α, β < 1, we can summarize the
results of Theorem 1 in a phase diagram, as illustrated in Figure 1.

↵

�

computationally and
statistically easy

computationally hard
but statistically easy

statistically hard

B A

C

Fig 1. Phase diagram for submatrix localization. Red region (C): statistically impossible,
where even without computational budget, the problem is hard. Blue region (B): statistically
possible but computationally expensive (under the hidden clique hypothesis), where the
problem is hard to all polynomial time algorithm but easy with exponential time algorithm.
Green region (A): statistically possible and computationally easy, where a fast polynomial
time algorithm will solve the problem.

To explain the diagram, consider the following cases. First, the statistical
boundary is √

log n

km
∨ logm

kn
,

which gives the line separating the red and the blue regions. For the dense
regime α ≥ 1/2, the computational boundary given by Theorem 1 is√

m ∨ n
kmkn

+

√
log n

km
∨ logm

kn
,

which corresponds to the line separating the blue and the green regions. For
the sparse regime α < 1/2, the computational boundary is Θ(1) - SNRc -

Θ(
√

log m∨n
kmkn

), which is the horizontal line connecting (α = 0, β = 0) to

(α = 1/2, β = 0).
As a key part of Theorem 1, we provide linear time spectral algorithm that

will succeed in localizing the submatrix with high probability in the regime
above the computational threshold. Furthermore, the method is data-driven
and adaptive: it does not require the prior knowledge on the size of the
submatrix. This should be contrasted with the method of [16] which requires
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the prior knowledge of km, kn; furthermore, the running time of their SDP-
based method is superlinear in nm. Under the hidden clique hypothesis, we
prove that below the computational threshold there is no polynomial time
algorithm that can succeed in localizing the submatrix. We remark that the
computational lower bound for localization requires distinct new techniques
compared to the lower bound for detection; the latter has been resolved in
[30].

Beyond localization of one single submatrix, we generalize both the com-
putational and statistical story to a growing number of submatrices in Sec-
tion 2.5. As mentioned earlier, the statistical boundary for one single sub-
matrix localization has been investigated by [9] in the Gaussian case. Our
result focuses on the computational intrinsic difficulty of localization for a
growing number of submatrices, at the expense of not providing the exact
constants for the thresholds.

The phase transition diagram in Figure 1 for localization should be con-
trasted with the corresponding result for detection, as shown in [8, 30]. For a
large enough submatrix size (as quantified by α > 2/3), the computationally-
intractable-but-statistically-possible region collapses for the detection prob-
lem, but not for localization. In plain words, detecting the presence of a large
submatrix becomes both computationally and statistically easy beyond a
certain size, while for localization there is always a gap between statisti-
cally possible and computationally feasible regions. This phenomenon also
appears to be distinct to that of other problems like estimation of sparse
principal components [10], where computational and statistical easiness co-
incide with each other over a large region of the parameter spaces.

1.3. Prior Work. There is a growing body of work in statistical literature
on submatrix problems. [2] studied the detection problem for a cluster inside
a large matrix. [8, 9] formulated the submatrix detection and localization
problems under Gaussian noise and determined sharp statistical transition
boundaries. For the detection problem, [30] provided a computational lower
bound result under the assumption that hidden clique detection is compu-
tationally difficult.

[34] provided a fast iterative maximization algorithm to heuristically solve
the submatrix localization problem. [3, 28] focused on statistical and compu-
tational trade-offs for the submatrix localization problem. Under the sparse
regime km - m1/2 and kn - n1/2, the entry-wise thresholding turns out to
be the “near optimal” polynomial-time algorithm (which we will show to be
a de-noised spectral algorithm that perform slightly better in Section 2.4).
However, for the dense regime when km % m1/2 and kn % n1/2, the algo-
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rithms provided in [28] are not optimal in the sense that there are other
polynomial-time algorithm that can succeed in finding the submatrix with
smaller SNR. Concurrently with our work, [16] provided a convex relaxation
algorithm that improves the SNR boundary of [28] in the dense regime. On
the computational downside, the implementation of the method requires a
full SVD on each iteration, and therefore does not scale well with the di-
mensionality of the problem. Furthermore, there is no computational lower
bound in the literature to guarantee the optimality of the SNR boundary
achieved in [16]. A problem similar to submatrix localization is that of clique
finding in random graph. [18] presented an iterative approximate message
passing algorithm to solve the latter problem with sharp boundaries on SNR.

We would like to emphasize on the differences between the localization
and the detection problems. In terms of the theoretical results, unlike detec-
tion, there is always a gap between statistically optimal and computation-
ally feasible regions for localization. This non-vanishing computational-to-
statistical-gap phenomenon also appears in the community detection litera-
ture with growing number of communities [17]. In terms of the methodology,
for detection, combining the results in [20, 30], there is no loss in treating M
in model (1.2) as a vector and applying the higher criticism method [20] to
the vectorized matrix for the problem of submatrix detection, in the compu-
tationally efficient region. In fact, the procedure achieves sharper constants
in the Gaussian setting. However, in contrast, we will show that for localiza-
tion, it is crucial to utilize the matrix structure, even in the computationally
efficient region.

1.4. Organization of the Paper. The paper is organized as follows. Sec-
tion 2 establishes the computational boundary, with the computational lower
bounds given in Section 2.1 and upper bound results in Sections 2.2-2.4. An
extension to the case of multiple submatrices is presented in Section 2.5. The
upper and lower bounds for statistical boundary for multiple submatrices
are discussed in Section 3. A short discussion is given in Section 4. Technical
proofs are deferred to Section 5. Additional proofs are deferred to Appendix
A. In addition to the spectral method, Appendix B contains a new analysis
of a known method that is based on a convex relaxation [16]. Comparison
of computational lower bounds for localization and detection is included in
Appendix C.

1.5. Notation. Let [m] denote the index set {1, 2, . . . ,m}. For a matrix
X ∈ Rm×n, Xi· ∈ Rn denotes its i-th row and X·j ∈ Rm denotes its j-th
column. For any I ⊆ [m], J ⊆ [n], XIJ denotes the submatrix corresponding
to the index set I × J . For a vector v ∈ Rn, ‖v‖`p = (

∑
i∈[n] |vi|p)1/p and
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for a matrix M ∈ Rm×n, ‖M‖`p = supv 6=0 ‖Mv‖`p/‖v‖`p . When p = 2, the
latter is the usual spectral norm, abbreviated as ‖M‖2. The nuclear norm of
a matrix M is convex surrogate for the rank, with the notation to be ‖M‖∗.
The Frobenius norm of a matrix M is defined as ‖M‖F =

√∑
i,jM

2
ij . The

inner product associated with the Frobenius norm is defined as 〈A,B〉 =
tr(ATB).

Denote the asymptotic notation a(n) = Θ(b(n)) if there exist two univer-
sal constants cl, cu such that cl ≤ lim

n→∞
a(n)/b(n) ≤ lim

n→∞
a(n)/b(n) ≤ cu. Θ∗

is asymptotic equivalence hiding logarithmic factors in the following sense:
a(n) = Θ∗(b(n)) iff there exists c > 0 such that a(n) = Θ(b(n) logc n). Ad-
ditionally, we use the notation a(n) � b(n) as equivalent to a(n) = Θ(b(n)),
a(n) % b(n) iff limn→∞ a(n)/b(n) =∞ and a(n) - b(n) iff limn→∞ a(n)/b(n) =
0.

We define the zero-mean sub-Gaussian random variable z with sub-Gaussian
parameter σ in terms of its Laplacian

Eeλz ≤ exp(σ2λ2/2), for all λ > 0,(1.5)

then we have
P(|z| > σt) ≤ 2 · exp(−t2/2).

We call a random vector Z ∈ Rn isotropic with parameter σ if

E(vTZ)2 = σ2‖v‖2`2 , for all v ∈ Rn.

Clearly, Gaussian and Bernoulli measures, and more general product mea-
sures of zero-mean sub-Gaussian random variables satisfy this isotropic def-
inition up to a constant scalar factor.

2. Computational Boundary. We characterize in this section the
computational boundaries for the submatrix localization problem. Sections
2.1 and 2.2 consider respectively the computational lower bound and upper
bound. The computational lower bound given in Theorem 2 is based on the
hidden clique hypothesis.

2.1. Algorithmic Reduction and Computational Lower Bound. Theoret-
ical Computer Science identifies a range of problems which are believed to
be “hard,” in the sense that in the worst-case the required computation
grows exponentially with the size of the problem. Faced with a new com-
putational problem, one might try to reduce any of the “hard” problems
to the new problem, and therefore claim that the new problem is as hard
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as the rest in this family. Since statistical procedures typically deal with a
random (rather than worst-case) input, it is natural to seek token problems
that are believed to be computationally difficult on average with respect
to some distribution on instances. The hidden clique problem is one such
example (for recent results on this problem, see [23, 18]). While there exists
a quasi-polynomial algorithm, no polynomial-time method (for the appro-
priate regime, described below) is known. Following several other works on
reductions for statistical problems, we work under the hypothesis that no
polynomial-time method exists.

Let us make the discussion more precise. Consider the hidden clique model
G(N,κ) where N is the total number of nodes and κ is the number of clique
nodes. In the hidden clique model, a random graph instance is generated
in the following way. Choose κ clique nodes uniformly at random from all
the possible choices, and connect all the edges within the clique. For all the
other edges, connect with probability 1/2.

Hidden Clique Hypothesis for Localization (HCl). Consider the random in-
stance of hidden clique model G(N,κ). For any sequence κ(N) such that
κ(N) ≤ Nβ for some 0 < β < 1/2, there is no randomized polynomial time
algorithm that can find the planted clique with probability tending to 1 as
N →∞. Mathematically, define the randomized polynomial time algorithm
class PolyAlg as the class of algorithms A that satisfies

lim
N,κ(N)→∞

sup
A∈PolyAlg

ECliquePG(N,κ)|Clique (runtime of A not polynomial in N) = 0.

Then

lim
N,κ(N)→∞

inf
A∈PolyAlg

ECliquePG(N,κ)|Clique (clique set returned by A not correct) > 0,

where PG(N,κ)|Clique is the (possibly more detailed due to randomness of algo-
rithm) σ-field conditioned on the clique location and EClique is with respect
to uniform distribution over all possible clique locations.

Hidden Clique Hypothesis for Detection (HCd). Consider the hidden clique
model G(N,κ). For any sequence of κ(N) such that κ(N) ≤ Nβ for some
0 < β < 1/2, there is no randomized polynomial time algorithm that can
distinguish between

H0 : PER v.s. Hα : PHC

with probability going to 1 as N →∞. Here PER is the Erdős-Rényi model,
while PHC is the hidden clique model with uniform distribution on all the
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possible locations of the clique. More precisely,

lim
N,κ(N)→∞

inf
A∈PolyAlg

ECliquePG(N,κ)|Clique (detection decision returned by A wrong) > 0,

where PG(N,κ)|Clique and EClique are the same as defined in HCl.
The hidden clique hypothesis has been used recently by several authors

to claim computational intractability of certain statistical problems. In par-
ticular, [5, 30] assumed the hypothesis HCd and [43] used HCl. Localization
is harder than detection, in the sense that if an algorithm A solves the local-
ization problem with high probability, it also correctly solves the detection
problem. Assuming that no polynomial time algorithm can solve the detec-
tion problem implies impossibility results in localization as well. In plain
language, HCl is a milder hypothesis than HCd.

We will provide computational lower bound result for localization in The-
orem 2. In Appendix C, we contrast the difference of lower bound construc-
tions between localization and detection. The detection computational lower
bound was proved in [30]. For the localization computational lower bound,
to the best of our knowledge, there is no proof in the literature. Theorem 2
ensures the upper bound in Lemma 1 being sharp.

Theorem 2 (Computational Lower Bound for Localization). Consider
the submatrix model (1.2) with parameter tuple (m = n, km � kn � nα, λ/σ =
n−β), where 1

2 < α < 1, β > 0. Under the computational assumption HCl,
if

λ

σ
-

√
m+ n

kmkn
⇒ β > α− 1

2
,

it is not possible to localize the true support of the submatrix with probability
going to 1 within polynomial time.

Our algorithmic reduction for localization relies on a bootstrapping idea
based on the matrix structure and a cleaning-up procedure introduced in
Lemma 12 given in Section 5. These two key ideas offer new insights in ad-
dition to the usual computational lower bound arguments. Bootstrapping
introduces an additional randomness on top of the randomness in the hid-
den clique. Careful examination of these two σ-fields allows us to write the
resulting object into mixture of submatrix models. For submatrix localiza-
tion we need to transform back the submatrix support to the original hidden
clique support exactly, with high probability. In plain language, even though
we lose track of the exact location of the support when reducing the hidden
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clique to submatrix model, we can still recover the exact location of the
hidden clique with high probability. For technical details of the proof, please
refer to Section 5.

2.2. Adaptive Spectral Algorithm and Upper Bound. In this section, we
introduce linear time algorithm that solves the submatrix localization prob-
lem above the computational boundary SNRc. Our proposed localization Al-
gorithms 1 and 2 are motivated by the spectral algorithm in random graphs
[31, 33].

Algorithm 1: Vanilla Spectral Projection Algorithm for Dense Regime

Input: X ∈ Rm×n the data matrix.
Output: A subset of the row indexes R̂m and a subset of column

indexes Ĉn as the localization sets of the submatrix.
1. Compute top left and top right singular vectors U·1 and V·1,
respectively (these correspond to the SVD X = UΣV T );

2. To compute Ĉn, calculate the inner products UT·1X·j ∈ R, 1 ≤ j ≤ n.
These values form two data-driven clusters, and a cut at the largest
gap between consecutive values returns the subsets Ĉn and [n]\Ĉn.
Similarly, for the R̂m, calculate Xi·V·1 ∈ R, 1 ≤ i ≤ m and obtain two
separated clusters.

The proposed algorithm has several advantages over the localization algo-
rithms that appeared in literature. First, it is a linear time algorithm (that
is, Θ(mn) time complexity). The top singular vectors can be evaluated using
fast iterative power methods, which is efficient both in terms of space and
time. Secondly, this algorithm does not require the prior knowledge of km
and kn and automatically adapts to the true submatrix size.

Lemma 1 below justifies the effectiveness of the spectral algorithm.

Lemma 1 (Guarantee for Spectral Algorithm). Consider the subma-
trix model (1.2), Algorithm 1 and assume min{km, kn} % max{m1/2, n1/2}.
There exist a universal C > 0 such that when

λ

σ
≥ C ·

(√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn

)
,

the spectral method succeeds in the sense that R̂m = Rm, Ĉn = Cn with
probability at least 1−m−c − n−c − 2 exp (−c(m+ n)).
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Remark 2.1. The theory and algorithm remain the same if the signal
matrix M is more general in the following sense: M has rank one, its left
and right singular vectors are sparse, and the nonzero entries of the singular
vectors are of the same order. Mathematically,M = λ

√
kmkn·uvT , where u, v

are unit singular vectors with km, kn non-zero entries, and |u|max/|u|min ≤ c
and |v|max/|v|min ≤ c for some constant c ≥ 1. Here for a vector w, |w|max

and |w|min denote respectively the largest and smallest magnitudes among
the nonzero coordinates. When c = 1, the algorithm is fully data-driven and
does not require the knowledge of λ, σ, km, kn. When c is large but finite,
one may require in addition the knowledge of km and kn to perform the final
cut to obtain Ĉn and R̂m.

2.3. Dense Regime. We are now ready to state the SNR boundary for
polynomial-time algorithms (under an appropriate computational assump-
tion), thus excluding the exhaustive search procedure. The results hold under
the dense regime when k % n1/2.

Theorem 3 (Computational Boundary for Dense Regime). Consider
the submatrix model (1.2) and assume min{km, kn} % max{m1/2, n1/2}.
There exists a critical rate

SNRc �
√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn

for the signal to noise ratio SNRc such that for λ/σ % SNRc, both the adap-
tive linear time Algorithm 1 and the robust polynomial time Algorithm 1
will succeed in submatrix localization, i.e., R̂m = Rm, Ĉn = Cn, with high
probability. For λ/σ - SNRc, there is no polynomial time algorithm that will
work under the hidden clique hypothesis HCl.

The proof of the above theorem is based on the theoretical justification
of the spectral Algorithm 1 and convex relaxation Algorithm 1, and the
new computational lower bound result for localization in Theorem 2. We
remark that the analyses can be extended to multiple, even growing number
of submatrices case. We postpone a proof of this fact to Section 2.5 for
simplicity and focus on the case of a single submatrix.

2.4. Sparse Regime. Under the sparse regime when k - n1/2, a naive
plug-in of Lemma 1 requires the SNRc to be larger than Θ(n1/2/k) %

√
log n,

which implies the vanilla spectral Algorithm 1 is outperformed by simple
entrywise thresholding. However, a modified version with entrywise soft-
thresholding as a preprocessing de-noising step turns out to provide near
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optimal performance in the sparse regime. Before we introduce the formal
algorithm, let us define the soft-thresholding function at level t to be

ηt(y) = sign(y)(|y| − t)+.(2.1)

Soft-thresholding as a de-noising step achieving optimal bias-and-variance
trade-off has been widely understood in the wavelet literature, for example,
see Donoho and Johnstone [21].

Now we are ready to state the following de-noised spectral Algorithm 2
to localize the submatrix under the sparse regime when k - n1/2.

Algorithm 2: De-noised Spectral Algorithm for Sparse Regime

Input: X ∈ Rm×n the data matrix, a thresholding level

t = Θ(σ
√

log m∨n
kmkn

).

Output: A subset of the row indexes R̂m and a subset of column
indexes Ĉn as the localization sets of the submatrix.

1. Soft-threshold each entry of the matrix X at level t, denote the
resulting matrix as ηt(X) ;
2. Compute top left and top right singular vectors U·1 and V·1 of matrix
ηt(X), respectively (these correspond to the SVD ηt(X) = UΣV T );

3. To compute Ĉn, calculate the inner products UT·1 · ηt(X·j), 1 ≤ j ≤ n.
These values form two clusters. Similarly, for the R̂m, calculate
ηt(Xi·) · V·1, 1 ≤ i ≤ m and obtain two separated clusters. A simple
thresholding procedure returns the subsets Ĉn and R̂m.

Lemma 2 below provides the theoretical guarantee for the above algorithm
when k - n1/2.

Lemma 2 (Guarantee for De-noised Spectral Algorithm). Consider the
submatrix model (1.2), soft-thresholded spectral Algorithm 2 with thresholded
level σt, and assume min{km, kn} - max{m1/2, n1/2}. There exist a univer-
sal C > 0 such that when

λ

σ
≥ C ·

([√
m ∨ n
kmkn

+

√
log n

km
∨ logm

kn

]
· e−t2/2 + t

)
,

the spectral method succeeds in the sense that R̂m = Rm, Ĉn = Cn with
probability at least 1−m−c−n−c− 2 exp (−c(m+ n)). Further if we choose

Θ(σ
√

log m∨n
kmkn

) as the optimal thresholding level, we have de-noised spectral
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algorithm works when
λ

σ
%

√
log

m ∨ n
kmkn

.

Combining the hidden clique hypothesis HCl together with Lemma 2, the
following theorem holds under the sparse regime when k - n1/2.

Theorem 4 (Computational Boundary for Sparse Regime). Consider
the submatrix model (1.2) and assume max{km, kn} - min{m1/2, n1/2}.
There exists a critical rate for the signal to noise ratio SNRc between

1 - SNRc -

√
log

m ∨ n
kmkn

such that for λ/σ %
√

log m∨n
kmkn

, the linear time Algorithm 2 will succeed in

submatrix localization, i.e., R̂m = Rm, Ĉn = Cn, with high probability. For
λ/σ - 1, there is no polynomial time algorithm that will work under the
hidden clique hypothesis HCl.

Remark 4.1. The upper bound achieved by the de-noised spectral Al-
gorithm 2 is optimal in the two boundary cases: k = 1 and k � n1/2. When
k = 1, both the information theoretic and computational boundary meet at√

log n. When k � n1/2, the computational lower bound and upper bound
match in Theorem 4, thus suggesting the near optimality of Algorithm 2
within the polynomial time algorithm class. The potential logarithmic gap
is due to the crudeness of the hidden clique hypothesis. Precisely, for k = 2,
hidden clique is not only hard for G(n, p) with p = 1/2, but also hard for
G(n, p) with p = 1/ log n. Similarly for k = nα, α < 1/2, hidden clique is not
only hard for G(n, p) with p = 1/2, but also for some 0 < p < 1/2.

2.5. Extension to Growing Number of Submatrices. The computational
boundaries established in the previous sections for a single submatrix can
be extended to non-overlapping multiple submatrices model (1.3). The non-
overlapping assumption corresponds to that for any 1 ≤ s 6= t ≤ r, Rs∩Rt =
∅ and Cs ∩ Ct = ∅. The Algorithm 3 below is an extension of the spec-
tral projection Algorithm 1 to address the multiple submatrices localization
problem.
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Algorithm 3: Spectral Algorithm for Multiple Submatrices

Input: X ∈ Rm×n the data matrix. A pre-specified number of
submatrices r.

Output: A subset of the row indexes {R̂sm, 1 ≤ s ≤ r} and a subset of
column indexes {Ĉsn, 1 ≤ s ≤ r} as the localization of the
submatrices.

1. Calculate top r left and right singular vectors in the SVD
X = UΣV T . Denote these vectors as Ur ∈ Rm×r and Vr ∈ Rn×r,
respectively;

2. For the Ĉsn, 1 ≤ s ≤ r, calculate the projection
Ur(U

T
r Ur)

−1UTr X·j , 1 ≤ j ≤ n, run k-means clustering algorithm (with
k = r + 1) for these n vectors in Rm. For the R̂sm, 1 ≤ s ≤ r, calculate
Vr(V

T
r Vr)

−1V T
r X

T
i· , 1 ≤ i ≤ m, run k-means clustering algorithm (with

k = r + 1) for these m vectors in Rn (while the effective dimension is
Rr).

We emphasize that the following Proposition 3 holds even when the num-
ber of submatrices r grows with m,n.

Lemma 3 (Spectral Algorithm for Non-overlapping Submatrices Case).
Consider the non-overlapping multiple submatrices model (1.3) and Algo-
rithm 3. Assume

k(m)
s � km, k(n)s � kn, λs � λ

for all 1 ≤ s ≤ r and min{km, kn} % max{m1/2, n1/2}. There exist a uni-
versal C > 0 such that when

λ

σ
≥ C ·

(√
r

km ∧ kn
+

√
log n

km
∨
√

logm

kn
+

√
m ∨ n
kmkn

)
,(2.2)

the spectral method succeeds in the sense that R̂
(s)
m = R

(s)
m , Ĉ

(s)
n = C

(s)
n , 1 ≤

s ≤ r with probability at least 1−m−c − n−c − 2 exp (−c(m+ n)).

Remark 4.2. Under the non-overlapping assumption, rkm - m, rkn -
n hold in most cases. Thus the first term in Equation (2.2) is dominated by
the latter two terms. Thus a growing number r does not affect the bound in
Equation (2.2) as long as the non-overlapping assumption holds.

3. Statistical Boundary. In this section we study the statistical bound-
ary. As mentioned in the introduction, in the Gaussian noise setting, the sta-
tistical boundary for a single submatrix localization has been established in
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[9]. In this section, we generalize to localization of a growing number of sub-
matrices, as well as sub-Gaussian noise, at the expense of having non-exact
constants for the threshold.

3.1. Information Theoretic Bound. We begin with the information the-
oretic lower bound for the localization accuracy.

Lemma 4 (Information Theoretic Lower Bound). Consider the subma-
trix model (1.2) with Gaussian noise Zij ∼ N (0, σ2). For any fixed 0 < α <
1, there exist a universal constant Cα such that if

λ

σ
≤ Cα ·

√
log(m/km)

kn
+

log(n/kn)

km
,(3.1)

any algorithm A will fail to localize the submatrix with probability at least
1− α− log 2

km log(m/km)+kn log(n/kn)
in the following minimax sense:

inf
A∈AllAlg

sup
M∈M

P
(
R̂Am 6= Rm or ĈAn 6= Cn

)
> 1−α− log 2

km log(m/km) + kn log(n/kn)
.

3.2. Combinatorial Search for Growing Number of Submatrices. Combi-
natorial search over all submatrices of size km×kn finds the location with the
strongest aggregate signal and is statistically optimal [9, 8]. Unfortunately,

it requires computational complexity Θ
((

m
km

)
+
(
n
kn

))
, which is exponential

in km, kn. The search Algorithm 4 was introduced and analyzed under the
Gaussian setting for a single submatrix in [8], which can be used iteratively
to solve multiple submatrices localization.

Algorithm 4: Combinatorial Search Algorithm

Input: X ∈ Rm×n the data matrix.
Output: A subset of the row indexes R̂m and a subset of column

indexes Ĉn as the localization of the submatrix.
For all index subsets I × J with |I| = km and |J | = kn, calculate the
sum of the entries in the submatrix XIJ . Report the index subset
R̂m × Ĉn with the largest sum.

For the case of multiple submatrices, the submatrices can be extracted
with the largest sum in a greedy fashion.

Lemma 5 below provides a theoretical guarantee for Algorithm 4 to achieve
the information theoretic lower bound.
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Lemma 5 (Guarantee for Search Algorithm). Consider the non-overlapping
multiple submatrices model (1.3) and iterative application of Algorithm 4 in
a greedy fashion for r times. Assume

k(m)
s � km, k(n)s � kn, λs � λ

for all 1 ≤ s ≤ r and max{km, kn} - min{m,n}. There exists a universal
constant C > 0 such that if

λ

σ
≥ C ·

√
log(em/km)

kn
+

log(en/kn)

km
,

then Algorithm 4 will succeed in returning the correct location of the subma-
trix with probability at least 1− 2kmkn

mn .

To complete Theorem 1, we include the following Theorem 5 capturing
the statistical boundary. It is proved by exhibiting the information-theoretic
lower bound Lemma 4 and analyzing Algorithm 4.

Theorem 5 (Statistical Boundary). Consider the submatrix model (1.2).
There exists a critical rate

SNRs �
√

log n

km
∨ logm

kn

for the signal to noise ratio, such that for any problem with λ/σ % SNRs,
the statistical search Algorithm 4 will succeed in submatrix localization, i.e.,
R̂m = Rm, Ĉn = Cn, with high probability. On the other hand, if λ/σ -
SNRs, no algorithm will work (in the minimax sense) with probability tending
to 1.

4. Discussion.

Submatrix Localization v.s. Detection. As pointed out in Section 1.2, for
any k = nα, 0 < α < 1, there is an intrinsic SNR gap between compu-
tational and statistical boundaries for submatrix localization. Unlike the
submatrix detection problem where for the regime 2/3 < α < 1, there is no
gap between what is computationally possible and what is statistical possi-
ble, the inevitable gap in submatrix localization is due to the combinatorial
structure of the problem. This phenomenon is also seen in some network
related problems, for instance, stochastic block models with a growing num-
ber of communities [17]. Compared to the submatrix detection problem, the
algorithm to solve the localization problem is more complicated and the
techniques required for the analysis are much more involved.
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Detection for Growing Number of Submatrices. The current paper solves
localization of a growing number of submatrices. In comparison, for de-
tection, the only known results are for the case of a single submatrix as
considered in [8] for the statistical boundary and in [30] for the computa-
tional boundary. The detection problem in the setting of a growing number
of submatrices is of significant interest. In particular, it is interesting to un-
derstand the computational and statistical trade-offs in such a setting. This
will need further investigation.

Estimation of the Noise Level σ. Although Algorithms 1 and 3 do not
require the noise level σ as an input, Algorithm 2 does require the knowledge
of σ. The noise level σ can be estimated robustly. In the Gaussian case,
a simple robust estimator of σ is the following median absolute deviation
(MAD) estimator due to the fact that M is sparse k2/m2 � 0.25:

σ̂ = medianij |Xij −medianij(Xij)|/Φ−1(0.75)

≈ 1.4826×medianij |Xij −medianij(Xij)|.

5. Proofs. We prove in this section the main results given in the paper.
We first collect and prove a few important technical lemmas that will be used
in the proofs of the main results.

5.1. Prerequisite Lemmas. We start with the following version of the
Wedin’s Theorem.

Lemma 6 (Davis-Kahan-Wedin’s Type Perturbation Bound). It holds
that √

‖ sin Φ‖2F + ‖ sin Θ‖2F ≤
√

2‖E‖F
δ

and also the following holds for 2-norm (or any unitary invariant norm)

max {‖ sin Φ‖2, ‖ sin Θ‖2} ≤
‖E‖2
δ

.

We will then introduce some concentration inequalities. Lemmas 7 and 8
are concentration of measure results from random matrix theory.

Lemma 7 ([38], Theorem 39). Let Z ∈ Rm×n be a matrix whose rows
Zi· are independent sub-Gaussian isotropic random vectors in Rn with pa-
rameter σ. Then for every t ≥ 0, with probability at least 1 − 2 exp(−ct2)
one has

‖Z‖2 ≤ σ(
√
m+ C

√
n+ t)

where C, c > 0 are some universal constants.



SUBMATRIX LOCALIZATION BOUNDARIES 19

Lemma 8 ([25], Projection Lemma). Assume Z ∈ Rn is an isotropic
sub-Gaussian vector with i.i.d. entries and parameter σ. P is a projection
operator to a subspace of dimension r, then we have the following concen-
tration inequality

P(‖PZ‖2`2 ≥ σ
2(r + 2

√
rt+ 2t)) ≤ exp(−ct),

where c > 0 is a universal constant.

The proof of this lemma is a simple application of Theorem 2.1 in[25] for
the case that P is a rank r positive semidefinite projection matrix.

The following two are standard Chernoff-type bounds for bounded random
variables.

Lemma 9 ([24], Hoeffding’s Inequality). Let Xi, 1 ≤ i ≤ n be inde-
pendent random variables. Assume ai ≤ Xi ≤ bi, 1 ≤ i ≤ n. Then for
Sn =

∑n
i=1Xi

P (|Sn − ESn| > u) ≤ 2 exp

(
− 2u2∑n

i=1(bi − ai)2

)
.(5.1)

Lemma 10 ([4], Bernstein’s Inequality). Let Xi, 1 ≤ i ≤ n be indepen-
dent zero-mean random variables. Suppose |Xi| ≤M, 1 ≤ i ≤ n. Then

P

(
n∑
i=1

Xi > u

)
≤ exp

(
− u2/2∑n

i=1 EX2
i +Mu/3

)
.(5.2)

We will end this section stating the Fano’s information inequality, which
plays a key role in many information theoretic lower bounds.

Lemma 11 ([35] Corollary 2.6). Let P0,P1, . . . ,PM be probability mea-
sures on the same probability space (Θ,F), M ≥ 2. If for some 0 < α < 1

1

M + 1

M∑
i=0

dKL(Pi||P̄) ≤ α · logM(5.3)

where

P̄ =
1

M + 1

M∑
i=0

Pi.

Then

pe,M ≥ p̄e,M ≥
log(M + 1)− log 2

logM
− α(5.4)

where pe,M is the minimax error for the multiple testing problem.
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5.2. Main Proofs.

Proof of Lemma 1. Recall the matrix form of the submatrix model,
with the SVD decomposition of the mean signal matrix M

X = λ
√
kmknUV

T + Z.

The largest singular value of λUV T is λ
√
kmkn, and all the other singular

values are 0s. Davis-Kahan-Wedin’s perturbation bound tells us how close
the singular space ofX is to the singular space ofM . Let us apply the derived
Lemma 6 to X = λ

√
kmknUV

T + Z. Denote the top left and right singular
vector of X as Ũ and Ṽ . One can see that E‖Z‖2 � σ(

√
m +

√
n) under

very mild finite fourth moment conditions through a result in [29]. Lemma
7 provides a more explicit probabilisitic bound for the concentration of the
largest singular value of i.i.d sub-Gaussian random matrix. Because the rows
Zi· are sampled from product measure of mean zero sub-Gaussians, they
naturally satisfy the isotropic condition. Hence, with probability at least
1− 2 exp (−c(m+ n)), via Lemma 7, we reach

‖Z‖2 ≤ C · σ(
√
m+

√
n).(5.5)

Using Weyl’s interlacing inequality, we have

|σi(X)− σi(M)| ≤ ‖Z‖2

and thus
σ1(X) ≥ λ

√
kmkn − ‖Z‖2

σ2(X) ≤ ‖Z‖2.

Applying Lemma 6, we have

max
{
| sin∠(U, Ũ)|, | sin∠(V, Ṽ )|

}
≤ Cσ(

√
m+

√
n)

λ
√
kmkn − Cσ(

√
m+

√
n)
� σ(

√
m+

√
n)

λ
√
kmkn

.

In addition

‖U − Ũ‖`2 =

√
2− 2 cos∠(U, Ũ) = 2| sin 1

2
∠(U, Ũ)|,

which means

max
{
‖U − Ũ‖`2 , ‖V − Ṽ ‖`2

}
≤ C · σ(

√
m+

√
n)

λ
√
kmkn

.
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And according to the definition of the canonical angles, we have

max
{
‖UUT − Ũ ŨT ‖2, ‖V V T − Ṽ Ṽ T ‖2

}
≤ C · σ(

√
m+

√
n)

λ
√
kmkn

.

Now let us assume we have two observations of X. We use the first obser-
vation X̃ to solve for the singular vectors Ũ , Ṽ , we use the second observation
X to project to the singular vectors Ũ , Ṽ . We can use Tsybakov’s sample
cloning argument ([36], Lemma 2.1) to create two independent observations
of X when noise is Gaussian as follows. Create a pure Gaussian matrix Z ′

and define X1 = X +Z ′ = M + (Z +Z ′) and X2 = X −Z ′ = M + (Z −Z ′),
making X1, X2 independent with the variance being doubled. This step is
not essential because we can perform random subsampling as in [40]; having
two observations instead of one does not change the picture statistically or
computationally. Recall X = M + Z = λ

√
kmknUV

T + Z.
Define the projection operator to be P, we start the analysis by decom-

posing

‖PŨX·j −M·j‖`2 ≤ ‖PŨ (X·j −M·j)‖`2 + ‖(PŨ − I)M·j‖`2(5.6)

for 1 ≤ j ≤ n.
For the first term of (5.6), note that X·j −M·j = Z·j ∈ Rm is an i.i.d.

isotropic sub-Gaussian vector, and thus we have through Lemma 8, for t =
(1 + 1/c) log n, Z·j ∈ Rm, 1 ≤ j ≤ n and r = 1

P

‖PŨ (X·j −M·j)‖`2 ≥ σ
√
r

√
1 + 2

√
1 + 1/c ·

√
log n

r
+ 2(1 + 1/c) · log n

r

 ≤ n−c−1.
(5.7)

We invoke the union bound for all 1 ≤ j ≤ n to obtain

max
1≤j≤n

‖PŨ (X·j −M·j)‖`2 ≤ σ
√
r +

√
2(1 + 1/c) · σ

√
log n(5.8)

≤ σ + C · σ
√

log n(5.9)

with probability at least 1− n−c.
For the second term M·j = X̃·j− Z̃·j of (5.6), there are two ways of upper

bounding it. The first approach is to split

‖(PŨ − I)M‖2 ≤ ‖(PŨ − I)X̃‖2 + ‖(PŨ − I)Z̃‖2 ≤ 2‖Z̃‖2.(5.10)

The first term of (5.10) is σ2(X̃) ≤ σ2(M)+‖Z̃‖2 through Weyl’s interlacing
inequality, while the second term is bounded by ‖Z̃‖2. We also know that
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‖Z̃‖2 ≤ C3 · σ(
√
m+

√
n). Recall the definition of the induced `2 norm of a

matrix (PŨ − I)M :

‖(PŨ − I)M‖2 ≥
‖(PŨ − I)MV ‖`2

‖V ‖`2
= ‖(PŨ − I)λ

√
kmknU‖`2 ≥

√
kn‖(PŨ − I)M·j‖`2 .

In the second approach, the second term of (5.6) can be handled through
perturbation Sin Theta Theorem 6:

‖(PŨ−I)M·j‖`2 = ‖(PŨ−PU )M·j‖`2 ≤ ‖Ũ ŨT−UUT ‖2·‖M·j‖`2 ≤ C
σ
√
m+ n

λ
√
kmkn

λ
√
km.

This second approach will be used in the multiple submatrices analysis.
Combining all the above, we have with probability at least 1−n−c−m−c,

for all 1 ≤ j ≤ n

‖PŨX·j −M·j‖`2 ≤ C ·
(
σ
√

log n+ σ

√
m ∨ n
kn

)
.(5.11)

Similarly we have for all 1 ≤ i ≤ m,

‖PṼX
T
i· −MT

i· ‖`2 ≤ C ·
(
σ
√

logm+ σ

√
m ∨ n
km

)
.(5.12)

Clearly we know that for i ∈ Rm and i′ ∈ [m]\Rm

‖MT
i· −MT

i′·‖`2 = λ
√
kn

and for j ∈ Cn and j′ ∈ [n]\Cn

‖M·j −M·j′‖`2 = λ
√
km

Thus if

λ
√
km ≥ 6C ·

(
σ
√

log n+ σ

√
m ∨ n
kn

)
(5.13)

λ
√
kn ≥ 6C ·

(
σ
√

logm+ σ

√
m ∨ n
km

)
(5.14)

hold, we have

2 max
i,i′∈Rm

‖PṼX
T
i· − PṼX

T
i′·‖ ≤ min

i∈Rm,i′∈[m]\Rm

‖PṼX
T
i· − PṼX

T
i′·‖



SUBMATRIX LOCALIZATION BOUNDARIES 23

Therefore we have got di = Xi·Ṽ ∈ R (a one dimensional line along direction
Ṽ ) such that on this line, data forms two data-driven clusters in the sense
that

2 max
i,i′∈Rm

|di − di′ | ≤ min
i∈Rm,i′∈[m]\Rm

|di − di′ |.

In this case, the largest adjacent gap in di, i ∈ [m] (data-driven) suggests
the cut-off (without requiring the knowledge of λ, σ, km). And the simple
cut-off clustering recovers the nodes exactly.

In summary, if

λ ≥ C · σ

(√
log n

km
+

√
logm

kn
+

√
m+ n

kmkn

)
,

the spectral algorithm succeeds with probability at least

1−m−c − n−c − 2 exp (−c(m+ n)) .

Proof of Theorem 2. Computational lower bound for localization (sup-
port recovery) is of different nature than the computational lower bound for
detection (two point testing). The idea is to design a randomized polynomial
time algorithmic reduction to relate an instance of hidden clique problem
to our submatrix localization problem. The proof proceeds in the following
way: we will construct a randomized polynomial time transformation T to
map a random instance of G(N,κ) to a random instance of our submatrix
M(m = n, km � kn � k, λ/σ) (abbreviated as M(n, k, λ/σ)). Then we will
provide a quantitative computational lower bound by showing that if there
is a polynomial time algorithm that pushes below the hypothesized compu-
tational boundary for localization in the submatrix model, there will be a
polynomial time algorithm that solves hidden clique localization with high
probability (a contradiction to HCl).

Denote the randomized polynomial time transformation as

T : G(N,κ(N))→M(n, k = nα, λ/σ = n−β).

There are several stages for the construction of the algorithmic reduction.
First we define a graph Ge(N,κ(N)) that is stochastically equivalent to the
hidden clique graph G(N,κ(N)), but is easier for theoretical analysis. Ge
has the property: each node independently has the probability κ(N)/N to
be a clique node, and with the remaining probability a non-clique node.
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Using Bernstein’s inequality and the inequality (5.20) proved below, with
probability at least 1− 2N−1 the number of clique nodes κe in Ge

κ

(
1−

√
4 logN

κ

)
≤ κe ≤ κ

(
1 +

√
4 logN

κ

)
⇒ κe � κ(5.15)

as long as κ % logN .
Consider a hidden clique graph Ge(2N, 2κ(N)) with N = n and κ(N) =

κ. Denote the set of clique nodes for Ge(2N, 2κ(N)) to be CN,κ. Repre-
sent the hidden clique graph using the symmetric adjacency matrix G ∈
{−1, 1}2N×2N , where Gij = 1 if i, j ∈ CN,κ, otherwise with equal proba-
bility to be either −1 or 1. As remarked before, with probability at least
1 − 2N−1, we have planted 2κ(1 ± o(1)) clique nodes in graph Ge with 2N
nodes. Take out the upper-right submatrix of G, denote as GUR where U is
the index set 1 ≤ i ≤ N and R is the index set N + 1 ≤ j ≤ 2N . Now GUR
has independent entries.

The construction of T employs the Bootstrapping idea. Generate l2 (with
l � nβ, 0 < β < 1/2) matrices through bootstrap subsampling as follows.
Generate l − 1 independent index vectors ψ(s) ∈ Rn, 1 ≤ s < l, where
each element ψ(s)(i), 1 ≤ i ≤ n is a random draw with replacement from
the row indices [n]. Denote vector ψ(0)(i) = i, 1 ≤ i ≤ n as the original
index set. Similarly, we can define independently the column index vectors
φ(t), 1 ≤ t < l. We remark that these bootstrap samples can be generated
in polynomial time Ω(l2n2). The transformation is a weighted average of
l2 matrices of size n × n generated based on the original adjacency matrix
GUR.

T : Mij =
1

l

∑
0≤s,t<l

(GUR)ψ(s)(i)φ(t)(j), 1 ≤ i, j ≤ n.(5.16)

Recall that CN,κ stands for the clique set of the hidden clique graph. We
define the row candidate set Rl := {i ∈ [n] : ∃ 0 ≤ s < l, ψ(s)(i) ∈ CN,κ} and
column candidate set Cl := {j ∈ [n] : ∃ 0 ≤ t < l, φ(t)(j) ∈ CN,κ}. Observe
that Rl × Cl are the indices where the matrix M contains signal.

There are two cases for Mij , given the candidate set Rl×Cl. If i ∈ Rl and
j ∈ Cl, namely when (i, j) is a clique edge in at least one of the l2 matrices,
then E[Mij |Ge] ≥ l−1 where the expectation is taken over the bootstrap
σ-field conditioned on the candidate set Rl × Cl and the original σ-field of
Ge. Otherwise E[Mij |Ge] = l( |E|

N2−κ2 −
1
2) for (i, j) /∈ Rl × Cl, where |E| is a

Binomial(N2 − κ2, 1/2). With high probability, E[Mij |Ge] � l√
N2−κ2 �

l
n =
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o(1l ). Thus the mean separation between the signal position and non-signal

position is 1
` −

l
n �

1
` . Note in the submatrix model, it does not matter if

the noise has mean zero or not (since we can subtract the mean)– only the
signal separation matters.

Now let us discuss the independence issue in M through our Bootstrap-
ping construction. Clearly due to sampling with replacement and bootstrap-
ping, condition on Ge, we have independence among samples for the same
location (i, j)

(GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s′)(i)φ(t′)(j).

For the independence among entries in one Bootstrapped matrix, clearly

(GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s)(i′)φ(t)(j′).

The only case where there might be a weak dependence is between

(GUR)ψ(s)(i)φ(t)(j), (GUR)ψ(s)(i)φ(t)(j′)

and (GUR)ψ(s)(i)φ(t)(j), (GUR)ψ(s)(i)φ(t
′)(j). The way to eliminate the weak de-

pendence is through [39]’s result on universality of random discrete graphs.
[39] showed that random regular graph G(n, n/2) shares many similari-
ties with Erdős-Rényi random graph G(n, 1/2): for instance, top and sec-
ond eigenvalues (n/2 and

√
n respectively), limiting spectral distribution,

sandwich conjecture, determinant, etc. Let us consider the case where the
upper-right of the adjacency matrix G consists of random bi-regular graph
with a planted clique. We assume that the hidden clique hypothesis for
k -
√
n is still valid for the following random graph: for a n× n adjacency

matrix G, first find a clique/principal submatrix of size k uniformly ran-
domly and connect density, for the remaining part of the matrix, sample
a random regular graph of G(n − k, n−k2 ) and a random bi-regular graph
of size k × (n − k) with left regular degree n/2 − k and right regular de-
gree k/2 (here degree test will not work in this graph and spectral barrier
still suggests k -

√
n is hard due to universality result of random discrete

graphs). In the bootstrapping step, conditionally on the row ψ(s)(i) being
not a clique, (GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s)(i)φ(t)(j′)|ψ(s)(i), and each one is a

Rademacher random variable (regardless of the choice of ψ(s)(i)), which im-
plies (GUR)ψ(s)(i)φ(t)(j) ⊥ (GUR)ψ(s)(i)φ(t)(j′) holds unconditionally. Thus in
the bootstrapping procedure, we have independence among entries within
the matrix unconditionally.

Let us move to verify the sub-Gaussianity of M matrix. Note that for the
index i, j that is not a clique for any of the matrices, Mij is sub-Gaussian,
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due to Hoeffding’s inequality

P (|Mij − EMij | ≥ u) ≤ 2 exp(−u2/2).(5.17)

For the index i, j being a clique in at least one of the matrices, we claim
the number of matrices has (i, j) being clique is O∗(1). Due to Bernstein’s
inequality, we have maxi |{0 ≤ s < l : ψ(s)(i) ∈ CN,κ}| ≤ κl

n + 8
3 log n

with probability at least 1 − n−1. This further implies there are at least
l2− (κln + 8

3 log n)2 many independent Rademacher random variables in each
i, j position, thus

P (|Mij − EMij | ≥ u) ≤ 2 exp
(
−(1− C · (κn−1 + l−1 log n)2)u2/2

)
.(5.18)

Up to now we have proved that when i, j is a signal node for M , then
O∗(1)l−1 ≥ EMij ≥ l−1. Thus the sub-Gaussian parameter is σ = 1 − o(1)
because κn−1, l−1 log n are both o(1). The constructed M(n, k, λ/σ) matrix
satisfies the submatrix model with λ/σ � l−1 and sub-Gaussian parameter
σ = 1− o(1).

Let us estimate the corresponding k in the submatrix model. We need to
bound the order of the cardinality of Rl, denoted as |Rl|. The total number
of positions with signal (at least one clique node inside) is

E|Rl| = E|{1 ≤ i ≤ n : i ∈ Rl}| = n
[
1− (1− κ/n)l

]
.

Thus we have the two sided bound

κl

(
1− κl

2n

)
≤ E|Rl| ≤ κl

which is of the order k := κl. Let us provide a high probability bound on
|Rl|. By Bernstein’s inequality

P (||Rl| − E|Rl|| > u) ≤ 2 exp

(
− u2/2

κl + u/3

)
.(5.19)

Thus if we take u =
√

4κl log n, as long as log n = o(κl),

P
(
||Rl| − E|Rl|| >

√
4κl log n

)
≤ 2n−1.(5.20)

So with probability at least 1− 2n−1, the number of positions that contain
signal nodes is bounded as

κl

(
1− κl

n

)(
1−

√
4 log n

κl

)
< |Rl| < κl

(
1 +

√
4 log n

κl

)
⇒ |Rl| � κl.

(5.21)
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Equation (5.21) implies that with high probability

κl(1− o(1)) ≤ |Rl| ≤ κl(1 + o(1)),

κl(1− o(1)) ≤ |Cl| ≤ κl(1 + o(1)).

The above means, in the submatrix parametrization, km � kn � κl � nα,
λ/σ � l−1 � n−β, which implies κ � nα−β.

Suppose there exists a polynomial time algorithm AM that pushes below
the computational boundary. In other words,

n−β � λ

σ
-

√
m+ n

kmkn
� n(1−2α)/2 ⇒ β > α− 1

2

with the last inequality having a slack ε > 0. More precisely, AM returns
two estimated index sets R̂n and Ĉn corresponding to the location of the
submatrix (and correct with probability going to 1) under the regime β = α−
1/2+ ε. Suppose under some conditions, this algorithm AM can be modified
to a randomized polynomial time algorithm AG that correctly identifies the
hidden clique nodes with high probability. It means in the corresponding
hidden clique graph G(2N, 2κ), AG also pushes below the computational
boundary of hidden clique by the amount ε:

κ(N) = 2κ � (2n)α−β � n1/2−ε - n1/2 � N
1
2 .

In summary, the quantitative computational lower bound implies that if
the computational boundary for submatrix localization is pushed below by
an amount ε in the power, the hidden clique boundary is correspondingly
improved by ε.

Now let us show that any algorithm AM that localizes the submatrix
introduces a randomized algorithm that finds the hidden clique nodes with
probability tending to 1. The algorithm relies on the following simple lemma.

Lemma 12. For the hidden clique model G(N,κ), suppose an algorithm
provides a candidate set S of size k that contains the true clique subset. If

κ ≥ C
√
k logN

then by looking at the adjacency matrix restricted to S we can recover the
clique subset exactly with high probability.

The proof of Lemma 12 is immediate. If i is a clique node, then mini
∑

j∈C Gij ≥
κ − C/2 ·

√
k logN . If i is not a clique node, then maxi

∑
j∈C Gij ≤ C/2 ·√

k logN . The proof is completed.
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Algorithm AM provides candidate sets Rl, Cl of size k, inside which κ
are correct clique nodes, and thus exact recovery can be completed through
Lemma 12 since κ % (k logN)1/2 (since κ � n1/2−ε % k1/2 � nα/2 when ε
is small). The algorithm AM induces another randomized polynomial time
algorithm AG that solves the hidden clique problem G(2N, 2κ) with κ -
N1/2. The algorithm AG returns the support ĈN,κ that coincides with the
true support CN,κ with probability going to 1 (a contradiction to the hidden
clique hypothesis HCl). We conclude that, under the hypothesis, there is
no polynomial time algorithm AM that can push below the computational

boundary λ -
√

m+n
kmkn

.

Proof of Theorem 3 is a direct result of Lemma 1 and Theorem 2. Proof of
Theorem 4 is obvious based on Lemma 2 and the hidden clique hypothesis
HCl. Proof of Theorem 5 combines the result of Lemma 5 and Lemma 4.

SUPPLEMENTARY MATERIAL

Supplement to: “COMPUTATIONAL AND STATISTICAL BOUND-
ARIES FOR SUBMATRIX LOCALIZATION IN A LARGE NOISY
MATRIX”
(doi: COMPLETED BY THE TYPESETTER; Paper-Supplement.pdf). Due
to space constraints, we have relegated remaining proofs to the Supplement.

References.

[1] Agarwal, A., Negahban, S., Wainwright, M. J., et al. (2012). Noisy matrix decomposi-
tion via convex relaxation: Optimal rates in high dimensions. The Annals of Statistics,
40(2):1171–1197.

[2] Arias-Castro, E., Candès, E. J., Durand, A., et al. (2011). Detection of an anomalous
cluster in a network. The Annals of Statistics, 39(1):278–304.

[3] Balakrishnan, S., Kolar, M., Rinaldo, A., Singh, A., and Wasserman, L. (2011). Sta-
tistical and computational tradeoffs in biclustering. In NIPS 2011 Workshop on Com-
putational Trade-offs in Statistical Learning.

[4] Bennett, G. (1962). Probability inequalities for the sum of independent random vari-
ables. Journal of the American Statistical Association, 57(297):33–45.

[5] Berthet, Q. and Rigollet, P. (2013a). Computational lower bounds for sparse pca.
arXiv preprint arXiv:1304.0828.

[6] Berthet, Q. and Rigollet, P. (2013b). Optimal detection of sparse principal components
in high dimension. The Annals of Statistics, 41(4):1780–1815.

[7] Birnbaum, A., Johnstone, I. M., Nadler, B., and Paul, D. (2013). Minimax bounds for
sparse pca with noisy high-dimensional data. Annals of statistics, 41(3):1055.

[8] Butucea, C. and Ingster, Y. I. (2013). Detection of a sparse submatrix of a high-
dimensional noisy matrix. Bernoulli, 19(5B):2652–2688.

[9] Butucea, C., Ingster, Y. I., and Suslina, I. (2013). Sharp variable selection of a sparse
submatrix in a high-dimensional noisy matrix. arXiv preprint arXiv:1303.5647.

http://dx.doi.org/COMPLETED BY THE TYPESETTER


SUBMATRIX LOCALIZATION BOUNDARIES 29

[10] Cai, T. T., Ma, Z., and Wu, Y. (2013). Sparse pca: Optimal rates and adaptive
estimation. The Annals of Statistics, 41(6):3074–3110.

[11] Cai, T. T., Ma, Z., and Wu, Y. (2015). Optimal estimation and rank detection
for sparse spiked covariance matrices. Probability Theory and Related Fields, page to
appear.

[12] Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component
analysis? Journal of the ACM (JACM), 58(3):11.

[13] Chandrasekaran, V. and Jordan, M. I. (2013). Computational and statistical tradeoffs
via convex relaxation. Proceedings of the National Academy of Sciences, 110(13):E1181–
E1190.

[14] Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. (2012). The con-
vex geometry of linear inverse problems. Foundations of Computational Mathematics,
12(6):805–849.

[15] Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. (2009). Sparse
and low-rank matrix decompositions. In Communication, Control, and Computing,
2009. Allerton 2009. 47th Annual Allerton Conference on, pages 962–967. IEEE.

[16] Chen, Y. and Xu, J. (2014). Statistical-computational tradeoffs in planted problems
and submatrix localization with a growing number of clusters and submatrices. arXiv
preprint arXiv:1402.1267.

[17] Decelle, A., Krzakala, F., Moore, C., and Zdeborová, L. (2011). Asymptotic analysis
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