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By Tony Cai∗,1, Donggyu Kim†, Yazhen Wang†,2,

Ming Yuan†,3 and Harrison H. Zhou‡,4
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Quantum state tomography aims to determine the state of a
quantum system as represented by a density matrix. It is a funda-
mental task in modern scientific studies involving quantum systems.
In this paper, we study estimation of high-dimensional density ma-
trices based on Pauli measurements. In particular, under appropriate
notion of sparsity, we establish the minimax optimal rates of conver-
gence for estimation of the density matrix under both the spectral
and Frobenius norm losses; and show how these rates can be achieved
by a common thresholding approach. Numerical performance of the
proposed estimator is also investigated.

1. Introduction. For a range of scientific studies including quantum com-
putation, quantum information and quantum simulation, an important task
is to learn and engineer quantum systems [Aspuru-Guzik et al. (2005),
Benenti, Casati and Strini (2004, 2007), Brumfiel (2012), Jones (2013),
Lanyon et al. (2010), Nielsen and Chuang (2000), and Wang (2011, 2012)].
A quantum system is described by its state characterized by a density ma-
trix, which is a positive semidefinite Hermitian matrix with unit trace. De-
termining a quantum state, often referred to as quantum state tomography,
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is an important but difficult task [Alquier et al. (2013), Artiles, Gill and
Guţă (2005), Aubry, Butucea and Meziani (2009), Butucea, Guţă and Ar-
tiles (2007), Guţă and Artiles (2007), Häffner et al. (2005), Wang (2013),
and Wang and Xu (2015)]. It is often inferred by performing measurements
on a large number of identically prepared quantum systems.

More specifically, we describe a quantum spin system by the d-dimensional
complex space Cd and its quantum state by a complex matrix on Cd. When
measuring the quantum system by performing measurements on some ob-
servables which can be represented by Hermitian matrices, we obtain the
measurement outcomes for each observable, where the measurements take
values at random from all eigenvalues of the observable, with the probabil-
ity of observing a particular eigenvalue equal to the trace of the product
of the density matrix and the projection matrix onto the eigenspace corre-
sponding to the eigenvalue. To handle the up and down states of particles
in a quantum spin system, a common approach is to employ the well-known
Pauli matrices as observables to perform measurements and obtain the so-
called Pauli measurements [Britton et al. (2012), Johnson et al. (2011), Liu
(2011), Sakurai and Napolitano (2010), Shankar (1994), and Wang (2012,
2013)]. Since all Pauli matrices have ±1 eigenvalues, Pauli measurements
takes discrete values 1 and −1, and the resulted measurement distributions
can be characterized by binomial distributions. The goal is to estimate the
density matrix based on the Pauli measurements.

Traditional quantum tomography employs classical statistical models and
methods to deduce quantum states from quantum measurements. These ap-
proaches are designed for the setting where the size of a density matrix is
greatly exceeded by the number of quantum measurements, which is almost
never the case even for moderate quantum systems in practice because the
dimension of the density matrix grows exponentially in the size of the quan-

tum system. For example, the density matrix for b spin- 12 quantum systems

is of size 2b × 2b. In this paper, we aim to effectively and efficiently recon-
struct the density matrix for a large-scale quantum system with a relatively
limited number of quantum measurements.

Quantum state tomography is fundamentally connected to the problem
of recovering a high-dimensional matrix based on noisy observations [Wang
(2013)]. The latter problem arises naturally in many applications in statis-
tics and machine learning and has attracted considerable recent attention.
When assuming that the unknown matrix of interest is of (approximately)
low-rank, many regularization techniques have been developed. Examples in-
clude Candès and Recht (2009), Candès and Tao (2010), Candès and Plan
(2009, 2011), Keshavan, Montanari and Oh (2010), Recht, Fazel and Par-
rilo (2010), Bunea, She and Wegkamp (2011, 2012), Klopp (2011, 2012),
Koltchinskii (2011), Koltchinskii, Lounici and Tsybakov (2011), Negahban
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and Wainwright (2011), Recht (2011), Rohde and Tsybakov (2011), and Cai
and Zhang (2015), among many others. Taking advantage of the low-rank
structure of the unknown matrix, these approaches can often be applied to
estimate unknown matrices of high dimensions. Yet these methods do not
fully account for the specific structure of quantum state tomography. As
demonstrated in a pioneering article, Gross et al. (2010) argued that, when
considering quantum measurements characterized by the Pauli matrices, the
density matrix can often be characterized by the sparsity with respect to the
Pauli basis. Built upon this connection, they suggested a compressed sens-
ing [Donoho (2006)] strategy for quantum state tomography [Gross (2011)
and Wang (2013)]. Although promising, their proposal assumes exact mea-
surements, which is rarely the case in practice, and adopts the constrained
nuclear norm minimization method, which may not be an appropriate ma-
trix completion approach for estimating a density matrix with unit trace (or
unit nuclear norm). We specifically address such challenges in the present
paper. In particular, we establish the minimax optimal rates of convergence
for the density matrix estimation under both the spectral and Frobenius
norm losses when assuming that the true density matrix is approximately
sparse under the Pauli basis. Furthermore, we show that these rates could be
achieved by carefully thresholding the coefficients with respect to the Pauli
basis. Because the quantum Pauli measurements are characterized by the bi-
nomial distributions, the convergence rates and minimax lower bounds are
derived by asymptotic analysis with manipulations of binomial distributions
instead of the usual normal distribution based calculations.

The rest of paper proceeds as follows. Section 2 gives some background
on quantum state tomography and introduces a thresholding based density
matrix estimator. Section 3 develops theoretical properties for the density
matrix estimation problem. In particular, the convergence rates of the pro-
posed density matrix estimator and its minimax optimality with respect
to both the spectral and Frobenius norm losses are established. Section 4
features a simulation study to illustrate finite sample performance of the
proposed estimators. All technical proofs are collected in Section 5.

2. Quantum state tomography with Pauli measurements. In this sec-
tion, we first review the quantum state and density matrix and introduce
Pauli matrices and Pauli measurements. We also develop results to describe
density matrix representations through Pauli matrices and characterize the
distributions of Pauli measurements via binomial distribution before intro-
ducing a thresholding based density matrix estimator.

2.1. Quantum state and measurements. For a d-dimensional quantum
system, we describe its quantum state by a density matrix ρ on d dimen-
sional complex space Cd, where density matrix ρ is a d by d complex matrix
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satisfying (1) Hermitian, that is, ρ is equal to its conjugate transpose; (2)
positive semidefinite; (3) unit trace, that is, tr(ρ) = 1.

For a quantum system, it is important but difficult to know its quantum
state. Experiments are conducted to perform measurements on the quantum
system and obtain data for studying the quantum system and estimating its
density matrix. In physics literature, quantum state tomography refers to
reconstruction of a quantum state based on measurements for the quantum
systems. Statistically, it is the problem of estimating the density matrix from
the measurements. Common quantum measurements are on observable M,
which is defined as a Hermitian matrix on Cd. Assume that the observable
M has the following spectral decomposition:

M=

r
∑

a=1

λaQa,(2.1)

where λa are r different real eigenvalues of M, and Qa are projections onto
the eigenspaces corresponding to λa. For the quantum system prepared in
state ρ, we need a probability space (Ω,F , P ) to describe measurement out-
comes when performing measurements on the observable M. Denote by R
the measurement outcome of M. According to the theory of quantum me-
chanics, R is a random variable on (Ω,F , P ) taking values in {λ1, λ2, . . . , λr},
with probability distribution given by

P (R= λa) = tr(Qaρ), a= 1,2, . . . , r, E(R) = tr(Mρ).(2.2)

We may perform measurements on an observable for a quantum system that
is identically prepared under the state and obtain independent and identi-
cally distributed observations. See Holevo (1982), Sakurai and Napolitano
(2010), and Wang (2012).

2.2. Pauli measurements and their distributions. The Pauli matrices as
observables are widely used in quantum physics and quantum information
science to perform quantum measurements. Let

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

,

σ2 =

(

0 −
√
−1√

−1 0

)

, σ3 =

(

1 0
0 −1

)

,

where σ1, σ2 and σ3 are called the two-dimensional Pauli matrices. Tensor
products are used to define high-dimensional Pauli matrices. Let d= 2b for
some integer b. We form b-fold tensor products of σ0, σ1, σ2 and σ3 to
obtain d dimensional Pauli matrices

σℓ1 ⊗σℓ2 ⊗ · · · ⊗σℓb , (ℓ1, ℓ2, . . . , ℓb) ∈ {0,1,2,3}b.(2.3)
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We identify index j = 1, . . . , d2 with (ℓ1, ℓ2, . . . , ℓb) ∈ {0,1,2,3}b. For exam-
ple, j = 1 corresponds to ℓ1 = · · ·= ℓb = 0. With the index identification we
denote by Bj the Pauli matrix σℓ1 ⊗σℓ2 ⊗ · · ·⊗σℓb , with B1 = Id. We have
the following theorem to describe Pauli matrices and represent a density
matrix by Pauli matrices.

Proposition 1. (i) Pauli matrices B2, . . . ,Bd2 are of full rank and have
eigenvalues ±1. Denote by Qj± the projections onto the eigen-spaces of Bj

corresponding to eigenvalues ±1, respectively. Then for j, j′ = 2, . . . , d2,

tr(Qj±) =
d

2
, tr(Bj′Qj±) =







±d

2
, if j = j′,

0, if j 6= j′.

(ii) Denote by Cd×d the space of all d by d complex matrices equipped with
the Frobenius norm. All Pauli matrices defined by (2.3) form an orthogonal
basis for all complex Hermitian matrices. Given a density matrix ρ, we can
expand it under the Pauli basis as follows:

ρ=
Id

d
+

d2
∑

j=2

βj
Bj

d
,(2.4)

where βj are coefficients. For j = 2, . . . , d2,

tr(ρQj±) =
1± βj

2
.

Suppose that an experiment is conducted to perform measurements on
Pauli observable Bj independently for n quantum systems which are identi-
cally prepared in the same quantum state ρ. As Bj has eigenvalues ±1, the
Pauli measurements take values 1 and −1, and thus the average of the n
measurements for each Bj is a sufficient statistic. Denote by Nj the average
of the n measurement outcomes obtained from measuring Bj , j = 2, . . . , d2.
Our goal is to estimate ρ based on N2, . . . ,Nd2 .

The following proposition provides a simple binomial characterization for
the distributions of Nj .

Proposition 2. Suppose that ρ is given by (2.4). Then N2, . . . ,Nd2 are
independent with

E(Nj) = βj , Var(Nj) =
1− β2

j

n
,

and n(Nj +1)/2 follows a binomial distribution with n trials and cell prob-
abilities tr(ρQj+) = (1 + βj)/2, where Qj+ denotes the projection onto the
eigenspace of Bj corresponding to eigenvalue 1, and βj is the coefficient of
Bj in the expansion of ρ in (2.4).
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2.3. Density matrix estimation. Since the dimension of a quantum sys-
tem grows exponentially with its components such as the number of particles
in the system, the matrix size of ρ tends to be very large even for a moderate
quantum system. We need to impose some structure such as sparsity on ρ

in order to make it consistently estimable. Suppose that ρ has a sparse rep-
resentation under the Pauli basis, following wavelet shrinkage estimation we
construct a density matrix estimator of ρ. Assume that representation (2.4)
is sparse in a sense that there is only a relatively small number of coefficients
βk with large magnitudes. Formally, we specify sparsity by assuming that
coefficients β2, . . . , βd2 satisfy

d2
∑

k=2

|βk|q ≤ πn(d),(2.5)

where 0≤ q < 1, and πn(d) is a deterministic function with slow growth in
d such as log d.

Pauli matrices are used to describe the spins of spin- 12 particles along
different directions, and density matrix ρ in (2.4) represents a mixture of
quantum states with spins along many directions. Sparsity assumption (2.5)
with q = 0 indicates the mixed state involving spins along a relatively small
number of directions corresponding to those Pauli matrices with nonzero βk.
The sparsity reduces the complexity of mixed states. Sparse density matrices
often occur in quantum systems where particles have sparse interactions
such as location interactions. Examples include many quantum systems in
quantum information and quantum computation [Berry et al. (2014), Boixo
et al. (2014), Britton et al. (2012), Flammia et al. (2012), Senko et al. (2014),
and Wang (2011, 2012)].

Since Nk are independent, and E(Nk) = βk. We naturally estimate βk by
Nk and threshold Nk to estimate large βk, ignoring small βk, and obtain

β̂k =Nk1(|Nk| ≥̟) or
(2.6)

β̂k = sign(Nk)(|Nk| −̟)+, k = 2, . . . , d2,

and then we use β̂k to construct the following estimator of ρ,

ρ̂=
Id

d
+

d2
∑

k=2

β̂k
Bk

d
,(2.7)

where the two estimation methods in (2.6) are called hard and soft thresh-
olding rules, and ̟ is a threshold value which, we reason below, can be
chosen to be ̟ = ~

√

(4/n) log d for some constant ~ > 1. The threshold
value is designed such that for small βk, Nk must be bounded by threshold
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̟ with overwhelming probability, and the hard and soft thresholding rules
select only those Nk with large signal components βk.

As n(Nk + 1)/2 ∼ Bin(n, (1 + βk)/2), an application of Bernstein’s in-
equality leads to that for any x > 0,

P (|Nk − βk| ≥ x)≤ 2exp

(

− nx2

2(1− β2
k + x/3)

)

≤ 2exp

(

− nx2

2(1 + x/3)

)

,

and

P
(

max
2≤k≤d2

|Nk − βk| ≤̟
)

=

d2
∏

k=2

P (|Nk − βk| ≤̟)

≥
[

1− 2exp

(

− n̟2

2(1 +̟/3)

)]d2−1

= [1− 2d−2~/(1+o(1))]d
2−1 → 1,

as d→∞ and ̟→ 0, that is, with probability tending to one, |Nk| ≤̟ uni-
formly for k = 2, . . . , d2. Thus, we can select ̟ = ~

√

(4/n) log d to threshold

Nk and obtain β̂k in (2.6).

3. Asymptotic theory for the density matrix estimator.

3.1. Convergence rates. We fix matrix norm notation for our asymptotic
analysis. Let x= (x1, . . . , xd)

T be a d-dimensional vector and A= (Aij) be
a d by d matrix, and define their ℓα norms

‖x‖α =

(

d
∑

i=1

|xi|α
)1/α

, ‖A‖α = sup{‖Ax‖α,‖x‖α = 1}, 1≤ α≤∞.

Denote by ‖A‖F =
√

tr(A†A) the Frobenius norm of A.
For the case of matrix, the ℓ2 norm is called the matrix spectral norm or

operator norm. ‖A‖2 is equal to the square root of the largest eigenvalue of
AA†,

‖A‖1 = max
1≤j≤d

d
∑

i=1

|Aij |, ‖A‖∞ = max
1≤i≤d

d
∑

j=1

|Aij |,(3.1)

and

‖A‖22 ≤ ‖A‖1‖A‖∞.(3.2)

For a real symmetric or complex Hermitian matrix A, ‖A‖2 is equal to the
largest absolute eigenvalue of A, ‖A‖F is the square root of the sum of
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squared eigenvalues, ‖A‖F ≤
√
d‖A‖2, and (3.1)–(3.2) imply that ‖A‖2 ≤

‖A‖1 = ‖A‖∞.
The following theorem gives the convergence rates for ρ̂ under the spectral

and Frobenius norms.

Theorem 1. Denote by Θ the class of density matrices satisfying the
sparsity condition (2.5). Assume nc0 ≤ d ≤ en

c1 for some constants c0 >
0 and c1 < 1. For density matrix estimator ρ̂ defined by (2.6)–(2.7) with
threshold ̟= ~

√

(4/n) log d for some constant ~> 1, we have

sup
ρ∈Θ

E[‖ρ̂− ρ‖22]≤ c2π
2
n(d)

1

d2

(

log d

n

)1−q

,

sup
ρ∈Θ

E[‖ρ̂− ρ‖2F ]≤ c3πn(d)
1

d

(

log d

n

)1−q/2

,

where c2 and c3 are constants free of n and d.

Remark 1. Theorem 1 shows that ρ̂ achieves the convergence rate
πn(d)d

−1(n−1 log d)1−q/2 under the squared Frobenius norm loss and the
convergence rate π2

n(d)d
−2(n−1 log d)1−q under the squared spectral norm

loss. Both rates will be shown to be optimal in the next section. Similar to
the optimal convergence rates for large covariance and volatility matrix esti-
mation [Cai and Zhou (2012) and Tao, Wang and Zhou (2013)], the optimal
convergence rates here have factors involving πn(d) and log d/n. However,
unlike the covariance and volatility matrix estimation case, the convergence
rates in Theorem 1 have factors d−1 and d−2 for the squared spectral and
Frobenius norms, respectively, and go to zero as d approaches to infinity.
In particular, the result implies that MSEs of the proposed estimator get
smaller for large d. This is quite contrary to large covariance and volatil-
ity matrix estimation where the traces are typically diverge, the optimal
convergence rates grow with the logarithm of matrix size, and the corre-
sponding MSEs increase in matrix size. The new phenomenon may be due
to the unit trace constraint on density matrix and that the density matrix
representation (2.4) needs a scaling factor d−1 to satisfy the constraint. Also
for finite sample ρ̂ may not be positive semidefinite, we may project ρ̂ onto
the cone formed by all density matrices under a given matrix norm ‖ · ‖,
and obtain a positive semidefinite density matrix estimator ρ̃. Since the un-
derlying true density matrix ρ is positive semidefinite with unit trace, and
the representation (2.7) ensures that ρ̂ has unit trace, the projection implies
‖ρ̃− ρ̂‖ ≤ ‖ρ− ρ̂‖. Thus, ‖ρ̃− ρ‖ ≤ ‖ρ̃− ρ̂‖+ ‖ρ̂− ρ‖ ≤ 2‖ρ̂− ρ‖. Taking
‖ · ‖ as the spectral norm or the Frobenius norm and using Theorem 1, we
conclude that ρ̃ has the same convergence rates as ρ̂.
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3.2. Optimality of the density matrix estimator. The following theorem
establishes a minimax lower bound for estimating ρ under the spectral norm.

Theorem 2. We assume that πn(d) in the sparsity condition (2.5) sat-
isfies

πn(d)≤ ℵdv(log d)q/2/nq/2,(3.3)

for some constant ℵ> 0 and 0< v < 1/2. Then

inf
ρ̌

sup
ρ∈Θ

E[‖ρ̌− ρ‖22]≥ c4π
2
n(d)

1

d2

(

log d

n

)1−q

,

where ρ̌ denotes any estimator of ρ based on measurement data N2, . . . ,Nd2 ,
and c4 is a constant free of n and d.

Remark 2. The lower bound in Theorem 2 matches the convergence
rate of ρ̂ under the spectral norm in Theorem 1, so we conclude that ρ̂

achieves the optimal convergence rate under the spectral norm. To establish
the minimax lower bound in Theorem 2, we construct a special subclass
of density matrices and then apply Le Cam’s lemma. Assumption (3.3) is
needed to guarantee the positive definiteness of the constructed matrices
as density matrix candidates and to ensure the boundedness below from
zero for the total variation of related probability distributions in Le Cam’s
lemma. Assumption (3.3) is reasonable in a sense that if the right-hand side
of (3.3) is large enough, (3.3) will not impose very restrictive condition on
πn(d). We evaluate the dominating factor n−q/2dv on the right-hand side of
(3.3) for various scenarios. First, consider q = 0, the assumption becomes
πn(d) ≤ ℵdv , v < 1/2, and so assumption (3.3) essentially requires πn(d)
grows in d not faster than d1/2, which is not restrictive at all as πn(d) usually
grows slowly in d. The asymptotic analysis of high-dimensional statistics
usually allows both d and n go to infinity. Typically, we may assume d
grows polynomially or exponentially in n. If d grows exponentially in n,
that is, d∼ exp(b0n) for some b0 > 0, then nq/2 is negligible in comparison
with dv , and n−q/2dv behavior like dv . The assumption in this case is not
very restrictive. For the case of polynomial growth, that is, d∼ nb1 for some
b1 > 0, then n−q/2dv ∼ dv−q/(2b1). If v− q/(2b1)> 0, n−q/2dv grows in d like
some positive power of d. Since we may take v arbitrarily close to 1/2, the
positiveness of v − q/(2b1) essentially requires b1 > q, which can often be
quite realistic given that q is usually very small.

The theorem below provides a minimax lower bound for estimating ρ

under the Frobenius norm.
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Theorem 3. We assume that πn(d) in the sparsity condition (2.5) sat-
isfies

πn(d)≤ ℵ′dv
′

/nq,(3.4)

for some constants ℵ′ > 0 and 0< v′ < 2. Then

inf
ρ̌

sup
ρ∈Θ

E[‖ρ̌− ρ‖2F ]≥ c5πn(d)
1

d

(

log d

n

)1−q/2

,

where ρ̌ denotes any estimator of ρ based on measurement data N2, . . . ,Nd2 ,
and c5 is a constant free of n and d.

Remark 3. The lower bound in Theorem 3 matches the convergence
rate of ρ̂ under the Frobenius norm in Theorem 1, so we conclude that ρ̂

achieves the optimal convergence rate under the Frobenius norm. Similar
to the Remark 2 after Theorem 2, we need to apply Assouad’s lemma to
establish the minimax lower bound in Theorem 3, and assumption (3.4)
is used to guarantee the positive definiteness of the constructed matrices
as density matrix candidates and to ensure the boundedness below from
zero for the total variation of related probability distributions in Assouad’s
lemma. Also the appropriateness of (3.4) is more relaxed than (3.3), as v′ < 2
and the right-hand side of (3.4) has main powers more than the square of
that of (3.3).

It is interesting to consider density matrix estimation under a Schatten
norm, where given a matrix A of size d, we define its Schatten s-norm by

‖A‖∗s =
(

d
∑

j=1

|λj |s
)1/s

,

and λ1, . . . , λd are the eigenvalues of the square root of A†A. Spectral norm
and Frobenius norm are two special cases of the Schatten s-norm with s= 2
and s=∞, respectively, and the nuclear norm corresponds to the Schatten
s-norm with s = 1. The following result provides the convergence rate for
the proposed thresholding estimator under the Schatten s-norm loss for
1≤ s≤∞.

Proposition 3. Under the assumptions of Theorem 1, the density ma-
trix estimator ρ̂ defined by (2.6)–(2.7) with threshold ̟ = ~

√

(4/n) log d for
some constant ~> 1 satisfies

sup
ρ∈Θ

E[‖ρ̂− ρ‖2∗s]≤ c[πn(d)]
2−2/max(s,2) 1

d2−2/s

(

log d

n

)1−q+q/max(s,2)

(3.5)

for 1≤ s≤∞, where c is a constant not depending on n and d.
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The upper bound in (3.5) matches the minimax convergence rates for
both the spectral norm and Frobenius norm. Moreover, for the case of the
nuclear norm corresponding to the Schatten s-norm with s= 1, (3.5) leads to

an upper bound with the convergence rate πn(d)(
log d
n )1−q/2. We conjecture

that the upper bounds in (3.5) are rate-optimal under the Schatten s-norm
loss for all 1 ≤ s ≤ ∞. However, establishing a matching lower bound for
the general Schatten norm loss is a difficult task, and we believe that a new
approach is needed for studying minimax density matrix estimation under
the Schatten s-norm, particularly the nuclear norm.

Remark 4. The Pauli basis expansion (2.4) is orthogonal with respect
to the usual Euclidean inner product, and as in the proof of Lemma 3 we
have

‖ρ̂− ρ‖2F =

d2
∑

k=2

|β̂k − βk|2/d,

where β̂ and ρ̂ are threshold estimators of β and ρ, respectively. The sparse
vector estimation problem is well studied under the Gaussian or sub-Gaussian
noise case [Donoho and Johnstone (1994) and Zhang (2012)] and can be used
to recover the minimax result for density matrix estimation under the Frobe-
nius norm loss, because of orthogonality. In fact, our relatively simple proof
of the minimax results for the Frobenius norm loss is essentially the same
as the sparse vector estimation approach. However, such an equivalence be-
tween sparse density matrix estimation and sparse vector estimation breaks
down for the general Schatten norm loss such as the commonly used spectral
norm and nuclear norm losses. For the spectral norm loss, Lemma 3 in Sec-
tion 5 provides a sharp upper bound for E[‖ρ̂−ρ‖22] through the ℓ1-norm of

(β̂k −βk), and the proof of the minimax lower bound in Theorem 2 relies on
the property that the spectral norm is determined by the largest eigenvalue
only. Such a special property allows us to reduce the problem to a simple
subproblem and establish the lower bound under the spectral norm loss. The
arguments cannot be applied to the case of the general Schatten norm loss
in particular the nuclear norm loss. Moreover, instead of directly applying
Lemma 3 and Remark 5 in Section 5 to derive upper bounds for the general
Schatten norm loss, we use the obtained sharp upper bounds for the spectral
norm and Frobenius norm losses together with moment inequalities to de-
rive sharper upper bounds in Proposition 3. However, similar lower bounds
are not available. Our analysis leads us to believe that it is not possible to
use sparse vector estimation to recover minimax lower bound results for the
general Schatten norm loss in particular for the spectral norm loss.
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4. A simulation study. A simulation study was conducted to investigate
the performance of the proposed density matrix estimator for the finite sam-
ple. We took d= 32,64,128 and generated a true density matrix ρ for each
case as follows. ρ has an expansion over the Pauli basis

ρ= d−1

(

Id +

d2
∑

j=2

βjBj

)

,(4.1)

where βj = tr(ρBj), j = 2, . . . , d2. From β2, . . . , βd2 , we randomly selected
[6 log d] coefficients βj and set the rest of βj to be zero. We simulated [6 log d]
values independently from a uniform distribution on [−0.2,0.2], assigned the
simulated values at random to the selected βj , and then constructed ρ from
(4.1). The constructed ρ always has unit trace but may not be positive semi-
definite. The procedure was repeated until we generated a positive semi-
definite ρ. We took it as the true density matrix. The simulation procedure
guarantees the obtained ρ is a density matrix and has a sparse representation
under the Pauli basis.

For each true density matrix ρ, as described in Section 2.2 we simu-
lated data Nj from a binomial distribution with cell probability βj and the
number of cells n = 100,200,500,1000,2000. We constructed coefficient es-
timators β̂j by (2.6) and obtained density matrix estimator ρ̂ using (2.7).
The whole estimation procedure is repeated 200 times. The density matrix
estimator is measured by the mean squared errors (MSE), E‖ρ̂− ρ‖22 and
E‖ρ̂ − ρ‖2F , that are evaluated by the average of ‖ρ̂ − ρ‖22 and ‖ρ̂ − ρ‖2F
over 200 repetitions, respectively. Three thresholds were used in the simula-
tion study: the universal threshold 1.01

√

4 log d/n for all βj , the individual

threshold 1.01
√

4(1−N2
j ) log d/n for each βj , and the optimal threshold for

all βj , which minimizes the computed MSE for each corresponding hard or
soft threshold method. The individual threshold takes into account the fact
in Theorem 2 that the mean and variance of Nj are βj and (1 − β2

j )/n,

respectively, and the variance of Nj is estimated by (1−N2
j )/n.

Figures 1 and 2 plot the MSEs of the density matrix estimators with
hard and soft threshold rules and its corresponding density matrix estima-
tor without thresholding [i.e., βj are estimated by Nj in (2.7)] against the
sample size n for different matrix size d, and Figures 3 and 4 plot their MSEs
against matrix size d for different sample size. The numerical values of the
MSEs are reported in Table 1. Figures 1 and 2 show that the MSEs usually
decrease in sample size n, and the thresholding density matrix estimators
enjoy superior performances than that the density matrix estimator without
thresholding even for n= 2000; while all threshold rules and threshold val-
ues yield thresholding density matrix estimators with very close MSEs, the
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Fig. 1. The MSE plots against sample size for the proposed density estimator with
hard and soft threshold rules and its corresponding estimator without thresholding for
d= 32,64,128. (a)–(c) are plots of MSEs based on the spectral norm for d= 32,64,128, re-
spectively, and (d)–(f) are plots of MSEs based on the Frobenius norm for d= 32,64,128,
respectively.

soft threshold rule with individual and universal threshold values produce
larger MSEs than others for larger sample size such as n = 1000,2000 and
the soft threshold rule tends to give somewhat better performance than the
hard threshold rule for smaller sample size like n= 100,200. Figures 3 and 4
demonstrate that while the MSEs of all thresholding density matrix estima-
tors decrease in the matrix size d, but if we rescale the MSEs by multiplying
it with d2 for the spectral norm case and d for the Frobenius norm case,
the rescaled MSEs slowly increase in matrix size d. The simulation results
largely confirm the theoretical findings discussed in Remark 1.

5. Proofs. Let p= d2. Denote by C’s generic constants whose values are
free of n and p and may change from appearance to appearance. Let u∨ v
and u∧ v be the maximum and minimum of u and v, respectively. For two
sequences un,p and vn,p, we write un,p ∼ vn,p if un,p/vn,p → 1 as n,p→∞,
and write un,p ≍ vn,p if there exist positive constants C1 and C2 free of n
and p such that C1 ≤ un,p/vn,p ≤C2. Without confusion we may write πn(d)
as πn(p).
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Fig. 2. The MSE plots against sample size for the proposed density estimator with hard
and soft threshold rules for d= 32,64,128. (a)–(c) are plots of MSEs based on the spectral
norm for d= 32,64,128, respectively, and (d)–(f) are plots of MSEs based on the Frobenius
norm for d= 32,64,128, respectively.

5.1. Proofs of Propositions 1 and 2.

Proof of Proposition 1. In two dimensions, Pauli matrices satisfy
tr(σ0) = 2, and tr(σ1) = tr(σ2) = tr(σ3) = 0, σ1,σ2,σ3 have eigenvalues
±1, the square of a Pauli matrix is equal to the identity matrix, and the
multiplications of any two Pauli matrices are equal to the third Pauli matrix
multiplying by

√
−1, for example, σ1σ2 =

√
−1σ3, σ2σ3 =

√
−1σ1, and

σ3σ1 =
√
−1σ2.

For j = 2, . . . , p, consider Bj = σℓ1 ⊗ σℓ2 ⊗ · · · ⊗ σℓb . tr(Bj) = tr(σℓ1)×
tr(σℓ2) · · · tr(σℓb) = 0, and Bj has eigenvalues ±1, B2

j = Id.

For j, j′ = 2, . . . , p, j 6= j′, Bj = σℓ1 ⊗σℓ2 ⊗· · ·⊗σℓb and Bj′ = σℓ′1
⊗σℓ′2

⊗
· · · ⊗σℓ′

b
,

BjBj′ = [σℓ1σℓ′1
]⊗ [σℓ2σℓ′2

]⊗ · · · ⊗ [σℓbσℓ′
b
],

is equal to a d dimensional Pauli matrix multiplying by (
√
−1)b, which

has zero trace. Thus, tr(BjBj′) = 0, that is, Bj and Bj′ are orthogonal,
and B1, . . . ,Bp form an orthogonal basis. tr(ρBj/d) = βk tr(B

2
j )/d= βk. In

particular B1 = Id, and β1 = tr(ρB1) = tr(ρ) = 1.
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Table 1

MSEs based on spectral and Frobenius norms of the density estimator defined by (2.6) and (2.7) and its corresponding density matrix
estimator without thresholding, and threshold values used for d= 32,64,128, and n= 100,200,500,1000,2000

MSE (Spectral norm) ×104

Without Optimal Universal Individual
Threshold value (̟) ×102

threshold threshold threshold threshold Universal Optimal

d n Density estimator Hard Soft Hard Soft Hard Soft Universal Hard Soft

32 100 348.544 4.816 4.648 5.468 4.790 6.104 4.762 24.782 15.180 0.619
200 175.034 4.449 4.257 5.043 4.708 5.293 4.667 17.524 7.739 0.562
500 70.069 2.831 3.054 3.344 4.130 3.260 4.071 11.083 2.397 0.373

1000 35.028 1.537 1.974 1.875 3.201 1.875 3.155 7.837 1.099 0.212
2000 17.307 0.785 1.195 1.001 2.230 0.989 2.200 5.541 0.551 0.116

64 100 368.842 1.583 1.572 1.744 1.583 1.954 1.586 27.148 16.660 0.395
200 183.050 1.565 1.534 1.669 1.575 1.833 1.571 19.196 9.252 0.376
500 73.399 1.175 1.228 1.367 1.490 1.347 1.476 12.141 2.900 0.307

1000 36.692 0.566 0.807 0.747 1.249 0.722 1.233 8.585 1.308 0.177
2000 18.402 0.186 0.443 0.255 0.832 0.251 0.820 6.070 0.657 0.061

128 100 381.032 0.543 0.542 0.574 0.543 0.705 0.545 29.323 17.500 0.237
200 190.113 0.541 0.539 0.570 0.542 0.594 0.542 20.734 10.246 0.235
500 75.824 0.471 0.480 0.514 0.525 0.509 0.522 13.114 3.547 0.213

1000 38.010 0.309 0.350 0.355 0.470 0.354 0.466 9.273 1.613 0.146
2000 18.907 0.142 0.216 0.194 0.359 0.194 0.356 6.557 0.725 0.080
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Table 1

(Continued)

MSE (Frobenius norm) ×103

Without Optimal Universal Individual
Threshold value (̟) ×102

threshold threshold threshold threshold Universal Optimal

d n Density estimator Hard Soft Hard Soft Hard Soft Universal Hard Soft

32 100 317.873 6.052 5.119 6.195 5.274 7.050 5.246 24.782 11.004 9.936
200 159.679 5.217 4.629 5.616 5.187 5.874 5.143 17.524 5.681 3.771
500 63.823 3.165 3.229 3.732 4.575 3.642 4.512 11.083 2.286 0.954

1000 31.856 1.722 2.053 2.119 3.540 2.119 3.492 7.837 1.100 0.401
2000 15.967 0.894 1.219 1.155 2.424 1.141 2.394 5.541 0.546 0.182

64 100 641.437 3.909 3.528 3.951 3.563 4.463 3.562 27.148 13.719 13.234
200 319.720 3.706 3.401 3.755 3.548 4.082 3.536 19.196 7.042 5.515
500 127.958 2.691 2.551 3.069 3.342 3.023 3.309 12.141 2.800 1.275

1000 63.845 1.335 1.628 1.765 2.791 1.717 2.756 8.585 1.277 0.548
2000 31.952 0.433 0.882 0.610 1.842 0.596 1.817 6.070 0.647 0.258

128 100 1283.182 2.370 2.240 2.370 2.242 2.924 2.245 29.323 15.989 16.128
200 639.556 2.349 2.219 2.354 2.238 2.444 2.238 20.734 8.218 7.799
500 255.954 1.990 1.906 2.125 2.172 2.102 2.160 13.114 3.355 1.773

1000 127.714 1.221 1.341 1.463 1.943 1.448 1.924 9.273 1.546 0.729
2000 63.921 0.581 0.815 0.798 1.471 0.798 1.456 6.557 0.719 0.327
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Fig. 3. The MSE plots against matrix size for the proposed density estimator with hard
and soft threshold rules for n = 100,500,2000. (a)–(c) are plots of MSEs based on the
spectral norm for n= 100,500,2000, respectively, and (d)–(f) are plots of MSEs based on
the Frobenius norm for n= 100,500,2000, respectively.

Denote by Qj± the projections onto the eigenspaces corresponding to
eigenvalues ±1, respectively. Then for j = 2, . . . , p,

Bj =Qj+ −Qj−, B2
j =Qj+ +Qj− = Id, BjQj± =±Q2

j± =±Qj±,

0 = tr(Bj) = tr(Qj+)− tr(Qj−), d= tr(Id) = tr(Qj+) + tr(Qj−),

and solving the equations we get

tr(Qj±) = d/2, tr(BjQj±) =± tr(Qj±) =±d/2.(5.1)

For j 6= j′, j, j′ = 2, . . . , p, Bj and Bj′ are orthogonal,

0 = tr(Bj′Bj) = tr(Bj′Qj+)− tr(Bj′Qj−),

and

Bj′Qj+ +Bj′Qj− =Bj′(Qj+ +Qj−) =Bj′ ,

tr(Bj′Qj+) + tr(Bj′Qj−) = tr(Bj′) = 0,

which imply

tr(Bj′Qj±) = 0, j 6= j′, j, j′ = 2, . . . , p.
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Fig. 4. The plots of MSEs multiplying by d or d2 against matrix size d for the proposed
density estimator with hard and soft threshold rules for n= 100,500,2000. (a)–(c) are plots
of d2 times of MSEs based on the spectral norm for n= 100,500,2000, respectively, and
(d)–(f) are plots of d times of MSEs based on the Frobenius norm for n= 100,500,2000,
respectively.

For a density matrix ρ with representation (2.4) under the Pauli basis
(2.3), from (5.1) we have tr(Qk±) = d/2 and tr(BkQk±) =±d/2, and thus

tr(ρQk±) =
1

d
tr(Qk±) +

p
∑

j=2

βj
d
tr(BjQk±)

(5.2)

=
1

2
+

βk
d

tr(BkQk±) =
1± βk

2
. �

Proof of Proposition 2. We perform measurements on each Pauli
observable Bk independently for n quantum systems that are identically pre-
pared under state ρ. Denote by Rk1, . . . ,Rkn the n measurement outcomes
for measuring Bk, k = 2, . . . , p.

Nk = (Rk1 + · · ·+Rkn)/n,(5.3)

Rkℓ, k = 2, . . . , p, ℓ = 1, . . . , n, are independent, and take values ±1, with
distributions given by

P (Rkℓ =±1) = tr(ρQk±), k = 2, . . . , p, ℓ= 1, . . . , n.(5.4)
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As random variables Rk1, . . . ,Rkn are i.i.d. and take eigenvalues ±1, n(Nk+
1)/2 =

∑n
ℓ=1(Rkℓ + 1)/2 is equal to the total number of random variables

Rk1, . . . ,Rkn taking eigenvalue 1, and thus n(Nk + 1)/2 follows a binomial
distribution with n trials and cell probability P (Rk1 = 1) = tr(ρQk+). From
(5.3)–(5.4) and Proposition 1, we have for k = 2, . . . , p,

tr(ρQk+) =
1+ βk

2
, E(Nk) =E(Rk1) = tr(ρBk) = βk tr(B

2
k)/d= βk,

Var(Nk) =
1− β2

k

n
. �

5.2. Proof of Theorem 1: Upper bound.

Lemma 1. If βj satisfy sparsity condition (2.5), then for any a,

p
∑

j=2

|βj |1(|βj | ≤ a̟)≤ a1−qπn(p)̟
1−q,

p
∑

j=2

1(|βj | ≥ a̟)≤ a−qπn(p)̟
−q.

Proof. Simple algebraic manipulation shows

p
∑

j=2

|βj |1(|βj | ≤ a̟)≤ (a̟)1−q
p
∑

j=2

|βj |q1(|βj | ≤ a̟)

≤ a1−qπn(p)̟
1−q,

and

p
∑

j=2

1(|βj | ≥ a̟)≤
p
∑

j=2

[|βj |/(a̟)]q1(|βj | ≥ a̟)

≤ (a̟)−q
p
∑

j=2

|βj |q ≤ a−qπn(p)̟
−q.

�

Lemma 2. With ̟ = ~n−1/2
√
2 log p for some positive constant ~, we

have for any a 6= 1,

P (Nj − βj ≤−|a− 1|̟)≤ 2p−(~2|a−1|2)/(1+o(1)),

P (Nj − βj ≥ |a− 1|̟)≤ 2p−(~2|a−1|2)/(1+o(1)).
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Proof. From Proposition 2 and (5.3)–(5.4), we have that Nj is the
average of Rj1, . . . ,Rjn, which are i.i.d. random variables taking values ±1,
P (Rj1 = ±1) = (1 ± βj)/2, E(Rj1) = βj and Var(Rj1) = 1 − β2

j . Applying
Bernstein’s inequality, we obtain for any x > 0,

P (|Nj − βj | ≥ x)≤ 2exp

(

− nx2

2(1− β2
j + x/3)

)

≤ 2exp

(

− nx2

2(1 + x/3)

)

.

Both P (Nj − βj ≤ −|a − 1|̟) and P (Nj − βj ≥ |a − 1|̟) are less than
P (|Nj − βj| ≥ |a− 1|̟), which is bounded by

2exp

(

− n|a− 1|2̟2

2(1 + |a− 1|̟/3)

)

= 2exp

(

−~2|a− 1|2 log p
1 + o(1)

)

= 2p−(~2|a−1|2)/(1+o(1)) . �

Lemma 3.

E‖ρ̂− ρ‖2F = p−1/2
p
∑

j=2

E|β̂j − βj |2,(5.5)

p1/2E‖ρ̂− ρ‖2 ≤
p
∑

j=2

E|β̂j − βj |,(5.6)

pE‖ρ̂− ρ‖22 ≤
p
∑

j=2

E[|β̂j − βj |2] +
{

p
∑

j=2

E[|β̂j − βj |]
}2

(5.7)

−
p
∑

j=2

{E(|β̂j − βj |)}2.

Proof. Since Pauli matricesBj are orthogonal with respect to the usual

Euclidean inner product, with ‖Bj‖F = d1/2, and ‖Bj‖2 = 1, we have

‖ρ̂− ρ‖2F =

∥

∥

∥

∥

∥

p
∑

j=2

(β̂j − βj)Bj

∥

∥

∥

∥

∥

2

F

/

d2 =

p
∑

j=2

|β̂j − βj|2‖Bj‖2F /d2

(5.8)

=

p
∑

j=2

|β̂j − βj |2/d,

p1/2‖ρ̂− ρ‖2 =
∥

∥

∥

∥

∥

p
∑

j=2

(β̂j − βj)Bj

∥

∥

∥

∥

∥

2

≤
p
∑

j=2

|β̂j − βj |‖Bj‖2

(5.9)
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=

p
∑

j=2

|β̂j − βj |,

p‖ρ̂− ρ‖22 =
∥

∥

∥

∥

∥

p
∑

j=2

(β̂j − βj)Bj

∥

∥

∥

∥

∥

2

2

≤
p
∑

j=2

|β̂j − βj |2‖Bj‖22 +2

p
∑

i<j

|(β̂i − βi)(β̂j − βj)|‖BiBj‖2

(5.10)

≤
p
∑

j=2

|β̂j − βj |2‖Bj‖22 +2

p
∑

i<j

|(β̂i − βi)(β̂j − βj)|‖Bi‖2‖Bj‖2

=

p
∑

j=2

|β̂j − βj |2 + 2

p
∑

i<j

|(β̂i − βi)(β̂j − βj)|.

As N2, . . . ,Np are independent, β̂2, . . . , β̂p are independent. Thus, from
(5.8)–(5.10) we obtain (5.5)–(5.6), and

pE‖ρ̂− ρ‖22

≤
p
∑

j=2

E|β̂j − βj |2 +2

p
∑

i<j

E|(β̂i − βi)(β̂j − βj)|

=

p
∑

j=2

E|β̂j − βj |2 +2

p
∑

i<j

E|β̂i − βi|E|β̂j − βj |

=

p
∑

j=2

E[|β̂j − βj |2] +
{

p
∑

j=2

E[|β̂j − βj |]
}2

−
p
∑

j=2

{E(|β̂j − βj |)}2.
�

Remark 5. Since Pauli matrices Bj have eigenvalues ±1, the Schatten

s-norm ‖Bj‖∗s = d1/s. Similar to (5.9)–(5.10), we obtain that

p1/2‖ρ̂− ρ‖∗s ≤
p
∑

j=2

|β̂j − βj |‖Bj‖∗s = d1/s
p
∑

j=2

|β̂j − βj |,(5.11)

p‖ρ̂− ρ‖2∗s ≤ d2/s

[

p
∑

j=2

|β̂j − βj|
]2

(5.12)

= d2/s

[

p
∑

j=2

|β̂j − βj|2 +2

p
∑

i<j

|(β̂i − βi)(β̂j − βj)|
]

.



22 T. CAI ET AL.

Lemma 4.

p
∑

j=2

E|β̂j − βj | ≤C1πn(d)̟
1−q,(5.13)

p
∑

j=2

[E|β̂j − βj |]2 ≤
p
∑

j=2

E[|β̂j − βj |2]≤C2πn(d)̟
2−q.(5.14)

Proof. Using (2.6), we have

E|β̂j − βj |
≤E[(|Nj − βj |+̟)1(|Nj | ≥̟)] + |βj |P (|Nj | ≤̟)

≤ [E|Nj − βj |2P (|Nj | ≥̟)]1/2 +̟P (|Nj | ≥̟) + |βj |P (|Nj | ≤̟)

≤ [n−1(1− β2
j )P (|Nj| ≥̟)]1/2 +̟P (|Nj | ≥̟) + |βj |P (|Nj| ≤̟)

≤ 2̟[P (|Nj | ≥̟)]1/2 + |βj |P (|Nj | ≤̟)

= 2̟[P (|Nj | ≥̟)]1/2{1(|βj |> a1̟) + 1(|βj | ≤ a1̟)}
+ |βj |P (|Nj | ≤̟){1(|βj |> a2̟) + 1(|βj | ≤ a2̟)}

≤ 2̟1(|βj |> a1̟) + 2̟[P (|Nj | ≥̟)]1/21(|βj | ≤ a1̟)

+ P (|Nj | ≤̟)1(|βj |> a2̟) + |βj |1(|βj | ≤ a2̟),

where a1 and a2 are two constants satisfying a1 < 1< a2 whose values will
be chosen later, and

p
∑

j=2

E|β̂j − βj| ≤ 2̟

p
∑

j=2

1(|βj |> a1̟)

+ 2̟

p
∑

j=2

[P (|Nj | ≥̟)]1/21(|βj | ≤ a1̟)(5.15)

+

p
∑

j=2

P (|Nj| ≤̟)1(|βj |> a2̟) +

p
∑

j=2

|βj |1(|βj | ≤ a2̟).

Similarly,

[E(|β̂j − βj |)]2

≤E[|β̂j − βj |2]
≤E[2(|Nj − βj |2 +̟2)1(|Nj | ≥̟)] + |βj |2P (|Nj| ≤̟)
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≤ 2[E|Nj − βj |4P (|Nj | ≥̟)]1/2

+2̟2P (|Nj | ≥̟) + |βj |2P (|Nj | ≤̟)

≤ c̟2[P (|Nj | ≥̟)]1/2 + |βj |2P (|Nj | ≤̟)

= c̟2[P (|Nj | ≥̟)]1/2{1(|βj |> a1̟) + 1(|βj | ≤ a1̟)}
+ |βj |2P (|Nj | ≤̟)[1(|βj |> a2̟) + 1(|βj | ≤ a2̟)]

≤ c̟21(|βj |> a1̟) + c̟2[P (|Nj | ≥̟)]1/21(|βj | ≤ a1̟)

+P (|Nj| ≤̟)1(|βj |> a2̟) + |βj |21(|βj | ≤ a2̟),

and
p
∑

j=2

E[|β̂j − βj |2]

≤ c̟2
p
∑

j=2

1(|βj |> a1̟)

(5.16)

+ c̟2
p
∑

j=2

[P (|Nj | ≥̟)]1/21(|βj | ≤ a1̟)

+

p
∑

j=2

P (|Nj | ≤̟)1(|βj |> a2̟) +

p
∑

j=2

|βj |21(|βj | ≤ a2̟).

By Lemma 1, we have
p
∑

j=2

|βj |1(|βj | ≤ a2̟)≤ a1−q
2 πn(d)̟

1−q,(5.17)

p
∑

j=2

|βj |21(|βj | ≤ a2̟)

(5.18)

≤ (a2̟)2−q
p
∑

j=2

|βj |q1(|βj | ≤ a2̟)≤ a2−q
2 πn(d)̟

2−q,

̟

p
∑

j=2

1(|βj | ≥ a1̟)≤ a−q
1 πn(d)̟

1−q .(5.19)

On the other hand,
p
∑

j=2

P (|Nj| ≤̟)1(|βj |> a2̟)
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≤
∑

j

P (−̟− βj ≤Nj − βj ≤̟− βj)1(|βj |> a2̟)

≤
p
∑

j=2

[P (Nj − βj ≤−|a2 − 1|̟) +P (Nj − βj ≥ |a2 − 1|̟)](5.20)

≤ 4p1−(~2|a2−1|2)/(1+o(1)) = 4p−1−(2−q)/(2c0) ≤ 4p−1n−(q−2)/2

= o(πn(d)̟
2−q),

where the third inequality is from Lemma 2, the first equality is due the fact
that we take a2 = 1 + {2 + (2 − q)/(2c0)}1/2(1 + o(1))1/2/~ so that ~2(1−
a2)

2/(1 + o(1)) = 2 + (2 − q)/(2c0), and c0 is the constant in assumption
p≥ nc0 . Finally, we can show

̟

p
∑

j=2

[P (|Nj| ≥̟)]1/21(|βj | ≤ a1̟)

≤̟

p
∑

j=2

[P (Nj − βj ≤−̟− βj)

+P (Nj − βj ≥̟− βj)]
1/21(|βj | ≤ a1̟)(5.21)

≤̟

p
∑

j=2

[P (Nj − βj ≤−|1− a1|̟) + P (Nj − βj ≥ |1− a1|̟)]1/2

≤ 2̟p1−~2(1−a1)2/(2(1+o(1))) = 2̟p−1 = o(πn(d)̟
1−q),

where the third inequality is from Lemma 2, and the first equality is due
to the fact that we take a1 = 1− 2(1 + o(1))1/2/~ so that ~2(1− a1)

2 = 4.
Plugging (5.17)–(5.21) into (5.15) and (5.16), we prove the lemma. �

Proof of Theorem 1. Combining Lemma 4 and (5.5)–(5.6) in Lemma 3,
we easily obtain

E[‖ρ̂− ρ‖2]≤ C1
πn(d)

p1/2

(

log p

n

)(1−q)/2

,

E[‖ρ̂− ρ‖2F ]≤ C0πn(d)
1

d

(

log p

n

)1−q/2

.

Using Lemma 4 and (5.7) in Lemma 3, we conclude

E[‖ρ̂− ρ‖22]≤C2

[

π2
n(d)

1

p

(

log p

n

)1−q

+ πn(d)
1

p

(

log p

n

)1−q/2]

(5.22)
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≤C
π2
n(d)

d2

(

log p

n

)1−q

,

where the last inequality is due to the fact that the first term on the right-
hand side of (5.22) dominates its second term. �

Proof of Proposition 3. Applying the Lyapunov’s moment inequal-
ity to the Schatten s-norm, we have for s ∈ [1,2] and ρ ∈Θ,

E[‖ρ̂− ρ‖2∗s]≤ d−1+2/sE[‖ρ̂− ρ‖2∗2]
= d−1+2/sE[‖ρ̂− ρ‖2F ]

≤ c1πn(d)d
−2+2/s

(

log d

n

)1−q/2

,

where the last inequality is due to Theorem 1. On the other hand, applying
Hölder’s inequality by interpolating between Schatten s-norms with s = 2
and s=∞, we obtain for s ∈ [2,∞] and ρ ∈Θ,

E[‖ρ̂− ρ‖2∗s]≤E[‖ρ̂− ρ‖4/s∗2 ‖ρ̂− ρ‖2−4/s
∗∞ ]

≤ [E‖ρ̂− ρ‖2∗2]2/s[E‖ρ̂− ρ‖2∗∞]1−2/s

≤ c7π
2−2/s
n (d)d−2+2/s

(

log d

n

)1−q+q/s

,

where the last inequality is due to Theorem 1, and c7 = c
(s−2)/s
1 c

2/s
2 . The

result follows by combining the above two inequalities together. �

5.3. Proofs of Theorems 2 and 3: Lower bound.

Proof of Theorem 2 (for the lower bound under the spectral norm).
We first define a subset of the parameter space Θ. It will be shown later
that the risk upper bound under the spectral norm is sharp up to a constant
factor, when the parameter space is sufficiently sparse. Consider a subset of
the Pauli basis, {σl1 ⊗σl2 ⊗· · ·⊗σlb}, where σl1 =σ0 or σ3. Its cardinality

is d = 2b = p1/2. Denote each element of the subset by Bj , j = 1,2, . . . , d,
and let B1 = Id. We will define each element of Θ as a linear combination
of Bj . Let γj ∈ {0,1}, j ∈ {1,2, . . . , d}, and denote η =

∑

j γj = ‖γ‖0. The
value of η is either 0 or K, where K is the largest integer less than or equal
to πn(d)/(

log p
n )q/2. By assumption (3.3), we have

1≤K =O(dv) with v < 1/2.(5.23)
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Let ε2 = (1− 2v)/4 and set a= ε
√

log p
n . Now we are ready to define Θ,

Θ=

{

ρ(γ) : ρ(γ) =
Id

d
+ a

d
∑

j=2

γj
Bj

d
, and η = 0 or K

}

.(5.24)

Note that Θ is a subset of the parameter space, since

d
∑

j=2

(aγj)
q ≤Kaq ≤ εqπn(d)≤ πn(d),

and its cardinality is 1 +
(

d−1
K

)

.
We need to show that

inf
ρ̂

sup
Θ

E‖ρ̂− ρ‖22 & π2
n(d)

1

p

(

log p

n

)1−q

.

Note that for each element in Θ, its first entry ρ11 may take the form

1/d+ a
∑d

j=2 γj/d= 1/d+ (a/d)η. It can be shown that

inf
ρ̂

sup
Θ

E‖ρ̂− ρ‖22 ≥ inf
ρ̂11

sup
Θ

E(ρ̂11−ρ11)
2 ≥ a2

d2
inf
η̂
sup
Θ

E(η̂−η)2.

It is then enough to show that

inf
η̂
sup
Θ

E(η̂−η)2 &K2,(5.25)

which immediately implies

inf
ρ̂

sup
Θ

E‖ρ̂− ρ‖22 &K2a
2

d2
& π2

n(d)
1

p

(

log p

n

)1−q

.

We prove equation (5.25) by applying Le Cam’s lemma. From observations

Nj , j = 2, . . . , d, we define Ñj = n(Nj+1)/2, which is Binomial(n,
1+aγj

2 ). Let

Pγ be the joint distribution of independent random variables Ñ2, Ñ3, . . . , Ñd.

The cardinality of {Pγ} is 1 +
(d−1

K

)

. For two probability measures P and Q

with density f and g with respect to any common dominating measure µ,
write the total variation affinity ‖P ∧Q‖ =

∫

f ∧ g dµ, and the Chi-square

distance χ2(P,Q) =
∫ g2

f − 1. Define

P̄=

(

d− 1
K

)−1
∑

‖γ‖0=K

Pγ .

The following lemma is a direct consequence of Le Cam’s lemma [cf. Le Cam
(1973) and Yu (1997)]. �
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Lemma 5. Let η̂ be any estimator of η based on an observation from a
distribution in the collection {Pγ}, then

inf
k̂
sup
Θ

E(η̂−η)2 ≥ 1

4
‖P0 ∧ P̄‖2 ·K2.

We will show that there is a constant c > 0 such that

‖P0 ∧ P̄‖ ≥C,(5.26)

which, together with Lemma 5, immediately imply equation (5.25).

Lemma 6. Under conditions (5.23) and (5.24), we have

inf
ρ̂

sup
Θ

E(η̂−η)2 &K2,

which implies

inf
ρ̂

sup
Θ

E‖ρ̂− ρ‖22 & π2
n(d)

1

p

(

log p

n

)1−q

.

Proof. It is enough to show that

χ2(P0, P̄)→ 0,

which implies ‖P0 − P̄‖TV → 0, then we have ‖P0 ∧ P̄‖ → 1. Let J(γ,γ′)
denote the number of overlapping nonzero coordinates between γ and γ

′.
Note that

χ2(P0, P̄) =

∫

(dP̄)2

dP0

− 1

=

(

d− 1
K

)−2
∑

0≤j≤K

∑

J(γ,γ′)=j

(
∫

dPγ · dPγ′

dP0

− 1

)

.

When J(γ,γ′) = j, we have

∫

dPγ · dPγ′

dP0

=

(

n
∑

l=0

[(

n
l

)

1

2l
1

2n−l
· (1 + a)2l(1− a)2n−2l

]

)j

=

(

n
∑

l=0

[(

n
l

)(

(1 + a)2

2

)l((1− a)2

2

)n−l]
)j

=

(

(1 + a)2

2
+

(1− a)2

2

)nj

= (1+ a2)nj ≤ exp(na2j),
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which implies

χ2(P0, P̄)≤
(

d− 1
K

)−2
∑

0≤j≤K

∑

J(γ,γ′)=j

(exp(na2j)− 1)

≤
(

d− 1
K

)−2
∑

1≤j≤K

∑

J(γ,γ′)=j

exp(na2j)

=
∑

1≤j≤K

(

K
j

)(

d−1−K
K−j

)

(d−1
K

) d2ε
2j .

Since
(K
j

)(d−1−K
K−j

)

(

d−1
K

) =
[K · . . . · (K − j +1)]2 · (d− 1−K) · . . . · (d− 2K + j)

j! · (d− 1) · . . . · (d−K)

≤ K2j(d− 1−K)K−j

(d−K)K
≤
(

K2

d−K

)j

,

and ε2 = (1− 2v)/4, we then have

χ2(P0, P̄)≤
∑

1≤j≤K

[

K2

d−K
d2ε

2

]j

≤
∑

1≤j≤K

[

d2v+(1−2v)/2

d−K

]j

→ 0.
�

Proof of Theorem 3 (for the lower bound under the Frobenius norm).
Recall that Θ is the collection of density matrices such that

ρ=
1

d

(

Id +

p
∑

j=2

βjBj

)

,

where
p
∑

j=2

|βj |q ≤ πn(p).

Apply Assouad’s lemma, and we show below that

inf
ρ̌

sup
ρ∈Θ

E[‖ρ̌− ρ‖2F ]≥Cπn(p)
1

d

(

log p

n

)1−q/2

,

where ρ̌ denotes any estimator of ρ based on measurement data N2, . . . ,Np,
and C is a constant free of n and p.

To this end, it suffices to construct a collection of M +1 density matrices
{ρ0 = Id/d,ρ1, . . . ,ρM} ⊂Θ such that (i) for any distinct k and k0,

‖ρk − ρk0‖2F ≥C1πn(p)
1

d

(

log p

n

)1−q/2

,
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where C1 is a constant; (ii) there exists a constant 0<C2 < 1/8 such that

1

M

M
∑

k=1

DKL(Pρk
, Pρ0

)≤C2 logM,

where DKL denotes the Kullback–Leibler divergence.
By the Gilbert–Varshamov bound [cf. Nielsen and Chuang (2000)], we

have that for any h < p/8, there exist M binary vectors γk = (γk2, . . . , γkp)
′ ∈

{0,1}p−1, k = 1, . . . ,M , such that (i) ‖γk‖1 =
∑p

j=2 |γkj| = h, (ii) ‖γk −
γk0‖1 =

∑p
j=2 |γkj − γk0j| ≥ h/2, and (iii) logM > 0.233h log(p/h). Let

ρk =
1

d

(

Id + ǫ

p
∑

j=2

γkjBj

)

,

where

ǫ=C3

(

πn(p)

h

)1/q

.

Since
∑p

j=2 |ǫγkj|q = ǫqh=C3πn(p), ρk ∈Θ whenever C3 ≤ 1. Moreover,

d‖ρk − ρk0‖2F = ǫ2‖γk − γk0‖1 ≥
ǫ2h

4
.

On the other hand,

DKL(Pρk
, Pρ0

) = hDKL

(

Bin

(

n,
1 + ǫ

2

)

,Bin

(

n,
1

2

))

= hn
ǫ

2
log

1/2 + ǫ

1/2− ǫ
≤C4hnǫ

2.

Now the lower bound can be established by taking

h= πn(p)

(

log p

n

)−q/2

,

and then

ǫ=C3

(

log p

n

)1/2

,
ǫ2h

4
=C3πn(p)

(

log p

n

)1−q/2

,

C4hnǫ
2 =C4h log p, h log(p/h) = h log p− h logh,

logh∼ logπn(p) +
q

2
logn− q

2
log log p,

which are allowed by the assumption logπn(p) +
q
2 logn< v′ log p for v′ < 1.

�
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