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statistical inference guarantees. Our results are built based on the local conic geometry and duality. The
difficulty of statistical inference is captured by the geometric characterization of the local tangent cone
through the Gaussian width and Sudakov estimate.
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GEOMETRIC INFERENCE FOR GENERAL
HIGH-DIMENSIONAL LINEAR INVERSE PROBLEMS

By T. Tony Cai∗,‡, Tengyuan Liang‡ and Alexander Rakhlin†,‡

University of Pennsylvania‡

This paper presents a unified geometric framework for the statis-
tical analysis of a general ill-posed linear inverse model which includes
as special cases noisy compressed sensing, sign vector recovery, trace
regression, orthogonal matrix estimation, and noisy matrix comple-
tion. We propose computationally feasible convex programs for sta-
tistical inference including estimation, confidence intervals and hy-
pothesis testing. A theoretical framework is developed to character-
ize the local estimation rate of convergence and to provide statistical
inference guarantees. Our results are built based on the local conic ge-
ometry and duality. The difficulty of statistical inference is captured
by the geometric characterization of the local tangent cone through
the Gaussian width and Sudakov estimate.

1. Introduction. Driven by a wide range of applications, high-dimensional
linear inverse problems such as noisy compressed sensing, sign vector re-
covery, trace regression, orthogonal matrix estimation, and noisy matrix
completion have drawn significant recent interest in several fields, including
statistics, applied mathematics, computer science, and electrical engineer-
ing. These problems are often studied in a case-by-case fashion, with the
main focus on estimation. Although similarities in the technical analyses
have been suggested heuristically, a general unified theory for statistical in-
ference including estimation, confidence intervals and hypothesis testing is
still yet to be developed.

In this paper, we consider a general linear inverse model

Y = X (M) + Z(1.1)

where M ∈ Rp is the vectorized version of the parameter of interest, X :
Rp → Rn is a linear operator (matrix in Rn×p), and Z ∈ Rn is a noise
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vector. We observe (X , Y ) and wish to recover the unknown parameter M .
A particular focus is on the high-dimensional setting where the ambient di-
mension p of the parameter M is much larger than the sample size n, i.e., the
dimension of Y . In such a setting, the parameter of interest M is commonly
assumed to have, with respect to a given atom set A, a certain low complex-
ity structure which captures the true dimension of the statistical estimation
problem. A number of high-dimensional inference problems actively studied
in the recent literature can be seen as special cases of this general linear
inverse model.
High Dimension Linear Regression/Noisy Compressed Sensing. In
high-dimensional linear regression, one observes (X,Y ) with

Y = XM + Z,(1.2)

where Y ∈ Rn, X ∈ Rn×p with p � n, M ∈ Rp is a sparse signal, and
Z ∈ Rn is a noise vector. The goal is to recover the unknown sparse signal of
interest M ∈ Rp based on the observation (X,Y ) through an efficient algo-
rithm. Many estimation methods including `1-regularized procedures such
as the Lasso and Dantzig Selector have been developed and analyzed. See,
for example, [41, 15, 2, 4] and the references therein. Confidence intervals
and hypothesis testing for high-dimensional linear regression have also been
actively studied in the last few years. A common approach is to first con-
struct a de-biased Lasso or de-biased scaled-Lasso estimator and then make
inference based on the asymptotic normality of low-dimensional functionals
of the de-biased estimator. See, for example, [3, 48, 44, 23].
Trace Regression. Accurate recovery of a low-rank matrix based on a
small number of linear measurements has a wide range of applications and
has drawn much recent attention in several fields. See, for example, [37, 26,
38, 27, 13]. In trace regression, one observes (Xi, Yi), i = 1, ..., n with

Yi = Tr(XT
i M) + Zi,(1.3)

where Yi ∈ R, Xi ∈ Rp1×p2 are measurement matrices, and Zi are noise.
The goal is to recover the unknown matrix M ∈ Rp1×p2 which is assumed
to be of low rank. Here the dimension of the parameter M is p ≡ p1p2 � n.
A number of constrained and penalized nuclear minimization methods have
been introduced and studied in both the noiseless and noisy settings. See
the aforementioned references for further details.
Sign Vector Recovery. The setting of sign vector recovery is similar to
the one for the high-dimensional regression except the signal of interest is a
sign vector. More specifically, one observes (X,Y ) with

Y = XM + Z(1.4)



GEOMETRIC INFERENCE LINEAR INVERSE PROBLEMS 3

where Y ∈ Rn, X ∈ Rn×p, M ∈ {+1,−1}p is a sign vector, and Z ∈ Rn is a
noise vector. The goal is to recover the unknown sign signal M . Exhaustive
search over the parameter set is computationally prohibitive. The noiseless
case of (1.4), known as the generalized multi-knapsack problem [25, 31], can
be solved through an integer program which is known to be computationally
difficult even for checking the uniqueness of the solution, see [36, 43].
Orthogonal Matrix Recovery. In some applications the matrix of in-
terest in trace regression is known to be an orthogonal/rotation matrix
[40, 21]. More specifically, in orthogonal matrix recovery, we observe (Xi, Yi),
i = 1, . . . , n as in the trace regression model (1.3) where Xi ∈ Rm×m are
measurement matrices and M ∈ Rm×m is an orthogonal matrix. The goal
is to recover the unknown M using an efficient algorithm. Computational
difficulties come in because of the non-convex constraint.

Other high-dimensional inference problems that are closely connected to
the structured linear inverse model (1.1) include Matrix Completion [12,
17, 9], sparse and low rank decomposition in robust principal component
analysis [11], and sparse noise and sparse parameter in demixing problem
[1], to name a few. We will discuss the connections in Section 3.5.5.

There are several fundamental questions for this general class of high-
dimensional linear inverse problems:

Statistical Questions: How well can the parameter M be estimated?
What is the intrinsic difficulty of the estimation problem? How to pro-
vide inference guarantees for M , i.e., confidence intervals and hypoth-
esis testing, in general?
Computational Questions: Are there computationally efficient (poly-
nomial time complexity) algorithms that are also sharp in terms of
statistical estimation and inference?

1.1. High-Dimensional Linear Inverse Problems. Linear inverse prob-
lems have been well studied in the classical setting where the parameter
of interest lies in a convex set. See, for example, [42], [33], and [24]. In par-
ticular, for estimation of a linear functional over a convex parameter space,
[18] developed an elegant geometric characterization of the minimax theory
in terms of the modulus of continuity. However, the theory relies critically
on the convexity assumption of the parameter space. As shown in [7, 8],
the behavior of the functional estimation and confidence interval problems
is significantly different even when the parameter space is the union of two
convex sets. For the high-dimensional linear inverse problems considered in
the present paper, the parameter space is highly non-convex and the theory
and techniques developed in the classical setting are not readily applicable.
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For high-dimensional linear inverse problems such as those mentioned
earlier, the parameter space has low-complexity and exhaustive search often
leads to the optimal solution in terms of statistical accuracy. However, it is
computationally prohibitive and requires the prior knowledge of the true low
complexity. In recent years, relaxing the problem to a convex program such
as `1 or nuclear norm minimization and then solving it with optimization
techniques has proven to be a powerful approach in individual cases.

Unified approaches to signal recovery recently appeared both in the ap-
plied mathematics literature [16, 1, 34] and in the statistics literature [32].
[34] studied the generalized LASSO problem through conic geometry with
a simple bound in terms of the `2 norm of the noise vector (which may not
vanish to 0 as sample size n increases). [16] introduced the notion of atomic
norm to define a low complexity structure and showed that Gaussian width
captures the minimum sample size required to ensure recovery. [1] studied
the phase transition for the convex algorithms for a wide range of problems.
These suggest that the geometry of the local tangent cone determines the
minimum number of samples to ensure successful recovery in the noiseless or
deterministic noise settings. [32] studied the regularized M -estimation with
a decomposable norm penalty in the additive Gaussian noise setting.

Another line of research is focused on a detailed analysis of the Empiri-
cal Risk Minimization (ERM) [28]. The analysis is based on the empirical
processes theory, with a proper localized rather than global analysis. In ad-
dition to convexity, the ERM requires the prior knowledge on the size of
the bounded parameter set of interest. This knowledge is not needed for the
algorithm we propose in the present paper.

Compared to estimation, there is a paucity of methods and theoretical
results for confidence intervals and hypothesis testing for these linear in-
verse models. Specifically for high-dimensional linear regression, [3] studied
a bias correction method based on ridge estimation, while [48] proposed
bias correction via score vector using scaled Lasso as the initial estimator.
[44, 23] focused on de-sparsifying Lasso by constructing a near inverse of the
Gram matrix [5]; the first paper uses nodewise Lasso, while the other uses
`∞ constrained quadratic programing, with similar theoretical guarantees.
To the best of our knowledge, a unified treatment of inference procedures
for general high-dimensional linear inverse models is yet to be developed.

1.2. Geometric Characterization of Linear Inverse Problems. We take a
geometric perspective in studying the model (1.1). The parameterM inherits
certain low complexity structure with respect to a given atom set in a high-
dimensional space, thus introducing computationally difficult non-convex
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constraints. However, proper convex relaxation based on the atom structure
provides a computationally feasible solution. For point estimation, we are
interested in how the local convex geometry around the true parameter
affects the estimation procedure and the intrinsic estimation difficulty. For
inference, we develop general procedures induced by the convex geometry,
addressing inferential questions such as confidence intervals and hypothesis
testing. We are also interested in the sample size condition induced by the
local convex geometry for valid inference guarantees. This local geometry
plays a key role in our analysis.

Complexity measures such as Gaussian width and Rademacher complex-
ity are well studied in the empirical processes theory [29, 39], and are
known to capture the difficulty of the estimation problem. Covering/Packing
entropy and volume ratio [46, 45, 30] are also widely used in geometric
functional analysis to measure the complexity. In this paper, we will show
how these geometric quantities affect the computationally efficient estima-
tion/inference procedure, as well as the intrinsic difficulties.

1.3. Our Contributions. The main result can be summarized as follows:

Unified convex algorithms. We propose a general computationally
feasible convex program that provides near optimal rate of convergence
simultaneously for a collection of high-dimensional linear inverse prob-
lems. We also study a general efficient convex program that leads to
statistical inference for linear contrasts of M , such as confidence in-
tervals and hypothesis testing. The point estimation and statistical
inference are adaptive in the sense that the difficulty (rate of conver-
gence, conditions on sample size, etc.) automatically adapts to the low
complexity structure of the true parameter.
Local geometric theory. A unified theoretical framework is provided
for analyzing high-dimensional linear inverse problems based on the
local conic geometry and duality. Local geometric complexities govern
the difficulty of statistical inference for the linear inverse problems.

Specifically, on the local tangent cone TA(M) (defined in (2.4)), geometric
quantities such as the Gaussian width w(Bp

2 ∩ TA(M)) and Sudakov mi-
noration estimate e(Bp

2 ∩ TA(M)) (both defined in Section 2.2; Bp
2 denotes

unit Euclidean ball in Rp) capture the rate of convergence. In terms of the
upper bound, with overwhelming probability, if n % w2(Bp

2 ∩ TA(M)), the
estimation error under `2 norm for our algorithm is

σ
γA(M)w(XA)√

n
,
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where γA(M) is the local asphericity ratio defined in (2.11). A minimax
lower bound for estimation over the local tangent cone TA(M) is

σ
e(Bp

2 ∩ TA(M))√
n

.

For statistical inference, we establish valid asymptotic normality for any
linear functional 〈v,M〉 (with ‖v‖`1 bounded) of the parameter M under
the condition

lim
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

which can be compared to the condition for point estimation consistency

lim
n,p(n)→∞

γA(M)w(XA)√
n

= 0.

There is a critical difference on the sufficient conditions between valid in-
ference and estimation consistency — more stringent condition on sample
size n is required for inference beyond estimation. Intuitively, statistical in-
ference is purely geometrized by Gaussian width and Sudakov minoration
estimate.

1.4. Organization of the Paper. The rest of the paper is structured as
follows. In Section 2, after notation, definitions, and basic convex geometry
are reviewed, we formally present convex programs for recovering the pa-
rameter M , and for providing inference guarantees for M . The properties
of the proposed procedures are then studied in Section 3 under the Gaus-
sian setting, where a geometric theory is developed, along with the minimax
lower bound, as well as the confidence intervals and hypothesis testing. Ap-
plications to particular high-dimensional estimation problems are caculated
in Section 3.5. Section 4 extends the geometric theory beyond the Gaussian
case. Further discussions appear in Section 5, and the proofs of the main
results are given in Section 6 and Supplement [6].

2. Preliminaries and Algorithms. Let us first review notation and
definitions that will be used in the rest of the paper. We use ‖ · ‖`q to
denote the `q norm of a vector or induced norm of a matrix, and use Bp

2

to denote the unit Euclidean ball in Rp. For a matrix M , denote by ‖M‖F ,
‖M‖∗, and ‖M‖ the Frobenius norm, nuclear norm, and spectral norm of
M respectively. When there is no confusion, we also denote ‖M‖F = ‖M‖`2
for a matrix M . For a vector V ∈ Rp, denote its transpose by V ∗. The
inner product on vectors is defined as usual 〈V1, V2〉 = V ∗1 V2. For matrices
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〈M1,M2〉 = Tr(M∗1M2) = Vec(M1)∗Vec(M2), where Vec(M) ∈ Rpq denotes
the vectorized version of matrix M ∈ Rp×q. X : Rp → Rn denotes a linear
operator from Rp to Rn. Following the notation above, M∗ ∈ Rq×p is the
adjoint (transpose) matrix of M and X ∗ : Rn → Rp is the adjoint operator
of X such that 〈X (V1), V2〉 = 〈V1,X ∗(V2)〉.

For a convex compact set K in a metric space with the metric d, the
ε-entropy for a convex compact set K with respect to the metric d is de-
noted in the following way: ε-packing entropy logM(K, ε, d) is the loga-
rithm of the cardinality of the largest ε-packing set. Similarly, ε-covering
entropy logN (K, ε, d) is the log-cardinality of the smallest ε-covering set
with respect to metric d. A well known result isM(K, 2ε, d) ≤ N (K, ε, d) ≤
M(K, ε, d). When the metric d is the usual Euclidean distance, we will omit
d in M(K, ε, d) and N (K, ε, d) and simply write M(K, ε) and N (K, ε).

For two sequences of positive numbers {an} and {bn}, we denote an & bn
and an . bn if there exist constants c0, C0 such that an

bn
≥ c0 and an

bn
≤ C0

respectively, for all n. We write an � bn if an & bn and an . bn. Throughout
the paper, c, C denote constants that may vary from place to place.

2.1. Basic Convex Geometry. The notion of low complexity is based on
a collection of basic atoms. We denote the collection of these basic atoms
as an atom set A, either countable or uncountable. A parameter M is of
complexity k in terms of the atoms in A if M can be expressed as a linear
combination of at most k atoms in A, i.e., there exists a decomposition

M =
∑
a∈A

ca(M) · a, where
∑
a∈A

1{ca(M)6=0} ≤ k.

In convex geometry [35], the Minkowski functional (gauge) of a symmetric
convex body K is defined as

‖x‖K = inf{t > 0 : x ∈ tK}.
Let A be a collection of atoms that is a compact subset of Rp. Without
loss of generality, assume A is contained inside `∞ ball. We assume that the
elements of A are extreme points of the convex hull conv(A) (in the sense
that for any x ∈ Rp, sup{〈x, a〉 : a ∈ A} = sup{〈x, a〉 : a ∈ conv(A)}). The
atomic norm ‖x‖A for any x ∈ Rp is defined as the gauge of conv(A):

‖x‖A = inf{t > 0 : x ∈ t conv(A)}.
As noted in [16], the atomic norm can also be written as

‖x‖A = inf

{∑
a∈A

ca : x =
∑
a∈A

ca · a, ca ≥ 0

}
.(2.1)
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The dual norm of this atomic norm is defined in the following way (since
the atoms in A are the extreme points of conv(A)),

‖x‖∗A = sup{〈x, a〉 : a ∈ A} = sup{〈x, a〉 : ‖a‖A ≤ 1}.(2.2)

We have the following (“Cauchy-Schwarz”) symmetric relation for the norm
and its dual

〈x, y〉 ≤ ‖x‖∗A‖y‖A.(2.3)

kMkAconv(A)

M

M + h

h

TA(M)

Fig 1. Tangent cone: general illustra-
tion in 2D. The red shaped area is
the scaled convex hull of atom set.
The blue dashed line forms the tan-
gent cone at M . Black arrow denotes
the possible directions inside the cone.

M1

M2

M3

Fig 2. Tangent cone illustration in 3D
for sparse regression. For three possi-
ble locations Mi, 1 ≤ i ≤ 3, the tan-
gent cone are different, with cones be-
coming more complex as i increases.

It is clear that the unit ball with respect to the atomic norm ‖ · ‖A is the
convex hull of the set of atoms A. The tangent cone at x with respect to
the scaled unit ball ‖x‖A conv(A) is defined to be

TA(x) = cone {h : ‖x+ h‖A ≤ ‖x‖A} .(2.4)

Also known as a recession cone, TA(x) is the collection of directions where
the atomic norm becomes smaller. The “size” of the tangent cone at the
true parameter M will affect the difficulty of the recovery problem. We
focus on the cone intersected with the unit ball Bp

2 ∩ TA(M) in analyzing
the complexity of the cone. See Figure 1 for an intuitive illustration.

It is helpful to look at the atom set, atomic norm and tangent cone ge-
ometry in a few examples to better illustrate the general model and notion
of low complexity.
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Example 1. For sparse signal recovery in high-dimensional linear re-
gression, the atom set consists of the unit basis vectors {±ei}, the atomic
norm is the vector `1 norm, and its dual norm is the vector `∞ norm. The
convex hull conv(A) is called the cross-polytope. Figure 2 illustrates this
tangent cone for 3D `1 norm ball for 3 different cases TA(Mi), 1 ≤ i ≤ 3.
The “angle” or “complexity” of the local tangent cone determines the diffi-
culty of recovery. Previous work showed that the algebraic characterization
(sparsity) of the parameter space drives the global rate, and we are arguing
that the geometric characterization through the local tangent cone provides
an intuitive and refined local approach.

Example 2. In trace regression and matrix completion, the goal is to
recover low rank matrices. In such settings, the atom set consists of the rank
one matrices (matrix manifold) A = {uv∗ : ‖u‖`2 = 1, ‖v‖`2 = 1} and the
atomic norm is the nuclear norm and the dual norm is the spectral norm.
The convex hull conv(A) is called the nuclear norm ball of matrices. The
position of the true parameter on the scaled nuclear norm ball determines the
geometry of the local tangent cone, thus affecting the estimation difficulty.

Example 3. In integer programming, one would like to recover the sign
vectors whose entries take on values ±1. The atom set is all sign vectors
(cardinality 2p) and the convex hull conv(A) is the hypercube. Tangent cones
for each parameter have the same structure in this case.

Example 4. In orthogonal matrix recovery, the matrix of interest is
constrained to be orthogonal. In this case, the atom set is all orthogonal
matrices and the convex hull conv(A) is the spectral norm ball. Similar to
sign vector recovery, the local tangent cones for each orthogonal matrix share
similar geometric property.

2.2. Gaussian Width, Sudakov Estimate, and Other Geometric Quanti-
ties. We first introduce two complexity measures, the Gaussian width and
Sudakov estimate.

Definition 1 (Gaussian Width). For a compact set K ∈ Rp, the Gaus-
sian width is defined as

w(K) := Eg
[

sup
v∈K
〈g, v〉

]
.(2.5)

where g ∼ N(0, Ip) is the standard multivariate Gaussian vector.
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Gaussian width quantifies the probability that a randomly oriented sub-
space misses a convex subset. It was used in Gordon’s analysis [20], and was
shown recently to play a crucial rule in linear inverse problems in various
noiseless or deterministic noise settings, see, for example, [16, 1]. Explicit up-
per bounds on the Gaussian width for different convex sets have been given
in [16, 1]. For example, if M ∈ Rp is a s-sparse vector, w(Bp

2 ∩ TA(M)) .√
s log p/s. WhenM ∈ Rp×q is a rank-r matrix, w(Bp

2∩TA(M)) .
√
r(p+ q − r).

For sign vector in Rp, w(Bp
2 ∩TA(M)) .

√
p, while for orthogonal matrix in

Rm×m, w(Bp
2 ∩ TA(M)) .

√
m(m− 1). See Section 3.4 propositions 3.10-

3.14 in [16] for detailed calculations. The Gaussian width as a complexity
measure of the local tangent cone will be used in the upper bound analysis
in Sections 3 and 4.

Definition 2 (Sudakov Minoration Estimate). The Sudakov estimate
of a compact set K ∈ Rp is defined as

e(K) := sup
ε

ε
√

logN (K, ε).(2.6)

where N (K, ε) denotes the ε-covering number of set K with respect to the
Euclidean norm.

Sudakov estimate has been used in the literature as a measure of com-
plexity for a general functional class that nearly matches (from below) the
expected supremum of a gaussian process. By balancing the cardinality of
the covering set at scale ε and the covering radius ε, the estimate maximizes

ε
√

logN (Bp
2 ∩ TA(M), ε),

thus determining the complexity of the cone TA(M). Sudakov estimate as
a complexity measure of the local tangent cone is useful for the minimax
lower bound analysis.

The following well-known result [19, 29] establishes a relation between the
Gaussian width w(·) and Sudakov estimate e(·):

Lemma 1 (Sudakov Minoration and Dudley Entropy Integral). For any
compact subset K ⊆ Rp, there exist a universal constant c > 0 such that

c · e(K) ≤ w(K) ≤ 24

∫ ∞
0

√
logN (K, ε)dε.(2.7)

In the literature, another complexity measure—volume ratio—has also
been used to characterize the minimax lower bounds [30]. Volume ratio has
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been studied in [35] and [45]. For a convex set K ∈ Rp, volume ratio used
in the present paper is defined as follows.

Definition 3 (Volume Ratio). The volume ratio is defined as

v(K) :=
√
p

(
vol(K)

vol(Bp
2)

) 1
p

.(2.8)

The recovery difficulty of the linear inverse problem also depends on other
geometric quantities defined on the local tangent cone TA(M): the local
isometry constants φA(M,X ) and ψA(M,X ) and the local asphericity ratio
γA(M). The local isometry constants are defined for the local tangent
cone at the true parameter M as

φA(M,X ) := inf

{‖X (h)‖`2
‖h‖`2

: h ∈ TA(M), h 6= 0

}
(2.9)

ψA(M,X ) := sup

{‖X (h)‖`2
‖h‖`2

: h ∈ TA(M), h 6= 0

}
.(2.10)

The local isometry constants measure how well the linear operator preserves
the `2 norm within the local tangent cone. Intuitively, the larger the ψ or
the smaller the φ is, the harder the recovery is. We will see later that the
local isometry constants are determined by the Gaussian width under the
Gaussian ensemble design.

The local asphericity ratio is defined as

γA(M) := sup

{‖h‖A
‖h‖`2

: h ∈ TA(M), h 6= 0

}
(2.11)

and measures how extreme the atomic norm is relative to the `2 norm within
the local tangent cone.

2.3. Point Estimation via Convex Relaxation. We now return to the lin-
ear inverse model (1.1) in the high-dimensional setting. Suppose we observe
(X , Y ) as in (1.1) where the parameter of interest M is assumed to have
low complexity with respect to a given atom set A. The low complexity of
M introduces a non-convex constraint, which leads to serious computational
difficulties if solved directly. Convex relaxation is an effective and natural
approach in such a setting. In most interesting cases, the atom set is not too
rich in the sense that conv(A) ⊂ Bp

2 . For such cases, we propose a generic
convex constrained minimization procedure induced by the atomic norm and
the corresponding dual norm to estimate M :

M̂ = arg min
M

{‖M‖A : ‖X ∗(Y −X (M))‖∗A ≤ λ}(2.12)



12 CAI, LIANG & RAKHLIN

where λ is a localization radius (tuning parameter) that depends on the
sample size, noise level, and geometry of the atom set A. An explicit for-
mula for λ is given in (3.1) in the case of Gaussian noise. The atomic norm
minimization (2.12) is a convex relaxation of the low complexity structure,
and λ specifies the localization scale based on the noise. This generic con-
vex program utilizes the duality and recovers the low complexity structure
adaptively. The Dantzig selector for high-dimensional sparse regression [15]
and the constrained nuclear norm minimization [13] for trace regression are
particular examples of (2.12). The properties of the estimator M̂ will be
investigated in Sections 3 and 4.

In cases where the atomic norm ball is rich, i.e. conv(A) 6⊂ Bp
2 , a slightly

stronger program

M̂ = arg min
M

{‖M‖A : ‖X ∗(Y −X (M))‖∗A ≤ λ, ‖X ∗(Y −X (M))‖`2 ≤ µ}
(2.13)

with λ, µ as tuning parameters will yield optimal guarantees. The analysis of
(2.13) is essentially the same as (2.12). For conciseness, we will present the
main result for the interesting case (2.12). We remark that the atomic dual
norm constraint is crucial for attaining optimal behavior unless conv(A) ⊃
Bp

2 . For instance, the convex program in [16] with only the `2 constraint will
lead to a suboptimal estimator.

2.4. Statistical Inference via Feasibility of Convex Program. In the high-
dimensional setting, p-values as well as confidence intervals are important
inferential questions beyond point estimation. In this section we will show
how to perform statistical inference for the linear inverse model (1.1). Let
M ∈ Rp be the vectorized parameter of interest, and {ei, 1 ≤ i ≤ p} are
the corresponding basis vectors. Consider the following convex feasibility
problem for matrix Ω ∈ Rp×p, where each row Ωi· satisfies

‖X ∗XΩ∗i· − ei‖∗A ≤ η, ∀1 ≤ i ≤ p.(2.14)

Here η is some tuning parameter that depends on the sample size and ge-
ometry of the atom set A. One can also solve a stronger version of the above
convex program for η ∈ R,Ω ∈ Rp×p simultaneously:

(Ω, ηn) = arg min
Ω,η

{η : ‖X ∗XΩ∗i· − ei‖∗A ≤ η, ∀1 ≤ i ≤ p} .(2.15)

Built upon the constrained minimization estimator M̂ in (2.12) and fea-
sible matrix Ω in (2.15), the de-biased estimator for inference on parameter
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M is defined as

M̃ := M̂ + ΩX ∗(Y −X (M̂)).(2.16)

We will establish the asymptotic normality for linear contrast 〈v,M〉, where
v ∈ Rp, ‖v‖`1 ≤ ρ, ρ does not grow with n, p(n), and construct confidence
intervals and hypothesis tests based on the asymptotic normality result. In
the case of high-dimensional linear regression, de-biased estimators has been
investigated in [3, 48, 44, 23]. The convex feasibility program we proposed
here can be viewed as a unified treatment for general linear inverse models.
We will show that under some conditions on the sample size and the local
tangent cone, asymptotic confidence intervals and hypothesis tests are valid
for linear contrast 〈v,M〉 which include as a special case the individual
coordinates of M .

3. Local Geometric Theory: Gaussian Setting. We establish in
this section a general theory of geometric inference in the Gaussian setting
where the noise vector Z is Gaussian and the linear operator X is the Gaus-
sian ensemble design (Definition 4). In analyzing Model 1.1, without loss of
generality, we can scale X , Z simultaneously such that column `2 norm does
not grow with n. In the stochastic noise setting, the noise Zi, 1 ≤ i ≤ n is
scaled correspondingly to noise level σ/

√
n.

Definition 4 (Gaussian Ensemble Design). Let X ∈ Rn×p be the matrix
form of the linear operator X : Rp → Rn. X is Gaussian ensemble if each
element is an i.i.d Gaussian random variable with mean 0 and variance 1

n .

Our analysis is quite different from the case by case global analysis of the
Dantzig selector, Lasso and nuclear norm minimization. We show a stronger
result which adapts to the local tangent cone geometry. All the analyses
in our theory are non-asymptotic, and the constants are explicit. Another
advantage is that the local analysis yields robustness for a given parameter
(with near but not exact low complexity), as the convergence rate is captured
by the geometry of the associated local tangent cone at a given M . Later in
Section 4 we will show how to extend the theory to a more general setting.

3.1. Local Geometric Upper Bound. For the upper bound analysis, we
need to choose a suitable localization radius λ (in the convex program (2.12))
to guarantee that the true parameter M is in the feasible set with high
probability. In the case of Gaussian noise the tuning parameter is chosen as

λA(X , σ, n) =
σ√
n

{
w(XA) + δ · sup

v∈A
‖X v‖`2

}
� σ√

n
w(XA)(3.1)



14 CAI, LIANG & RAKHLIN

where XT is the image of the set T under the linear operator X , and δ > 0
can be chosen arbitrarily according to the probability of success we would
like to attain (δ is commonly chosen at order

√
log p). λA(X , σ, n) is a global

parameter that depends on the linear operator X and the atom set A, but,
importantly, not on the complexity of M . The following theorem geometrizes
the local rate of convergence in the Gaussian case.

Theorem 1 (Gaussian Ensemble: Convergence Rate). Suppose we ob-
serve (X , Y ) as in (1.1) with the Gaussian ensemble design and Z ∼
N(0, σ

2

n In). Let M̂ be the solution of (2.12) with λ chosen as in (3.1). Let
0 < c < 1 be a constant. For any δ > 0, if

n ≥ 4[w(Bp
2 ∩ TA(M)) + δ]2

c2
∨ 1

c
,

then with probability at least 1− 3 exp(−δ2/2),

‖M̂ −M‖A ≤ γA(M) · ‖M̂ −M‖`2 , and further we have

‖M̂ −M‖`2 ≤
1

1− c‖X (M̂ −M)‖`2 ≤
2σ

(1− c)2
· γA(M)w(XA)√

n
.

Theorem 1 gives bounds for the estimation error under both the `2 norm
loss and the atomic norm loss, as well as for the in sample prediction error.
The upper bounds are determined by the geometric quantities w(XA), γA(M)
and w(Bp

2 ∩ TA(M)). Take, for example, the estimation error under the `2
loss. Given any ε > 0, the smallest sample size n to ensure the recovery error
‖M̂ −M‖`2 ≤ ε with probability at least 1− 3 exp(−δ2/2) is

n ≥ max

{
4σ2

(1− c)4
· γ

2
A(M)w2(XA)

ε2
,

4w2(Bp
2 ∩ TA(M))

c2

}
.

That is, the minimum sample size for guaranteed statistical accuracy is
driven by two geometric terms w(XA)γA(M) and w(Bp

2 ∩ TA(M)). We will
see in Section 3.5 that these two rates match in a range of specific high-
dimensional estimation problems.

The proof of Theorem 1 (and Theorem 4 in Section 4) relies on the fol-
lowing two key lemmas.

Lemma 2 (Choice of Tuning Parameter). Consider the linear inverse

model (1.1) with Z ∼ N(0, σ
2

n In). For any δ > 0, with probability at least
1− exp(−δ2/2) on the σ-field of Z (conditional on X ),

‖X ∗(Z)‖∗A ≤
σ√
n

{
w(XA) + δ · sup

v∈A
‖X v‖`2

}
.(3.2)
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This lemma is proved in Section 6. The particular value of λA(X , σ, n) for
a range of examples will be calculated in Section 3.5.

The next lemma addresses the local behavior of the linear operator X
around the true parameter M under the Gaussian ensemble design. We call
a linear operator locally near-isometric if the local isometry constants are
uniformly bounded. The following lemma tells us that in the most widely
used Gaussian ensemble case, the local isometry constants are guaranteed to
be bounded, given the sample size n is at least of order [w(Bp

2 ∩ TA(M))]2.
Hence, the difficulty of the problem is captured by the Gaussian width.

Lemma 3 (Local Isometry Bound for Gaussian Ensemble). Assume the
linear operator X is the Gaussian ensemble design. Let 0 < c < 1 be a
constant. For any δ > 0, if

n ≥ 4[w(Bp
2 ∩ TA(M)) + δ]2

c2
∨ 1

c
,

then with probability at least 1− 2 exp(−δ2/2), the local isometry constants
are around 1 with

φA(M,X ) ≥ 1− c and ψA(M,X ) ≤ 1 + c.

3.2. Local Geometric Inference: Confidence Intervals and Hypothesis Test-
ing. For statistical inference on the general linear inverse model, we would
like to choose the smallest η in (2.14) to ensure that, under the Gaussian
ensemble design, the feasibility set for (2.14) is non-empty with high proba-
bility. The following theorem establishes geometric inference for Model (1.1).

Theorem 2 (Geometric Inference). Suppose we observe (X , Y ) as in

(1.1) with the Gaussian ensemble design and Z ∼ N(0, σ
2

n In). Let M̂ ∈
Rp,Ω ∈ Rp×p be the solution of (2.12) and (2.14) , and let M̃ ∈ Rp be the
de-biased estimator as in (2.16). Assume p ≥ n % w2(Bp

2 ∩ TA(M)). If the
tuning parameters λ, η are chosen with

λ � σ√
n
w(XA), η � 1√

n
w(XA),

convex programs (2.12) and (2.14) have non-empty feasibility set for Ω with
high probability.

The following decomposition

M̃ −M = ∆ +
σ√
n

ΩX ∗W(3.3)
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holds, where W ∼ N(0, In) is the standard Gaussian vector with

ΩX ∗W ∼ N(0,ΩX ∗XΩ∗)

and ∆ ∈ Rp satisfies ‖∆‖`∞ - γ2
A(M) · λη � σ

γ2A(M)w2(XA)
n . Suppose

(n, p(n)) as a sequence satisfies

lim sup
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

then for any v ∈ Rp, ‖v‖`1 ≤ ρ with ρ finite, we have the asymptotic nor-
mality for the functional 〈v, M̃〉,

√
n

σ

(
〈v, M̃〉 − 〈v,M〉

)
=
√
v∗[ΩX ∗XΩ∗]v · Z0 + op(1)(3.4)

where Z0 ∼ N(0, 1) and lim
n,p(n)→∞

op(1) = 0 means convergence in probability.

It follows from Theorem 2 that a valid asymptotic (1−α)-level confidence
intervals for Mi, 1 ≤ i ≤ p (when v is taken as ei in Theorem 2) is

[
M̃i + Φ−1

(α
2

)
σ

√
[ΩX ∗XΩ∗]ii

n
, M̃i + Φ−1

(
1− α

2

)
σ

√
[ΩX ∗XΩ∗]ii

n

]
.

(3.5)

If we are interested in a linear contrast 〈v,M〉 = v0, ‖v‖`1 ≤ ρ with ρ
fixed, consider the hypothesis testing problem

H0 :

p∑
i=1

viMi = v0 v.s. Hα :

p∑
i=1

viMi 6= v0.

The test statistic is
√
n(〈v,M̃〉−v0)

σ(v∗[ΩX ∗XΩ∗]v)1/2
and under the null, it follows an asymp-

totic standard normal distribution as n→∞. Similarly, the p-value is of the

form 2− 2Φ−1

(∣∣∣∣ √
n(〈v,M̃〉−v0)

σ(v∗[ΩX ∗XΩ∗]v)1/2

∣∣∣∣) as n→∞.

Note the asymptotic normality holds for any finite linear contrast, and
the asymptotic variance nearly achieves the Fisher information lower bound,
as Ω is an estimate of the inverse of X ∗X . For fixed dimension inference,
Fisher information lower bound is asymptotically optimal.
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Remark 1. Note that the condition required for asymptotic normality
and valid confidence intervals,

lim
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

is stronger than the one for estimation consistency of the parameter M under
the `2 norm,

lim
n,p(n)→∞

γA(M)w(XA)√
n

= 0.

For inference, we do require stronger condition in order to learn the order
of the bias of the estimate. In the case when n > p and the Gaussian
ensemble design, X ∗X is non-singular with high probability. With the choice
of Ω = (X ∗X )−1 and η = 0, for any i ∈ [p], the following holds non-
asymptotically,

√
n(M̃i −Mi) ∼ N(0, σ2[(X ∗X )−1]ii).

3.3. Extension: Correlated Design. The results in Section 3.1 and 3.2 can
be extended beyond Gaussian ensemble (where E[X ∗X ] = I) to Gaussian
design with known covariance matrix Σ (where E[X ∗X ] = Σ). Consider the
following slightly modified point estimation and inference procedure (with
tuning parameter λ, η)

Point Estimation via M̂ M̂ = arg min
M

{‖M‖A : ‖X ∗(Y −X (M))‖∗A ≤ λ}

Inference via M̃ Ω : ‖X ∗XΩ∗i· − Σ
1
2 ei‖∗A ≤ η, ∀1 ≤ i ≤ p(3.6)

M̃ := M̂ + Σ−
1
2 ΩX ∗(Y −X (M̂))

where Ω ∈ Rp×p is an solution to the convex feasibility problem (3.6). Then
the following Corollary holds.

Corollary 1. Suppose we observe (X , Y ) as in (1.1), where the Gaus-

sian design X has covariance Σ and Z ∼ N(0, σ
2

n In). Consider the convex

programs for estimation M̂ and inference M̃ with the tuning parameters
chosen as

λ � σ√
n
w(XA), η � 1√

n
w(XA).

Under the condition n % w(Bp
2 ∩ Σ

1
2 ◦ TA(M)), M̂ satisfies

‖M̂ −M‖`2 - σ
γA(M)w(XA)√

n
, ‖M̂ −M‖A - σ

γ2
A(M)w(XA)√

n
.
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Suppose (n, p(n)) as a sequence satisfies

lim sup
n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

then for any v ∈ Rp, ‖v‖`1 ≤ ρ with ρ finite, we have the asymptotic nor-

mality for the functional 〈Σ 1
2 v, M̃〉,

√
n

σ

(
〈Σ 1

2 v, M̃〉 − 〈Σ 1
2 v,M〉

)
=
√
v∗[ΩX ∗XΩ∗]v · Z0 + op(1)

where Z0 ∼ N(0, 1) and lim
n,p(n)→∞

op(1) = 0 means convergence in probability.

3.4. Minimax Lower Bound for Local Tangent Cone. As seen in Section
3.1 and 3.2, the local tangent cone plays an important role in the upper
bound analysis. In this section, we are interested in restricting the parameter
space to the local tangent cone and seeing how the geometry of the cone
affects the minimax lower bound.

Theorem 3 (Lower bound Based on Local Tangent Cone). Suppose we
observe (X , Y ) as in (1.1) with the Gaussian ensemble design and Z ∼
N(0, σ

2

n In). Let M be the true parameter of interest. Let 0 < c < 1 be a

constant. For any δ > 0, if n ≥ 4[w(Bp
2∩TA(M))+δ]2

c2
∨ 1
c . Then with probability

at least 1− 2 exp(−δ2/2),

inf
M̂

sup
M ′∈TA(M)

E·|X ‖M̂ −M ′‖2`2 ≥
c0σ

2

(1 + c)2
·
(
e(Bp

2 ∩ TA(M))√
n

)2

for some universal constant c0 > 0. Here E·|X stands for the conditional
expectation given the design matrix X , and the probability statement is with
respect to the distribution of X under the Gaussian ensemble design.

Recall Theorem 1, the local upper bound is basically determined by
γ2
A(M)w2(XA), which in many examples in Section 3.5 is of the rate w2(Bp

2∩
TA(M)). The general relationship between these two quantities is given in
Lemma 4 below, which is proved in Supplement [6] Section A.

Lemma 4. For any atom set A, we have the following relation

γA(M)w(A) ≥ w(Bp
2 ∩ TA(M))

where w(·) is the Gaussian width and γA(M) is defined in (2.11).
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From Theorem 3, the minimax lower bound for estimation over the local
tangent cone is determined by the Sudakov estimate e2(Bp

2 ∩TA(M)). It fol-
lows directly from Lemma 1 that there exists a universal constant c > 0 such
that c·e(Bp

2∩TA(M)) ≤ w(Bp
2∩TA(M)) ≤ 24

∫∞
0

√
logN (Bp

2 ∩ TA(M), ε)dε.
Thus under the Gaussian setting, both in terms of the upper bound and
lower bound, geometric complexity measures govern the difficulty of the es-
timation problem, through closely related quantities: Gaussian width and
Sudakov estimate.

3.5. Application of the Geometric Approach. In this section we apply the
general theory under the Gaussian setting to some of the actively studied
high-dimensional problems mentioned in Section 1 to illustrate the wide
applicability of the theory. The detailed proofs are deferred to Supplement
[6] Section B.

3.5.1. High-Dimensional Linear Regression. We begin by considering the
high-dimensional linear regression model (1.2) under the assumption that
the true parameter M ∈ Rp is sparse, say ‖M‖l0 = s. Our general the-
ory applying to the `1 minimization recovers the optimality results as in
Dantzig selector and Lasso. In this case, it can be shown that γA(M)w(A)
and w(Bp

2 ∩ TA(M)) are of the same rate
√
s log p. See Supplement [6] Sec-

tion B for the detailed calculations. The asphericity ratio γA(M) ≤ 2
√
s

reflects the sparsity of M through the local tangent cone and the Gaussian
width w(XA) � √log p. The following corollary follows from the geometric
analysis of the high-dimensional regression model.

Corollary 2. Consider the linear regression model (1.2). Assume that
X ∈ Rn×p is the Gaussian ensemble design and the parameter of interest
M ∈ Rp is of sparsity s. Let M̂ be the solution to the constrained `1 mini-

mization (2.12) with λ = C1σ
√

log p
n . If n ≥ C2s log p, then

‖M̂ −M‖`2 - σ

√
s log p

n
, ‖M̂ −M‖`1 - σs

√
log p

n
, ‖X (M̂ −M)‖`2 - σ

√
s log p

n
.

with high probability, where C1, C2 > 0 are some universal constants.

For `2 norm consistency of the estimation forM , we require lim
n,p(n)→∞

s log p
n =

0. However, for valid inferential guarantee, the de-biased Dantzig selec-
tor type estimator M̃ satisfies asymptotic normality under the condition

lim
n,p(n)→∞

s log p√
n

= 0 through Theorem 2. Under this condition, the confidence
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interval given in (3.5) has asymptotic coverage probability of (1−α) and its
expected length is at the parametric rate 1√

n
. Furthermore, the confidence

intervals do not depend on the specific value of s. Results in Section 3.2 and
3.3 recover the best known result on confidence intervals as in [48, 44, 23].
Our result is a generic procedure that compensates for the bias introduced
by the point estimation convex program. All these procedures are driven by
local geometry.

3.5.2. Low Rank Matrix Recovery. We now consider the recovery of low-
rank matrices under the trace regression model (1.3). The geometric theory
leads to the optimal recovery results for nuclear norm minimization and
penalized trace regression in the existing literature.

Assume the true parameter M ∈ Rp×q has rank r. Let us examine the
behavior of φA(M,X ), γA(M), and λA(X , σ, n). Detailed calculations given
in Supplement [6] Section B show that in this case γA(M)w(A) and w(Bp

2 ∩
TA(M)) are of the same order

√
r(p+ q). The asphericity ratio γA(M) ≤

2
√

2r characterizes the low rank structure and the Gaussian width w(XA) �√
p+ q. We have the following corollary for low rank matrix recovery.

Corollary 3. Consider the trace regression model (1.3). Assume that
X ∈ Rn×pq is the Gaussian ensemble design and the true parameter M ∈
Rp×q is of rank r. Let M̂ be the solution to the constrained nuclear norm

minimization (2.12) with λ = C1σ
√

p+q
n . If n ≥ C2r(p + q), then for some

universal constants C1, C2 > 0, with high probability,

‖M̂ −M‖F - σ

√
r(p+ q)

n
, ‖M̂ −M‖∗ - σr

√
p+ q

n
, ‖X (M̂ −M)‖`2 - σ

√
r(p+ q)

n
.

For point estimation consistency under the Frobenius norm loss, the con-

dition is lim
n,p(n),q(n)→∞

√
r(p+q)√
n

= 0. For statistical inference, Theorem 2 re-

quires lim
n,p(n),q(n)→∞

r(p+q)√
n

= 0, which is essentially n & pq (sample size is

larger than the dimension) for r = 1. This phenomenon happens when the
Gaussian width complexity of the rank-1 matrices is large, i.e., the atom set
is too rich. We remark that in practice, convex program (2.15) can still be
used for constructing confidence intervals and performing hypothesis test-
ing. However, it is harder to provide sharp upper bound theoretically for the
approximation error η in (2.15), for any given r, p, q.

3.5.3. Sign Vector Recovery. We turn to the sign vector recovery model
(1.4) where the parameter of interest M ∈ {+1,−1}p is a sign vector. The
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convex hull of the atom set is then the `∞ norm ball. Applying the general
theory to the constrained `∞ norm minimization (2.13) leads to the optimal
rates of convergence for the sign vector recovery. The calculations given in
Supplement [6] Section B show that the asphericity ratio γA(M) ≤ 1 and
the Gaussian width w(XBp

2) � √p. Geometric theory when applied to sign
vector recovery shows the following Corollary.

Corollary 4. Consider the model (1.4) where the true parameter M ∈
{+1,−1}p is a sign vector. Assume that X ∈ Rn×p is the Gaussian ensemble
design. Let M̂ be the solution to the convex program (2.13) with λ = C1σ

p√
n

and µ = C1σ
√

p
n . If n ≥ C2p, then for some universal constant C > 0, with

high probability,

‖M̂ −M‖`2 , ‖M̂ −M‖`∞ , ‖X (M̂ −M)‖`2 ≤ C · σ
√
p

n
.

3.5.4. Orthogonal Matrix Recovery. We now treat orthogonal matrix re-
covery using the spectral norm minimization. Please see Example 4 in Sec-
tion 2.1 for details. Consider the same model as in trace regression, but the
parameter of interest M ∈ Rm×m is an orthogonal matrix. One can show
that w(Bp

2 ∩ TA(M)) is of order
√
m2 and γA(M) ≤ 1. Applying the geo-

metric analysis to the constrained spectral norm minimization (2.13) yields
the following.

Corollary 5. Consider the orthogonal matrix recovery model (1.3).
Assume that X ∈ Rn×m2

is the Gaussian ensemble matrix and the true
parameter M ∈ Rm×m is an orthogonal matrix. Let M̂ be the solution to the

program (2.13) with λ = C1σ
√

m3

n and µ = C1σ
√

m2

n . If n ≥ C2m
2, then,

with high probability,

‖M̂ −M‖F , ‖M̂ −M‖, ‖X (M̂ −M)‖`2 ≤ C · σ
√
m2

n
,

where C > 0 is some universal constant.

3.5.5. Other examples. Other examples that can be formalized under the
framework of the linear inverse model include permutation matrix recovery
[22], sparse plus low rank matrix recovery [11] and matrix completion [14].
The convex relaxation of permutation matrix is double stochastic matrix; the
atomic norm corresponding to sparse plus low rank atom set is the infimal
convolution of the `1 norm and nuclear norm; for matrix completion, the
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design matrix can be viewed as a diagonal matrix with diagonal elements
being independent Bernoulli random variables. See Section 5 for a discussion
on further examples.

4. Local Geometric Theory: General Setting. We have developed
in the last section a local geometric theory for the linear inverse model in
the Gaussian setting. The Gaussian assumption on the design and noise
enables us to carry out concrete and more specific calculations as seen in
the examples given in Section 3.5, but the distributional assumption is not
essential. In this section we extend this theory to the general setting.

4.1. General Local Upper Bound. We shall consider a fixed design ma-
trix X (in the case of random design, results we will establish are condi-
tional on the design) and condition on the event that the noise is controlled
‖X ∗(Z)‖∗A ≤ λn. We have seen in Lemma 2 of Section 3.1 how to choose λn
to make this happen with overwhelming probability under Gaussian noise.

Theorem 4 (Geometrizing Local Convergence). Suppose we observe
(X , Y ) as in (1.1). Condition on the event that the noise vector Z sat-
isfies, for some given choice of localization radius λn, ‖X ∗(Z)‖∗A ≤ λn. Let

M̂ be the solution to the convex program (2.12) with λn being the tuning
parameter. Then the geometric quantities defined on the local tangent cone
capture the local convergence rate for M̂ :

‖M̂ −M‖A ≤ γA(M)‖M̂ −M‖`2 , and further

‖M̂ −M‖`2 ≤
1

φA(M,X )
‖X (M̂ −M)‖`2 ≤

2γA(M)λn
φ2
A(M,X )

with the local asphericity ratio γA(M) defined in (2.11) and the local lower
isometry constant φA(M,X ) defined in (2.9).

Theorem 4 does not require distributional assumptions on the noise, nor
does it impose conditions on the design matrix. Theorem 1 can be viewed
as a special case where the local isometry constant φA(M,X ) and the local
radius λn are calculated explicitly under the Gaussian assumption. Theorem
4 is proved in Section 6 in a general form, which analyzes convex programs
(2.12) and (2.13) simultaneously.

4.2. General Geometric Inference. Geometric inference can also be ex-
tended to other fixed designs when Z is Gaussian. We can modify the convex
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feasibility program (2.14) into the following stronger form

(Ω, ηn) = arg min
Ω,η

{η : ‖X ∗XΩ∗i· − ei‖∗A ≤ η, ∀1 ≤ i ≤ p} .(4.1)

Then the following theorem holds (proof is analogous to Theorem 2).

Theorem 5 (Geometric Inference). Suppose we observe (X , Y ) as in

(1.1) with Z ∼ N(0, σ
2

n In). Let M̂ be the solution to the convex program
(2.12). Denote Ω and ηn as the optimal solution to the convex program (4.1),
and M̃ as the de-biased estimator. The following decomposition

M̃ −M = ∆ +
σ√
n

ΩX ∗W(4.2)

holds, where W ∼ N(0, In) is the standard Gaussian vector and

ΩX ∗W ∼ N(0,ΩX ∗XΩ∗).

Here the bias part ∆ ∈ Rp satisfies, with high probability,

‖∆‖`∞ ≤
2 · γ2

A(M)

φA(M,X )
· λnηn,

provided we choose λn as in Lemma 2.

4.3. General Local Minimax Lower Bound. The lower bound given in
the Gaussian case can also be extended to the general setting where the
class of noise distributions contains the Gaussian distributions. We aim to
geometrize the intrinsic difficulty of the estimation problem in a unified man-
ner. We first present a general result for a convex cone T in the parameter
space, which illustrates how the Sudakov estimate, volume ratio and the
design matrix affect the minimax lower bound.

Theorem 6. Let T ∈ Rp be a compact convex cone. The minimax lower
bound for the linear inverse model (1.1), if restricted to the cone T , is

inf
M̂

sup
M∈T

E·|X ‖M̂ −M‖2`2 ≥
c0σ

2

ψ2
·
(
e(Bp

2 ∩ T )√
n

∨ v(Bp
2 ∩ T )√
n

)2

where M̂ is any measurable estimator, ψ = sup
v∈Bp

2∩T
‖X (v)‖`2 and c0 is a

universal constant. Here E·|X is conditioned on the design matrix. e(·) and
v(·) denote the Sudakov estimate (2.6) and volume ratio (2.8). Then

inf
M̂

sup
M ′∈TA(M)

E·|X ‖M̂ −M ′‖2`2 ≥
c0σ

2

ψ2
A(M,X )

·
(
e(Bp

2 ∩ TA(M))√
n

∨ v(Bp
2 ∩ TA(M))√

n

)2

.
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Theorem 6 gives minimax lower bounds in terms of the Sudakov estimate
and volume ratio. In the Gaussian setting, Lemma 3 shows that the local
upper isometry constant satisfies ψA(M,X ) ≤ 1+c with probability at least
1− 2 exp(−δ2/2), as long as

n ≥ 4[w(Bp
2 ∩ TA(M)) + δ]2

c2
∨ 1

c
.

We remark that ψA(M,X ) can be bounded under more general design ma-
trix X . However, under the Gaussian design (even correlated design), the
minimum sample size n to ensure that ψA(M,X ) is upper bounded, is di-
rectly determined by Gaussian width of the tangent cone.

The geometric complexity of the lower bound provided by Theorem 6
matches w(Bp

2 ∩TA(M)) if Sudakov minoration of Lemma 1 can be reversed
on the tangent cone, in the sense that w(Bp

2 ∩TA(M)) ≤ C ·e(Bp
2 ∩TA(M)).

Further, recalling Urysohn’s inequality we have v(Bp
2 ∩ TA(M)) ≤ w(Bp

2 ∩
TA(M)). Hence, if the reverse Urysohn’s inequality w(Bp

2 ∩ TA(M)) ≤ C ·
v(Bp

2 ∩TA(M)) holds for the local tangent cone, the obtained rate is, again,
of the order w(Bp

2 ∩ TA(M)).

5. Discussion. This paper presents a unified geometric characteriza-
tion of the local estimation rates of convergence as well as statistical infer-
ence for high-dimensional linear inverse problems. Exploring other interest-
ing applications that can be subsumed under the general framework is an
interesting future research direction.

For statistical inference, both independent Gaussian design and corre-
lated Gaussian design with known covariance Σ are considered. The case of
unknown Σ is an interesting problem for future work.

The lower bound constructed in the current paper can be contrasted with
the lower bounds in [47, 10]. Both the above two papers consider specifically
the minimax lower bound for high-dimensional linear regression. We focus
on a more generic perspective – lower bounds in Theorem 6 hold in general
for arbitrary star-shaped body T , which includes `p, 0 ≤ p ≤ ∞, balls and
cones as special cases.

6. Proofs. The proofs of the main results are divided into several parts.
For the upper bound of point estimation, we will first prove Theorem 4 and
then two lemmas, Lemma 3 and Lemma 2 (these two Lemmas are included
in Supplement [6] Section A). Theorem 1 is then easy to prove. As for the
statistical inference, Theorem 2 is proved based on Theorem 1. For the lower
bound of point estimation, Theorem 3 is a direct result combining Lemma
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3 and Theorem 6, which is proved in Supplement [6] Section A. Proofs of
Corollaries are deferred to Supplement [6] Section B.

Proof of Theorem 4. We will prove a stronger version of the Theo-
rem, analyzing both (2.12) and (2.13). The proof is clean and in a general
fashion, following directly from the assumptions of the theorem and the
definitions:

‖X ∗(Y −XM)‖∗A ≤ λ, ‖X ∗(Y −XM)‖`2 ≤ µ Assumption of the Theorem

‖X ∗(Y −X M̂)‖∗A ≤ λ, ‖X ∗(Y −X M̂)‖`2 ≤ µ Constraint in program

‖M̂‖A ≤ ‖M‖A Definition of minimizer

Thus we have

‖X ∗X (M̂ −M)‖∗A ≤ 2λ, ‖X ∗X (M̂ −M)‖`2 ≤ 2µ and M̂ −M ∈ TA(M).

(6.1)

The first equation is due to triangle inequality and second one due to Tangent
cone definition. Define H = M̂ −M ∈ TA(M). According to the “Cauchy-
Schwarz” (2.3) relation between atomic norm and its dual,

‖X (H)‖2`2 = 〈X (H),X (H)〉 = 〈X ∗X (H), H〉 ≤ ‖X ∗X (H)‖∗A‖H‖A.

Using the earlier result ‖X ∗X (H)‖∗A ≤ 2λ, as well as the following two
equations for any H ∈ TA(M)

φA(M,X )‖H‖`2 ≤ ‖X (H)‖`2 local isometry constant

‖H‖A ≤ γA(M)‖H‖`2 local asphericity ratio

we get the following self-bounding relationship

φ2
A(M,X )‖H‖2`2 ≤ ‖X (H)‖2`2 ≤ 2λ‖H‖A ≤ 2λγA(M)‖H‖`2 ,
φ2
A(M,X )‖H‖2`2 ≤ ‖X (H)‖2`2 ≤ 2µ‖H‖`2 .

Thus ‖H‖`2 ≤ 2
φ2A(M,X )

min{γA(M)λ, µ}. The proof is then completed by

simple algebra. Note here under the Gaussian setting, we can plug in λ �
w(XA)/

√
n and µ � w(XBp

2)/
√
n using Lemma 2.

Proof of Theorem 1. Theorem 1 is a special case of Theorem 4 under
Gaussian setting, combining with Lemma 3 and Lemma 2. All we need
to show is a good control of λn and φA(M,X ) with probability at least
1 − 3 exp(−δ2/2) under Gaussian ensemble and Gaussian noise. We bound
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λn with probability at least 1−exp(−δ2/2) via Lemma 2. For φA(M,X ), we
can lower bound by 1 − c with probability at least 1 − 2 exp(−δ2/2). Let’s
define good event to be when

λn ≤
σ√
n

{
Eg
[
sup
v∈A
〈g,X v〉

]
+ δ · sup

v∈A
‖X v‖`2

}
and 1 − c ≤ φA(M,X ) ≤ ψA(M,X ) ≤ 1 + c both hold. It is easy to see
this good event holds with probability 1 − 3 exp(−δ2/2). Thus all we need
to prove is maxz∈A ‖X z‖ ≤ 1 + c under the good event.

According to Lemma 3, equation (A.3)’s calculation, maxz∈A ‖X z‖/‖z‖ ≤
1+c is satisfied under the condition n ≥ 1

c2
[w(Bp

2 ∩A)+δ]2. As we know for
any M , the unit atomic norm ball conv(A) is contained in 2Bp

2 and TA(M),
which means Bp

2 ∩ A ⊂ 2Bp
2 ∩ TA(M), thus w(Bp

2 ∩ A) ≤ 2w(Bp
2 ∩ TA(M))

(monotonic property of Gaussian width). So we have for any M , if n ≥
4
c2

[w(Bp
2∩TA(M))+δ]2∨1

c . we have the following two bounds with probability
at least 1− 2 exp(−δ2/2)

max
z∈A
‖X z‖ ≤ 1 + c

1− c ≤ φA(M,X ) ≤ ψA(M,X ) ≤ 1 + c.(6.2)

Now plugging (6.2) into the expression of Lemma 2, together with Lemma
3, Theorem 4 reduces to Theorem 1.

Proof of Theorem 2. We first prove that, with high probability, the
convex program (2.14) is indeed feasible with Ω = In. Equivalently we es-
tablish that, with high probability, for any 1 ≤ i ≤ p, ‖X ∗X ei−ei‖∗A ≤ η for

some proper choice of η. Here X ∈ Rn×p, and the entries Xij iid∼ N(0, 1/n).
Denote g =

√
nX·i as a scaling version of the i-th column of X , g ∼ N(0, In)

and g′ ∼ N(0, In) being an independent copy. Below Op(·) denotes the
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asymptotic order in probability. We have, for all 1 ≤ i ≤ p uniformly,

‖X ∗X ei − ei‖∗A = sup
v∈A
〈X ∗X ei − ei, v〉 = sup

v∈A
〈X ∗g − ei, v〉/

√
n

≤ sup
v∈A
〈X ∗(−i)g, v〉/

√
n+ sup

v∈A

 1

n

n∑
j=1

g2
j − 1

 vi

w.h.p

-
w(X(−i)A)√

n
+Op(

√
log p/n) invoking Lemma 2

≤ w(XA)√
n

+
Eg′ supv∈A

∑n
k=1 g

′
kXki(−vi)√

n
+Op(

√
log p/n)

≤ w(XA)√
n

+

√
Eg′(

∑n
k=1 g

′
kXki)2 · supv∈A v

2
i√

n
+Op(

√
log p/n)

≤ w(XA)√
n

+

√
1 +Op(

√
log p/n)

n
+Op(

√
log p/n)(6.3)

where X(−i) is the linear operator setting i-th column to be all zeros. We
applied Lemma 2 in establishing the above bounds.

For the de-biased estimate M̃ , we have M̃ = M̂ + ΩX ∗(Y − X (M̂)) and
M̃ −M = (ΩX ∗X − Ip)(M − M̂) + ΩX ∗Z := ∆ + σ√

n
ΩX ∗W. Then for any

1 ≤ i ≤ p, from the Cauchy-Schwartz relationship (2.3),

|∆i| = |〈X ∗XΩ∗i· − ei,M − M̂〉| ≤ ‖X ∗XΩ∗i· − ei‖∗A‖M − M̂‖A ≤ σ
γ2
A(M)w2(XA)

n
.

(6.4)

The last line invokes the consistency result in Theorem 1, ‖M̂ −M‖A -

σ
γ2A(M)w(XA)√

n
. Thus we have ‖∆‖`∞ - σ

γ2A(M)w2(XA)
n . For any linear contrast

‖v‖`1 ≤ ρ, we have
√
n
σ v
∗(M̃ −M) = v∗ΩX ∗W +

√
n
σ v
∗∆,

lim sup
n,p(n)→∞

√
n

σ
v∗∆ ≤ lim sup

n,p(n)→∞

√
n

σ
‖v‖`1‖∆‖`∞ ≤ ρ· lim sup

n,p(n)→∞

γ2
A(M)w2(XA)√

n
= 0,

and v∗ΩX ∗W ∼ N(0, v∗[ΩX ∗XΩ∗]v).

Proof of Theorem 3. Theorem 3 is a special case of Theorem 6, com-
bining with Lemma 3 (both in Supplement [6] Section A). Plug in the
general convex cone T by local tangent cone TA(M), then upper bound
ψA(M,X ) ≤ 1 + c with high probability via Lemma 3.
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SUPPLEMENTARY MATERIAL

Supplement to: “Geometric Inference for General High-Dimensional
Linear Inverse Problems”
(doi: COMPLETED BY THE TYPESETTER; .pdf). Due to space con-
straints, we have relegated remaining proofs to the Supplement [6], where
details of proof for Lemma 2-4, Theorem 6 and Corollary 1-5 are included.
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[25] Khuri, S., Bäck, T., and Heitkötter, J. (1994). The zero/one multiple knapsack
problem and genetic algorithms. In Proceedings of the 1994 ACM symposium on Applied
computing, pages 188–193. ACM.

[26] Koltchinskii, V. (2011). Von neumann entropy penalization and low-rank matrix
estimation. The Annals of Statistics, 39(6):2936–2973.

[27] Koltchinskii, V., Lounici, K., and Tsybakov, A. B. (2011). Nuclear-norm penalization
and optimal rates for noisy low-rank matrix completion. The Annals of Statistics,
39(5):2302–2329.
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