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Capacity Management in Rental Businesses With Two Customer Bases

Abstract
We consider the allocation of capacity in a system in which rental equipment is accessed by two classes of
customers. We formulate the problem as a continuous-time analogue of the one-shot allocation problems
found in the more traditional literature on revenue management, and we analyze a queueing control model
that approximates its dynamics. Our investigation yields three sets of results.

First, we use dynamic programming to characterize properties of optimal capacity allocation policies. We
identify conditions under which “complete sharing”—in which both classes of customers have unlimited
access to the rental fleet—is optimal.

Next, we develop a computationally efficient “aggregate threshold” heuristic that is based on a fluid
approximation of the original stochastic model. We obtain closed-form expressions for the heuristic’s control
parameters and show that the heuristic performs well in numerical experiments. The closed-form expressions
also show that, in the context of the fluid approximation, revenues are concave and increasing in the fleet size.

Finally, we consider the effect of the ability to allocate capacity on optimal fleet size. We show that the optimal
fleet size under allocation policies may be lower, the same as, or higher than that under complete sharing. As
capacity costs increase, allocation policies allow for larger relative fleet sizes. Numerical results show that, even
in cases in which dollar profits under complete sharing may be close to those under allocation policies, the
capacity reductions enabled by allocation schemes can help to lift profit margins significantly.
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Abstract

We consider the allocation of capacity in a system in which rental equipment is accessed

by two classes of customers. We formulate the problem as a continuous-time analogue of the

one-shot allocation problems found in the more traditional literature on revenue management,

and we analyze a queueing control model that approximates its dynamics. Our investigation

yields three sets of results.

First, we use dynamic programming to characterize properties of optimal capacity alloca-

tion policies. We identify conditions under which “complete sharing” – in which both classes

of customer have unlimited access to the rental fleet – is optimal.

Next, we develop a computationally efficient “aggregate threshold” heuristic that is based

on a fluid approximation of the original stochastic model. We obtain closed-form expressions

for the heuristic’s control parameters and show that the heuristic performs well in numer-

ical experiments. The closed-form expressions also show that, in the context of the fluid

approximation, revenues are concave and increasing in the fleet size.

Finally, we consider the effect of the ability to allocate capacity on optimal fleet size.

We show that the optimal fleet size under allocation policies may be lower, the same as,

or higher than that under complete sharing. As capacity costs increase, allocation policies

allow for larger relative fleet sizes. Numerical results show that, even in cases in which dollar

profits under complete sharing may be close to those under allocation policies, the capacity

reductions enabled by allocation schemes can help to lift profit margins significantly.

Keywords: Service Systems, Queueing Control, Stochastic Knapsack, Fluid Models.



1 Introduction

Rental businesses found in many sectors of the economy share some fundamental attributes.

The rental company invests in equipment for which there is a potential demand, and a stream

of customers patronizes the company, renting its equipment. After each rental, the equipment is

returned to the company, and rental durations are typically significantly shorter than the life of

the equipment, so that each unit may be used repeatedly.

For those who manage rental businesses, important managerial decisions focus on matching

rental demand with the equipment supply. These decisions create a hierarchy of managerial

controls at the company’s disposal. Longer term, capital-investment decisions set the company’s

overall level of rental capacity and attempt to capture as much demand for rental services as

is (marginally) profitable. While they provide for long-term matching between supply and de-

mand, fleet sizing decisions may not be used to counterbalance short-term supply and demand

mismatches. On a tactical time scale, capacity allocation decisions may be needed to determine

which customers are served when rental capacity becomes scarce.

In this paper we consider a simple, stationary model of a rental problem in which capacity

must be rationed among two classes of arriving customers. We address both the lower-level,

allocation problem and the higher-level capacity sizing problems, with an emphasis on the former.

Our approach to the tactical allocation problem follows in the spirit of early formulations of

seat allocation problems in the airline yield-management literature. (For example, see Littlewood

(1972), Alstrup et al. (1986), and Belobaba (1989).) When should arriving customers of each of

the classes be allowed to rent equipment, and when would they be “closed out?”

Two common assumptions made in traditional revenue management models make them in-

adequate for our purposes, however: they assume that there exists a finite horizon over which

units of capacity can be sold and that each unit of capacity can be used only once. For example,

in aviation there are c seats on a flight, and once they are sold or the plane takes off they are

not available for sale.

While hotel problems could (and perhaps should) in principle be formulated as rental prob-

lems, most academic literature only addresses the problem of allocating the rooms available

on a single night. (For example, see Rothstein (1974), Ladany (1977), Williams (1977), Liber-

man and Yechiali (1978), Bitran and Gilbert (1996).) An exception is the application of linear-

programming (LP) based “bid price” controls to hotel stays. (See Williamson (1992) and Weath-

erford (1995)). In this case, multiple nights are considered, but the problem is modeled as

1
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deterministic.

In rental businesses, however, the problem is most naturally treated as a problem in dynamic

and stochastic control. An arriving customer rents a unit, which becomes unavailable for the

length of the person’s rental. When the rental period ends, the unit becomes available again.

Over any short period of time, the numbers of arriving and departing customers may be uncertain,

and managers must develop effective policies for controlling the rental of system capacity.

We view the allocation of rental capacity as a continuous time, infinite horizon problem

in which arrivals of customers and durations of rentals are both uncertain. We formulate this

problem as one of admission control to a multiple-server loss system. We assume that, if admitted

into service, a customer pays a daily rental fee which depends on the class to which she belongs.

If the rental request is rejected then a class-dependent, lump-sum penalty is incurred. We show

that this capacity allocation problem can be reduced to a special case of the stochastic knapsack

problem introduced in the telecommunications literature (Ross and Tsang (1989)), one in which

arriving “objects” (demands) are all of size one.

We note that this formulation does not capture the use of prior information on rental duration.

In some contexts, such as truck-trailer leasing (the application that originally motivated this

paper) and storage-locker rentals, this information may not be available. In others, such a hotel

systems, customer-stated projections of expected duration are readily available and can be of

great value in improving the effectiveness of capacity allocation decisions. Thus, our approach

has important limits.

Nevertheless, the simplicity of our approach allows us to make a number of contributions:

1. We demonstrate that the allocation problem with lump-sum penalties can be reduced to one

with no penalties by appropriately adjusting the values of the rental fees. The adjustment

factors are proportional to the penalty values and the service rates.

2. We characterize two conditions under which the complete sharing policy that is often used

in practice is optimal: the first is in the “off-season,” when the overall demand for service

is low relative to capacity; the second is in the “peak season” of high demand, given that

different customer classes are sufficiently similar.

3. We analyze a fluid approximation to the original system, and we derive closed-form expres-

sions that characterize the controls and the performance obtained when allocating capacity

using an “aggregate threshold” policy. These expressions allow us to efficiently calculate
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admission thresholds that appear to perform well in the original, stochastic model.

4. Closed-form expressions for the fluid model also allow us to demonstrate the concavity of

the fluid model’s revenues with respect to the fleet size when the aggregate threshold policy

is used. This concavity is the essential property required for the efficient solution of the

related, long-term problem of capacity sizing.

5. We show that, in the presence of capacity rationing, the optimal fleet size can be either

higher or lower than that obtained when no rationing is employed. The relationship between

the two fleet sizes varies systematically with the cost of capacity.

6. We present numerical experiments that highlight the potential benefit of jointly optimizing

fleet size and tactical controls. In particular, there appear to be cases in which the sub-

optimal use of complete sharing results in near-optimal dollar profits. Even in these cases,

however, the return on in investment in capacity suffers significantly.

More broadly, these numerical results complement our characterization of sufficient conditions

for the optimality of complete sharing policies. Complete sharing policies maximize physical

measures of system utilization. When complete sharing is optimal, this physical measure of

system utilization is a good proxy for economic utilization. When complete sharing is not optimal,

however, its use can degrade profit margins and, by extension, economic measures of resource

efficiency, such as return on assets. In this case, physical and economic measures of efficiency do

not coincide.

Thus, within the context of the stationary problem developed in this paper, we are able to

characterize how the use of tactical controls affects longer-term decisions regarding fleet size, as

well as longer-term and economic efficiency. While a complete analysis of the problem, which

should account for seasonal changes in demand patterns, is beyond the scope of this paper, our

current results represent a promising first step.

Finally, we note that our analysis and results complement that of two recent papers that

have independently considered the stochastic knapsack. Our analysis parallels that of Altman

et al. (2001), which uses dynamic programming techniques to study optimal capacity allocation

rules and develops and solves (numerically) a fluid approximation to the problem. Our special

problem structure, however, allows us to more fully characterize properties of optimal and heuris-

tic admission controls. We are able to develop a number of additional useful structural results

concerning optimal policies and to develop precise, closed-form characterizations in the context
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of fluid control. Örmeci et al. (2001) also uses dynamic programming techniques to develop

similar characterizations of structural properties of the optimal policy. It does not, however,

consider heuristic controls. Neither of these papers considers how the use of tactical controls

affects longer-term fleet-sizing decisions.

The remainder of the paper is organized as follows. In the next section we formulate and ana-

lyze the capacity allocation problem and demonstrate how the problem with lump-sum penalties

can be reduced to one without penalties. We also discuss properties of optimal capacity allo-

cation policies and establish conditions for the optimality of the complete sharing policy. In

Section 3 we introduce a heuristic aggregate threshold policy based on a fluid-model version of

our system, and we compare the performance of this heuristic to that of the optimal policy. In

Section 4, we investigate the interaction between capacity sizing and capacity allocation problems

and establish how optimal fleet capacity changes in the presence of capacity rationing. We then

conclude with a discussion of the results and describe open issues and worthwhile extensions. All

proofs may be found in the Appendix.

2 The Capacity Allocation Problem

In this section we analyze the capacity allocation decision. We formulate it as a problem in the

control of queues, and we use dynamic programming techniques to investigate properties of the

optimal control policies.

2.1 Model Description

Consider a fleet of c identical vehicles or pieces of rental equipment accessed by 2 customer

classes whose arrival processes are independent and Poisson with intensities λ1 and λ2. Let the

durations of their rentals be independent, exponentially distributed random variables of mean

µ−1
1 and µ−1

2 . Suppose, further, that each arrival wishes to rent exactly one unit of capacity.

At each arrival epoch a system controller, such as the manager of the rental location, can

decide whether or not to admit an arriving customer for service – if one of the c units of capacity

is free – or to reject the arrival. Arrivals that are admitted to service are permitted to complete

the duration of their (randomly distributed) rental periods uninterrupted. Rejected customers

do not queue; they exit the system. Similarly, customers that arrive when all c units of capacity

are rented are lost.
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Rewards and penalties associated with the system state and action are as follows. Arrivals

that are admitted to service pay respective rental fees of $a1 and $a2 per unit of time. When

a customer’s rental request is denied – either due to the absence of available rental capacity

or because of the particular capacity allocation policy used – a lump-sum penalty of $π1 or

$π2 is incurred, depending on the customer’s class. (For more on rejection penalties and their

relationship to service-level constraints, please see Appendix A.)

The assumption that interarrival and service times are exponentially distributed implies that,

at times between these event epochs, the system evolves as a continuous time Markov chain. At

these times, the system state can be completely described by the numbers of class-1 and class-2

customers renting units. Furthermore, system control – in the form of acceptance or rejection

of an arriving customer – is exercised only at arrival epochs, and it is sufficient to consider only

the discrete-time process embedded at arrival and departure epochs when determining the form

of effective system controls (see Chapter 11 in Puterman (1994)). That is, the system can be

modeled as a discrete time Markov Decision Process (MDP).

In Appendix B we formally define discounted and average-cost versions of this MDP. For

both cases, we also indicate why there exist stationary, deterministic policies that are optimal.

Therefore, we will only consider policies of this class. Furthermore, rather than directly analyze

the MDPs’ objective functions, we use well-known results concerning the convergence of the

value-iteration procedure to analyze the problems.

2.2 Value Iteration Formulation

We begin our definition of the value iteration procedure by “uniformizing” the system. (See

Lippman (1975) and Serfozo (1979).) Formally, we let Γ = λ1 + λ2 + cµ1 + cµ2 and, for the

discounted problem with a continuous-time discount rate of α, we uniformize the system at rate

α + Γ.

Without loss of generality, we can define the time unit so that α + Γ = 1. Thus, λi ≡ λi
α+Γ

and µi ≡ µi

α+Γ become, respectively, the probability that the next uniformized transition is a

type-i arrival or service completion. Similarly, ai ≡ ai
α+Γ is the expected discounted revenue per

type-i rental until the time of the next uniformized transition.

Note that the uniformization rate includes the discount factor, α. In fact, it is well known

that discounting at rate α is equivalent to including a constant intensity at which the process

terminates, after which no more profits will be earned. Thus, one may think of α as the per-
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period probability that the next transition is a terminating one. (For example, see Section 5.3

in Puterman [12].)

The rate also includes rental completions of “phantom” customers. For example, if the current

system state is (k1, k2), then the probability that one of (c − k1) phantom type-1 customers or

(c − k2) phantom type-2 customers completes a rental is (c − k1)µ1 + (c − k2)µ2. At the end of

such a phantom rental, the observed state remains the same, (k1, k2).

Given these uniformized system parameters, we define the value-iteration operator T as

Tf(k1, k2) = a1k1 + a2k2 + λ1H1[f(k1, k2)] + λ2H2[f(k1, k2)]

+ µ1k1f(k1 − 1, k2) + µ2k2f(k1, k2 − 1)

+ ((µ1 + µ2)c − µ1k1 − µ2k2)f(k1, k2). (1)

The heart of the procedure is carried out via the maximizations

H1[f(k1, k2)] =

{
max[f(k1, k2) − π1, f(k1 + 1, k2)] when k1 + k2 < c,

f(k1, k2) − π1 when k1 + k2 = c,
(2)

and

H2[f(k1, k2)] =

{
max[f(k1, k2) − π2, f(k1, k2 + 1)] when k1 + k2 < c,

f(k1, k2) − π2 when k1 + k2 = c,
(3)

which are specified for any function f defined on the state space S = {(k1, k2) ∈ Z2 | k1 ≥ 0, k2 ≥
0, k1 + k2 ≤ c}.

Let v0(k1, k2) ≡ 0 represent an initial estimate of the optimal expected discounted profit, and

vn represent the estimated value after n iterations of the value-iteration algorithm:

vn(k1, k2) = a1k1 + a2k2 + λ1H1[vn−1(k1, k2)] + λ2H2[vn−1(k1, k2)]

+ µ1k1vn−1(k1 − 1, k2) + µ2k2vn−1(k1, k2 − 1)

+ ((µ1 + µ2)c − µ1k1 − µ2k2)vn−1(k1, k2). (4)

Then the fact that

λ1 + λ2 + (µ1 + µ2)c < 1 (5)

for α > 0 ensures that T is a contraction operator and that {vn} converges to the optimal “value

function”

v(k1, k2) = a1k1 + a2k2 + λ1H1[v(k1, k2)] + λ2H2[v(k1, k2)]

+ µ1k1v(k1 − 1, k2) + µ2k2v(k1, k2 − 1)

+ ((µ1 + µ2)c − µ1k1 − µ2k2)v(k1, k2) , (6)
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whose value equals that of the MDP’s optimal objective function (see Porteus (1982)).

The first two terms on the right-hand side of (6) represent the expected discounted revenue

earned until the next uniformized transition. The following four represent the probabilities and

associated profits-to-go associated with system arrivals and service completions. The last term

represents the probability and profit-to-go of a “phantom” rental completion. (Without loss of

generality, we omit the probability, α, and value, 0, associated with a terminating transition.)

If no rejection penalties are used (π1 = π2 = 0), then (6) directly reduces to the stochastic

knapsack problem, well known from the telecommunications literature (Ross and Tsang (1989)).

Furthermore, for any given rental fees and penalty values (a1, a2, π1, π2), there exists an equivalent

stochastic knapsack formulation with adjusted rental fees: (â1, â2, 0, 0).

Theorem 1

For any problem with rewards and penalties (a1, a2, π1, π2), and optimal value function v(k1, k2),

there exists an alternative formulation with rewards

âi = ai + πi (µi + α) i = 1, 2 , (7)

zero penalties, and optimal value function v̂(k1, k2) for which

v̂(k1, k2) = v(k1, k2) +
(
λ1

π1

α
+ λ2

π2

α

)
+ π1k1 + π2k2. (8)

Furthermore, a policy is optimal for the original problem if and only if it is optimal for the

transformed problem with adjusted revenues and zero penalties.

Therefore, in the analysis that follows we will consider only the transformed problem v̂n(k1, k2)

with adjusted fees (â1, â2). Observe that the adjustment factors are linear in the penalty values

and the service rates.

We note that the paper’s numerical results are performed using an average-cost MDP formu-

lation. (Because they do not depend on the starting state, “average-cost” results are easier than

discounted results to interpret.) In this case, a similar result holds, with

âi = ai + µiπi, i = 1, 2 . (9)

For a formal development of the value iteration procedure and the analogue of Theorem 1 for

the average cost problem, please see Appendix C.
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2.3 Optimality of switching-curve policies

To establish structural properties of the optimal control policy, it is sufficient to show that

certain properties of the functions defined on S are preserved under the action of the value

iteration operator, T (see Porteus (1982)). In particular, we are interested in submodularity. We

say that f(k1, k2) is submodular in k1 and k2 if

f(k1 + 1, k2 + 1) − f(k1, k2 + 1) ≤ f(k1 + 1, k2) − f(k1, k2), k1 + k2 + 2 ≤ c . (10)

Let F be the set of all f defined on S that are submodular in k1 and k2.

The following Theorem states that F is closed under T , so that the value iteration operator

preserves submodularity of the value function. This, in turn, implies that the optimal capacity

allocation policy is of a special form; it is a “switching curve” policy.

Theorem 2 (Altman et al. (2001); Örmeci et al. (2001); Savin (2001))

a) f ∈ F ⇒ Tf ∈ F , and therefore v̂(k1, k2) ∈ F

b) In turn, for each k1 it is optimal to admit customers of class 1 when in state (k1, k2) if

and only if k2 < kmin
2 (k1), where

kmin
2 (k1) =

{
c − k1, if v̂(k1 + 1, c − k1 − 1) > v̂(k1, c − k1 − 1)
min(k2 : 0 ≤ k2 ≤ c − k1 − 1, v̂(k1 + 1, k2) ≤ v̂(k1, k2)), otherwise.

Similarly, for each k2 it is optimal to admit customers of class 2 when in state (k1, k2) if and

only if k1 < kmin
1 (k2), where

kmin
1 (k2) =

{
c − k2, if v̂(c − k2 − 1, k2 + 1) > v̂(c − k2 − 1, k2)
min (k1 : 0 ≤ k1 ≤ c − k2 − 1, v̂(k1, k2 + 1) ≤ v̂(k1, k2)) , otherwise.

Part b) of the Theorem can be interpreted as follows: when a given number of customers of a

particular class is already renting equipment, the “next” customer of the same class is admitted

if and only if the number of customers of the other class present in the system does not exceed

some critical value. This is switching curve policy, characterized by c critical indices for each of

the customer classes.

For the average cost case we can develop analogous results. At every pass of the value iteration

procedure, the operator preserves the submodularity of the estimate of the value function. This

ensures that the results of Theorem 2 apply to the optimal control policy for this case as well.

As an illustration of the optimal capacity allocation policies we consider an example with

â1 = 10, â2 = 5, λ1 = 25, λ2 = 10, µ1 = 5, µ2 = 1, c = 10 for the case when average revenue per
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period is maximized. Figure 1 describes the capacity allocation decisions for class 2 customers

and illustrates the notion of the “switching curve.”

Figure 1: The optimal capacity allocation policy for class 2 customers when the average adjusted
revenue per period is maximized (â1 = 10, â2 = 5, λ1 = 25, λ2 = 10, µ1 = 5, µ2 = 1, c = 10).

One feature of this example worth noting is the following: class 1 customers are always

allowed to rent equipment, i.e., kmin
2 (k1) = c − k1 for all feasible k1 (and so we did not include

the graph of optimal allocation for class 1). In this case, we say that class 1 customers are a

preferred class. While in every numerical example we tested there existed a preferred class, we

have not been able to prove that such a class exists universally. Nevertheless, we have been able

to characterize a great deal about preferred customer classes.

2.4 Preferred classes and the optimality of the complete sharing policy

In this section we investigate the conditions which make a particular customer class a preferred

one. Closely connected to the question about the nature of preferred classes is the issue of

the optimality of the complete sharing policy: complete sharing is optimal when both customer

classes are preferred. The following theorem provides sufficient conditions under which one – or

both – classes may be preferred.

Theorem 3

a) Define λ = λ1 + λ2, µ = min (µ1, µ2) , a = max(â1, â2) and

c∗i = 2 +
λ

µ

(
a

âi

(
µi + α

µi

(
6 + 4

(
λ + 2µ

µi

))
+

µi

µ + α

(
2 +

λ + 2µ
µi + α

))
− 1

)
, i = 1, 2. (11)

Then for systems with capacity c > c∗i ,is always optimal to admit class i customers, i = 1, 2.
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b) In turn, for c ≥ max (c∗1, c
∗
2) the policy of complete sharing of the service fleet is optimal.

Theorem 3 provides a lower bound on the amount of capacity sufficient to ensure that a

particular customer class (or both classes) has unrestricted access to the available equipment.

Of course, for profit-maximizing firms, capacity costs may prevent c from becoming large enough

to optimally operate in the complete-sharing regime. In Section 4 we investigate the interaction

among capacity cost, fleet size, and tactical control in more detail.

We note that for each customer class this lower bound is, as expected, a non-increasing

function of the penalty-adjusted fee paid by customers of this class. We observe that in the

simple case of µ1 = µ2 � α, (11) implies that c∗1, c∗2 � λ/µ. Thus, in the presence of seasonal

demand patterns, these results describe the “off-peak” season when the demand for rentals may

be significantly lower than the available capacity.

Note that Theorem 3 is stronger than a limiting statement. In general, it is not hard to

imagine that as c → +∞, a complete sharing policy will be asymptotically optimal. Theorem

3, however, says that there is a fixed, finite c above which complete sharing is optimal. This is

because, as more and more pieces of equipment are rented, the probability that the next event

is a service completion, rather than an arrival, grows. Thus, the busier the system, the stronger

its drift toward emptying out. For large enough c the expected loss of revenue due to blocking

becomes small when compared to the immediate gain of taking the next customer, no matter

which class she belongs to.

Theorem 3 states that for sufficiently high service capacity the complete sharing policy is

optimal. It is also possible to show that the complete sharing is optimal even in the “peak

season”, when capacity is tight, provided that the customer classes are similar in terms of their

penalty-adjusted rental fees:

Theorem 4

For either class i ∈ {1, 2}, and j 	= i, if

âi

max[µi, µj ]
≥ λj

λj + µi

âj

µj
, (12)

then it is always optimal to admit type i customers.

The statement of Theorem 4 is intuitively appealing: all other parameters of the problem

being fixed, there exists a minimum value of the adjusted rental fee âi which ensures that cus-

tomers of this class should be freely admitted into the system. Complete sharing of service fleet

is optimal when (12) is satisfied for both classes, i.e. when â1 and â2 are “close”.
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Furthermore, recall that âi = ai + πi (µi + α) depends on both the revenue earned when

accepting a class i customer and the penalty paid when rejecting class i demand. That is, a

preferred customer may be profitable to serve, unprofitable not to serve, or some combination

of the two. For example, a high-volume customer, such as a national account, may receive a

favorable rental rate in return for a large stream of rentals. At the same time, contractual

service-level requirements or the customer’s market power may imply a large rejection penalty,

so that class i arrivals become VIP. (For more on the relationship between service-level constraints

and rejection penalties, see Appendix A.)

The sufficient conditions of Theorem 4 are direct analogues to expressions for protection levels

in airline seat allocation models. (For example, see Belobaba (1989).) Both sets of inequalities

can be interpreted in terms of simple marginal analysis. For instance, for i = 1, the right hand

side of (12) describes (a bound on) the expected cost of admitting an arriving class 1 customer.

It is the expected revenue lost from a blocked class 2 customer that might have been served.

Here λ2
λ2+µ1

is the probability that a class 2 arrives before the admitted class 1 finishes service,

and â2
µ2

is the expected revenue lost, given the blocking occurs.

In fact, Örmeci et al. (2001) develops a characterization of preferred classes that mirrors

this “marginal analysis” result. The left hand side of (12) is more complex – and more stringent

– than simply â1
µ1

, however. This difference better reflects the more complex dynamics of our

system.

Observe that there exists a broad range of circumstances under which a class of customers may

be preferred. First, note that if âi > âj and âi/µi ≥ âj/µj , then type-i customers have higher

penalty-adjusted rental rates and higher expected rental durations – and they are preferred.

Second, even though âj/µj ≤ âi/µi, type-j customers may also be preferred, as long as âj is not

too far below âi.

Conversely, it is possible to construct examples in which neither of the sufficient conditions of

Theorem 4 is satisfied. This occurs when âi > âj, µi > µj , and âi/µi < âj/µj . Of course, failure

to satisfy the sufficient conditions does not demonstrate that there exists no preferred class.

Finally, we note that the conditions of Theorem 4 are broadly applicable in that they do

not depend on the service capacity, c, or on the intensity of arrivals of the customer class being

considered for admission. The required parameters are simple to estimate from observable data,

and the results are simple to interpret.
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3 Heuristic Capacity Allocation Policies

In general, it is optimal to base the control of admissions into the service on the numbers of

customers of both classes 1 and 2 that are in the system at the time each control decision is

made. In practice, however, these “vector” policies may be difficult to implement, especially for

rental systems with large capacities.

Admission control decisions that are based on the value of a particular scalar metric derived

from this vector state, rather than the detailed state of the system, may also provide effective (if

suboptimal) controls. One of the most widely used heuristics is the aggregate threshold (trunk

reservation) policy.

The aggregate threshold (AT) policy assumes that there exists a preferred customer class,

and it is the class that offers higher revenue per unit of time. The AT policy admits second-class

customers as long as the total number of customers already in the system does not exceed some

critical threshold value.

Besides being intuitively appealing, aggregate threshold policies have been proven to be

optimal whenever µ1 = µ2 (see Miller (1969)). More generally, we expect them to perform well

in cases when the expected service times for different customer classes are similar.

Figure 2 illustrates the best AT policy, as well as the optimal control policy, for the same

example shown in Figure 1. While the control exercised by the AT policy differs from that of the

optimal policy, the revenues it generates are nearly optimal, falling below optimality by about

0.15%.

Figure 2: The optimal and the best AT policies for class 2 customers (â1 = 10, â2 = 5, λ1 =
25, λ2 = 10, µ1 = 5, µ2 = 1, c = 10).

AT policies, however, do not yield closed-form expressions for system performance measures.
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In general, the task of computing the value of the best aggregate threshold level can be compa-

rable in its complexity to the task of computing the optimal control policy.

Ideally, we would like to have a policy that combines ease of calculation with the robust

performance of AT controls. In the following section we develop such a heuristic. It uses a fluid-

model approximation of the stochastic model to derive closed-form expressions for the aggregate

threshold values.

3.1 Fluid models and scaling

In many practical situations, both the size of rental fleet c and the offered rental intensities

ρ1 = λ1
µ1

and ρ2 = λ2
µ2

are large. Under these conditions a deterministic fluid model may offer

a good approximation to the original control problem. Indeed, Altman et al. (2001) offer a

heuristic derivation of such a fluid model as the limit of a linearly scaled sequence of MDPs, and

they numerically evaluate the resulting Hamilton-Bellman-Jacobi equations.

We follow the approach of Altman et al. (2001), but given the underlying structure of our

problem, in which there are two classes of customers, we can directly analyze the trajectory of

the fluid system. This allows us to develop an aggregate threshold heuristic whose performance is

robust and whose closed-form expressions allow for immediate calculation of policy parameters.

Furthermore, our analysis also allows us to demonstrate the concavity of discounted revenues

(of a “µ-scaled” version of our model), with respect to the fleet size, c, a property that becomes

important in the capacity-sizing analysis of Section 4.

We start by defining the state space and dynamics for fluid approximations (in general).

Time t is continuous, and the state parameters k1(t) and k2(t) of the original model become

continuous state variables, restricted to set Sf = (k1(t) ≥ 0, k2(t) ≥ 0, k1(t) + k2(t) ≤ c). Poisson

customer arrivals are replaced by the deterministic continuous “flow” arrivals with intensities λ1

and λ2. The departure process becomes deterministic as well: for the state (k1(t), k2(t)) it is

represented by an outflow at rate µ1k1(t) + µ2k2(t).

Arrivals are controlled as follows: at time t, a control policy (u1(t), u2(t)) results in the total

customer inflow of u1(t)λ1 +u2(t)λ2. Thus, for the control trajectories (u1(t), u2(t)) (0 ≤ ui(t) ≤
1, i = 1, 2) the Kolmogorov evolution equations for the original system are replaced by

dk1(t)
dt

= u1(t)λ1 − µ1k1(t) and
dk2(t)

dt
= u2(t)λ2 − µ2k2(t), (13)
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with a constraint that reflects the finite size of the service fleet

λ1u1(t) + λ2u2(t) ≤ µ1k1(t) + µ2k2(t), i = 1, 2, whenever k1(t) + k2(t) = c. (14)

The total discounted revenue is then the objective to be maximized. If at t = 0 the system is

in the state (k1, k2), then – for a feasible (under (14)) control policy ∆ which uses (u1(t), u2(t))

– the total discounted revenue is

R̂α(k1, k2,∆) =
∫ ∞

0
(â1k1(t) + â2k2(t)) e−αtdt =

â1k1

µ1 + α
+

â2k2

µ2 + α
+ Rα(k1, k2,∆), (15)

where

Rα(k1, k2,∆) =
∫ ∞

0

(
â1λ1u1(t)
µ1 + α

+
â2λ2u2(t)
µ2 + α

)
e−αtdt, (16)

is the part of the revenue that actually depends on the control policy chosen. In what follows,

the term “revenue” is used to designate Rα(k1, k2,∆).

Our aggregate threshold heuristic is based on a “scaled” version of the fluid model:

Definition 1

A µ-scaled version of the fluid model with parameters λ1, λ2, µ1, and µ2 is the problem with

parameters λs
1 = λ1µ

µ1
, λs

2 = λ2µ
µ2

, µs
1 = µs

2 = µ for µ ∈ [µ1, µ2].

Note that in every µ-scaled version of the fluid model, the departure rates of both customer classes

are equal and λs
1

µs
1

= λ1
µ1

, λs
2

µs
2

= λ2
µ2

. Since the departure rates of both classes are the same, one

can use arguments similar to those in Miller (1969) to show that the optimal admission control

decisions only depend on the total number of customers k(t) = k1(t)+k2(t) in the system. Thus,

given â1 > â2, a control policy which admits as many class 1 customers as possible and limits

the admissions of class 2 customers is optimal for any µ-scaled problem.

3.2 Fluid aggregate threshold heuristic

In the µ-scaled model, system dynamics simplify to

dk(t)
dt

= u1(t)λs
1 + u2(t)λs

2 − µ k(t) . (17)

In turn, a fluid analog of the original, stochastic system’s AT policy admits class-2 customers

if and only if the total system occupancy, k(t), does not exceed a “fluid aggregate threshold”

(FAT), kFAT. When ρ1 ≥ c or ρ1 + ρ2 ≤ c such a FAT policy is a direct analog of AT policies

in the original, stochastic system. For ρ1 < c < ρ1 + ρ2, however, there does not exist a neat

correspondence. Therefore, in the following sections we define and analyze the FAT policy within

each subset of the relevant parameter range.
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3.2.1 The FAT policy when ρ1 ≥ c.

For systems with ρ1 ≥ c class-1 traffic alone is sufficient to ensure complete utilization of the

rental fleet, and a threshold policy can be defined and analyzed in a straightforward fashion. In

this case, the control (u1(t), u2(t)) is defined as follows:

(u1(t), u2(t)) =


(1, 1), for k(t) < kFAT,

(1, 0), for kFAT ≤ k(t) < c,(
cµ
λs
1
, 0
)

, for k(t) = c.

(18)

Note that, once the system hits the boundary and k(t) = c, customers continue to be admitted

at the maximum feasible rate, and the system state remains at the boundary thereafter.

Control (18) then implies that, at time t, the revenue generation rate r(t) = â1λs
1u1(t)+â2λs

2u2(t)
µ+α

for ρ1 ≥ c is given by

r(t | ρ1 ≥ c) =


â1λs

1+â2λs
2

µ+α , for k(t) < kFAT,
â1λs

1
µ+α , for kFAT ≤ k(t) < c,
â1µc
µ+α , for k(t) = c .

(19)

To compute the total discount revenues for a given kFAT, we must also account for the starting

state k ≡ k(0).

When k < kFAT ≤ c, there are three elements to the discounted revenues: those earned as

k(t) approaches kFAT; those earned when kFAT ≤ k(t) ≤ c; and those earned after the boundary

has been hit. We calculate each in turn. Let tFAT = 1
µ ln

(
ρ1+ρ2−k

ρ1+ρ2−kFAT

)
be the time that system

state hits kFAT, so that k(tFAT) = kFAT. Then from (19) we have∫ tFAT

0

(
â1λ

s
1u1(t) + â2λ

s
2u2(t)

µ + α

)
e−αtdt =

(
â1λ

s
1 + â2λ

s
2

µ + α

)
1 − exp (−αtFAT)

α
. (20)

Similarly, let tc = tFAT + 1
µ ln

(
ρ1+ρ2−kFAT

ρ1+ρ2−c

)
be the time at which the system state hits c, so that

k(tc) = c. Then using (19) we have∫ tc

tFAT

(
â1λ

s
1u1(t) + â2λ

s
2u2(t)

µ + α

)
e−αtdt =

(
â1λ

s
1

µ + α

)
exp (−αtFAT) − exp (−αtc)

α
. (21)

Finally, from (19) the revenues earned after reaching the boundary are given by∫ +∞

tc

(
â1λ

s
1u1(t) + â2λ

s
2u2(t)

µ + α

)
e−αtdt =

(
â1µc

µ + α

)
exp (−αtc)

α
. (22)

Collecting the revenue terms (20)-(22), substituting for tFAT and tc, and simplifying, we then

obtain the discounted revenues for the FAT policy when ρ1 ≥ c and k ≤ kFAT < c:

RFAT
α (k, kFAT | ρ1 ≥ c, k ≤ kFAT < c) =

µ

α(α + µ)

(
â1ρ1 + â2ρ2 −

(
ρ1 + ρ2 − kFAT

ρ1 + ρ2 − k

)α
µ

(
â2ρ2 + â1

(ρ1 − c)
α+µ

µ

(ρ1 − kFAT)
α
µ

))
. (23)
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When kFAT ≤ k < c, only type-1 customers are admitted to the system. In this case, in the

above analysis we replace tFAT by 0 and kFAT by k. Then analogous calculations yield

RFAT
α (k, kFAT | ρ1 ≥ c, kFAT ≤ k < c) =

µâ1

α(α + µ)

(
ρ1 − (ρ1 − c)

α+µ
µ

(ρ1 − k)
α
µ

)
. (24)

3.2.2 FAT policy when ρ1 + ρ2 < c

When ρ1 + ρ2 < c, a threshold policy with kFAT < c leads to incomplete utilization of the rental

fleet and may trivially be improved by setting kFAT = c so that all customers are admitted for

service, no matter what the initial state of the system, k(0). Here, the policy is, again, a direct

analog of AT policies in the original, stochastic system. Specifically, the optimal fluid-threshold

of c corresponds to complete sharing, an AT policy with a threshold of c.

Because ρ1 + ρ2 < c, even with no control the boundary k(t) = c is never hit (for t > 0). In

this case, the optimal control is

(u1(t), u2(t)) = (1, 1) ,

for any system state, k(t), and the rate at which revenue is earned is

r(t | ρ1 + ρ2 < c) =
â1λ

s
1 + â2λ

s
2

µ + α
.

In turn, the revenue calculation is

RFAT
α (k, c | ρ1 + ρ2 < c)

=
∫ ∞

0

(
â1λ

s
1u1(t) + â2λ

s
2u2(t)

µ + α

)
e−αtdt =

µ

α(µ + α)
(â1ρ1 + â2ρ2) . (25)

3.2.3 FAT policy when ρ1 < c ≤ ρ1 + ρ2.

Finally, when ρ1 < c ≤ ρ1 + ρ2 there does not appear to exist a fluid analog of a threshold

policy that is both effective and straightforward to implement. On the one hand, a threshold

of kFAT < c results in incomplete utilization of the rental fleet and can be improved upon by

admitting some class-2 customers. On the other, setting kFAT = c and admitting all class-2

customers is infeasible, since the maximum rate at which the system can be cleared is strictly

less than the rate at which customers are arriving: cµ < λs
1 + λs

2.

In this case, a natural interpretation of the threshold rule defines a “soft” threshold when

k(t) = c, one that limits, but does not eliminate, the flow of class-2 customers into the system:

(u1(t), u2(t)) =

{
(1, 1), for k(t) < c,(
1, µc−λs

1
λs
2

)
, for k(t) = c ,

(26)
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so that

r(t | ρ1 < c ≤ ρ1 + ρ2) =

{
â1λs

1+â2λs
2

µ+α , for k(t) < c,
â1λs

1+â2(µc−λs
1)

µ+α , for k(t) = c.
(27)

Thus for ρ1 < c < ρ1 + ρ+ 2, the control generates system behavior and revenue that differ from

those when kFAT < c or kFAT = c, and we denote this soft threshold as kFAT = c−.

Given kFAT = c− and any k ≡ k(0) ∈ [0, c], the system’s revenues can be split into two

components: those earned before reaching c, and those earned after. If tc = 1
µ ln

(
ρ1+ρ2−k
ρ1+ρ2−c

)
is

the time required for the system to reach the boundary, than the first revenue component in (27)

gives us ∫ tc

0

(
â1λ

s
1u1(t) + â2λ

s
2u2(t)

µ + α

)
e−αtdt =

(
â1λ

s
1 + â2λ

s
2

µ + α

)
1 − exp (−αtc)

α
. (28)

After the full capacity is reached, we use the bottom revenue generation rate within (27) to

obtain∫ +∞

tc

(
â1λ

s
1u1(t) + â2λ

s
2u2(t)

µ + α

)
e−αtdt =

(
â1λ

s
1 + â2(µc − λs

1)
µ + α

)
exp (−αtc)

α
. (29)

Adding (28) and (29), and using the expression for tc, we then have

RFAT
α (k | ρ1 < c ≤ ρ1 + ρ2) =

µ

α (α + µ)

(
(â1ρ1 + â2ρ2) − â2

(ρ1 + ρ2 − c)
α
µ

+1

(ρ1 + ρ2 − k)
α
µ

)
. (30)

3.2.4 Optimal Thresholds and Revenues for the FAT Policy

We can use the expressions we have derived for discounted revenues to determine both opti-

mal thresholds and optimal discounted revenues. In both cases, we obtain simple, closed-form

expressions.

First we address the optimal threshold, k∗
FAT. For ρ1 ≥ c, its determination follows from

differentiation of (23) with respect to kFAT:

Theorem 5

The optimal value of the aggregate threshold, k∗
FAT, is independent of the starting state, k, and

is given by

k∗
FAT(c) =



0, for c < ρ1

(
1 −

(
â2
â1

) µ
µ+α

)
,

c − (ρ1 − c)
((

â1
â2

) µ
µ+α − 1

)
, for ρ1

(
1 −

(
â2
â1

) µ
µ+α

)
≤ c ≤ ρ1,

c− for ρ1 < c ≤ ρ1 + ρ2,

c, for ρ1 + ρ1 < c .

(31)
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We observe that, all other problem parameters being fixed, the optimal aggregate threshold

value described by (31) is a non-decreasing function of the fleet size c. In particular, if the

available rental capacity falls below the critical value cmin = ρ1

(
1 −

(
â2
â1

) µ
µ+α

)
, then it is optimal

not to admit any of class 2 customers into service. Conversely, if the rental capacity is sufficiently

large, exceeding the offered load from class 1, then the control on admissions of class 2 customers

should be postponed until the entire rental fleet is utilized. For the rental fleet values in between

these two critical quantities, some form of admission control on class 2 customers is optimal,

even in states in which some rental capacity is available. We observe that the critical index cmin

is a decreasing function of the ratio of penalty-adjusted rental fees â2/â1.

When the time discounting factor α is much smaller than µ, the optimal aggregate threshold

level, described in Theorem 5, is not particularly sensitive to the choice of µ. Even for rental

durations of several months, the service rates (inverse of the expected service time) are about

µ 
 10−3 per day and are at least order of magnitude higher than any realistic values for α (for

example, 30% − 40% annual discounting rate results in α 
 10−4 per day). The same argument

suggests that k∗
FAT is not sensitive to the choice of α. Thus, it is straightforward to use k∗

FAT as

a threshold for both discounted and “average-cost” versions of the problem.

Using expression for the optimal aggregate threshold (31), we obtain

Theorem 6

Given fixed λs
1, λs

2, µ, â1, â2 and α, define cmin = ρ1

(
1 −

(
â2
â1

) µ
µ+α

)
.

a) If the rental system starts in state k, then the optimal total discounted revenue is

RFAT
α (k, k∗

FAT(c)) =

µ
α(α+µ)

(
â1ρ1 − â1

(ρ1−c)
α+µ

µ

(ρ1−k)
α
µ

)
, for c ≤ cmin,

µ
α(α+µ)

â1ρ1 + â2ρ2 − â2

(
ρ2+(ρ1−c)

(
â1
â2

) µ
µ+α

)α+µ
µ

(ρ1+ρ2−k)
α
µ

 , for cmin ≤ c < ρ1, k < k∗
FAT(c),

µ
α(α+µ)

(
â1ρ1 − â1

(ρ1−c)
α+µ

µ

(ρ1−k)
α
µ

)
, for cmin ≤ c < ρ1, k ≥ k∗

FAT(c),

µ
α(α+µ)

(
â1ρ1 + â2ρ2 − â2

(ρ1+ρ2−c)
α+µ

µ

(ρ1+ρ2−k)
α
µ

)
, for ρ1 ≤ c ≤ ρ1 + ρ2

µ
α(α+µ) (â1ρ1 + â2ρ2) , for ρ1 + ρ2 < c .

(32)

b) For fixed values of rental fees, demand and service parameters, RFAT
α (k, k∗

FAT(c)) is an

non-decreasing concave function of the rental fleet size c for every k ≤ c.
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Inspection of (32) shows that RFAT
α (k, k∗

FAT(c)), like k∗
FAT(c), is insensitive to the choice of µ

for α � µ. (Of course, this insensitivity follows from the µ-scaled problem, not necessarily from

the two-class problem in which µ1 	= µ2.) Part b) of Theorem 6 also states that, for any starting

state, FAT revenues are concave in c. Thus, although the concavity of revenue with respect to

fleet size is difficult to demonstrate in the context of the original MDP, it emerges naturally from

the µ-scaled fluid approximation. This concavity property becomes important in the context of

fleet sizing decisions, which we discuss in Section 4.

3.3 Numerical study of the performance of the FAT heuristic

Our motivation for developing the FAT heuristic was that it should perform well and be easy to

implement. Therefore, to test the policy’s performance we have undertaken a series of numerical

studies which compare its average revenues to those obtained using the optimal control and the

complete sharing policy.

In two of the three cases analyzed above, translation of the FAT policy (31) to the context of

a discrete, stochastic system is straightforward. For ρ1 ≥ c we assume µ
µ+α ≈ 1, when necessary,

and then round the resulting k∗
FAT down to the nearest integer. For ρ1 + ρ2 < c, we set the

aggregate system threshold equal to c, effectively implementing a complete sharing policy.

When ρ1 < c < ρ1 + ρ2, however, k∗
FAT = c−, and the inflow of class-2 rentals is partially

controlled. In this case, there is not a clear correspondence in a discrete system: setting the

aggregate threshold to c implements complete sharing, which does not control class-2 customers

at all; conversely, setting the threshold to c− 1 completely stops the flow of class-2 customers at

the boundary.

Because both alternatives of the FAT policy are trivial to compute, we include them both in

our numerical tests. In total, in each numerical experiment, we test four polices: the optimal

policy; FAT with c− set to c (“c− = c”); FAT with c− set to c− 1 (“c− = c − 1”); and complete

sharing (CS). For each set of system parameters, we evaluate the Markov chains induced by the

four policies (in the case of the optimal policy, via value iteration) to calculate long-run average

revenues.

In our numerical tests, we fix the expected rental duration of class-1 rentals at 1/µ1 = 1,

and we run sets of tests in which systematically vary the offered load, θ = ρ1+ρ2

c , as well as the

relative processing rate of class-2 customers, µ2. Within each test set, θ and µ2 also remain fixed,

and we run (10 × θ + 1) experiments in which we systematically vary λ1and λ2.
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CS Policy FAT with c− = c − 1 FAT with c− = c

θ µ2
µ1

= 0.1 µ2
µ1

= 1 µ2
µ1

= 10 µ2
µ1

= 0.1 µ2
µ1

= 1 µ2
µ1

= 10 µ2
µ1

= 0.1 µ2
µ1

= 1 µ2
µ1

= 10

0.5 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

0.8 0.0 (0.0) 0.2 (0.4) 1.5 (2.8) 0.0 (0.0) 0.2 (0.4) 1.5 (2.8) 0.0 (0.0) 0.2 (0.4) 1.5 (2.8)

1.0 0.3 (1.8) 0.9 (1.9) 1.0 (1.9) 0.3 (1.8) 0.9 (1.9) 1.0 (1.9) 0.3 (1.8) 0.9 (1.9) 1.0 (1.9)

1.5 3.1 (6.2) 4.1 (6.5) 6.7 (11.7) 1.2 (4.0) 0.7 (3.2) 0.2 (2.8) 1.9 (5.8) 2.8 (7.3) 4.3 (11.6)

2.0 7.0 (13.1) 6.3 (12.7) 9.6 (16.1) 1.5 (5.9) 0.6 (2.7) 0.3 (2.3) 2.7 (10.9) 3.3 (12.5) 4.7 (16.1)

2.5 9.2 (16.9) 9.6 (16.5) 11.6 (19.6) 1.6 (7.9) 0.7 (4.6) 0.2 (1.9) 3.1 (14.6) 3.5 (16.3) 4.6 (19.6)

3.0 10.9 (20.5) 11.3 (20.1) 12.3 (22.3) 1.6 (9.4) 0.7 (5.3) 0.2 (1.2) 3.5 (17.4) 3.6 (19.1) 4.2 (22.3)

Table 1: Numerical results. Average and maximum (in parentheses) percent shortfall from opti-
mal revenue for 10 θ + 1 test cases. Penalty-adjusted service fees are â1 = 10 and â2 = 5 for
class 1 and 2 customers, respectively. Service rate for class 1 customers is µ1 = 1. Rental fleet
size is c = 10.

More specifically, in each test set we begin with (10×θ+1) equally spaced λ1’s – from λ1 = 0 to

λ1 = µ1c – and then choose λ2 in each case so that λ1
µ1c + λ2

µ2c = θ. We then modify the endpoints –

where either λ1 or λ2 equals zero – so that the arrival rate that would be zero actually equals 0.01.

For example, the set in which θ = 1 and µ2/µ1 = 1, there are 10×θ+1 = 11 test points, and their

(λ1, λ2) values are {(0.01, 9.99), (1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1), (9.99, 0.01)}.

Table 1 shows results for the 21 sets of experiments. In each experiment within a set we

record average penalty-adjusted revenue per period using the optimal policy (R∗), as well as

that obtained from the FAT and CS policies (RFAT and RCS). For each experiment we then

calculate the percentage revenue lost when using the heuristic controls ((1 − RFAT/R∗) × 100%

and (1 − RCS/R∗) × 100%). Finally, within each cell of Table 1 we report two statistics that

summarize the results across all 10× θ +1 experiments: the average of the percentage shortfalls,

as well as the maximum shortfall recorded over all cases (in parentheses).

Table 1’s results show that all three policies perform well at low offered loads. For θ ≤ 1,

none of the three policies controls the inflow of class-2 requests, and all three perform consistently

close to optimality. It is also worth noting that, in these examples, the CS policy is consistently

optimal at θ = 0.5. While the sufficient c∗i ’s of Theorem 3 can be very large – in the thousands

in many of these examples – the offered loads at which the CS policy is actually optimal appear

to be much less extreme.

As θ climbs above 1, the three policies diverge, and the FAT heuristics outperform CS. At

θ = 2 – when the offered load is twice that of the system’s capacity – the FAT with c− = c − 1

still performs quite well, with a worst optimality gap of less than 6% and an average gap in each

table cell that is consistently below 1%. Here, the performance of FAT with c− = c is noticeably

worse, with the maximum gap of 16.1% and an average gap ranging from 2.7% to 4.7%. The
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CS policy’s worst-case performance is also 16.1% below optimal, and its average performance in

each cell trails that of FAT with c− = c, falling 7.0% to 9.6% below optimality.

At very high θs, the FAT heuristic with c− = c − 1 consistently outperforms the other

heuristics. For example, when θ = 3, the average revenue generated by the FAT policy with

c− = c− 1 ranged from 0.2% to 1.9% below optimal, and the worst-case examples of each of the

10θ+1 test sets ranged from 1.2% to 9.4% below optimal. In contrast, average and worst-case

performance of the FAT with c− = c and CS policies were 3 to 4 times worse.

Thus, as the offered load increases, the performance of all three heuristics deteriorates with

respect to optimality. In general, the heuristics are exercising insufficient control of class-2

customers. The relatively strong performance of the FAT heuristic with “c−” set to c−1 reflects

the benefit of reserving the last unit of rental capacity for “preferred” class-1 customers when

the traffic intensity is high.

Figure 3 provides additional detail on the how the setting of c− affects the performance of

FAT heuristic. In the figure, rental capacity is c = 10, service rates are µ1 = 1.0 and µ2 = 0.1,

and penalty-adjusted revenues are â1 = 10 and â2 = 5. The aggregate offered load is fixed at

θ = ρ1+ρ2

c = 2, and the x-axis of the figure’s parametric analysis tracks the fraction of the offered

load due to class-1 customers as it is systematically increased from 0% to 100% of the total: from

ρ1/c = 0, to ρ1/c = 2. The y-axis reports the two FAT policies’ resulting percentage shortfall

from long-run average optimal revenue.

Figure 3: Performance of alternative FAT heuristics with c− interpreted as c (dashed line) and

as c − 1 (solid line). System has c = 10, θ = ρ1+ρ2

c = 2, µ1 = 1, µ2 = 0.1, â1 = 10, and â2 = 5.
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As Fig. 3 indicates, whenever ρ1/c ≥ 1.0, the two policies are identical – with the same

threshold, kFAT ≤ c−1, and the same long-run average revenues. When ρ1/c < 1.0, however, the

two heuristics’ recommendations differ – kFAT = c − 1 versus kFAT = c – and average revenues

differ as well. For moderate ρ1’s, the “c− = c− 1” policy outperforms the “c− = c” one, and for

ρ1 � c, the reverse is true.

It is worth noting that numerical experiments using other θs yield plots whose gross features

are directly analogous to those of Figure 3. Larger values of θ lead to more extreme performance

differences between the c− = c−1 and c− = c variants of the FAT at moderate to very low values

of ρ1.

4 The Effect of Capacity Allocation on Optimal Fleet Size

The allocation policies investigated in Sections 2 and 3 are tactical controls intended to address

instances in which the number of rental units available falls short of the anticipated near-term

demand. The total fleet size c clearly affects the nature of the control. In particular, Theorem 3

shows that, given ample capacity, the optimal control is to give free access to all customers.

It is also natural to ask the converse question. How does the use of tactical control affect the

fleet size the rental company should use? When is the optimal fleet size large enough so that, as

in Theorem 3, complete sharing is (nearly) optimal? More generally, given the ability to change

fleet size, what is the economic value to a firm of exercising tactical controls? In this section we

address both of these questions.

In fact, the effect of capacity allocation on optimal fleet size is not immediately clear. One

might argue that, given any fixed fleet size, optimal rationing increases revenue per unit of time.

This revenue increase, in turn, allows the firm to more profitably sustain higher overall capacity

levels. Alternatively, one might argue that rationing reduces the aggregate arrival rate to the

rental fleet and that, in turn, fewer units of capacity are required to process the arrivals that are

actually served.

We can provide some insight into these trade-offs by directly comparing the optimal fleet

size under active allocation policies to that under complete sharing, which passively allows all

customers access to rental capacity whenever it is available. We formulate the problem of finding

the optimal fleet size as

Π(∆) = max
c

(R (c,∆(c)) − hc) , (33)
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where R(c,∆(c)) is the average revenue per period when operating c units under allocation policy

∆(c) and the capacity cost of $h per unit per period is fixed for all c. Note that, given a fixed

offered load, ρ1 + ρ2, the allocation policy, ∆(c), may vary with c.

We then compare the maximizer of (33) under two regimes. In one we use ∆(c) = CS(c), the

complete sharing policy, for all c. In the other ∆(c) = ∆∗(c), which we define as any family of

allocation policies for which the following attributes hold:

1. For any fixed c, R (c,∆∗(c)) ≥ R (c, CS(c)).

2. There exists a c̃ < ∞ such that for all c ≥ c̃, R (c,∆∗(c)) = R (c,CS(c)).

3. R (c,∆∗(c)) − R (c − 1,∆∗(c − 1)) ≤ R (c − 1,∆∗(c − 1)) − R (c − 2,∆∗(c − 2)).

Condition 1 states that, for any c, ∆∗(c) performs at least as well as complete sharing.

Condition 2 states that there exists a finite fleet size above which complete sharing performs

as well as ∆∗(c). Note that Theorem 3 demonstrates that such a c̃ exists in the context of the

discounted problem.

Condition 3 requires that average revenues per period under ∆∗ are concave in c. Theorem

6 proves that this type of concavity exists for the FAT policy in the context of the discounted

fluid model, and the result also suggests that the condition (roughly) holds for AT policies more

generally. Similarly, though we have not been able to prove that the condition holds for the

optimal policy, it has consistently been present in the numerical tests we have run.

Without loss of generality, we assume that â1 ≥ â2, and we define

h∗
min = R (c̃,∆∗(c̃)) − R (c̃ − 1,∆∗(c̃ − 1)) ,

hCS
min = R (c̃,CS(c̃)) − R (c̃ − 1,CS(c̃ − 1)) ,

h∗
max = R (1,∆∗(1)) − R (0,∆∗(0)) ≥ max

(
â1ρ1

1 + ρ1
,
â1ρ1 + â2ρ2

1 + ρ1 + ρ2

)
, and

hCS
max = R (1,CS(1)) − R (0,CS(0)) =

â1ρ1 + â2ρ2

1 + ρ1 + ρ2
. (34)

Observe that h∗
min and hCS

min are the marginal values of adding the last piece of equipment, as

it becomes optimal to take all arrivals, first-come first-served. Similarly, h∗
max and hCS

max are the

marginal values of the first piece of equipment under the two schemes. It is not difficult to see

that h∗
min ≤ hCS

min ≤ hCS
max ≤ h∗

max .

The following result uses these relationships to parameterize how the fleet size under capacity

allocation policies differs from that under complete sharing:
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Theorem 7

Let c∗(h) and cCS(h) be the maximizers of (33) under ∆∗ and CS.

a) If h < h∗
min then c∗(h) = cCS(h) ≥ c̃.

b) If h ∈ [h∗
min, h

CS
min] then c∗(h) ≤ cCS(h).

c) If h ∈ [hCS
min, h

CS
max] then c∗(h) may be smaller, equal to, or larger than cCS(h).

d) If h ∈ [hCS
max, h

∗
max] then c∗(h) ≥ cCS(h).

e) If h > h∗
max then c∗(h) = cCS(h) = 0.

We note that the results of Theorem 7 can be extended to the multi-class case, as well as to

multi-period capacity sizing models with more complex cost structures. We briefly discuss the

latter in the discussion at the end of the paper.

Thus, the optimal fleet size using capacity rationing may be either higher or lower than that

under the complete sharing policy. The theorem shows that the relationship between the two

depends fundamentally on the unit cost of capacity.

Parts (a) and (e) of the theorem show that optimal capacity levels for CS and ∆∗ coincide for

very high and very low values of holding costs. If holding costs are extremely high, the expected

revenues cannot justify the acquisition of even a single unit of capacity, even under rationing. On

the other hand, if the holding costs are extremely low, then Theorem 3 implies that the optimal

rationing policy is complete sharing, and in this case the profit maximizing capacity levels of the

two policies again coincide.

Parts (b) and (d) show ranges for which the c∗(h) unambiguously dominates and is dominated

by cCS(h). Part (b) shows that for low values of h the lower marginal value to the rationing

policy of adding the “last” unit of capacity (before complete sharing becomes optimal) drives

c∗(h) below cCS(h). Part (d) shows that for high values of h the benefit of being able to reject

lower revenue customers allows c∗(h) to climb above cCS(h).

Finally, part (c) defines a set of intermediate values of h for which c∗(h) can be higher, the

same as, or lower than cCS(h). The ordering of the relationships reflects the proximity of h to

the boundaries, hCS
min and hCS

max.

While the relationships described in the theorem are not strict inequalities, it is not difficult

to develop examples in which c∗(h) differs from cCS(h). Figure 4 illustrates an example in which
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the ∆∗(c) used for each c is the optimal policy for that c. Given the problem parameters c̃ = 30,

h∗
max = 9.09, hCS

max = 7.14, h∗
min = 0.65, and hCS

min = 0.63. Between hCS
max and h∗

min, optimal fleet

sizes for the two policies are equal at h = 6.5.

Figure 4: Optimal capacity size as a function of the holding cost under the optimal and complete
sharing policies. Fixed problem parameters: â1 = 10, â2 = 5, λ1 = λ2 = 10, and µ1 = µ2 = 1.
Capacity cost per unit of time, h, is systematically varied.

We now turn to the economic benefit of capacity rationing. Table 2 presents a set of 25

numerical experiments that compare the performance of the optimal (OPT) and complete sharing

(CS) policy. For each example, the table reports the optimal fleet size, profit per period, and

(percent) profit margin for both policies. In all of the experiments, the aggregate arrival rate

(λ1 + λ2), service rates (µ1 and µ2), and penalty-adjusted revenues (â1 and â2) remain fixed.

Then the fraction of the offered load due to class-1 customers ( λ1
λ1+λ2

) and the holding cost per

unit of time per unit of capacity (h) are systematically varied. The table’s results reflect three

phenomena that are worth noting.

The first is the effect of increased holding costs on fleet sizes, already displayed in Figure

4. At lower relative holding costs, capacity rationing reduces the optimal fleet size relative to

that for complete sharing a company. As one looks down each pair of columns, however, one

sees that rationing allows a company to maintain larger capacity than would be optimal under

complete sharing. Interestingly, in looking across each row, one sees that for very small and very

large fractions of class-1 customers, optimal capacities from the two policies are the same. In the

former case, this is due to the optimality of complete sharing; the policies themselves coincide.

In the latter case, however, the optimal policy reserves capacity for class-1 customers. While

complete sharing is suboptimal, the blocking of class-1 customers due to class-2 admissions is
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λ1
λ1+λ2

= 0.1 λ1
λ1+λ2

= 0.3 λ1
λ1+λ2

= 0.5 λ1
λ1+λ2

= 0.7 λ1
λ1+λ2

= 0.9
h
â2

OPT CS OPT CS OPT CS OPT CS OPT CS

Fleet 0.5 11 11 12 13 12 13 13 13 14 14
Sizes 0.7 9 9 9 10 10 11 11 12 12 12

0.9 5 5 6 8 8 9 9 10 11 11
1.1 0 0 3 4 6 7 8 9 9 10
1.3 0 0 2 0 4 3 6 6 8 8

Profits 0.5 18.52 18.52 27.22 27.02 36.40 36.17 45.66 45.33 54.71 54.60
0.7 8.47 8.47 16.27 16.05 24.98 24.26 33.46 32.82 41.94 41.62
0.9 1.48 1.48 8.31 7.00 15.59 14.01 23.01 21.76 30.50 29.99
1.1 - - 3.46 0.97 8.71 5.82 14.50 12.28 20.50 19.61
1.3 - - 1.12 - 4.15 0.60 7.90 4.82 12.03 10.86

Profit 0.5 67.3% 67.3% 90.7% 83.1% 121.3% 111.3% 140.5% 139.5% 156.3% 156.0%
Margin 0.7 26.9% 26.9% 51.7% 45.9% 71.4% 63.0% 86.9% 78.1% 99.9% 99.1%

0.9 6.6% 6.6% 30.8% 19.4% 43.3% 34.6% 56.8% 48.4% 61.6% 60.6%
1.1 - - 21.0% 4.4% 26.4% 15.1% 33.0% 24.8% 41.4% 35.7%
1.3 - - 8.6% - 16.0% 3.1% 20.3% 12.4% 23.1% 20.9%

Table 2: Numerical results. Optimal fleet sizes, profit per unit time, and profit margins for the
optimal (OPT) and complete sharing (CS) policies. In all test cases, the following parameters
are fixed: â1 = 10, â2 = 5, µ1 = µ2 = 1, λ1 + λ2 = 10. The relative value of the holding cost, h

â2
,

and the fraction of demand due to the ‘preferred’ class, λ1
λ1+λ2

, are systematically varied.

a rare enough event that it does not significantly affect optimal fleet size (or, for that matter,

profits).

The second is the fact that, when capacity costs are relatively low, complete sharing appears to

be fairly robust with respect to average profit per unit of time. In particular, when h/â2 = 0.5, the

profit advantage derived from capacity rationing is minimal, less than 1%, and when h/â2 = 0.7,

the advantage is no more than 3%. Here, increased costs, due to additional capacity, are made

up for by increased revenues, due to additional class-2 traffic. Rather, it is when capacity costs

are high – as high as or higher than class-2 penalty-adjusted revenues – that the profit increase

due to restrictions on class-2 access become significant.

The last effect is that, conversely, capacity rationing provides for a more consistently signif-

icant increase in profit margins over complete sharing. For example, even when capacity costs

are half that of penalty-adjusted class-2 revenues, margins may increase by as much as 9%. As

capacity costs approach and exceed class-2 fees, the benefit that follows the ability to limit class-2

customers increases far more sharply.

Of dollar profit and profit margin, which is more indicative of the value of rationing to the

rental company? For capital-constrained companies, we would argue it is the latter. Indeed,

in many rental business, capacity is a significant capital investment, and measures, such as
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return on assets, that track the (dollar) efficiency of asset utilization become critical measures

of performance for managers and for investors. In our numerical experiments, h – the cost per

unit of capacity per unit of time – reflects interest expenses of capacity investment (as well as

maintenance expenses). In dividing profit by h · c (or, equivalently for us, by c) profit margin

accounts for this investment in capacity.

Thus, absolute profits lost, due to lack of control, may not be large. Nevertheless, the ability

to ration capacity and, in turn, to adjust the size of a rental fleet can, at the same time, lead

to a significant improvement in the economic utilization of the assets employed. The complete

sharing policy maximizes physical – rather than economic – utilization of assets. When complete

sharing is optimal, the two notions naturally coincide. When it is not optimal, however, it leads

to lower economic productivity.

5 Discussion

Our formulation of the rental capacity allocation problem captures some essential features that

the more traditional yield management literature does not address. In it, we explicitly represent

the fact that customers arrive at random, use pieces of equipment for rental periods of uncertain

duration, and then return the equipment to be used again.

Using dynamic programming techniques, we are able to characterize “switching curve” poli-

cies as being optimal. We also demonstrate that there are two sets of conditions under which a

customer class should be labeled a “VIP” and have unrestricted access to the available service

capacity: one in which there is ample excess capacity and another in which the penalty-adjusted

revenue and service rate parameters are favorable. In particular, we find that customers may be

assigned the VIP tag even when their rental fees are lower than those of the other class.

When applied to both customer classes, the sufficient conditions for VIP status become

conditions in which “complete sharing” policies are optimal. These policies are of interest, since

service companies often use equipment utilization as a criterion for measuring system performance

and may be reluctant to turn away customers. Theorem 4 implies that the goals of maximizing

utilization and of maximizing revenues are properly aligned, even in the peak season, if the

penalty-adjusted rental fees and service rates of the different customer classes are similar.

We also analyze a “fluid aggregate threshold” (FAT) policy that is based on a fluid approxi-

mation of the original policy. Our numerical tests show that the performance of the FAT heuristic
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is close to that of the optimal admission policies over a broad range of operating regimes. In

addition to providing a simple and effective capacity allocation policy, the fluid model results in

revenue which is a concave function of the rental fleet size. This concavity is essential for the

analysis of related capacity sizing decisions and for an understanding of how capacity allocation

schemes affect them.

We then demonstrate that, given this concavity property, the optimal fleet size using capacity

rationing may be either higher or lower than that under the complete sharing policy. As capacity

costs grow, the optimal fleet size under rationing grows relative to that under complete sharing.

Finally, we show that, appropriate adjustment of the fleet size under complete sharing may

produce nearly optimal profits. Even in this case, however, the economic productivity of assets

can suffer significantly. When complete sharing is not optimal, its maximization of physical

utilization leads to economic underutilization of resources.

Thus, the formulation and results represent a promising step in furthering the understanding

of the management of rental systems. Of course, more work remains to be done. There are

several aspects of the allocation problem itself that merit additional analysis.

First, as we noted in Section 2, rental companies may have prior estimates of the expected

duration of the rental period, and this information would be of value when deciding whether

to admit a customer to the system. At the same time, the use of this information will also

significantly complicate the analysis. For example, it will likely require expanding the state

space of the system from numbers of pieces of equipment in use to estimates of the duration of

the remaining rental period for every piece of equipment.

Similarly, our description of rental dynamics does not include the treatment of reservation

systems, which may provide additional information about rental demand. Again, the inclusion of

reservation systems should help to improve system performance, and it will also add an additional

layer of complexity to the analysis.

One may also consider price, in addition to capacity allocation, as a mechanism for control. In

particular, an interesting case exists in which one class of customers represents national accounts,

whose prices are fixed by long-term contracts, while the other represents “rack rate” customers

for whom price may be used as a short-term control. Then the rental company may use capacity

allocation to maintain service levels for national-account clients at the same time it uses prices

to maximize profits from rack-rate customers.
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The relationship between capacity allocation and fleet sizing can also be explored over a longer

time horizon. For example, consider a longer-term, discrete-time problem in which each period

represents a season. At the start of each season, rental capacity is adjusted by buying and selling

units, and during the season tactical controls, such as the ones developed in this paper, are used

to manage short-term capacity shortages. Then if the season’s expected revenues are concave

in the fleet size, it is not difficult to show that the optimal fleet-sizing policy is a “buy-up-to

/ sell-down-to” policy that is an analogue of “order-up-to” policies in the inventory literature

(Heyman and Sobel (1984)).

Finally, we recall that our formulation uses lump-sum penalty costs to capture the long-term

cost of denying access to customers. An alternative would be to impose service-level constraints

on the blocking probabilities of arrivals. While we believe that the current policies should be

“nearly” feasible, particularly for large systems, a thorough analysis of the relationship between

the two formulations would be of broad interest.
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Appendix

A Relationship Between Penalties and Service-Level Constraints

It may be the case that some part or all of the rejection penalties, (π1, π2), represents money that

the rental company pays to customers that it cannot accommodate. Our primary motivation for

their inclusion, however, is as “good will” costs.

An alternative approach would be to impose service-level constraints on the blocking prob-

abilities of the two classes. If one dualizes the constraints then the optimal solution to the

Lagrangian relaxation yields an objective value that equals that of the original, constrained

problem. In this case, lump-sum rejection costs naturally emerge as the problem’s Lagrange

multipliers, and they capture the value of the service-level constraints (see Chapters 3 and 4 in

Altman (1999)).

Well-known results concerning this type of constrained MDP show that the inclusion of

service-level constraints causes the optimal policy to randomize its actions in at most two of

its states, one for each constraint. Thus, the form of the optimal policy changes from that

for an analogous unconstrained problem, for which deterministic policies are optimal (see Ross

(1989) and Altman (1999)). In turn, because the optimal policy for the Lagrangian relaxation

is deterministic, it may not be feasible for the constrained problem.

At the same time, there is a common class of problems in which an optimal policy for the

Lagrangian relaxation can be shown to be feasible for the original problem with constraints. In

particular, when only one of the constraints is binding – for example, when one of the classes

represents “casual” or “rack rate” customers whose long-run arrival rate is not affected by in-

cidences of blocking – the optimal policy for the constrained problem randomizes between two

stationary, deterministic policies, each of which is optimal for the Lagrangian relaxation. One of

the policies is feasible for the constrained problem but is not tight on the service-level constraint.

The other is not feasible but obtains a higher objective value. By randomizing between these

two policies, the optimal constrained policy improves upon the feasible policy and eliminates the

slack on the service-level constraint.

Furthermore, the actions of these two policies are identical in all states but one (see Sennott

(2001)). Thus, when only one of the original service-level constraints is binding, optimal policies

for the relaxation are known to be nearly identical to optimal policies with constraints. When

both constraints are binding, the theory breaks down, however.
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Therefore, rather than defining service-level constraints, we define analogous dual prices, the

lump-sum rejection penalties $π1 and $π2. This formulation allows us to maintain the analytical

tractability of the problem. Furthermore, in Section 2.2 we demonstrate that the relaxation can

be further simplified by directly embedding Lagrange multipliers within the rental revenues, $a1

and $a2.

B Formal Definition of the MDPs

We formally define the discounted and average-cost formulations of the allocation problem’s

MDP. In both cases, we also sketch out why there exist stationary, deterministic policies that

are optimal.

We define the system state {Ŝt | t = 0, 1, . . .} that evolves at these event epochs as Ŝt =

(k̂t
1, k̂

t
2, ĝ

t
1, ĝ

t
2). Here, k̂t

i represents the number of type-i customers currently renting equipment.

Clearly 0 ≤ k̂t
1, k̂

t
2 ≤ c, and 0 ≤ k̂t

1 + k̂t
2 ≤ c as well. We let ĝt

i ∈ {0, 1} equal 1 when the event is

an arrival of a class-i customer and 0 otherwise.

Note that Ŝt represents the before action state of the system at event epoch t. Alternatively,

we may record the system state at transition t after action, after the system manager has decided

to accept or reject an arriving customer, if one exists. We define this after action state space

St = (kt
1, k

t
2) to be the numbers of units being rented after the tth decision epoch.

To analyze the discrete-time process embedded at event epochs, we uniformize the underlying

continuous time Markov chain to evolve at constant rate Γ = λ1 + λ2 + (µ1 + µ2)c. Then if the

after-action state at epoch t is St = (kt
1, k

t
2), we have the following set of transition probabilities

Ŝt+1 =



(kt
1, k

t
2, 1, 0) w.p. λ1 / Γ,

(kt
1, k

t
2, 0, 1) w.p. λ2 / Γ,

(kt
1 − 1, kt

2, 0, 0) w.p. µ1k
t
1 / Γ,

(kt
1, k

t
2 − 1, 0, 0) w.p. µ2k

t
2 / Γ,

(kt
1, k

t
2, 0, 0) w.p.

(
µ1

(
c − kt

1

)
+ µ2

(
c − kt

2

))
/ Γ .

(35)

Note that departures that drive the system occupancy to be negative occur with probability zero

and that the last transition probability reflects uniformization at rate Γ.

Let ut ∈ {0, 1} denote the action taken at event epoch t. If the action is to accept an arriving

customer, then ut = 1, and if the action is to reject an arriving customer, then ut = 0. At event

epochs that represent customer departures we let ut = 0 as well.

A policy ∆ is a set of decision rules used by the system controller when choosing whether to

accept or reject an arrival at each epoch t. Define the history of the system up to event epoch

32



t to be the Ht = {(Ŝ0, u0), . . . , (Ŝt−1, ut−1) ∪ Ŝt}, the record of all states and actions taken up

through event epoch t. A non-anticipating policy ∆ is a rule which chooses an action ut, possibly

at random, using only the information available in Ht. We consider only such non-anticipating

rules, and we denote the action taken at t under ∆ as u∆
t . Finally, a stationary policy considers

only the current state Ŝt when determining ut.

Our analysis of capacity allocation rules primarily considers the maximization of expected

discounted profits over an infinite horizon, and the formal results of this section are stated in

this context. Let α > 0 be the continuous-time discount rate. We can always select time units

so that Γ + α = 1. Then, we seek a non-anticipating policy ∆ to maximize

lim
t→∞

t∑
s=0

αs E∆[a1 (k̂s
1 + ĝs

1u
∆
s ) + a2(k̂s

2 + ĝs
2u

∆
s ) − (π1 ĝs

1 + π2ĝ
s
2) (1 − u∆

s )]. (36)

The fact that the state and action spaces are finite, one-period rewards and costs are station-

ary and bounded, and α < 1 implies that the maximum in (36) is achieved and that there exists

a stationary, deterministic policy that is optimal (see Chapter 6 in Puterman (1994)). In turn,

this implies that we may restrict our attention to this class of policies.

We also consider the maximization of average profit per period, often referred to as the

“average cost” criterion. In particular, numerical comparisons are more transparent in this

context, since average profits per period do not depend on an initial state, and all of the numerical

results in the paper are stated in the context of average-cost problems.

In the average-cost formulation, we define the time scale so that Γ = λ1 + λ2 + cµ1 + cµ2 = 1

and the expected one-period revenue earned from renting a unit to a class-i customer is ai ≡ ai
Γ .

In turn, we seek a policy ∆ to maximize

lim
t→∞

1
t

t∑
s=0

E∆

[
a1 (k̂s

1 + ĝs
1u

∆
s ) + a2 (k̂2

s + ĝs
2u

∆
s ) − (π1 ĝs

1 + π2ĝ
s
2) (1 − u∆

s )
]
. (37)

In this case we can also restrict our analysis to that of stationary, deterministic policies.

Note that, for any stationary policy, the before-action state (0, 0, 0, 0) is positive recurrent.

Furthermore, under any such policy, state (0, 0, 0, 0) is accessible from all other states. Together,

these facts imply that, for any stationary policy, each state that is accessible from (0, 0, 0, 0) is

positive recurrent and each state that is not is transient. Thus, each stationary, deterministic

policy induces a single class of recurrent states, so that the resulting problem is unichain. In

addition, the system is aperiodic, since the last transition of (35) implies that with positive

probability the system remains in the current state after one transition. Together with the
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finiteness of the state and action spaces and the stationary, bounded nature of costs and rewards,

these conditions imply that the maximum in (37) is achieved and that there exists a stationary,

deterministic policy that is optimal (see Chapter 8 in Puterman (1994)).

C Proofs

Proof of Theorem 1

Proof Let v̂(k1, k2) be a solution to the adjusted value function:

v̂(k1, k2) = â1k1 + â2k2 + λ1Ĥ1[v(k1, k2)] + λ2Ĥ2[v(k1, k2)]

+ µ1k1v̂(k1 − 1, k2) + µ2k2v̂(k1, k2 − 1)

+ ((µ1 + µ2)c − µ1k1 − µ2k2)v̂(k1, k2) (38)

where âi = ai + πi (µi + α), as in (7).

Ĥ1[f(k1, k2)] =

{
max[f(k1, k2), f(k1 + 1, k2)] when k1 + k2 < c,

f(k1, k2) when k1 + k2 = c,
(39)

Ĥ2[f(k1, k2)] =

{
max[f(k1, k2), f(k1, k2 + 1)] when k1 + k2 < c,

f(k1, k2) when k1 + k2 = c.
(40)

Then using (8) to substitute for v(k1, k2) we observe that

H1[v(k1, k2)] = H1[v̂(k1, k2) −
(
λ1

π1

α
+ λ2

π2

α

)
− π1k1 − π2k2]

= −
(
λ1

π1

α
+ λ2

π2

α

)
− π1(k1 + 1) − π2k2 + Ĥ1[v̂(k1, k2)]. (41)

Similarly,

H2[v(k1, k2)] = −
(
λ1

π1

α
+ λ2

π2

α

)
− π1k1 − π2(k2 + 1) + Ĥ2[v̂(k1, k2)]. (42)

Again, using (8) to substitute into the optimality equation for v(k1, k2), we obtain

v̂(k1, k2) −
(
λ1

π1

α
+ λ2

π2

α

)
− π1k1 − π2k2

= a1k1 + a2k2 + λ1Ĥ1[v̂(k1, k2)] + λ2Ĥ2[v̂(k1, k2)]

+λ1

(
−
(
λ1

π1

α
+ λ2

π2

α

)
− π1(k1 + 1) − π2k2

)
+λ2

(
−
(
λ1

π1

α
+ λ2

π2

α

)
− π1k1 − π2(k2 + 1)

)
+µ1k1(v̂(k1 − 1, k2) −

(
λ1

π1

α
+ λ2

π2

α

)
− π1(k1 − 1) − π2k2)

+µ2k2(v̂(k1, k2 − 1) −
(
λ1

π1

α
+ λ2

π2

α

)
− π1k1 − π2(k2 − 1))
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+((µ1 + µ2)c − µ1k1 − µ2k2)(v̂(k1, k2) −
(
λ1

π1

α
+ λ2

π2

α

)
− π1k1 − π2k2)

= a1k1 + a2k2 + λ1Ĥ1[v̂(k1, k2)] + λ2Ĥ2[v̂(k1, k2)]

+µ1k1v̂(k1 − 1, k2) + µ2k2v̂(k1, k2 − 1)

+((µ1 + µ2)c − µ1k1 − µ2k2)v̂(k1, k2)

−(λ1 + λ2 + (µ1 + µ2)c)
(
λ1

π1

α
+ λ2

π2

α
+ π1k1 + π2k2

)
−λ1π1 − λ2π2 + µ1π1k1 + µ2π2k2, (43)

Transferring − (λ1
π1
α + λ2

π2
α

)− π1k1 − π2k2 to the right-hand side of (43), we obtain

v̂(k1, k2) = a1k1 + a2k2 + λ1Ĥ1[v̂(k1, k2)] + λ2Ĥ2[v̂(k1, k2)]

+µ1k1v̂(k1 − 1, k2) + µ2k2v̂(k1, k2 − 1)

+((µ1 + µ2)c − µ1k1 − µ2k2)v̂(k1, k2)

(1 − (λ1 + λ2 + (µ1 + µ2)c))
(
λ1

π1

α
+ λ2

π2

α
+ π1k1 + π2k2

)
−λ1π1 − λ2π2 + µ1π1k1 + µ2π2k2

= a1k1 + a2k2 + λ1Ĥ1[v̂(k1, k2)] + λ2Ĥ2[v̂(k1, k2)]

+µ1k1v̂(k1 − 1, k2) + µ2k2v̂(k1, k2 − 1)

+((µ1 + µ2)c − µ1k1 − µ2k2)v̂(k1, k2)

+α
(
λ1

π1

α
+ λ2

π2

α
+ π1k1 + π2k2

)
−λ1π1 − λ2π2 + µ1π1k1 + µ2π2k2 . (44)

Algebraic manipulation of (44) then yields

v̂(k1, k2) = (a1 + π1 (α + µ1)) k1 + (a2 + π2 (α + µ2)) k2

+λ1Ĥ1[v̂(k1, k2)] + λ2Ĥ2[v̂(k1, k2)]

+µ1k1v̂(k1 − 1, k2) + µ2k2v̂(k1, k2 − 1) + ((µ1 + µ2)c − µ1k1 − µ2k2)v̂(k1, k2). (45)

Finally, a comparison of (2)–(3) (with f ≡ v) with (39)–(40) (with f ≡ v̂) shows that a policy

optimally accepts a customer in the original problem if and only if it accepts a customer in the

transformed problem. �
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The Adjusted Value Iteration Formulation for the Average Cost Case

First, we define value iteration for the average cost case. As in (37) we select time units so that

Γ = λ1 + λ2 + (µ1 + µ2)c = 1. Here, the result of the nth trial of the procedure can be expressed

as

Vn(k1, k2) = a1k1 + a2k2 + λ1H1[Vn−1(k1, k2)] + λ2H2[Vn−1(k1, k2)]

+ µ1k1Vn−1(k1 − 1, k2) + µ2k2Vn−1(k1, k2 − 1)

+ ((µ1 + µ2)c − µ1k1 − µ2k2)Vn−1(k1, k2) , (46)

where the Hi’s are defined as in (2)–(3).

In this case, the same type of convergence to a value function holds, though both the necessary

conditions and the statement of the result are a bit more delicate. In particular, we note that

the system has finite state and action spaces and is unichain and aperiodic. Therefore, there

exists an optimal policy that is stationary and deterministic, with average revenue per period V

(the “gain”). Furthermore, limn→∞ Vn(k1, k2)/n = V (see Chapter 8 in Puterman (1994)).

Similarly, we prove the average-cost analogue of Theorem 1 by analyzing the value iteration

operator, rather than the value function. Formally, we state the result as follows:

Theorem A1

For any average cost problem, with (a1, a2, π1, π2) for which limn→∞ Vn(k1, k2)/n = V , there

exists an alternative formulation, with rewards âi = ai + µiπi, i = 1, 2 and zero penalties, for

which limn→∞ V̂n(k1, k2)/n = V̂ and

V̂ = V + λ1π1 + λ2π2. (47)

Proof We let the adjusted value iteration operator T be

V̂n+1(k1, k2) = â1k1 + â2k2 + λ1Ĥ1[V̂n(k1, k2)] + λ2Ĥ2[V̂n(k1, k2)]

+ µ1k1V̂n(k1 − 1, k2) + µ2k2V̂n(k1, k2 − 1)

+ ((µ1 + µ2)c − µ1k1 − µ2k2)V̂n(k1, k2) , (48)

where âi = ai + πi µi is the expected adjusted class i revenue per period, and

Ĥ1[f(k1, k2)] =

{
max[f(k1, k2), f(k1 + 1, k2)] when k1 + k2 < c,

f(k1, k2) when k1 + k2 = c,
(49)

Ĥ2[f(k1, k2)] =

{
max[f(k1, k2), f(k1, k2 + 1)] when k1 + k2 < c,

f(k1, k2) when k1 + k2 = c.
(50)
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Given V0 = 0, and V̂0 ≡ π1k1 + π2k2, we will prove by induction that the relationship

V̂n(k1, k2) = Vn(k1, k2) + n(λ1π1 + λ2π2) + π1k1 + π2k2 (51)

holds for all n. Then Vn + n(λ1π1 + λ2π2) ≤ V̂n ≤ Vn + n(λ1π1 + λ2π2) + µ1π1c + µ2π2c for all

n, and limn→∞ V̂n/n = V + λ1π1 + λ2π2.

Using (51) to substitute for Vn(k1, k2) in H1, we observe that

H1[Vn(k1, k2)] = H1[V̂n(k1, k2) − (n(λ1π1 + λ2π2) + π1k1 + π2k2)]

= −n(λ1π1 + λ2π2) − π1(k1 + 1) − π2k2 + Ĥ1[V̂n(k1, k2)]. (52)

Similarly,

H2[Vn(k1, k2)] = −n(λ1π1 + λ2π2) − π1k1 − π2(k2 + 1) + Ĥ2[V̂n(k1, k2)]. (53)

Substituting for âi, Ĥi, and V̂n on the right hand side of (48) we have

V̂n+1(k1, k2) = (a1 + µ1π1)k1 + (a2 + µ2π2)k2

+λ1H1[Vn(k1, k2) + n(λ1π1 + λ2π2) + π1(k1 + 1) + π2k2]

+λ2H2[Vn(k1, k2) + n(λ1π1 + λ2π2) + π1k1 + π2(k2 + 1)]

+µ1k1(Vn(k1 − 1, k2) + n(λ1π1 + λ2π2) + π1(k1 − 1) + π2k2)

+µ2k2(Vn(k1, k2 − 1) + n(λ1π1 + λ2π2) + π1k1 + π2(k2 − 1))

+((µ1 + µ2)c − µ1k1 − µ2k2)(Vn(k1, k2) + n(λ1π1 + λ2π2) + π1k1 + π2k2).

Then collecting terms and using λ1 + λ2 + (µ1 + µ2)c = 1 we obtain

V̂n+1(k1, k2) = Vn+1(k1, k2) + (n + 1)(λ1π1 + λ2π2) + π1k1 + π2k2. (54)

�

Proof of Theorem 2

Please see Altman et al. (1998) or Savin (2001).

Proof of Theorem 3

Proof Below we prove (11) for i = 1, since the proof for i = 2 is trivially obtained from it.

By contradiction suppose that at time 0 there are k1 + k2 = c − 1 customers in the system and

that the optimal policy, π, rejects an arriving class-1 customer with service time t̃0 ∼ exp(µ1).
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Consider an alternative policy, π′, that accepts the class-1 customer at time 0. Furthermore,

suppose that π′ follows π as closely as possible thereafter: whenever π rejects a customer, so

does π′; whenever π accepts a customer, π′ attempts to accept the customer as well. The only

case in which π′ rejects a customer that π accepts is the one in which blocking occurs. This

blocking is due, ultimately, to the acceptance of the class-1 customer at time 0. Below we show

that the expected discounted revenue is greater under π′ than under π as long as the service

capacity is large enough.

Consider the possible states of the system under policies π and π′ on (0, t̃0), just before the

service completion of the customer accepted under π′ at time 0 (We will sometimes use π and π′

to denote systems themselves.) For simplicity, below we denote the number of class i customers

in the π system, kπ
i (t|(k1, k2)), as kπ

i (t), and the number of class i customers in the π
′
system,

kπ
′

i (t|(k1 + 1, k2)), as kπ
′

i (t). The following Lemma shows that for any t ∈ (0, t̃0), two systems

will vary by at most one customer.

Lemma A1

For all t ∈ (0, t̃0) all but one of the customers are identical in the two systems. i) The customer

admitted at time 0 to π′ does not appear in π. ii) There may be one fewer customer in π than

π′, or there may be one customer in π – of type 1 or type 2 – that does not appear in π′. iii)

This implies, 0 ≤ kπ′
1 (t) − kπ

1 (t) ≤ 1 and 0 ≤ kπ
2 (t) − kπ′

2 (t) ≤ 1.

Proof We prove the lemma by induction. At time 0 π′ has one more customer, and this customer

is of type 1. The other c − 1 customers are identical in both systems.

Suppose first that all but one customer are identical and an arrival occurs. If both systems

accept or reject the arrival, then the systems still differ by at most one. If system π accepts the

arrival but system π′ does not, then there must have been c− 1 identical customers, and system

π′ was full because of the customer it accepted at time 0. Again the induction holds, this time

with c−1 identical customers and different customers occupying the cth slot in the two systems.

Next, suppose all but one customer in both systems are identical and a departure occurs. If

one of the customers common to the two systems has left, the induction holds. Otherwise the

departure may be a customer that was admitted to system π but blocked from π′, in which case

all but the one remain identical, and π′ is left with one more customer than π, the customer

admitted at time 0. Finally, the departure may be that of the type-1 customer admitted to π′

at time zero, in which case the induction assumption holds and the stopping time t̃0 is attained.

�
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It follows directly from the lemma that at t̃0, just after the customer admitted to π′ at time

0 has left, the systems will be in one of the following three states:

A0 =
{

kπ
1 (t̃0) = kπ′

1 (t̃0); kπ
2 (t̃0) = kπ′

2 (t̃0)
}

, (55)

A1 =
{

kπ
1 (t̃0) = kπ′

1 (t̃0) + 1; kπ
2 (t̃0) = kπ′

2 (t̃0)
}

, or (56)

A2 =
{

kπ
1 (t̃0) = kπ′

1 (t̃0); kπ
2 (t̃0) = kπ′

2 (t̃0) + 1
}

, (57)

where P{A0} + P{A1} + P{A2} = 1. We can also define the “blocking event” to be

B =
{
a customer arrival on (0, t̃0) is blocked under π′ but not π

}
.

After t̃0 policy π′ can exactly match the actions of π. Given event A1 or A2 occurs, at t̃0

π will have one more customer in the system than π′, however. Given A1 occurs, we define a

second random time, t̃1, to be the remaining service time, after t̃0, of the extra type-1 customer in

system π. Here t̃1 ∼ exp(µ1), independent of t̃0. Similarly, given A2 occurs, we define t̃2 to be the

remaining service time, after t̃0, of the extra type-2 customer in system π, where t̃2 ∼ exp(µ2).

Thus, for each of the three events, we can define a random time t̃ at which the system under

π′ couples with that under π: given A0 they couple at t̃ = t̃0; given A1 they couple at t̃ = t̃0 + t̃1;

and given A2 they couple at t̃ = t̃0 + t̃2. Furthermore, in each of these cases we can use Lemma

C to bound the difference in discounted revenues earned by the two systems until the coupling

time. When there is no blocking in either system, policy π′ earns a1 units of revenue more per

unit of time until t̃0, due to the extra type 1 customer taken at time 0. When there is blocking

in π′, however, system π may earn â1 or â2 units per unit of time until t̃, depending on the type

of customer blocked. A simple upper bound on the revenue lost would be a = max(â1, â2) for t̃

units of time. To prove the Theorem, we will use the bounds and stopping times to show that for

systems with large service capacities the expected discounted revenue until coupling is greater

under π′ than under π.

Let ∆+ be the extra discounted revenue earned on (0, t̃] in π′ from accepting the class-1

customer at time 0, let ∆− be the discounted revenue foregone in π′ due to blocking that might

occur, and let ∆ = ∆+ − ∆− be the difference. Then,

E[∆] = E[∆+] − E[∆ ]

=

+∞∫
0

t∫
0

â1e
−αsdsdFt̃0

−
+∞∫
0

P
{
B|t̃0 = t

}
E
[
∆ |B ∩ t̃0 = t

]
dFt̃0

−
+∞∫
0

P
{
B|t̃0 = t

}
E
[
∆ |B ∩ t̃0 = t

]
dFt̃0
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≥
+∞∫
0

t∫
0

â1e
−αsdsdFt̃0

−
+∞∫
0

P
{
B|t̃0 = t

} t∫
0

ae−αsds + e−αt

+∞∫
0

a

α

(
1 − e−αs

)
µe−µsds

 dFt̃0
(58)

where
{
B|t̃0 = t

}
conditions event B on event t̃0 = t, µ = min (µ1, µ2), the first term in the

square brackets is an upper bound on the revenue lost on (0, t̃0), and the second term in the

square brackets is an upper bound on the revenue lost on (t̃0, t). In (58) we have also used the

fact that no revenue is lost if blocking event B does not occur. Substituting µ1e
−µ1tdt for dFt̃0

and integrating, we have

E[∆] =
â1

µ1 + α
−

+∞∫
0

P
{
B|t̃0 = t

}[ a

α

(
1 − e−αt

)
+ e−αt a

µ + α

]
µ1e

−µ1tdt. (59)

We plan to show that

+∞∫
0

e−(µ1+α)tP
{
B|t̃0 = t

}
dt ≤ λ1 + λ2

(λ1 + λ2 + (c − 2)µ) (µ1 + α)

(
2 +

λ + 2µ
µ1 + α

)
, (60)

and

+∞∫
0

(
1 − e−αt

)
e−µ1tP

{
B|t̃0 = t

}
dt ≤ (λ1 + λ2)α

(λ1 + λ2 + (c − 2)µ) µ2
1

(
6 + 4

(
λ + 2µ

µ1

))
(61)

or equivalently, that E[∆] ≥ 0 for c ≥ c∗1.

We cannot directly characterize P{B}, since we do not know the details of how π and π′

behave on (0, t̃0). Instead, we will develop an upper bound on P{B} by analyzing a simpler,

well-defined system for which we prove that the probability of blocking is greater than that of

the original system. We derive the system in two steps.

First, consider the probability of blocking when the complete sharing (CS) policy, which

accepts all arriving customers as long as there is available capacity, and let PCS{B} be the

probability of blocking on (0, t̃0) when complete sharing policy is used. Then

Lemma A2

PCS{B|t̃0 = t} ≥ P{B|t̃0 = t}.
Proof We use a sample-path argument. Consider any sample path in which t̃0 = t and in which

blocking occurs on (0, t) under π
′
. In particular, consider the moment that blocking first occurs

under π
′
. If blocking has already occurred under CS, then we are done. If blocking has not

40



yet occurred, then under CS the system has at least as many customers as in π
′
, since CS has

rejected none of the customers accepted under π′, and blocking also occurs under CS at this

time. Therefore, whenever there is blocking under π′, there will be blocking under CS as well.

�

Second, we note that by conditioning on t̃0 = t, we effectively reduce the size of the system

under consideration by one unit of capacity. That is,

PCS{B|t̃0 = t} = PCS{∃ blocking on (0, t) in a (c − 1) server system that is full at time 0}.

Because this probability is still difficult to analyze, we consider the following three-state Markov

chain that is designed to allow us to characterize an upper bound on the probability:

M =

 1 − p p 0
1 − p 0 p

0 0 1

 ,

where λ = λ1 + λ2 and p = λ/(λ + (c − 2)µ̄).

Let TCS be the first time blocking occurs in the (c− 1)-server system with complete sharing

and let TM be the first time the Markov chain M passes to state 3, given it starts in state 2.

Then

Lemma A3

TCS ≥st TM , which implies PCS{B|t̃0 = t} ≤ PM{TM ≤ t}.

Proof (Sketch) First, compare the original (c−1)-server system under CS to another CS system

in which all customers in service have mean service time µ̄ = min(µ1, µ2), rather than the original

µ1 and µ2. By coupling the two sequences of service times, we can show that the probability

that the system with the slow services (both with mean µ̄) will experience blocking by time t is

greater than the probability that the original system does.

Next, consider the CS system with slow services, µ̄. The system starts out with c−1 customers

in service and experiences blocking on the first transition with probability λ/(λ+(c−1)µ̄). If the

next event is a departure, however, there are c − 2 customers in the system, and the analogous

probability that the next event is an arrival (though not blocking) is higher, λ/(λ + (c − 2)µ̄).

Then, observe that the Markov chain M is constructed to mimic the c − 1 server system

as follows. 1) State 1 corresponds to c − 2 customers in service, state 2 corresponds to c − 1

customers in service, and a transition to state 3 corresponds to the blocking event in the (c− 1)-

server system. 2) The rate at which arrivals occur is the same in both M and the (c − 1)-server
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system. 3) The rate at which service completions occurs is less in system M than that in the

(c − 1)-server system. 4) The “occupancy” in M never drops below c − 2, which corresponds to

state 1.

Thus, if we start system M in state 2, then its first passage time to state 3 is constructed

to be stochastically smaller than the time to blocking in system CS with service rates µ̄. In

particular, the sequence of arrivals that triggers the blocking event in CS can be coupled to that

in M. Similarly, the number of departures from system M up to the blocking event in CS is no

more than that in the CS system. The result follows. �

For Markov chain M we obtain

Lemma A4

+∞∫
0

e−(µ1+α)tPM (TM ≤ t)dt ≤ λ1 + λ2

(λ1 + λ2 + (c − 2)µ) (µ1 + α)

(
2 +

λ + 2µ
µ1 + α

)
, (62)

and

+∞∫
0

(
1 − e−αt

)
e−µ1tPM (TM ≤ t)dt ≤ (λ1 + λ2) α

(λ1 + λ2 + (c − 2)µ) µ2
1

(
6 + 4

(
λ + 2µ

µ1

))
. (63)

Proof From the definition of TM we obtain

PM

(
TM ≤ t

)
=

+∞∑
k=1

qkFE (k,Λ, t) , (64)

where FE (k,Λ, t) = 1 − exp (−Λt)
k−1∑
i=0

(Λt)i

i! is the degree-k Erlang CDF, Λ = λ1 + λ2 + cµ, and

qk is the probability that the Markov chain M reaches state 3 in exactly k steps starting in state

2. We note that q1 = p, q2 = 0 and

qk = (1 − p)pbk−2, k ≥ 3, (65)

where bk is the probability that M reaches state 2 in exactly k steps starting in state 1. This

last probability satisfies the recursion

bk = (1 − p)bk−1 + p(1 − p)bk−2, k ≥ 3, (66)

with initial conditions b1 = p, b2 = p(1 − p). From (66) we obtain

A =
+∞∑
k=1

bkQ
k = pQ + p(1 − p)Q2 + (1 − p)Q (A − pQ) + p(1 − p)Q2A, (67)

42



for any Q < 1, so that
+∞∑
k=1

bkQ
k =

pQ

1 − (1 − p)(1 + pQ)Q
. (68)

Then, from (64), (65) and (68), we obtain for any ω > 0

+∞∫
0

e−ωtPM

(
TM ≤ t

)
dt

=
1
ω

+∞∑
k=1

qk

(
Λ

ω + Λ

)k

=
1
ω

(
p

(
Λ

ω + Λ

)
+ p(1 − p)

(
Λ

ω + Λ

)2 +∞∑
k=1

bk

(
Λ

ω + Λ

)k
)

=
p

ω

(
Q (ω) +

p(1 − p)Q3(ω)
1 − Q(ω) + pQ(ω) − p(1 − p)Q2(ω)

)
≤ p

ω

(
1 +

p

1 − Q(ω)

)
≤ p

ω

(
1 +

λ

ω

(
λ + µ(c − 2) + ω + 2µ

λ + µ(c − 2)

))
≤ p

ω

(
2 +

λ + 2µ
ω

)
. (69)

where Q(ω) = Λ/ (ω + Λ) , Λ = λ1 + λ2 + cµ. Finally,

+∞∫
0

(
e−µ1t − e(α+µ1)t

)
PM

(
TM ≤ t

)
dt ≤ α

+∞∫
0

te−µ1tPM

(
TM ≤ t

)
dt

= −α
d

dω

[
p

ω

(
Q (ω) +

p(1 − p)Q3(ω)
1 − Q(ω) + pQ(ω) − p(1 − p)Q2(ω)

)]
ω=µ1

= α

(
p

ω2

(
Q (ω) +

p(1 − p)Q3(ω)
1 − Q(ω) + pQ(ω) − p(1 − p)Q2(ω)

))
ω=µ1

+α

(
pQ (ω)

ω2

(
1 − Q (ω) +

p(1 − p)Q2(ω)(1 − Q (ω))(3 − Q (ω) (2 + pQ (ω))(1 − p))
(1 − Q(ω) + pQ(ω) − p(1 − p)Q2(ω))2

))
ω=µ1

≤ α
p

µ2
1

(
2 + 4

(
p

1 − Q(µ1)

))
≤ α

p

µ2
1

(
6 + 4

(
λ + 2µ

µ1

))
. (70)

�

Now, (60) and (61) are obtained by combining results of Lemmas 2, 3 and 4. This completes

the theorem’s proof. �

Proof of Theorem 4

Proof Here we will prove (12) for i = 1, since the proof for i = 2 can be obtained from it by

the simple exchange of indices. Consider the class of functions F ∗ defined on the set S such that

each member of this class f(k1, k2) is a submodular function satisfying the following relations:

f(k1, k2) − f(k1 + 1, k2) ≤ 0, k1 + k2 = c − 1, (71)

f(k1 + 1, k2) − f(k1, k2) ≤ â1

µ1
, k1 + k2 + 1 ≤ c, and (72)
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f(k1, k2 + 1) − f(k1 + 1, k2) ≤ â1

λ2
, k1 + k2 + 1 ≤ c. (73)

Because of the submodularity of f(k1, k2), the (71) is, in fact, valid for every pair (k1, k2) ∈ S.

Below we show that F ∗ is closed under T if the condition (12) is satisfied. Indeed, using the

expected discounted profit optimality equation for the k1 + k2 + 1 = c, we obtain

Tf(k1, k2) − Tf(k1 + 1, k2)

= −â1 + λ2(max[f(k1, k2), f(k1, k2 + 1)] − f(k1 + 1, k2))

+µ1k1(f(k1 − 1, k2) − f(k1, k2))

+µ2k2(f(k1, k2 − 1) − f(k1 + 1, k2 − 1))

+((µ1 + µ2)c − µ1(k1 + 1) − µ2k2)(f(k1, k2) − f(k1 + 1, k2))

≤ 0. (74)

Also, for any (k1, k2) ∈ S such that k1 + k2 + 1 < c, we have

Tf(k1 + 1, k2) − Tf(k1, k2)

= a1 + λ1(f(k1 + 2, k2) − f(k1 + 1, k2))

+ λ2(max[f(k1 + 1, k2), f(k1 + 1, k2 + 1)] − max[f(k1, k2), f(k1, k2 + 1)])

+ µ1k1(f(k1, k2) − f(k1 − 1, k2)) + µ2k2(f(k1 + 1, k2 − 1) − f(k1, k2 − 1))

+ ((µ1 + µ2)c − µ1(k1 + 1) − µ2k2)(f(k1 + 1, k2) − f(k1, k2))

≤ (λ1 + λ2 + (µ1 + µ2)c)
a1

µ1
≤ a1

µ1
. (75)

For the case k1 + k2 + 1 = c we obtain

Tf(k1 + 1, k2) − Tf(k1, k2)

= â1 + λ2(f(k1 + 1, k2) − max[f(k1, k2), f(k1, k2 + 1)])

+ µ1k1(f(k1, k2) − f(k1 − 1, k2))

+ µ2k2(f(k1 + 1, k2 − 1) − f(k1, k2 − 1))

+ ((µ1 + µ2)c − µ1(k1 + 1) − µ2k2)(f(k1 + 1, k2) − f(k1, k2))

≤ â1

µ1
. (76)

Further, considering Tf(k1, k2 + 1) − Tf(k1 + 1, k2) for the case k1 + k2 + 1 < c, we obtain

Tf(k1, k2 + 1) − Tf(k1 + 1, k2)

= â2 − â1 + λ1(f(k1 + 1, k2 + 1) − f(k1 + 2, k2))
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+ λ2(max[f(k1, k2 + 1), f(k1, k2 + 2)] − max[f(k1 + 1, k2), f(k1 + 1, k2 + 1)])

+ µ1k1(f(k1 − 1, k2 + 1) − f(k1, k2)) + µ2k2(f(k1, k2) − f(k1 + 1, k2 − 1))

+ ((µ1 + µ2)c − µ1k1 − µ2(k2 + 1))(f(k1, k2 + 1) − f(k1 + 1, k2))

+ (µ1 − µ2)(f(k1 + 1, k2) − f(k1, k2)). (77)

Now, if µ1 ≤ µ2, then

Tf(k1, k2 + 1) − Tf(k1 + 1, k2) ≤ â2 − â1 + (λ1 + λ2 + (µ1 + µ2)c)
â1

λ2
− µ2

â1

λ2

≤ â1

λ2
(78)

whenever

â1 ≥ λ2

λ2 + µ1
â2. (79)

If, on the other hand, µ1 > µ2, then

Tf(k1, k2 + 1) − Tf(k1 + 1, k2) ≤ â2 − â1 + (λ1 + λ2 + (µ1 + µ2)c)
â1

λ2
− µ2

â1

λ2
+ (µ1 − µ2)

â1

µ1

≤ â1

λ2
(80)

for
â1

µ1
≥ λ2

λ2 + µ1

â2

µ2
. (81)

The proof for the case when k1 + k2 + 1 = c is easily obtained from the above arguments. �

Proof of Theorem 5

Proof Here we consider the only non-trivial case of case of ρ1 ≥ c, so that kFAT < c is optimal.

Suppose the initial state is k = 0. Then differentiating (23) with respect to kFAT, we obtain

∂RFAT
α (k,kFAT)

∂kFAT

=
(ρ1 + ρ2 − kFAT)

α
µ
−1

(µ + α) (ρ1 + ρ2 − k)
α
µ

×
((

â2ρ2 +
â1 (ρ1 − c)

α
µ

+1

(ρ1 − kFAT)
α
µ

)
− (ρ1 + ρ2 − kFAT)

(
â1 (ρ1 − c)

α
µ

+1

(ρ1 − kFAT)
α
µ

+1

))

=
ρ2 (ρ1 + ρ2 − kFAT)

α
µ
−1

(µ + α) (ρ1 + ρ2 − k)
α
µ

(
â2 − â1

(
ρ1 − c

ρ1 − kFAT

)α+µ
µ

)
. (82)

In turn, solving the first order conditions, ∂RFAT
α (k,kFAT)

∂kFAT
= 0, for kFAT, provides

k∗ = c − (ρ1 − c)

((
â1

â2

) µ
µ+α

− 1

)
.
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Furthermore, from (82) it can be seen that ∂RFAT
α (k,kFAT)

∂kFAT
< 0 for all kFAT > k∗ and ∂RFAT

α (k,kFAT)
∂kFAT

>

0 for all kFAT < k∗. Thus for k = 0 the optimal threshold k∗
FAT = k∗ if and only if ρ1

(
1 −

(
â2
â1

) µ
µ+α

)
≤

c < ρ1. For c below this range, k∗
FAT = 0 is optimal.

We also claim that the optimal threshold, k∗
FAT, is independent of the starting state, k, so

that the argument above, stated for k = 0, holds for all k ∈ [0, c]. Fist, note that the expression

for k∗ is independent of k. Thus, for all k < k∗
FAT the differentiation by which k∗ was obtained

is well-defined and k∗
FAT is optimal.

For k ≥ k∗
FAT we prove the claim by contradiction. Suppose there exists a starting state

k1 > k∗
FAT with optimal threshold k1

FAT 	= k∗
FAT. If k1

FAT < k1 then, without loss of generality, we

can redefine k1
FAT to be k∗

FAT, since from (24) we see that whenever k > kFAT discounted revenues

do not depend on kFAT. Otherwise k1 < k1
FAT and, given the optimality of k1

FAT, the following non-

threshold policy earns higher discounted revenues than the optimal k∗
FAT threshold policy: when

k(t) ∈ [0, k∗
FAT], accept both class-1 and class-2 customers; then when k(t) ∈ [k∗

FAT, k1], accept

only class-1 customers; then when k(t) ∈ [k1, k
1
FAT], accept both class-1 and class-2 customers;

then when k(t) ∈ [k1
FAT, c], accept only class-1 customers; finally, after k(t) hits c, process

according to the FAT policy. But if this non-threshold policy earns higher discounted revenues

than a FAT policy with threshold k∗
FAT, then a FAT policy with threshold k∗

FAT + (k1
FAT − k1)

would also earn higher discounted revenues, and this contradicts the optimality of the k∗
FAT policy

for k = 0. �

Proof of Theorem 6

Proof Here we focus on proving part b), since (32) is obtained by substituting (31) into (23) and

(24). Consider 0 < k ≤ cmin. By taking first and second derivatives of (32) with respect to c for

any k ≤ c, we observe that the optimal fluid revenue function is an increasing piecewise concave

function of c; that is, it is concave in each of the intervals k ≤ c < cmin, cmin ≤ c < ρ1, ρ1 ≤ c <

ρ1 + ρ2, ρ1 + ρ2 ≤ c. In addition, ∂RFAT
α (k,k∗

FAT(c))
∂c (c = cmin − 0) ≥ ∂RFAT

α (k,k∗
FAT(c))

∂c (c = cmin + 0),
∂RFAT

α (k,k∗
FAT(c))

∂c (c = ρ1 − 0) ≥ ∂RFAT
α (k,k∗

FAT(c))
∂c (c = ρ1 + 0), ∂RFAT

α (k,k∗
FAT(c))

∂c (c = ρ1 + ρ2 − 0)

≥ ∂RFAT
α (k,k∗

FAT(c))
∂c (c = ρ1 + ρ2 + 0), which ensures overall concavity. In exactly the same way,

monotonicity and concavity of (32) with respect to c ≥ k is demonstrated for cmin < k ≤ ρ1,

ρ1 < k ≤ ρ1 + ρ2, ρ1 + ρ2 ≤ k. �

Proof of Theorem 7
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Proof It is well known that, under complete sharing, the average revenue per period is increasing

and concave in the fleet size (see Messerli (1972)). Then statements a) and e) follow from the

definitions of h∗
max and h∗

min and from concavity of R (c,∆∗(c)) and R (c,CS(c)) . From the

definitions of hCS
max and h∗

max it follows that for the values of h between h∗
max and hCS

max we

have c∗(h) ≥ 1 > cCS (h) = 0, and d) follows. Similarly, for h∗
min < h < hCS

min, we have

cCS (h) ≥ c̃ > c̃ − 1 ≥ c∗(h), and we obtain b). Finally, c) follows from b) and d) and the

piecewise continuity of cCS(h) and c∗(h). �
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