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Abstract

Classical oligopoly theory has strong analytical foundations but is weak in capturing
the operating environment of oligopolists and the available knowledge they have for
making decisions, areas in which the management literature is relevant. We use agent-
based models to simulate the impact on firm profitability of policies that oligopolists
can pursue when setting production levels. We develop an approach to analyzing
simulation results that makes use of nonparametric statistical tests, taking advantage
of the large amounts of data generated by simulations, and avoiding the assumption of
normality that does not necessarily hold. Our results show that in a quantity game,
a simple exploration rule, which we call Probe and Adjust, can find either the
Cournot equilibrium or the monopoly solution depending on the measure of success
chosen by the firms. These results shed light on how tacit collusion can develop within
an oligopoly.
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1 Introduction

Research on decision making in the firm includes two streams—from the economics lit-
erature and from the management literature—having different goals. The management
literature looks at how managers should learn about their circumstances and make deci-
sions. The purpose of this literature is to advise and to train managers who have to make
decisions in the course of running an organization. When looking at interactions of firms
in a market, economists generally look at the firm as an aggregate and posit a theory
of full information, ideally rational decision making in which the firm actually maximizes
profits. The stylized abstractions of economists have been useful for developing theories
of the competitiveness of markets and of public policy remedies for market power, a clas-
sic concern of microeconomics. The managerial literature deals with making the myriad
decisions managers face in organizations. There is less emphasis on the public policy con-
cerns of market power and more on decisions that improve profits and observations on the
behaviors of participants. Thus, these two streams of literature address complementary
issues, yet treat the same entity, the firm in its environment.

Models of market power standardly make one of two assumptions. Either firms offer
prices and the firm with the lowest price gets the whole market, the Bertrand game, or
firms produce quantities under the assumption that the other firms do not adjust their
quantities in response to the firm’s decisions, the Cournot game. In Kagel and Roth
[Kagel and Roth, 1995] and elsewhere, one finds comments to the effect that the behaviors
of the agents in these economic models are not verifiable and often run counter to the
literature in cognitive psychology and behavioral economics. Keunne [Kuenne, 1998] points
out that firms in an oligopoly form a community with community-based norms, values, and
hierarchies.

The managerial literature addresses the issue of making decisions without full informa-
tion because it is aimed at practical application and in practice the information available
is always incomplete. A better theory of the firm and markets would take into account
how managers make decisions and what they know and when they know it. Managers
know less about the parameters for functions such as demand curves and probability dis-
tributions but know more about the other players in their market. By using people in
simulated markets it is possible to observe the decision making and outcomes that get
beyond simple abstractions of the decisions managers face. Selten, Mitzkewitz, and Uhlich
[Selten et al., 1997] simulate outcomes in a duopoly market by having students program
agents. They give students both full information on the supply and demand parameters,
and software in which the students can embed their strategies to play against other stu-
dents in duopoly games. Key to the clever design of the experiments is the revealing and
testing of the decision rules used by the players. The authors find that smart agents can
obtain higher profits than those in the classic Cournot equilibrium.

Here are several of their observations on the results. One strategy of the players is to try
to forecast the actions of the other agents. This strategy is close to positing what is known
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as the conjectural variation of the other player in response to the first player’s actions
[Kuenne, 1998] and performs badly in the experiments. In the Cournot game the conjec-
tural variation is presumed to be zero. The best performing strategies are the oligopoly
equivalent of Tit for Tat, the winning strategy in Axelrod’s tournament with Prisoner’s
Dilemma [Axelrod, 1984]. The agents in the Selten et al. experiment punished excessive
competitiveness and rewarded cooperation, moving the solution from the non-cooperative
(defecting) Cournot equilibrium towards the monopoly outcome, which is the Pareto out-
come. In essence they are reinforcing a community norm of cooperation without explicitly
setting production quotas. (We note that the Pareto outcome of mutual cooperation also
results from repeated play in the Prisoner’s Dilemma game with the Tit for Tat strategy
and that under general conditions of mutual learning the Pareto outcome is often achieved
or approximated [Kimbrough and Lu, 2005].)

The behavior of the players in the Selten et al. experiments is strikingly at odds with
what would be predicted by the classic Cournot theory. The Selten et al. players learned to
collude tacitly and thereby achieved rewards in excess of those available from the Cournot
outcomes. They did this, however, using explicitly-given knowledge of the market (e.g.,
the demand curve) that is in fact not generally available in practice.

The foregoing forcefully raises the question of whether there are effective procedures,
using realistically available information, that may be actually used by managers in oligopoly
settings and that produce the Cournot-improving outcomes found in Selten’s experiments.
This is the question we explore in what follows. We begin with an overview of the current
literature.

2 Overview of the Literature

See Tesfatsion and Judd [Tesfatsion and Judd, 2006] for a collection of articles on the cur-
rent status of and issues in agent-based modeling in economics. Tesfatsion [Tesfatsion, 2006]
surveys the applications of “agent-based computational economics” (ACE) to specific in-
dustries and supply chains. Brenner [Brenner, 1999b, Brenner, 2006] summarizes the
literature on learning both from cognitive psychology and artificial intelligence. Bren-
ner [Brenner, 1999a] and Bruun [Bruun, 2006] are useful collections of relevant papers.
Duffy [Duffy, 2006] looks at what intelligence is necessary for an agent, describing zero-
intelligence agents, reinforcement learning and evolutionary algorithms. Pyka and Fagiolo
[Pyka and Fagiolo, 2005] provide an overview of the methodological issues in agent-based
economic models.

To deal with the institutional features of electricity markets, researchers have developed
agent-based models to simulate the auctions they use. See Marks [Marks, 2006], Bunn and
Oliviera [Bunn and Oliveira, 2003], and Entrikan and Wan [Entriken and Wan, 2005].

The rational expectations literature—discussing situations in which economic agents
try to forecast the future—relates to the issues raised by Selten, Mitzkewitz, and Uhlich
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[Selten et al., 1997]. Hommes et al. [Hommes et al., 2003] experiment with human subjects
to forecast the clearing price for a market. The forecasted price sets the production quantity
and the actual price results from the production level, resulting in the cobweb model. They
show that people can find the market-clearing price and the stability of the market depends
on the price sensitivity of supply.

Arifovic [Arifovic, 1994] shows that in an oligopoly that is modeled with a popula-
tion of agents that evolves using a genetic algorithm, the solution converges to the com-
petitive solution, not the Cournot equilibrium. Vriend [Vriend, 2000] shows that with
social learning, where each player sees the returns of every player and can adopt the
strategies of the successful players, the solution converges to the competitive equilibrium,
and with individual learning, where the player sees only its returns, the solution con-
verges to the Cournot equilibrium. Riechman [Riechmann, 2002] finds it necessary to have
more complicated agents to find a solution different from the competitive solution even
in an oligopolistic market. Waltman and Kaymak [Waltman and Kaymak, 2005] use Q-
learning and find that under certain circumstances the agents move to solutions between
the monopoly and Cournot equilibria. Arifovic and Maschek [Arifovic and Maschek, 2005]
find that Vriend’s results are parameter-driven and not robust. Alkemade, La Poutr, and
Amman [Alkemade et al., 2006] show that modeling the agents as chromosomes (the agent
has an assigned strategy) in a genetic algorithm instead of modeling the strategies as chro-
mosomes (the agent can choose its strategy) can lead to premature convergence in a genetic
algorithm. The parameter settings determine whether the Cournot or the competitive so-
lution is reached when agents are strategies and the Cournot solution is reached when the
agents can choose the strategy. Note that the definitions used in this article are different
from the definitions used here in that we define a policy as a choice of measure of success
and the price and quantity are operating decisions.

Huck et al. [Huck et al., 2003] have a model of agent behavior that, like ours, requires
little intelligence or information about its environment. They find that when agents make
simultaneous moves of the same step size in a duopoly, the players maximize total social
welfare and divide the market equally even though they see only their own welfare. This
is because either both players see either the marginal revenue function of the monopolist
when both players move in the same direction or the trial price as the marginal revenue,
as if the market were in perfect competition, when the players move in opposite directions.
The effect of these perceptions is a sequence of steps that to leads to equalizing produc-
tion levels and movements in the same direction. The players converge to the monopoly
solution because that is the marginal revenue function they see. Huck et al. also model
the players moving sequentially and monitoring the effects of their own actions, resulting
in the Nash/Cournot equilibrium. In this case the players follow the tâtonnement process
used to explicate the Cournot equilibrium.

Barr and Saraceno [Barr and Saraceno, 2005] use neural networks to represent learning
agents that learn about the environment rather than learn the optimal production level.
They show that the agents find the Cournot equilibrium. Agents with simple neural net-
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works find the equilibrium faster but more complicated networks develop a better demand
representation and find a more accurate solution in the long run.

Marks and Midgley [Marks and Midgley, 2006] build a simulation of a market with an
oligopoly of coffee manufacturers and a retailer between the producers and customers that
decides which coffee promotion to accept. They then simulate the outcomes of retailer
strategies that range from zero information to sophisticated measurement of the market
and find that a zero information retailer does quite well. This is an example of bringing
the management literature into the economic models of markets. Midgley, Marks, and
Cooper [Midgley et al., 1997] used an earlier version of this model to look at breeding
profit maximizing retailers to examine the frequency of promoting coffee specials. Their
work uses point-of-sale information for comparing the model retailer to the actual retailer.
Sallans et al. [Sallans et al., 2003] breed firms that compete on production positioning in
a market and the firms have to finance their businesses using agents modeled as financial
firms. They are able to replicate many phenomena observed in retail markets.

The business literature on decision making, especially the practitioner books and ar-
ticles, is relevant to agent-based modeling because the economic models should represent
business decisions in the way business people make them. Since the focus of oligopoly
models is on setting the price and/or quantity, the most relevant literature is in marketing
on pricing and capacity expansion. We focus on pricing here as the same issues arise in
setting quantities.

We use Nagle and Hogan [Nagle and Hogan, 2006] to illustrate current managerial
thought on best practices in pricing products (whether by setting prices or quantities).
The main point this book makes is that a firm should first do everything to avoid a focus
on price, for example creating product distinctions that are real or only in the minds of
customers. The discussion of demand elasticities in this book covers 3 pages in a 30 page
chapter with the main discussion about customer perception of product attributes of the
firm’s product versus the attributes of competitor products and social norms. That is, the
discussion focuses on the position of the product relative to the competition with the goal
of segmenting the market to customers who are willing to pay a premium for the product’s
perceived attributes.

The entire approach advocated presumes—and is incomprehensible without assuming—
that customers are not fully rational and/or do not have full information. The following
passages are representative.

Unless customers actually recognize the value that you create and ask them to
pay for, value-based pricing will fail. . . .

The reality is that customers generally don’t know the true value delivered by
items they buy unless the seller informs them. That leaves the most differenti-
ated and highest quality supplier vulnerable to competitors who offer a lower-
price alternative possessing only those value components the customer recog-
nizes, and who portrays additional value elements. . . [Nagle and Hogan, 2006,
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page 81]

Although cost should not drive the prices you charge, your prices can definitely
affect the cost-to-serve customers and, therefore, your profitability. Many com-
panies differentiate their offers with bundled services, even when demands on
those services are subject to customer discretion and therefore are not propor-
tional to the volume of sales. “Service abusers” can boost your average cost of
sales while “service avoiders” drive up your average cost of sales by abandoning
you in favor of cheaper, low-service competitors. . . .

. . . The solution is to create “roughly right” cost allocation indexes and use
them to build a “roughly right” relative profit index by account or segment.
[Nagle and Hogan, 2006, pages 113–4]

Their discussion on elasticities looks at the elasticities of the firm’s products and not
the market and they note how elasticities differ depending on market share, because the
different products in a market are positioned for different customer segments, and products
age. In the chapter on estimating price response they state that “The low accuracy of many
numerical estimates makes blind reliance on them very risky.” They conclude the chapter
with “Even when actual purchase data cannot provide conclusive answers, they can suggest
relationships that can then be measured more reliably with other techniques.”

What should be taken from this short discussion is that the management literature
recommends that managers explore rather than optimize. The data are not completely
clear and circumstances change.

3 Experimental Setup

We simulate agents playing a Cournot game. Using NetLogo1 as the programming envi-
ronment, we name our program oligopolyPutQuantity.nlogo. It is freely available from
the authors for purposes of research and education.

Abstractly, the agent we define has three features: (1) a measure of success, (2) a
data stream to measure its success, and (3) the ability to do experiments or to learn how
its actions affect its success. These three properties are the minimal set of properties for
an economic agent to improve its outcomes when operating in a situation without full
information. To add an element of realism, the agents can be made to operate in a noisy
environment where the demand parameters are a random walk.

One measure of success we use is the classic measure, firm profitability. We term this
measure and the policy of using this measure as the objective function “Own Returns.”
Another measure is the profitability of whole the industry, termed “Market Returns.” We
allow for both measures because firms operate in a complex institutional environment and

1http://ccl.northwestern.edu/netlogo/
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the leaders of these companies set up and fund institutions that represent the industry.
Examples are the National Petroleum Refiners Association and the Iron and Steel Institute.
That is, firms choose when to cooperate and when to compete (see Brandenberger and
Naibuff [Brandenberger and Nalebuff, 1996]). A less mainstream example is Cosa Nostra,
which acts as a chamber of commerce for crime families that mediates conflicts, reduces
killing among the families, and works to protect the profitability of organized crime.

We allow the players to use combinations of objectives as a measure of success. In
the first, an agent pursuing the “Mixed” policy, at the end of its epochs, uses a convex
combination of both objectives. In the second, an agent pursuing the “Market Returns,
Constrained by Own Returns” (MR-COR) policy, at the end of its epochs, looks at the
mean quantity it produces versus the mean total quantity produced for the entire market
(its and the other player(s)’s production). If its mean quantity produced plus epsilon
is lower than the mean quantity produced for the market, the agent raises its baseline
production by epsilon; otherwise, it uses the “Market Returns” policy. Here a firm pursues
a hierarchical policy where it looks to get its share of the market and then looks to keep
the market as profitable as possible. Equal shares is the outcome of the Cournot solution
when players have equal costs. In most oligopolies the firms have different sizes because
of differences in product attributes, unique access to high-quality resources, or the history
of the firms and markets, including acquisitions. We view this more as a stylized form of
maintaining a sense of fairness while taking the larger view of the industry as a community
norm of an implicit willingness to cooperate up to a point as in Kuenne.

In the Cournot game the players make quantity decisions and the market sets the price.
Each player starts with a base quantity that remains fixed for a given number of periods
and randomly adjusts the quantity up or down in each period, running experiments to
observe the effects of altering the base quantity. The number of periods for which the base
quantity remains the same for a player is termed an epoch. We use a uniform distribution
for the random adjustments around the base quantity. Different players can have different
epoch lengths. The player is interested in knowing whether it should increase or decrease
its production and records its returns and/or the market returns for the quantity increases
and decreases separately. After each epoch, the players assess their returns using their
measures of success. If the profits for a player are higher with the increases than with the
decreases, then the base quantity is increased and vice versa. This begins a new epoch.
Epochs are repeated in the simulation until the pattern of behavior stabilizes. Note that
each player knows the outcome only in relation to its decisions and retains no information
on the other players’ decisions. We term the search/learning method the agents employ as
Probe and Adjust. Technically, the method is in the family of line-search algorithms
where the algorithm finds the direction of improvement, takes a step of a certain size in that
direction, and then assesses the benefit of that move. See Winston [Winston, 2004] for an
introduction to algorithms in this class. More importantly, in our context, this algorithm
represents a situation in which managers adjust their production incrementally to learn the
consequences of their actions, without making radical changes that could risk the business.
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Think of this as a form of muddling through. The algorithm approximates the behaviors
of consumer products companies that phase in price increases and the capacity-expansion
decisions in commodity businesses such as petroleum refining, where increases or decreases
in capacity are incremental because of environmental concerns removing the ability to build
a wholly new refinery in the US. It does not reflect the situation where capacity has to be
added in large increments, such as a firm building a green-field integrated steel mill.

4 Reference Model

For clarity we present the underlying model and resulting key quantities that we refer
to throughout, as well as the terminology we use. To begin, we assume a linear inverse
demand function:

P = a− slope ×Q (1)

P is the price realized in the market. Q is the total quantity of good supplied to the
market. a is the price intercept and slope > 0, we assume. We also assume that negative
prices are not permitted, so (2) is actually what is assumed.

P = max{a− slope×Q, 0} (2)

We begin with the duopoly case and then generalize the results. Let the agents have unit
costs, ki, which can differ. In the duopoly case the profit of firm 1 is then

π1 = P ·Q1 − k1 ·Q1 = (a− slope · (Q1 + Q2)) ·Q1 − k1 ·Q1 (3)

For firm 2 we have

π2 = P ·Q2 − k2 ·Q2 = (a− slope · (Q1 + Q2)) ·Q2 − k2 ·Q2 (4)

Differentiating we get

dπ1

dQ1

= a− 2 · slope ·Q1 − slope ·Q1 ·
dQ2

dQ1

− slope ·Q2 − k1 (5)

dπ2

dQ2

= a− 2 · slope ·Q2 − slope ·Q2 ·
dQ1

dQ2

− slope ·Q1 − k2 (6)

Setting dQ2

dQ1
and dQ1

dQ2
to 0 as usual leads to

0 = a− 2 · slope ·Q1 − slope ·Q2 − k1 (7)

0 = a− 2 · slope ·Q2 − slope ·Q1 − k2 (8)

and then on to

Q1 =
a− slope ·Q2 − k1

2 · slope
(9)
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Q2 =
a− slope ·Q1 − k2

2 · slope
(10)

which when solved yield

QC
1 (2, [k1, k2]) =

a− 2k1 + k2

3 · slope
(11)

QC
2 (2, [k1, k2]) =

a + k1 − 2k2

3 · slope
(12)

Notice that

QC(2, [k1, k2]) = QC
1 (2, [k1, k2]) + QC

2 (2, [k1, k2]) =
2a− k1 − k2

3 · slope
(13)

The formula generalizes. With n players having proportional costs ki ∈ {1, 2, 3, . . . , n}
(total cost = unit cost × quantity = ki ·Qi) we have expression (17).

The monopoly quantity, QM , may be arrived at as the special case of (18) when n = 1:

QM (k) =
(a− k)

(2 · slope)
(14)

Finally, the rivalrous (or competitive, but we’ve already used C) quantity, QR, obtaining
in a fully competitive market occurs when price (a − slope × Q) equals marginal cost (k,
assuming all firms have the same marginal cost). Equating them and solving yields QR.

QR(k) =
(a− k)

slope
(15)

Now assume there are n firms in the market, n ≥ 1. The quantity supplied by firm i

(in a given round or episode) is Qi. We stipulate

Q =

n∑

i=1

Qi (16)

Each firm i has a unit (marginal) cost of production of ki ≥ 0.
Given these conditions, then in the Cournot model the equilibrium Cournot quantity,

QC , is the sum of the individual QC
i s, and

QC(n,~k) = QC =

n∑

i=1

QC
i =

na−
∑n

i=1
ki

(n + 1) · slope
(17)

When all ki are equal to k we write QC(n, k) for QC(n,~k). That is,

QC(n, k) = QC =
n∑

i=1

QC
i =

na−
∑n

i=1
k

(n + 1) · slope
(18)

and the individual firm Cournot quantities are

QC
i (n, k) =

(a− k)

(n + 1) · slope
(19)
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1. Set parameters δ, ε, currentQuantity, epochLength
(Typically, ε < δ ≪ currentQuantity and epochLength ≈ 30.)

2. episodeCounter← 0

3. returnsUp ← [] (Initialize returnsUp to an empty list.)

4. returnsDown ← [] (Initialize returnsDown to an empty list.)

5. Do forever:

6. episodeCounter← episodeCounter + 1

7. bidQuantity ∼ U [currentQuantity− δ, currentQuantity+ δ]
(The agent’s bidQuantity is drawn from the uniform distribution within the range
currentQuantity ±δ.)

8. return ← Return-of bidQuantity

(The agent receives return from bidding bidQuantity.)

9. If (bidQuantity ≥ currentQuantity) then:
returnsUp ← Append return to returnsUp

else:
returnsDown ← Append return to returnsDown

10. If (episodeCounter mod epochLength = 0) then:
(Epoch is over. Adjust episodeCounter and reset accumulators.)

(a) If (mean-of returnsUp ≥ mean-of returnsDown) then:
currentQuantity← currentQuantity+ ε

else:
currentQuantity← currentQuantity− ε

(b) returnsUp ← []

(c) returnsDown ← []

11. Loop back to step 5.

Figure 1: Pseudo code for basic Probe and Adjust

9



Figure 2: Results from oligopolyPutQuantity.nlogo with two quantity-
offering players each using the Own Returns policy of play. File:
oligopolyPutQuantity-own-own-r2.jpg.
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5 Results

Our simulation results are obtained from the program oligopolyPutQuantity.nlogo.
This program affords simulation of quantity-bidding (or Cournot) agents (“firms”) in an
oligopoly. Agents are able to use any of several forms of Probe and Adjust, a learning
algorithm suitable for adjusting a continuous parameter, here the quantity an agent offers
to the market during a single period (aka: round of play, episode). Under Probe and Ad-

just, each agent maintains a current base quantity—currentQuantity—which it uses as
the midpoint of an interval from which it draws uniformly each period to set its production
quantity—bidQuantity—that period. Each agent maintains its currentQuantity for a
number of episodes equal to its epochLength. When its current epoch is over (by count of
periods or episodes played), the agent re-evaluates its currentQuantity, adjusting it up
or down by its adjustment moiety, its epsilon, depending on whether production levels
above its currentQuantity during the just-completed epoch have or have not been more
profitable than those below its currentQuantity. Figure 1 presents the basic Probe and

Adjust algorithm in pseudo code.
Firms in oligopolyPutQuantity.nlogo may use any of several variations (or policy

versions) of Probe and Adjust. We now present results, focusing especially on the
effects of the several policy versions available.

5.1 Profit maximization

We begin with the classical objective function of maximizing firm profits. Consider first two
agents—Firm0 and Firm1—who independently choose production quantities using Probe

and Adjust in the presence of a linear price function, P(rice) = priceIntercept− dSlope×
Q(uantity) = 400−2Q in our examples below, that is unknown to them. In this section we
consider the case in which each firm uses Probe and Adjust and looks only to its own
profits (rewards) when adjusting its currentQuantity. This is the policy of play labeled
“Own Returns” in Figure 2. Specifically, a player using the Own Returns policy observes
the market’s price at the end of each period of play, calculates its profits (net of costs)
for the quantity it produces (and sells), and uses this as its return in step 8 of Figure 1.
There, we might label the Return-of function as Own-Returns in this case. Figure 2 shows
simulation results from oligopolyPutQuantity.nlogo. Each firm has costs of $0 per unit
and their base quantities—

(initialBaseQuantityFirm0 = initialBaseQuantityFirm1 = 40)
—start well below the Cournot equilibrium quantity of 133.33.2 Probe and Adjust

leads them near to the Cournot solution with equal market shares. We see that after 6600
episodes (long after a stable settling has occurred) the average total quantity produced is

2The results we report are for long after the system has attained stability. Moreover, we find that initial
base quantities do not affect either the location of, or the firm shares at, stability. For these two reasons
we do not further discuss any starting point effects. There are none, except as noted below.
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Firm Average Reward Standard Deviation of Average Reward

0 639.8964661413705 70.55142984995368

1 645.3864190695721 67.94933796315856

2 649.0329236965865 62.82872860151167

3 651.7672918703781 68.57175862731928

4 643.1174687232188 64.6236221246588

5 638.8300180138967 61.28529868477505

6 638.2949903490786 66.98362150327631

7 650.5939716430881 79.28907276367299

8 649.4548736132194 62.526625943544516

9 643.725796838893 65.38427951535789

Table 1: Summary of results over 100 replications with 10 firms in the market, all following
the Own Returns policy of play

about 134 (134.127 averaged over the last 1000 episodes of play). Each agent is producing
about 67.1 at the end (this is a rough estimate, obtained by reading the Individual Bids
charts, rather than computed exactly from the data). Firm0 is getting an average profit
per play of about 8650 (averaged over the past 1000 episodes), while Firm1 is getting about
9004. The agents have essentially identical average profits overall (see Average Rewards
chart). Thus, the cost of learning is quite small. Notice that the quantities fluctuate
around the optimal quantity (from the Cournot perspective) because the agents are always
randomly varying their base quantity. The standard deviation (runningAverageBidSD in
the Figure) on total production is 2.847 units. We repeated the experiment 100 times,
using the system clock to initialize the random number generator each time. Over the 100
trials the mean of the averages of the total quantity produced is 133.43 with a standard
deviation of 1.57. Firm0’s average of its average rewards was 8874.72 (standard deviation
of 159.08) and Firm1’s was 8863.70 (155.99). Note that the standard deviations of profits
and production quantities are roughly 2 percent of profits and quantities produced.

We also repeated the experiment 100 times with 10 firms in the market (and using the
system clock to initiate the random number generator). The Cournot quantity is now (with
10 firms) 181.818. Averaged across the 100 repetitions, the running average production
was 182.08 with a standard deviation of 0.74. Table 1 reports the averaged rewards (and
their standard deviations) for the 10 firms in this run of 100 replications.

Thus, we can say the model provides a good approximation to the Cournot solution,
in spite of not having the full information assumed in the classical analysis and without
each player giving the best response to the other player’s plays. A simple explanation
of these results is that since there is no correlation or coordination of the player’s moves
during an epoch, on average the players see the marginal revenue function of a Cournot
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player. Unlike Riechmann [Riechmann, 2002] then, we find that a pair of simple searching
agents can find the Cournot solution. Figure 2 shows, and we observe in all other runs as
well, a certain amount of oscillation about the Cournot quantity. The range of oscillation
varies depending on the length of the epoch. Reducing the epoch length to 10 results in an
average over five runs of the running average quantity to be 133.85 (using random number
seeds 0 through 4), increasing the standard deviation on average to 3.52. After reducing
epochLengthFirm0 and epochLengthFirm1 further to 5, the running average quantity
averaged over five runs (seeds 0 through 4) is 132.8114 and the average standard deviation
is 4.2004. At 2 the numbers are 133.7688 and 6.1852. The range on the production levels
of the individual agents show more fluctuations with a smaller epoch length than the total
because if one firm increases production beyond the optimal quantity due to randomness,
the other is more likely to respond with a decrease in the next epoch, a consequence of
the shape of the objective function, which is quadratic and has a steeper slope and more
curvature the further away from the optimum. With an epoch length of 1 the agents engage
in what looks like a random walk with reflecting barriers at production levels of 0 for each
player and total production at the competitive equilibrium with no profits for either player.
This is because there is either an up or down value but not both in an epoch. Using the
parameters of the previous runs, the average of the running averages is 87.45 (= mean of
170.612 22.841 65.555 125.666 52.594) and the average of the standard deviations is 9.75
(= mean of 7.725 8.299 7.784 14.988 9.934). Patience, in the form of a longer epoch length
(a tilt towards exploration and away from exploitation), has its rewards for these players.

Increasing the number of players from 2 to 3 but keeping other conditions constant (and
returning to epoch lengths of 30) increases the Cournot quantity to 150 and increases the
standard deviation of the running average of the total quantity. The numbers are 150.30 (=
mean of 148.284 151.984 153.597 149.392 148.221) and 3.6482 (= mean of 3.904 3.591 3.605
3.286 3.855). With 10 firms the Cournot quantity is 181.818 and the numbers are 181.811
(= mean of 180.851 180.708 182.882 182.504 182.11) and 6.33 (= mean of 6.212 6.673 6.233
6.442 6.112). In general, variation in total production increases with the number of firms
in the market, but the overall picture remains otherwise accurate.

5.1.1 Detailed statistical analysis of the model results

Because it is possible to generate large amounts of data from the simulation results, we
are able to avoid making the assumption of normality and use weaker nonparametric tests
to examine the statistical validity of the results. Table 2 presents the relevant parameters
and their default values (the “Table 2 settings”) for the Probe and Adjust model.
We ran 100 repetitions of the oligopolyPutQuantity.nlogo model under the conditions
described in Table 2. Each repetition produces an ending value of runningAverageBid,
the total quantity averaged over the past runningAverageLength (=1000 in the Table
2 settings) episodes (i.e., in episodes 5601–6600, given the Table 2 settings). Here is a
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Agent Parameters

numPandAFirms 2

epochLengthFirm0 30

epochLengthFirm1 30

initialBaseQuantityFirm0 40

initialBaseQuantityFirm1 40

updateTypeFirm0 Own Returns

updateTypeFirm1 Own Returns

deltaFirm0 3.0

deltaFirm1 3.0

epsilonFirm0 0.7

epsilonFirm1 0.7

unitCostFirm0 0

unitCostFirm1 0

Environment Parameters

InitPIntercept (Price intercept of demand function) 400

InitDSlope (Negative of the slope of the demand function) 2

numEpisodesToRun (Number of episodes in a run) 6600

runningAvgLength (Running average length) 1000

daRandomSeed (Random number seeded with) system clock

NumRepetitions (Number of repetitions) 100

Table 2: Default settings of the principal parameters.

summary of the 100 values obtained for runningAverageBid.3

runningAverageBid summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

129.5 132.3 133.3 133.3 134.1 138.6

Note that the Cournot value is 133.333. These data are symmetrically and rather tightly
centered on or near the Cournot value.

Using the exact binomial test (binom.test in R) on the differences between the 100
runningAverageBid values and the Cournot value, in this particular run of 100 we actually
got 50 values above the Cournot value and 50 below (there were no ties). Under the null
hypothesis of p = 0.5, the p-value is 1 and the 95% confidence interval is [0.3983, 0.6017].
There is no reason to reject the null hypothesis, that Probe and Adjust with Own
Returns leads the agents to the Cournot solution.

3These and all subsequent statistical calculations were made in R, which we gratefully acknowledge
[R Development Core Team, 2007]. Console logs and data sets are available from the authors.
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At the end of each run oligopolyPutQuantity.nlogo reports the standard deviation
of the runningAverageBid (see Figure 2; in the present case, for the last 1000 episodes).
Here is a summary of the 100 values obtained for runningAverageBidSd.

runningAverageBidSd summary

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.596 2.865 3.099 3.146 3.333 4.417

While some asymmetry is apparent, these values are reassuringly regular and concentrated.
Turning now to the rewards obtained by the two individual firms, we would expect them

to have no systematic differences. That this is so is certainly suggested by the following
summary data.

summary of mean rewards

Min. 1st Qu. Median Mean 3rd Qu. Max.

meanRewardFirm0 8509 8784 8886 8868 8958 9414

meanRewardFirm1 8366 8766 8900 8895 9006 9276

The nonparametric Wilcoxon rank-sum test (wilcox.test in R) yields a p-value of 0.2026
for the null hypothesis of no difference between the two sets of returns. This coheres with
the suggestion we drew from the table.

We investigated whether the default number of episodes, 6600, is sufficient for getting
beyond any transitory effects from the initialization of the model. As the following three
tables of summary information indicate, it is.

summary with 6600 episodes

runningAverageBid runningAverageBidSd meanRewardFirm0 meanRewardFirm1

Min. :129.5 Min. :2.596 Min. :8509 Min. :8366

1st Qu.:132.3 1st Qu.:2.865 1st Qu.:8784 1st Qu.:8766

Median :133.3 Median :3.099 Median :8886 Median :8900

Mean :133.3 Mean :3.146 Mean :8868 Mean :8895

3rd Qu.:134.1 3rd Qu.:3.333 3rd Qu.:8958 3rd Qu.:9006

Max. :138.6 Max. :4.417 Max. :9414 Max. :9276

summary with 6000 episodes

runningAverageBid runningAverageBidSd meanRewardFirm0 meanRewardFirm1

Min. :129.0 Min. :2.583 Min. :8386 Min. :8445

1st Qu.:132.5 1st Qu.:2.911 1st Qu.:8754 1st Qu.:8734

Median :133.6 Median :3.137 Median :8866 Median :8843

Mean :133.6 Mean :3.181 Mean :8878 Mean :8837

3rd Qu.:134.8 3rd Qu.:3.346 3rd Qu.:9002 3rd Qu.:8939

Max. :137.9 Max. :4.529 Max. :9396 Max. :9250
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summary with 7200 episodes

runningAverageBid runningAverageBidSd meanRewardFirm0 meanRewardFirm1

Min. :128.5 Min. :2.718 Min. :8347 Min. :8425

1st Qu.:131.9 1st Qu.:2.917 1st Qu.:8777 1st Qu.:8751

Median :133.2 Median :3.069 Median :8870 Median :8880

Mean :133.3 Mean :3.122 Mean :8876 Mean :8876

3rd Qu.:134.9 3rd Qu.:3.281 3rd Qu.:8994 3rd Qu.:9016

Max. :137.4 Max. :3.889 Max. :9570 Max. :9450

We now consider some “parameter sweeping” experiments, first on epoch lengths. We
conducted a full factorial experiment using 5 levels of epoch length (24, 26, 30, 34, 38) for
each of two variables (epochLengthFirm0 and epochLengthFirm1) with 30 repetitions (for
a total of 750 = 30 × 52 runs. (Otherwise, the parameter settings are the default settings
of Table 2.) From the table below it is evident that on average there is no deviation from
our basic findings for the default settings.

summary epoch length sweeps

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :8360 Min. :8364 Min. :129.2 Min. :2.503

1st Qu.:8775 1st Qu.:8755 1st Qu.:132.3 1st Qu.:2.889

Median :8887 Median :8872 Median :133.3 Median :3.068

Mean :8883 Mean :8875 Mean :133.3 Mean :3.134

3rd Qu.:9002 3rd Qu.:8990 3rd Qu.:134.3 3rd Qu.:3.308

Max. :9452 Max. :9373 Max. :139.2 Max. :4.622

Looking within these data here is a summary for when Firm0’s epoch length was 24:

summary epoch length sweeps with epochLengthFirm0 = 24

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :8365 Min. :8364 Min. :129.2 Min. :2.556

1st Qu.:8790 1st Qu.:8761 1st Qu.:132.4 1st Qu.:2.913

Median :8900 Median :8868 Median :133.2 Median :3.098

Mean :8889 Mean :8863 Mean :133.3 Mean :3.140

3rd Qu.:9005 3rd Qu.:8982 3rd Qu.:134.3 3rd Qu.:3.332

Max. :9435 Max. :9268 Max. :138.2 Max. :4.537

Restricting our attention further, here is a summary for when epochLengthFirm1 = 38.
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summary with epochLengthFirm0 = 24 & epochLengthFirm1 = 38

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :8580 Min. :8590 Min. :129.8 Min. :2.721

1st Qu.:8797 1st Qu.:8673 1st Qu.:132.6 1st Qu.:2.914

Median :8895 Median :8880 Median :133.1 Median :3.060

Mean :8911 Mean :8853 Mean :133.3 Mean :3.129

3rd Qu.:9028 3rd Qu.:8979 3rd Qu.:134.1 3rd Qu.:3.344

Max. :9233 Max. :9172 Max. :136.5 Max. :4.086

Evidently, our basic findings are robust for changes in epoch length between 24 and 38.
Finally, we ran a large full factorial experiment with deltaFirmi ∈ {2.4, 3.0, 3.8},

epsilonFirmi ∈ {0.4, 0.7, 1.0}, epochLengthFirmi ∈ {24, 30, 36}, and i ∈ {0, 1}. There
were thus 36 unique combinations of factors and since we conducted 10 replications, there
were 7290 = 10× 36 runs in all.

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :8069 Min. :8072 Min. :127.5 Min. :2.068

1st Qu.:8756 1st Qu.:8754 1st Qu.:132.3 1st Qu.:2.883

Median :8877 Median :8876 Median :133.4 Median :3.170

Mean :8875 Mean :8872 Mean :133.4 Mean :3.219

3rd Qu.:8994 3rd Qu.:8993 3rd Qu.:134.4 3rd Qu.:3.511

Max. :9538 Max. :9742 Max. :138.8 Max. :6.087

Table 3: Summary data, full factorial own-own experiment

The Wilcoxon signed rank test (wilcox.test in R) for the mean of the running average
quantities against the null hypothesis of 133.3333 (the Cournot value) produces a p-value
of 0.1347, so we do not reject the null hypothesis that the agents are settling on a quantity
total equal to the Cournot value. (Recall that this is across a sample of 7,290 data points.)
Applying the Wilcoxon test to the mean rewards of Firm0 and Firm1 yields p-value =
0.5189. We cannot reject the null hypothesis that each firm is obtaining, on average, an
equal reward.

Given the symmetry of the factorial design, these results are as expected and serve
primarily to increase our confidence in the implementation of the model and to provide a
baseline for comparison. If we focus on the extreme case in which the factors for Firm0 are
at their lowest (epochLengthFirm1 = 24, deltaFirm0 = 2.4, and epsilonFirm0 = 0.4)
and the factors for Firm1 are at their highest (epochLengthFirm1 = 36, deltaFirm0 =
3.8, and epsilonFirm0 = 1.0) we get the summary results in Table 4.

It is evident from these data that the extreme ends of the parameter settings we ex-
amined do not perturb the basic findings. If we now use the Wilcoxon (rank sum) test
(wilcox.test in R) to compare the mean rewards received by the two firms, we get a p-value
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Firm0 parameters minimal, Firm1 parameters maximal

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :8646 Min. :8667 Min. :130.2 Min. :2.899

1st Qu.:8847 1st Qu.:8875 1st Qu.:131.9 1st Qu.:2.961

Median :8936 Median :8907 Median :132.8 Median :3.195

Mean :8915 Mean :8954 Mean :132.5 Mean :3.182

3rd Qu.:9028 3rd Qu.:9012 3rd Qu.:133.2 3rd Qu.:3.295

Max. :9129 Max. :9389 Max. :134.1 Max. :3.733

Table 4: Summary data, extreme comparison, own-own experiment. epochLengthFirm0

= 24, epochLengthFirm1 = 36, deltaFirm0 = 2.4, deltaFirm1 = 3.8, epsilonFirm0 =
0.4, epsilonFirm1 = 1.0

of 0.9118, prohibiting us from rejecting the null hypothesis that the two firms are, on av-
erage, getting the same level of reward, despite using very different parameter values in
Probe and Adjust.

Finally, we regressed meanRewardFirm0 on epochLengthFirm0, epochLengthFirm1,
deltaFirm0, deltaFirm1, epsilonFirm0, and epsilonFirm1, including all interaction
terms, using OLS. The residuals have a mean of -1.965907e-14 and appear to be quite
symmetrical about the mean. The Q-Q plot, Figure 3, indicates a reasonably good match
with the normality assumption. Multiple R-Squared for the full model was 0.01412, with
a p-value of 0.001058. None of the fitted coefficient values had an associated p-value below
0.3.

In summary, for this base case we find that the model settles reliably in the neigh-
borhood of the Cournot outcome, with each player obtaining approximately equal returns.
Further, these results are very stable to small to moderate changes in the model’s parameter
settings.

5.2 Maximizing total market profits

In the previous section we discussed results obtained when all agents use the Own Returns
policy. These agents, using Probe and Adjust as their learning regime, set their return
value at step 8 (Figure 1) to the profit (net of revenue and costs) they individually received
during the episode. Agents following the Market Returns policy instead set their return

values to the total profits of the industry (i.e., all players). This would seem a remarkably
unselfish behavior. And so it is, yet it offers certain insights.

When both players maximize total market profits in a duopoly game, the total produc-
tion settles into an oscillation around the monopoly solution of 100 (given our standard
settings; see Figure 2). However, the players can, and normally do, have very different av-
erage profits depending on which player has the larger initial quantity. The reason is that
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Figure 3: Q-Q plot of residuals from own-own regression

19



the players see the same signals on total market profitability and tend to move in the same
direction. In a simulation where we started one player at 60 and the other at 40, after 1500
events the average profitability of the first player was around 11500 and the second at 8500.
Also around 1500 episodes (rounds of play), the first player was producing around 65 and
the second 35. At 13500 events the players were much closer, 55 and 45. There is random
fluctuation in these runs. If the two players begin with the same initial base quantity, one
typically produces more than the other. Which one is random, with small epoch lengths
favoring more variation. Production levels can cross, even multiple times. Thus, although
the total production stays close to the monopoly solution, the individual-player production
levels are not identical. (This variation, as we shall see, averages out and may be deemed
random.) A player starting out with a lower production level is at a strong disadvantage
relative to the other player and, sometimes, relative to the Cournot solution.

Using the system clock to seed the random number generator we ran 100 repetitions
of the standard configuration (above), with both players playing Market Returns. The
average (over 100 repetitions) of the concluding running average for 6,600 episodes of
play was 100.10 (sd 0.108). Firm0’s overall average reward was 9967.14 with a standard
deviation of 628.92, which is very high compared to that for “Own Returns” (above).
Firm1’s results were similar: 10019.57 (628.93).

Altruism has its limits. If one player maximizes market profits while the other max-
imizes its own returns, the total production settles on the monopoly solution. However,
the first player is forced to exit the market and the second player settles on the monopoly
quantity and reaps the profits of the monopoly solution. From these two simulations it is
clear that being a good citizen without any regard to self interest is a weak strategy.

5.2.1 Detailed statistical analysis of the model results

We conducted a full factorial experiment with 10 repetitions with the following factors
and settings: numEpisodesToRun (6600, 7600), deltaFirm0 (2.4, 3.8), deltaFirm1 (2.4,
3.8), epsilonFirm0 (0.4, 1.0), epsilonFirm1 (0.4, 1.0), epochLengthFirm0 (24, 36), and
epochLengthFirm1 (24,36). The key summary information appears in Table 5.
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meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. : 6119 Min. : 6253 Min. : 99.40 Min. :1.927

1st Qu.: 9328 1st Qu.: 9348 1st Qu.: 99.93 1st Qu.:2.365

Median : 9986 Median :10000 Median :100.00 Median :2.675

Mean : 9986 Mean :10000 Mean :100.00 Mean :2.650

3rd Qu.:10639 3rd Qu.:10658 3rd Qu.:100.08 3rd Qu.:2.889

Max. :13728 Max. :13864 Max. :100.62 Max. :3.530

Table 5: Summary data, full factorial market-market experiment

Comparing Tables 5 and 3, we note several points:

1. The runningAverageBid in the market-market condition settles tightly and sym-
metrically about 100, the monopoly quantity, instead of the Cournot quantity of the
own-own case (see Table 3).

2. The runningAverageBidSD value is discernibly lower in the market-market case.

3. Each firm in the market-market case obtains a mean reward in the neighborhood of
10,000, compared to 8,900 in the own-own case. On average both firms do better by
adopting the “cooperative” or “altruistic” policy (acting so as to maximize industry
returns, rather than individual returns), than by adopting the “selfish” or “best
response” policy.

4. The variation in mean reward obtained is much higher in the market-market case
than in the own-own case.

Firm0 parameters minimal, Firm1 parameters maximal

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. : 7953 Min. : 9597 Min. : 99.75 Min. :2.612

1st Qu.: 9029 1st Qu.:10310 1st Qu.: 99.84 1st Qu.:2.641

Median : 9488 Median :10498 Median : 99.97 Median :2.671

Mean : 9370 Mean :10616 Mean : 99.93 Mean :2.672

3rd Qu.: 9675 3rd Qu.:10956 3rd Qu.:100.04 3rd Qu.:2.701

Max. :10389 Max. :12033 Max. :100.06 Max. :2.730

Table 6: Summary data, extreme comparison, market-market experiment.
epochLengthFirm0 = 24, epochLengthFirm1 = 36, deltaFirm0 = 2.4, deltaFirm1

= 3.8, epsilonFirm0 = 0.4, epsilonFirm1 = 1.0

Comparing Table 6 with the analogous results for the own-own (Cournot) case in Table
4, we find some apparent differences for the players, depending on the players’ parameter
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settings. In the own-own case, the minimized parameter player (Firm0 in Table 4) is
at no apparent disadvantage. Table 6, however, shows Firm0 getting about 10% less on
average than Firm1. Note that the mean quantity remains very near to the monopoly level.
If we take the negative of these settings (with Firm0’s parameters maximal and Firm1’s
minimal), we get the expected result: they settle near the monopoly quantity and Firm0 has
the advantage. Evidently, mutual use of Probe and Adjust is (under the current range of
conditions) robust to parameter settings with respect to the total quantity, but individuals
may gain comparative advantage through parameter settings. The nonparametric Wilcoxon
rank-sum test (wilcox.test in R) yields a p-value of 0.0004871 for the null hypothesis of no
difference between the two sets of returns. This coheres with the suggestion we drew from
Table 6: there is a difference resulting from the two treatments.

5.3 Maximizing a mixture of market and own returns

Between the extremes of maximizing one’s own returns—Own Returns, §5.1—and maxi-
mizing on the market’s overall returns—Market Returns, §5.2—there are an infinite number
of weighted combinations. Under the policy of play of Mixture of Market and Own Returns
each firm individually has a parameter, marketOwnMixture ∈ [0, 1], by which it combines
observed market returns and its own returns from each episode of play. Using Probe and

Adjust, the firm finds its own reward, ownReward, in each episode as well as the average
reward for firms in the market, averageReward. The firm calculates its mixedReward as

(1− marketOwnMixture)× ownReward+ marketOwnMixture× averageReward

and records this value on the associated up or down list for returns for mixtures, depending
on whether its production quantity is above or below its current quantity. (See Figure 1,
especially step 9.) Running under the standard conditions, except as noted, we consider
the case with two firms in the market each using Mixture of Market and Own Returns as its
policy of play, each using 0.5 as its value for marketOwnMixture. In a representative run,
after 6600 episodes the running average total production is 120.837 with a standard error
of 2.983. Recall that the monopoly production is 100 and the Cournot production 133.333.
Firm0’s average reward (for episodes 6501–6600) is 9461.997 and Firm1’s is 9651.893. We
repeated the experiment 100 times, setting the mixture for both players to 0.1 market (and
0.9 own) returns, and using the system clock to initialize the random number generator
each time. Over the 100 trials the mean of the averages of the total quantity produced
is 131.31 with a standard deviation of 1.47. Firm0’s average of its average rewards was
9020.88 (standard deviation of 191.22) and Firm1’s was 8994.42 (162.64).

These results are not sensitive to the random seed used, except of course for which
firm comes out slightly ahead. The results also extend in the obvious way to more than
2 firms (our program handles up to 10, but this is easily changed to an arbitrary num-
ber). By mixing consideration of their own returns and the market’s returns the firms do
better than the Cournot outcome but not as well as the monopoly position. The problem
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is that the Mixture of Market and Own Returns policy of play is exploitable in the same
way as the Market Returns policy. In a representative run, with Firm0 employing Own
Returns as its policy of play and Firm1 sticking with Mixture of Market and Own Returns
with its marketOwnMixture set to 0.5, we got the following outcomes. The running av-
erage total production is 128.065 with a standard error of 3.185. Firm0’s average reward
is 11,024.902 while Firm1’s is 7,379.554. (These general results are not sensitive to the
random seed used.) Things are a bit more equal if firm 0 uses Mixture of Market and Own
Returns but sets its marketOwnMixture to 0.4. The running average production comes
in at 124.215 with a standard error of 2.946. Firm0’s average reward is 9741.348 while
Firm1’s is 9068.581. (Again, these results are not sensitive to the random seed used.)

At bottom, however, the mixture policy of play is vulnerable to exploitation.

5.4 Maximizing market returns, constrained by own returns

A player pursuing the policy of Market Returns, Constrained by Own Returns (MR-COR)
operates as follows. At the end of its epochs it assesses whether the mean of its production
quantities during the epoch plus its δ is less than the mean of all the production quantities
during the epoch. (See Figure 1; δ is the search range on each side of the base quantity
that a player uses each episode. The program also allows use of ε instead of δ.) If it is, the
player increases its base quantity by ε. If it is not, then the player takes the market view
and follows the Market Returns policy. The key feature of this policy is that the players
have a sense of fair division of the market and if a player does not get what it perceives to
be a fair share, it increases production. Two players on average split the market equally,
the total production fluctuates around the monopoly total production of 100 and they each
make an average profit of 10,000 (under the settings we are discussing).

The Market Returns, Constrained by Own Returns policy may be likened to Tit for

Tat in Prisoner’s dilemma in that if one player tries to take too much market share, the
other responds by matching the increase in production. This means that any random
increase in production by one is matched by the other and their actual production levels
track together, whereas with market returns only, the production levels of the two tend to
look like mirror images around 50. It is interesting to see what happens when one player,
Firm1, plays MR-COR against the other player, Firm0, playing Own Returns. Typical
results under the standard conditions are that Firm1’s average profit during the final 1000
episodes is 8833, while Firm0’s is 8977. In this type of case, the self interest of Firm0,
maximizing its own returns, drives the production to an oscillation around the Cournot
equilibrium and has an average episode profit of about 9000. The player that plays Market
Returns, Constrained by Own Returns, Firm1, does slightly worse because it almost always
produces less than the other player, as it has to be slightly forgiving on share to compensate
for noise in the market-share results. Its profits are around 8800, slightly below what it
would achieve at the Cournot equilibrium playing myopically. Long-sighted behavior has
its risks.
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Firm Mean of Running Averages SD of Running Averages
of Rewards to Firm

0 1994.2025916855077 69.987676171652

1 1988.0676679163748 62.37538356784939

2 1987.651615420313 57.6836838380063

3 1987.8337170456355 68.10393678546707

4 1995.5662569019985 61.40921846900001

5 1995.3897636449321 54.92891914419867

6 1982.9621113765784 48.40642783370098

7 1990.0869668751468 55.82401403170985

8 2004.7913882302219 73.96700484493032

9 1988.9208194082335 56.140148147371825

Table 7: Results for 100 repetitions of 10 firms each playing Market Returns, Constrained
by Own Returns (MR-COR) under the standard conditions. The monopoly quantity
is 100, the Cournot quantity is 181.818. Across the 100 repetitions the mean (stan-
dard deviation) of the running average of the production quantity is 101.9725498548145
(0.6607808254556182).

5.4.1 Detailed statistical analysis of the model results

We conducted a full factorial experiment with 10 repetitions with the following factors
and settings: numEpisodesToRun (6600, 7600), deltaFirm0 (2.4, 3.8), deltaFirm1 (2.4,
3.8), epsilonFirm0 (0.4, 1.0), epsilonFirm1 (0.4, 1.0), epochLengthFirm0 (24, 36), and
epochLengthFirm1 (24,36). Firm0 used the Own Returns update policy throughout, while
Firm1 used Market Returns, Constrained by Own Returns. The key summary information
appears in Table 8.

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :8273 Min. :7911 Min. :122.8 Min. :1.831

1st Qu.:8863 1st Qu.:8727 1st Qu.:131.8 1st Qu.:2.830

Median :8960 Median :8823 Median :133.1 Median :3.245

Mean :8979 Mean :8807 Mean :133.0 Mean :3.317

3rd Qu.:9081 3rd Qu.:8906 3rd Qu.:134.3 3rd Qu.:3.670

Max. :9663 Max. :9266 Max. :143.3 Max. :7.650

Table 8: Summary data, full factorial own vs. market-own experiment. Firm0 uses Own
Returns and Firm1 uses Market Returns, Constrained by Own Returns.
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With this mixture of policies the agents revert to something near, but slightly below,
the Cournot solution. The Wilcoxon signed rank test yields a p-value of 2.341e-16 for the
null hypothesis that the average value is 133.33333, leading to its convincing rejection.
The test fails to reject the null hypothesis that the mean value is the slightly lower number
133.1, showing how close the solution is to the Cournot solution. The Wilcoxon test also
rejects the null hypothesis that the two firms are obtaining their rewards from the same
distribution (p-value < 2.2e-16). Firm0, using Own Returns, has a discernible advantage
over Firm1, using Market Returns, Constrained by Own Returns, but is this Firm0’s best
policy?

Table 9 presents summary data for the full-factorial experiment (with 30 replications)
when both players use the Market Returns, Constrained by Own Returns (MR-COR) policy
of play. Notice that both players do very well, with mean rewards fully 1000 higher than in
the Own Returns versus Market Returns, Constrained by Own Returns case, summarized
in Table 8. Comparing the present case (MR-COR, Table 9) with the Market-Market
(both altruistic) case, summarized in Table 5, it would seem that little or nothing is lost
by playing Market Returns, Constrained by Own Returns. MR-COR is a robust policy of
play. Agents have little to lose by using it and much to gain if everyone uses it.

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. : 9723 Min. : 9739 Min. : 99.42 Min. :1.740

1st Qu.: 9910 1st Qu.: 9912 1st Qu.:100.05 1st Qu.:2.437

Median : 9992 Median : 9994 Median :100.15 Median :2.672

Mean : 9992 Mean : 9994 Mean :100.16 Mean :2.644

3rd Qu.:10072 3rd Qu.:10074 3rd Qu.:100.26 3rd Qu.:3.014

Max. :10246 Max. :10260 Max. :101.00 Max. :3.568

Table 9: Summary data, full factorial, market-own vs. market-own experiment. Both
Firm0 and Firm1 use Market Returns, Constrained by Own Returns.
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Table 10 presents summary information for extreme parameter settings, with Firm0
as usual having the low settings and Firm1 the high. From the table, it appears that
Firm0 does somewhat better than Firm1. This is confirmed by the Wilcoxon rank sum
test on meanRewardFirm0 and meanRewardFirm1. The p-value for the null hypothesis
of their arising from the same distribution is < 2.2e-16. In fact, the smallest value of
meanRewardFirm0 exceeds the largest value of meanRewardFirm1.

meanRewardFirm0 meanRewardFirm1 runningAverageBid runningAverageBidSD

Min. :10073 Min. :9773 Min. : 99.86 Min. :2.557

1st Qu.:10130 1st Qu.:9819 1st Qu.:100.07 1st Qu.:2.639

Median :10148 Median :9838 Median :100.16 Median :2.683

Mean :10147 Mean :9839 Mean :100.16 Mean :2.678

3rd Qu.:10168 3rd Qu.:9856 3rd Qu.:100.27 3rd Qu.:2.717

Max. :10212 Max. :9913 Max. :100.44 Max. :2.795

Table 10: Summary data, extreme market-own vs. market-own experiment. Both Firm0
and Firm1 use Market Returns, Constrained by Own Returns. epochLengthFirm0 = 24,
epochLengthFirm1 = 36, deltaFirm0 = 2.2, deltaFirm1 = 3.8, epsilonFirm0 = 0.4,
epsilonFirm1 = 1.0

5.5 Number effects

For the most part, we have focused so far on exploring and establishing the robustness
of Probe and Adjust and on presenting results in the case of oligopolies having two
firms. In this and the following section we assume the robustness of the basic model
and turn our attention to new issues. What happens when the number of firms increases
beyond two? The Cournot model from standard economic theory teaches that the Cournot
equilibrium will change with increasing numbers of firms, moving asymptotically towards
the competitive solution. The theory predicts, however, that the outcome reached will
continue to be the Cournot solution. That is, the standard theory asserts that there is no
number effect; the Cournot solution will be the outcome regardless of the number of firms in
the market. Considerable experimental work with human subjects, nicely summarized and
extended by Huck et al. [Huck et al., 2004], does find, to the contrary, number effects in
repeated play by human subjects with fixed counter-players. The title of [Huck et al., 2004]
summarizes the experimental findings: “Two are few and four are many.” That is, with
four or more firms the Cournot quantity is reached or exceeded, and with two firms there is
often evidence of collusion, with Q, the total production quantity, reduced in the direction
of the monopoly level. What happens under Probe and Adjust? Recall the results
reported in Table 1 for Probe and Adjust when all players use the Own Returns policy:
there are no number effects. In order to facilitate comparison, we now report results with
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InitPIntercept = 100, InitDSlope = 1.0, and unitCostFirm0 = unitCostFirm1 = 1.0,
which duplicates the demand function and cost structure used in the experiments of Huck et
al. (Note that in terms of expression (1), a = InitPIntercept = 100; slope = InitDSlope

= 1.0.) The main outcome statistic used in [Huck et al., 2004, page 439] is what they call
r, the ratio of the (mean of the) total production quantity, Q, to the Cournot solution
quantity, QC (or QN in their notation).

r =
Q

QC(n, k)
(20)

(We assume with [Huck et al., 2004] that all firms have the same costs, k; cf. expression 18.)
Thus, r values less than 1 indicate a degree of collusion. In oligopolyPutQuantity.nlogo,
r is renamed ratioOfferedCournot internally and ratioOC for display on the user interface
panel. Let

rM
C (n, k) =

QM (k)

QC(n, k)
(21)

Then, for the inverse demand function of [Huck et al., 2004] we have:

n = number of firms QC(n, 1) QM (k) rM
C (n, 1)

2 66.00 49.50 0.750

3 74.25 49.50 0.667

4 79.20 49.50 0.625

5 82.50 49.50 0.600

10 90.00 49.50 0.550

We note that r may be a misleading indicator for our special purposes, since the significance
of its value varies with n. A measure that adjusts for the number of players is

r′ =
QC(n, k)−Q

QC(n, k)−QM (k)
=

QC −Q

QC −QM
(22)

Values near 1 indicate very high collusion (with quantities near the monopoly level), while
values near 0 would indicate lack of collusion (and quantities near the Cournot level). We
will proceed with the discussion in terms of both r and r′.
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n QC(n, 1) Q r r′

2 66.00 60.44 (7.05) 0.91† 0.34

3 74.25 72.59 (4.53) 0.98 0.07

4 79.20 80.67 (4.85) 1.02 -0.05

5 82.50 88.43 (8.80) 1.07 -0.18

Table 11: Summary of Huck et al.’s experimental data [Huck et al., 2004, page 441]. n =
number of suppliers in the market. Q = average total quantity offered. (Standard devia-
tions in parentheses.) Averages are over episodes 17–25. †As reported in [Huck et al., 2004,
page 441]. We note that 60.44/66.0 = 0.9157575. . . . For computing r′, QM = 49.5.

Huck et al. performed a meta-analysis on the prior human experiments that investigate
number effects in Cournot markets with fixed counter-players [Huck et al., 2004]. They
found, in aggregate, a modest number effect. While collusion may occur with 2 players,
it is reduced or disappears with increasing numbers of players. To this Huck et al. added
their own experimental data, which we summarize in Table 11. Subjects offer quantities in
25 rounds of play (epsiodes). Allowing for some learning, we use the Huck et al. data for
rounds 17–25. (Huck et al. also report data for rounds 1–25. The results are not materially
different.) Points arising on the Huck et al. data:

1. r increases uniformly with n. Since at Q = QC(n, k), r = 1, only the result for n = 2
indicates collusion. Huck et al. find the increase statistically significant. Note also
that for n = 5 the r and Q values suggest that the subjects systematically offered
more than the Cournot amount.

2. r′ (not reported by Huck et al.) decreases uniformly with increasing n and is in
apparent broad agreement with r.

3. The standard deviation of Q increases uniformly across n = 3, 4, 5. It is, however,
comparatively high for n = 2. This suggests (only) that subjects may have used
somewhat different decision procedures for n = 2 and n 6= 2, and that when n = 2 the
subjects may have been somewhat more exploratory, perhaps sensing the possibility
of collusion.

Table 12 summarizes number-effect results obtained with oligopolyPutQuantity.nlogo.
We remind the reader that the interpretation of the standard deviations in Table 12 is
different from that in Table 11. In the latter case, the given standard deviation is the usual
standard deviation of Q. In Table 12, individual Q values represent the mean of the total
quantities offered for episodes 5601–6600 and Q is the mean (over 30 replications) of these
Q values. Q is, then, a mean of means. The standard deviation values given are the means
of the standard deviations of the Q values.
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line no. N policies Q r r′

1 2 all Own Returns 66.12 (3.24) 1.00 -0.01

2 3 all Own Returns 74.38 (3.86) 1.00 -0.00

3 4 all Own Returns 79.45 (4.35) 1.00 -0.00

4 5 all Own Returns 82.45 (4.72) 1.00 0.00

5 10 all Own Returns 90.90 (6.42) 1.01 -0.02

6 2 all MR-COR 49.39 (2.70) 0.75 0.98

7 3 all MR-COR 49.71 (3.39) 0.67 0.95

8 4 all MR-COR 50.14 (4.01) 0.63 0.93

9 5 all MR-COR 50.58 (4.71) 0.61 0.91

10 10 all MR-COR 52.66 (6.93) 0.59 0.83

11 2 1MR-COR :: 1Mixture 50:50 59.52 (3.25) 0.90 0.38

12 3 1MR-COR :: 2Mixture 50:50 66.37 (3.82) 0.89 0.31

13 4 1MR-COR :: 3Mixture 50:50 70.97 (4.35) 0.90 0.26

14 5 1MR-COR :: 4Mixture 50:50 74.48 (4.81) 0.90 0.23

15 10 1MR-COR :: 9Mixture 50:50 84.20 (6.47) 0.94 0.13

16 2 all 30:70 Mixture 62.57 (3.34) 0.95 0.20

17 2 all 50:50 Mixture 59.35 (3.08) 0.90 0.39

18 3 all 50:50 Mixture 66.09 (3.75) 0.89 0.32

19 4 all 50:50 Mixture 70.92 (4.33) 0.90 0.27

20 5 all 50:50 Mixture 74.46 (4.74) 0.90 0.23

21 10 all 50:50 Mixture 84.28 (6.52) 0.94 0.13

Table 12: Summary of Probe and Adjust data on number effects. (Standard deviations
in parentheses.) Averages are over 30 replications.
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Points arising on the Table 12 data:

1. When all players use the Own Returns policy (lines 1–5) neither r nor r′ shows any
evidence of a number effect, further verifying that this policy replicates the Cournot
equilibrium.

When all players use the Market Returns, Constrained by Own Returns (MR-COR)
policy (lines 6–10), both r and r′ are uniformly decreasing in n. The high value of r′

when n = 2 indicates a high degree of collusion. (Note that QC(2, 1) = 66.0, while
QM = 49.50 and Q = 49.39 with n = 2.) As n increases, r′ also decreases, but even
at n = 10 the average quantity on offer is displaced 83% of the distance away from
the Cournot quantity and towards the monopoly quantity, QM .

When all players use the Mixture of Market and Own Returns, in a 50:50 combination
(lines 17–21), r appears to be constant for n = 2, 3, 4, 5, but higher for n = 10. r′,
however, is uniformly decreasing, indicating a number effect and reduced collusion.
Essentially the same result obtains if Firm0 uses MR-COR and any other firms in
the market use Mixture of Market and Own Returns, in a 50:50 combination (lines
11–15).

Interestingly, the relative advantage or disadvantage of the MR-COR policy is also
a function of n. At low values, MR-COR is disadvantaged, but at n = 5 and higher
it earns more than the typical firm using Mixture of Market and Own Returns, in a
50:50 combination. See the following table:

Policy Firm0: MR-COR Firm1: Mixture 50:50
Case meanRewardFirm0 meanRewardFirm1

1MR-COR :: 1Mixture 50:50 1146.0 1193.0

1MR-COR :: 2Mixture 50:50 708.0 717.3

1MR-COR :: 3Mixture 50:50 491.4 498.6

1MR-COR :: 4Mixture 50:50 365.3 359.4

1MR-COR :: 9Mixture 50:50 129.5 121.47

2. Line 11 contains values that are quite close to those reported by Huck et al. for n = 2
(see Table 11). The data in the two tables do not track closely as n increases. The
ordering is in excellent alignment, however, suggesting a good match could be found
by a simple transformation.

3. r′ decreases uniformly with n (except in the all Own Returns case), while r is flat for
n = 2, 3, 4, 5 (except for the all MR-COR case). r’s flatness is an artifact, since it is
sensitive to the absolute level of Q, which varies with n. r′ is a better indicator.

4. The standard deviation of Q increases uniformly with n, without exception. This is
hardly surprising, given that Probe and Adjust is a stochastic exploration pro-
cedure, undertaken with some independence by the players. A similar explanation
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suggests itself for the human data. How much of that stochasticity is systematic (ac-
tually part of a learning policy as in Probe and Adjust) and how much is simply
error is a fascinating question for future research.

5.6 Differential costs

Until now we have made the literature’s standard assumption of equal (usually zero) costs
for the players. What happens if the players have different costs? We investigate cases in
which firms’ costs are proportional to the quantities they produce. As usual, we report
results from specific, but representative, runs. Here we assume that runs proceed for 6600
episodes of play. This is more than ample for the system to settle.

We revert now to our original setup with a = InitPIntercept = 400.0 and slope =
InitDSlope = 2.0. Let us assume (without loss of generality; the qualitative results are
robust to this assumption) that in a duopoly Firm0 has a unit cost of 10 and Firm1 50.
QC(2, [10, 50]) is then 123.33. (See discussion and formulas in §4.) With these costs the
individual monopoly quantities are QM

0
= 97.5 and QM

1
= 87.5. In fact, Q settles (with

some variation; SD ≈ 3.2) very near 123.33 when both firms use the Own Returns policy
of play. Running for 6,600 episodes of play, in a typical run the last 1,000 episodes of
play yield an average Q of 123.067, with standard deviation 2.895. Firm0, the low cost
producer, obtains an average reward of 10,068.879, while Firm1 achieves only 5,498.693.

Similarly, in an experiment with 100 repetitions, using the system clock to seed the
random number generator, Firm0’s costs were set to 10 and Firm1’s to 0. The Cournot
quantity is 131.667. The mean (standard deviation) running average production across the
100 repetitions was 131.683 (1.591). Firm0 averaged a reward of 8026.41 (164.09), while
Firm1 got 9305.65 (176.60).

Switching to the MR-COR policy for both players, in a typical run, with
unitCostFirm0=10, unitCostFirm1=50, and refereceBidGroup=All Bids,

the last 1,000 episodes of play yield an average Q of 97.638 (with standard deviation 3.047),
which is very close to Firm0’s monopoly quantity. Firm0, the low cost producer, obtains
an average reward of 9611.584, while Firm1 achieves 7453.02. The two firms have jointly
extracted more wealth from the market, but Firm0 has paid a penalty. The example is
extreme, however, for it assumes that Firm1’s unit costs are five times those of Firm0.

Assume now that Firm1’s unit cost is 20 and Firm0’s remains at 10, still leaving a
substantial cost advantage to Firm0. (Firm1’s monopoly Q, QM

1
, is now 95.0, close to

Firm0’s of 97.5. The Cournot quantity is QC(2, [10, 20]) = 128.33.) Let both firms use the
Own Returns policy of play. In a typical run, using 6,600 episodes of play, the last 1,000
episodes of play yield an average Q of 129.552, with standard deviation 3.308. Firm0, the
low cost producer, obtains an average reward of 8,937.33, while Firm1 achieves 7,386.882.
Switching to MR-COR for both players, the last 1,000 episodes of play yield an average Q of
98.102 (with standard deviation 2.702), which is very close to Firm0’s monopoly quantity.
Firm0, the low cost producer, obtains an average reward of 9640.072, while Firm1 achieves

31



8873.914. Switching to Own Returns for Firm0, MR-COR for Firm1, in a typical run the
last 1,000 episodes of play yield an average Q of 131.358 (with standard deviation 3.215).
This is very far from Firm0’s monopoly quantity but close to the Cournot quantity. Firm0,
still the low cost producer, obtains an average reward of 8431.236, while Firm1 achieves
7617.516.

In sum even with a 2:1 unit cost advantage for one player, the policy pair (MR-
COR,MR-COR) Pareto dominates (Own Returns, MR-COR), (MR-COR, Own Returns),
and (Own Returns, Own Returns).

Again, we emphasize that these results are typical. They hold up under a broad range
of settings and are quite robust to changes in the random number stream.

6 Discussion

Recognizing that measuring success by market returns only is not a viable policy because
the player is too easily exploited, we compare the firm-only (Own Returns policy) and the
firm-and-market (MR-COR policy) measures of success in the following payoff table for a
2×2 game in strategic form. Table 13 presents the results approximately, but in strategic
form.

firm-only firm-and-market

firm-only (8,900, 8,900) (9,000, 8,800)

firm-and-market (8,800, 9,000) (10,000, 10,000)

Table 13: Payoffs from the strategies as measured by average returns after settlement; both
firms have 0 costs

Notice that the relationships among the payoffs across the choice of objective functions
is a Stag Hunt game.4 The payoffs in the Stag Hunt game look like the payoffs in Prisoner’s
Dilemma, except for some key differences. The players are each better off if both cooperate
(play MR-COR, or hunt stag in the case of the Stag Hunt) versus neither cooperate (play
Own Returns, or hunt hare) as in Prisoner’s Dilemma. If one player cooperates and the
other does not, both players do worse than if both cooperate. In Prisoner’s Dilemma the
noncooperative player is better off if the other player cooperates. The hitch, here and in the
Stag Hunt generally, is that players may be led to mutual hunting of hare by considerations
of risk. The experimental literature on the Stag Hunt (e.g. [Battalio et al., 2001]; see
[Camerer, 2003] for reviews of many experiments) has tended to find that in repeated play
subjects are led to the risk-dominant strategy of hunting hare. These findings, however, are
based on repeated play by varying counter-players, in distinction to fixed, counter-players.
Our concern is with the latter, with markets containing a fixed number of participants, who

4See [Skyrms, 2001, Skyrms, 2004] for discussion of other circumstances in which what is seemingly a
Prisoner’s Dilemma is transformed into a Stag Hunt game.
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produce quantities over time and who have to learn to live with each other. Framing the
problem as one of learning in policy space (Which policy should I use in setting production?
Should it be Own Returns or Market Returns or Market Returns and Own Returns?), it
is clear that learning to cooperate, learning to hunt stag, is amply achievable under simple
learning regimes [Kimbrough et al., 2005a, Kimbrough et al., 2005b]. Nor is it implausible
to think that real players would figure out and implement their collective interests. In short,
if we were to allow the players to select the policy as well as search for the maximum return
with the given policy, we would expect that the players would choose the firm-and-market
strategy, especially if we bring discounting into this repeated game among fixed players.
The firm and market policy works only if all players either accept their proportionate
share or are willing to accept shares that add up to less than 1. For example, if each player
believes it should have 5% above the average production, the firms in the simulation will
fight for market share, driving themselves into losses rather than profits. Thus, we do not
propose that this policy is actually used or should be used by firms. However, it points to
the potential of a more nuanced policy that brings in industry interests and not just firm
interests into capacity and production strategies. The policies could be explored using the
bargaining frameworks examined by Dawid and Dermietzel [Dawid and Dermietzel, 2006]
and Carpenter [Carpenter, 2002].

7 Conclusions

In this paper we have developed a model—Probe and Adjust—of an agent that explores
its environment and uses that exploration to improve its performance by adjusting a set of
continuous parameters. This behavior is an abstraction of typical managerial decision mak-
ing and is consistent with the notions of continual improvement and of a satisficing player
that learns and improves. We emphasize that the required knowledge and computational
capabilities for Probe and Adjust are quite credibly available to real agents. We have
shown in simulations that this model of an agent reproduces the classic Cournot results
in oligopoly theory, under certain assumptions (e.g., use of the Own Returns policy). We
have also shown that this model can explain the emergence of tacit collusion (e.g., when
players all use MR-COR as their policy of play). Thus, we have a starting point for ex-
ploring alternatives to the decision model embedded in classical economic theory and have
a more realistic starting point for looking at issues such as market power. Firms operate
in complex environments and there are many competing interests within and without the
firm. Agents can be given objectives that are more realistic in that organizations both
compete with other organizations in some dimensions and cooperate with these same or-
ganizations in others (within the bounds of the law) as described in Brandenburger and
Nalebuff [Brandenberger and Nalebuff, 1996]. We see that it is possible to engage in tacit
collusion by taking into account the interest of the industry as well as the firm while not
engaging in explicit price fixing. Thus, being a good corporate citizen can pay. By test-
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ing alternative objectives for firms it is possible to represent the richer relationships that
managers have to deal with and observe the consequences in the marketplace. This paper
opens up several avenues of research. First, players should be able to choose among success
measures (e.g., own returns, market returns) to see which ones emerge as most effective for
enhancing firm profitability. By doing this, it is possible to see what measures of success
emerge in the context of repeated play. Second, the agency problem between the firms’
owners and managers can be placed in a larger context, to see how those choices impact
the industry as well as the firm.
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