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when the 50% threshold is violated. A fast penalized �1 estimation method, called sisVIVE, is introduced for
estimating the causal effect without knowing which instruments are valid, with theoretical guarantees on its
performance. The proposed method is demonstrated on simulated data and a real Mendelian randomization
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Keywords
Body mass index, causal inference, health-related quality of life, instrumental variable, �1 penalization,
pleiotropy

Disciplines
Physical Sciences and Mathematics

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/statistics_papers/71

http://repository.upenn.edu/statistics_papers/71?utm_source=repository.upenn.edu%2Fstatistics_papers%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages


Instrumental Variables Estimation With Some Invalid

Instruments and its Application to Mendelian

Randomization∗

Hyunseung Kang, Anru Zhang, T. Tony Cai, Dylan S. Small

Department of Statistics

The Wharton School

University of Pennsylvania

Abstract

Instrumental variables have been widely used for estimating the causal effect be-

tween exposure and outcome. Conventional estimation methods require complete

knowledge about all the instruments’ validity; a valid instrument must not have a

direct effect on the outcome and not be related to unmeasured confounders. Often,

this is impractical as highlighted by Mendelian randomization studies where genetic

markers are used as instruments and complete knowledge about instruments’ validity

is equivalent to complete knowledge about the involved genes’ functions.
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In this paper, we propose a method for estimation of causal effects when this com-

plete knowledge is absent. It is shown that causal effects are identified and can be

estimated as long as less than 50% of instruments are invalid, without knowing which

of the instruments are invalid. We also introduce conditions for identification when

the 50% threshold is violated. A fast penalized `1 estimation method, called sisVIVE,

is introduced for estimating the causal effect without knowing which instruments are

valid, with theoretical guarantees on its performance. The proposed method is demon-

strated on simulated data and a real Mendelian randomization study concerning the

effect of body mass index on health-related quality of life index. An R package sisVIVE

is available on CRAN. Supplementary materials for this article are available online.

Keywords: Body mass index, causal inference, health-related quality of life, instrumental

variable, `1 penalization, pleiotropy.
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1 INTRODUCTION

Instrumental variables (IV) is a popular method for estimating the causal effect of an ex-

posure on an outcome when there is unmeasured confounding. Conventional IV estimation

methods require that the instruments are valid, or informally speaking, that the instruments

are (A1) related to the exposure (A2) have no direct pathway to the outcome and (A3) are

not related to unmeasured variables that affect the exposure and the outcome (see Figure 1

and Section 2 for a formal definition of valid IVs). For example, Figure 1 is an illustration

of the IV assumptions and one potential violation of the IV assumptions(see Hernán and

Robins (2006) for details on other possible violations). Here, the IV is a genetic marker that

is a single nucleotide polymorphism whose value is fixed at birth and the unmeasured vari-

ables refer to variables that precede the assignment of the genetic marker, such as population

stratification (to be discussed later). The challenge in IV estimation is to find valid instru-

ments that satisfy assumptions (A1)-(A3). Unfortunately, this is a difficult task, especially

in the case of Mendelian randomization (MR).

In MR, the goal is to estimate the causal effect of an exposure on an outcome by using

genetic markers, specifically single nucleotide polymorphisms (SNPs), as instruments (Davey

Smith and Ebrahim 2003, 2004; Lawlor et al. 2008; Wehby et al. 2008). For example,

Timpson et al. (2005) studied the causal effect of C-reactive protein (CRP), the exposure, on

various metabolic outcomes, such as body mass index (BMI) and cholesterol biomarkers (e.g.

tryglycerides), using four haplotypes constructed from three SNPs (rs1800947, rs1130864,

rs1205) as instruments. The instruments have been previously associated with plasma CRP

levels, thereby agreeing with (A1). However, agreement with (A2) and (A3) is less certain.

As the authors of the study noted, it is plausible that one or more of the genes that contain the

SNPs, rs1800947, rs1130864, and rs1205, may have multiple functions, known as pleiotropy,

where, in addition to changing CRP levels (the exposure), the gene containing one of these
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Figure 1: Diagram of One Possible Violation of Instrumental Variables Assumptions. Ar-
rows represent associations between variables. Absence of arrows indicates no relationship.
Numbers (A1), (A2), and (A3) indicate different instrumental variables assumptions. In this
example, the unmeasured variable refers to variables that precede the assignment of the ge-
netic marker, such as population stratification, and the genetic marker is a single nucleotide
polymorphism whose value is fixed at birth. As such, the arrows from the unmeasured vari-
able originate from the unmeasured variable and the arrow from the genetic marker goes
from it to the outcome (A2) since the genetic marker is fixed at the time of conception.

SNPs would change triglyceride levels or BMI (the outcome) and (A2) would not hold.

Indeed, recent work by Mart́ınez-Calleja et al. (2012) suggested that one of the instruments

used, rs1130864, is directly linked to BMI, one of the outcomes, raising doubts about causal

estimates when this SNP is assumed to be a valid instrument.

As another example, Katan (1986), in one of the first discussions of MR, proposed to

estimate the causal effect of serum cholesterol level on cancer by using the apolipoprotein

E polymorphism (APOE)’s effect on serum cholesterol levels. However, as Davey Smith

and Ebrahim (2004) argued, the current knowledge about the APOE gene and its multiple

pleiotropic effects on longevity, cholesterol biomarkers, and several other variables, would

invalidate the APOE gene as a valid instrument, specifically due to its violation of (A2), and

make an IV analysis based on it biased.

Both examples highlight a fundamental limitation with MR studies. For one, pleiotropy

and its impact on (A2) is a concern in most MR studies (Little and Khoury 2003; Davey

Smith and Ebrahim 2003, 2004; Thomas and Conti 2004; Brennan 2004; Lawlor et al. 2008).
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Lawlor et al. (2008) also list other biological phenomena associated with genetic instruments

such as linkage disequilibrium and population stratification that may violate (A2) and (A3).

Unfortunately, verifying genetic instruments as valid IVs requires having complete knowledge

of the instruments’ biological function and pleoitropic effects. As both examples highlight,

the biological understanding of many genetic markers and their potential pleiotropic effects

are typically incomplete at the time of the study (Solovieff et al. 2013). In the face of

incomplete biological knowledge and possible instrument invalidity, can valid causal estimates

be derived?

Previous work in IV estimation in the presence of possibly invalid instruments is limited.

Traditional instrumental variables literature has stated that to estimate the causal effect of

an exposure on an outcome when there are unmeasured confounders, one needs to have at

least one instrument that one knows is valid (Wooldridge 2010). Andrews (1999) consid-

ered the invalid instrument case in the general context of generalized method of moments

(GMM) estimation common in econometrics and arrived at an identification result that is

similar to our identification result in Theorem 1. The author also proposed an estimation

strategy, called the moment selection criteria (MSC), to correctly select the valid instru-

ments, which is similar to (8) in Section 3.2. Unfortunately, as we discuss in Section 3.2,

MSC is computationally infeasible when the number of instruments are large. Kolesár et al.

(2011) considered the possibility of identifying causal effects when all the instruments are

invalid because of direct effects on the outcome. The authors showed that if the direct ef-

fects are orthogonal to the instruments’ effects on the treatment, then the causal effect can

be identified. Kolesár et al. (2011) describes conditions under which this orthogonality is

plausible. But, for MR, this stringent structure on the instruments would not hold in most

cases as it would mean that the pleiotropic effects of the IVs are orthogonal to the effects

of the IVs on the treatment. Gautier and Tsybakov (2011) analyzed instrumental variables

regression in the presence of possibly invalid instruments. However, for their procedure to
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work, one must have a pre-defined set of known valid instruments. Finally, Mealli and Pacini

(2013) explored how using an auxiliary outcome can tighten bounds or provide identification

of the effect of a treatment on a primary outcome when there is only one binary instrument

that may violate (A2) by using an using auxiliary outcome. However, their work is different

to our problem where we consider multiple candidate instruments.

Our paper adds to the prior literature as follows. First, we show that it is indeed possible

to identify and estimate the causal effect without a known pre-defined set of valid instru-

ments. In particular, under a weaker condition where the proportion of invalid instruments

is strictly less than 50% of the total instruments, we show that identification and estimation

is possible. For example, given four possible haplotypes/instruments in the previous example

by Timpson et al. (2005), estimation of the causal effect of CRP on metabolic phenotypes

is still possible if no more than one instrument is invalid, without knowing exactly which of

the four is invalid. We also show conditions for identification when the 50% threshold may

not hold.

Second, we develop a fast `1 estimation procedure to estimate the causal effect of the

exposure on the outcome in the presence of possibly invalid instruments. The procedure has

provable theoretical guarantees on estimation performance and is computationally as fast

as ordinary least squares. The procedure is implemented and available on CRAN as an R

package sisVIVE, which stands for Some Invalid Some Valid IV Estimator.

Third, we conduct a simulation study that compares our method to two-stage least

squares (TSLS), the most popular estimation procedure in IV estimation. We show that our

procedure dominates TSLS when the instruments may be invalid. We also conduct a real

MR study concerning the effect of BMI on health-related quality of life (HRQL) measure

using our new method.
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2 CAUSAL MODEL AND INSTRUMENTAL

VARIABLES

2.1 Notation

To define valid instruments, the potential outcomes approach (Neyman 1923; Rubin 1974)

for instruments laid out in Holland (1988) is used. For each individual i ∈ {1, . . . , n},

let Y
(d,z)
i ∈ R be the potential outcome if the individual were to have exposure d ∈ R and

instruments z ∈ R
L. LetD

(z)
i ∈ R be the potential exposure if the individual had instruments

z ∈ R
L. For each individual, only one possible realization of Y

(d,z)
i and D

(z)
i is observed,

denoted as Yi and Di, respectively, based on his observed instrument values Zi. ∈ R
L and

exposure Di. In total, n sets of outcome, exposure, and instruments, denoted as (Yi, Di,Zi.),

are observed in an i.i.d. fashion.

We denote Y = (Y1, . . . , Yn) to be an n-dimensional vector of observed outcomes, D =

(D1, . . . , Dn) to be an n-dimensional vector of observed exposures, and Z to be a n by L

matrix of instruments where row i consists of Zi..

For any vector α ∈ R
L, let αj denote the jth element of α. Let ‖α‖1, ‖α‖2, and ‖α‖∞

be the usual 1, 2 and ∞-norms, respectively. Let ‖α‖0 denote the 0-norm, i.e. the number

of non-zero elements in α. The support of α, denoted as supp(α) ⊆ {1, . . . , L}, is defined

as the set containing the non-zero elements of the vector α, i.e. j ∈ supp(α) if and only if

αj 6= 0. A vector α is called s-sparse if it has no more than s non-zero entries. Also, for a

vector α ∈ R
L and set A ⊆ {1, . . . , L}, we denote αA ∈ R

L to be the vector where all the

elements except whose indices are in A are zero.

For any n by L matrix M ∈ R
n×L, we denote the (i, j) element of matrix M as Mij,

the ith row as Mi., and the jth column as M.j. Let MT be the transpose of M. Let

PM be the n by n orthogonal projection matrix onto the column space of M, specifically
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PM = M(MTM)−1MT ; it is assumed that MTM has a proper inverse, unless otherwise

noted. Let PM⊥ be the residual projection matrix, specifically PM⊥ = I−PM where I is an

n by n identity matrix.

For any sets A ⊆ {1, . . . , L}, we denote AC to be the complement of set A. Also, we

denote |A| to be the cardinality of set A.

2.2 Model

We consider the Additive LInear, Constant Effects (ALICE) model of Holland (1988) and

extend it to allow for multiple valid and possibly invalid instruments as in Small (2007).

Let d′, d ∈ R be possible values of the exposure and z′, z ∈ R
L be possible values of the

instruments. Let εi = Y
(0,0)
i − E[Y

(0,0)
i |Zi.] and the collection of εi be denoted as ε =

(ε1, . . . , εn). Suppose we have the following potential outcomes model for the outcome

Y
(d′,z′)
i − Y

(d,z)
i = (z′ − z)Tφ∗ + (d′ − d)β∗ (1)

E(Y
(0,0)
i |Zi.) = ZT

i.ψ
∗ (2)

where φ∗,ψ∗ ∈ R
L, and β∗ ∈ R are unknown parameters. In equation (1), the parameter β∗

represents the causal parameter of interest, the causal effect on the outcome of changing the

exposure by one unit. Also in equation (1), the parameter φ∗ represents the direct effect of

the instruments on the outcome; changing instruments from z′ to z results in a direct effect

on the outcome of (z′−z)Tφ∗. In equation (2), the parameter ψ∗ represents the confounders

that affect the instrument and the outcome. In particular, without any confounders, there

should not be any relationship between the instruments Zi. and the potential outcome Y
(0,0)
i .

Instead, in equation (2), they are related via ψ∗.

Let α∗ = φ∗ +ψ∗. When we combine equations (1) and (2) along with the definition of
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εi, we have the observed data model

Yi = ZT
i.α

∗ +Diβ
∗ + εi, E(εi|Zi.) = 0 (3)

We make the following remarks regarding the model (3). First, the model can include

exogenous measured covariates, say Xi. ∈ R
p which may include the intercept term, and

we can replace the variables Yi, Di, and Zi. with the residuals after regressing them on X

(e.g. replace Y by (I−PX)Y) where X is the n by p matrix of covariates (Wang and Zivot

1998). The results in this paper will hold generally when working with such data that is

transformed by regressing out the effect of X. In the same spirit, the model can be extended

to non-linear models by including appropriate basis transformations of Zi.. However, for

simplicity of exposition, we will focus on a model without any measured covariates or non-

linear terms. We will also assume that Y, D, and the columns of Z are centered, which can

also result from a residual transformation with X containing only the intercept term.

Second, following Heckman and Robb (1985), Björklund and Moffitt (1987), and Small

(2007), we can incorporate heterogeneous effects as follows. Suppose, instead of equation

(1), the potential outcomes model for the outcome is

Y
(d′,z′)
i − Y

(d,z)
i = (z′ − z)Tφ∗ + (d′ − d)β∗

i (4)

where β∗ = E(β∗
i ) is the average effect of the exposure for everyone in the population. Then,

the observed data model can be derived from (4) as follows.

Yi = ZT
i.α

∗ +Diβ
∗ + (β∗

i − β∗)Di + εi, E(εi|Zi.) = 0 (5)

If (β∗
i − β∗) is independent of Di given Zi., the heterogeneous model in (5) is identical to

model (3) and our result for Theorem 1 in Section 3.1 hold. Also, as Small (2007) notes
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in page 1055, the assumption that (β∗
i − β∗) is independent of Di given Zi. is equivalent to

that “units do not select their treatment levels Di given Zi. based on the gains they would

experience from treatment Di given Zi..” If this assumption is violated, different groups of

people will have different treatment effects, which in turn would lead to possibly non-zero α∗

(see Angrist and Imbens (1995) and Small (2007) for details). For simplicity of exposition,

we’ll focus on a model with constant linear effect β∗.

2.3 Definition of Valid Instruments

Based on the observed model in (3), the parameter α∗ combines both the direct effect,

represented by φ∗, and the effect of confounders on the Zi. and Y
(0,0)
i relationship, represented

by ψ∗. If there is no direct effect and no effect of the confounders, then α∗ = 0. Hence,

the value of α∗ captures the notion of valid and invalid instruments. The definition below

formalizes this idea:

Definition 1. Suppose we have the models in (1) -(3) with L instruments. We say instrument

j ∈ {1, . . . , L} is valid if α∗
j = 0 and invalid if α∗

j 6= 0.

Definition 1 distinguishes valid and invalid instruments based on supp(α∗), the support

of α∗. If instrument j = 1, . . . , L is not in the support, it is valid. If the instrument is in

the support of α∗, it is invalid. Consequently, not knowing which instruments are valid and

invalid directly translates to not knowing the support of α∗ in model (3).

In the case of only one instrument (i.e. L = 1), Definition 1 of a valid instrument matches

with the informal definition (A2) and (A3) in the Introduction and the formal definition in

Holland (1988). Specifically, the notion of exclusion restriction (A2), Y
(d,z)
i = Y

(d,z′)
i for all

z, z′ ∈ R is equivalent to the parameter φ∗ in equation (1) being zero. Also, the assumption

of no unmeasured confounding of the IV-outcome relationship (A3) where Y
(d,z)
i and D

(z)
i are

independent of Zi for all d, z ∈ R, is encoded by ψ∗ in (2) being zero. Hence, φ∗ = ψ∗ = 0,

which implies α∗ = 0 and a valid IV in Holland (1988) is also a valid IV in our definition.
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Also, for one instrument, our model and definition is a special case of the definition of valid

instrument discussed in Angrist et al. (1996) where our model assumes an additive, linear,

and constant treatment effect β∗.

For more than one instruments (i.e. L > 1), our model (1)-(3) and definition of valid

IVs can be viewed as a generalization of Holland (1988). It is important to note that in this

generalization, Definition 1 defines the validity of an instrument j in the context of the set

of instruments {1, . . . , L} being considered. Specifically, an instrument j could be valid in

the context of the set {1, . . . , L} (i.e. α∗
j = 0), but invalid if considered alone because Z.j

may be associated with or causally affect another IV Z.j′ , j 6= j′ where α∗
j′ 6= 0.

3 ESTIMATION OF CAUSAL EFFECT

3.1 Identifiability of Model

We first address whether the model in equation (3) is identifiable, that is whether we can

estimate the unknown parameters if we were given infinite data, even without any knowledge

about which instruments are valid and invalid. We begin by making the assumptions.

(a) E(ZTZ) is full rank;

(b) For E(ZTD) = E(ZTZ)γ∗, the components of γ∗ are all not equal to zero, i.e. γ∗j 6= 0

for j = 1, . . . , L.

Assumption (a) states that the matrix of instruments Z is full rank, a common assumption

in the instrumental variables literature (Wooldridge 2010). Assumption (b) states that the

instruments are associated with the exposure, akin to assumption (A1), that the instruments

are relevant to the exposure; note that there does not need to be a causal relationship between

the instrument Z and the exposure D, just an association (Hernán and Robins 2006; Didelez

and Sheehan 2007; Glymour et al. 2012). As one reviewer remarked, assumption (b) requires

11



that all L instruments are related to the exposure, γ∗j 6= 0 for all j. If we have instruments

that are not relevant to the exposure, γ∗j = 0, we can exclude them from further analysis

and concentrate only on those instruments that affect the exposure.

Now, the model in (3) implies the following moment condition.

E(ZT (Y − Zα∗ −Dβ∗)) = 0 (6)

Suppose the assumptions (a) and (b) hold. Then, the moment equation in equation (6)

simplifies to

Γ∗ = α∗ + γ∗β∗ (7)

where Γ∗ = E(ZTZ)−1E(ZTY). Since both Γ∗ and γ∗, defined by (b), can be identified by

their moments based on observed data E(ZTZ)−1E(ZTY) and E(ZTZ)−1E(ZTD), respec-

tively, α∗ and β∗ are identified if we can find a bijective mapping between α∗, β∗ and Γ∗,γ∗,

i.e. a unique solution α∗, β∗ given Γ∗,γ∗.

If we know exactly which instruments are invalid A∗ = supp(α∗) = {j : α∗
j 6= 0} and

hence, know the set of valid instruments (A∗)C = {j : α∗
j = 0}, equation (7) becomes

α(A∗)C + γ∗
(A∗)Cβ

∗ = γ∗
(A∗)Cβ

∗ = Γ∗
(A∗)C

There is a unique β∗ so long as |(A∗)C | > 0, or there is at least one known valid instrument.

This is a special case of the classic identification result for linear simultaneous equation

models (Koopmans et al. 1950).

If we know that there is a valid instrument, but are not sure of the identity of the valid

instrument(s), then a unique solution to (7) and hence, identification, is not guaranteed. For

example, let there be four instruments, L = 4 with γ∗ = (1, 2, 3, 4) and Γ∗ = (1, 2, 3, 8).

Then, depending on the set of valid instruments (A∗)C , which is unknown, we have two

different β∗ that satisfy equation (7). If the set of valid instruments (A∗)C is (A∗)C =
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{1, 2, 3}, we have γ∗
(A∗)Cβ

∗ = Γ∗
(A∗)C and β∗ = 1. However, if the set of valid instruments

is (A∗)C = {4}, β∗ = 2. Without knowing exactly which (A∗)C is the true set of valid

instruments, we can’t choose between the two β∗s and hence, there is not a unique solution

to (7).

But, suppose we impose constraints on A∗. Specifically, suppose the number of invalid

instruments, s = |A∗|, has to be less than some number U , s < U , without knowing which

instruments are invalid or knowing exactly the number of invalid instruments. For example,

geneticists may have a rough idea on the maximum number of invalid instruments, U , but not

know exactly the number of invalid instruments nor do they know exactly which instruments

are invalid. Note that this condition of knowing the maximum number of invalid instruments

is a much weaker requirement than what is traditionally required in IV and MR literature

where one must know exactly which instruments are invalid, i.e. know exactly the set A∗;

here, we only need an upper bound on the cardinality of A∗. Under the weaker condition

s < U , a unique solution to (7) can exist and this is stated in Theorem 1.

Theorem 1 (Uniqueness of Solution). Suppose we assume assumptions (a) and (b) and the

modeling assumption (3). Let s ∈ {0, 1, . . . , L} with s < U where U = 1, . . . , L. Consider

all sets Cm ⊆ {1, . . . , L},m = 1, . . . ,M of size |Cm| = L− U + 1 with the property

γ∗j qm = Γ∗
j j ∈ Cm

where qm is a constant. There is a unique solution α∗ and β∗ to (7) if and only if qm = qm′

for all m,m′ ∈ {1, . . . ,M}.

To understand Theorem 1, note that if the valid instruments are those in the set Cm,

then the causal effect β∗ = qm. Theorem 1 says that β∗ is identified as long as there are

not two subsets of the instruments of cardinality L − U + 1 that give internally consistent

estimates of β∗ (i.e. all instruments in each subset give the same estimate of β∗), but are
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externally inconsistent (i.e. the estimates of β∗ from the two subsets are different). We call

the property in Theorem 1 that there is a unique solution to α∗ and β∗ to (7) if and only if

qm = qm′ for all m,m′ ∈ {1, . . . ,M} the consistency criterion. We thank Jack Bowden for

his insight and suggestions on terminology for interpreting Theorem 1.

As an example of applying Theorem 1, consider our numerical example above with

γ∗ = (1, 2, 3, 4) and Γ∗ = (1, 2, 3, 8) and U = 3. Then, by Theorem 1 we have 3 sets

C1 = {1, 2}, C2 = {1, 3}, C3 = {2, 3} with q1 = q2 = q3 = 1. Hence, γ∗ and Γ∗ satisfy the

consistency criterion of Theorem 1 and we have a unique solution α∗ and β∗ to (7). In con-

trast, if γ∗ = (1, 2, 3, 4) and Γ∗ = (1, 2, 6, 8), we would have two sets C1 = {1, 2}, C2 = {3, 4}

with q1 = 1 and q2 = 2, respectively. These γ∗ and Γ∗ do not satisfy the consistency criterion

of Theorem 1 because q1 6= q2 and there are no unique solutions α∗ and β∗ to (7). Further

discussion of this particular example is discussed in the Supplementary Materials along with

discussion of the implications of Theorem 1 when the additional linearity and normality as-

sumptions of the classical linear simultaneous/structural equation model (Koopmans et al.

1950) are considered.

Checking the consistency criterion can be computationally difficult, especially if U is

large; it requires looking at
(

L

L−U+1

)

possible subsets of {1, . . . , L} and the constants qm

associated with Γ∗ and γ∗. Corollary 1 says that the consistency criterion is automatically

satisfied if U ≤ L/2 (i.e. if 50% of the total candidate of L instruments are invalid) regardless

of the values of γ∗ and Γ∗.

Corollary 1. If U ≤ L/2, there is always a unique solution to (7)

In addition to the computational benefits, compared to Theorem 1, Corollary 1 is simpler

to interpret. For example, for a geneticist, without knowing the entire biology of genetic

instruments, specifically knowing which instruments are valid and invalid, as long as the

number of invalid instruments is less than 50% of the total instruments, then the geneticist

can rest assured that the parameters can always be identified. If this is not the case, the
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geneticist can always check the consistency criterion stated in Theorem 1.

We would like to mention two final points about Theorem 1. First, Theorem 1 is a

statement about uniqueness of solutions for the parameters α∗, and β∗ in equation (7). A

natural question to ask is whether the uniqueness is guaranteed for just β∗, the causal effect

of interest, at the expense of non-uniqueness of α∗. In the proof of Theorem 1, we show

that this cannot be the case. Specifically, regardless of the condition on s, the parameter

β∗ is a unique solution to (7) if and only if the parameter α∗ is a unique solution to (7).

Second, Theorem 1 supposes the existences of the sets Cm and proceeds to compare their

corresponding qm. However, one may ask whether these sets Cm even exist in the first place.

In the proof of Theorem 1, we provide a rigorous argument that, indeed, under model (3)

and s < U , at least one set Cm has to exist.

3.2 Estimation of the Causal Effect of Exposure on Outcome

Given the model (3) and s < U , Theorem 1 lays out the sufficient and necessary condition for

finding a unique solution to the moment equation (6). Specifically, if the model is identified,

the moment equation (6) is zero at exactly one value, the true value of α∗ and β∗. Naturally

then, a method to estimate the one true value is to find the values of α∗ and β∗ that minimize

(6) subject to the parameter constraint that s < U . Formally, we can write this estimation

strategy as

argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22, s.t. ||α||0 < U (8)

where ||α||0 is the number of non-zero entries of α and by Definition 1, s = ||α||0. Equation

(8) is similar to the moment selection criterion (MSC) in Andrews (1999). However, both the

moment selection criterion in Andrews (1999) and (8) are computationally infeasible in the

sense that both require going through all subsets of size less than U and this type of problem

has been shown to be NP-hard (Natarajan 1995). Instead, a computationally tractable

version of estimation strategies like (8) has been proposed in the literature using a convex
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surrogate of the `0 norm (Candes and Tao 2005; Tropp 2006; Donoho 2006). Specifically,

the computationally feasible version of the estimation strategy in (8) can be written as

argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22, s.t. ||α||1 ≤ t (9)

where the `0 norm is replaced by the convex norm `1 and U is replaced by a user-specified

tuning parameter t > 0. In this paper, we propose the equivalent Lagrangian form as our

estimator of the causal effect, called some invalid some valid IV estimator, or sisVIVE, as

follows

(α̂λ, β̂λ) ∈ argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22 + λ‖α‖1 (10)

for some tuning parameter λ > 0 where λ corresponds to t in (9). If λ = 0 in (10), then (10)

is the popular two stage least squares (TSLS) estimator, which is equivalent to the GMM

estimator when the ε are assumed to be homoscedastic (Hansen 1982). Hence, sisVIVE can

be viewed as a generalization of TSLS or GMM.

sisVIVE also bears some resemblance to the traditional `1 penalization procedure, in

particular the Lasso (Tibshirani 1996) or the recent `1 penalty procedures in IV estimation by

Gautier and Tsybakov (2011) and Belloni et al. (2012). However, there are a few important

differences. First, with regards to traditional Lasso and the procedure proposed by Gautier

and Tsybakov (2011), our procedure in (10) only penalizes α∗. The estimator (10) does not

penalize β∗, the causal effect of the exposure on the outcome, because the causal effect may

be far from zero. In contrast, the prior works we mentioned penalize all the parameters in the

model. Second, the traditional Lasso only considers regression with all exogenous regressors,

which are regressors that are assumed to be independent of the error term or assumed to be

fixed. The regressors in our model (3) are not all exogenous; specifically, model (3) contains

one random endogenous variable, Di, which is dependent on the error term. Third, Gautier

and Tsybakov (2011) and Belloni et al. (2012) assume that either all the L instruments are
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valid or we know exactly which subset of them are valid. In contrast, our procedure does

not assume this.

Finally, a careful reader may have recognized that there may be multiple minimizers to

the equation (10), specifically β̂λ, because ||α||1 is not strictly convex and hence, we use the

set notation instead of the equality sign in (10). This might seem to be a concern as there

are multiple estimates of β∗. However, as we will show in Section 3.4, all minimizers of (10)

are close to the true values β∗. Also, if the entries of the matrix P
D̂⊥Z where D̂ = PZD

(i.e. the predicted value of the exposure given the instruments) are drawn from a continuous

distribution, then the solution to (10) is unique (Tibshirani 2013).

Without loss of generality, we assume that the columns of Z are scaled to unit length. This

allows all L instruments to have identical units so no columns of Z gets unfairly penalized

by the penalty term in (10) simply due to their original units.

3.3 Choice of λ

Like many penalization procedures, the choice of the tuning parameter λ affects the perfor-

mance of the estimation procedure and this is certainly the case with sisVIVE. High values

of λ force heavy penalization on α, which will put most elements of α̂λ to zero and most

instruments will be estimated as valid instruments. In contrast, low values of λ will put few

elements of α̂λ to zero and most instruments will be estimated as invalid instruments. In

short, the optimal choice of λ depends on knowing the exact number of invalid and valid

instruments, something not implied by the condition s < U .

In practice, cross validation is a popular data-driven method to choose λ. In the same

spirit, we use a K-fold cross validation where we minimize the estimating equation ||PZ(Y−

Zα−Dβ)||2 instead of the predictive error ||(Y−Zα−Dβ)||2. We minimize the estimating

equation instead of the predictive error since the parameter of interest is the causal effect β∗

that sets the expected value of the estimating equation to zero (see equation (6), Sections

17



3.1 and 3.2). We use the “one standard error” rule used in most cross-validation procedures

(Hastie et al. 2009) and choose the smallest λ that is no more than one standard error

above the minimum of the estimating equation. In Section 4, we discuss the performance

of β̂λcv
, where λcv is the cross-validated λ based on the estimating equation through various

simulation studies. Also, in the Supplementary Materials, we discuss another method of

choosing λ, in particular, choosing λ based on the theoretical guidance from Theorem 2

and Corollary 2. In short, the Supplementary Materials show that for better estimation

performance of β̂λ, it is important not to incorrectly set invalid IVs to be valid (i.e. let α̂j to

be zero when the true α∗
j is not zero), while the reverse is not as important. This observation

argues for choosing λ that tends to set relatively few elements of α̂λ to be zero and in the

Supplementary Materials, we demonstrate that cross validation achieves this goal in a wide

variety of settings.

3.4 Estimation Performance

How well does sisVIVE estimate the causal effect β∗? In order to analyze the performance

of sisVIVE, we first introduce some basic notations and definitions.

Definition 2. For any matrix M, the upper and lower restricted isometry property (RIP)

constants of order k, denoted as δ+k (M) and δ−k (M) respectively, are the smallest δ+k (M) and

largest δ−k (M) such that

δ−k (M)‖α‖22 ≤ ‖Mα‖22 ≤ δ+k (M)‖α‖22 (11)

holds for all k-sparse vectors α.

RIP conditions have been widely used in the literature on compressed sensing and high-

dimensional linear regression. See Cai and Zhang (2013) and the references therein. The

following theorem characterizes the performance of sisVIVE in finite samples using the RIP
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conditions. Note that this characterizes all the minimizers β̂λ from sisVIVE in (10).

Theorem 2 (Estimation performance of sisVIVE). Suppose we have the model given in (3).

Let D̂ = PZD. Let the restricted isometry constants δ+2s(Z), δ
−
2s(Z), δ

+
2s(PD̂

Z) be defined as

in (11), where s is the number of invalid instruments. Suppose

2δ−2s(Z) > δ+2s(Z) + 2δ+2s(PD̂
Z) (12)

holds, then the estimate β̂λ given by (10) with tuning parameter λ ≥ 3‖ZTP
D̂⊥ε‖∞ has the

following performance guarantee

|β̂λ − β∗| ≤ |D̂Tε|
‖D̂‖22

+
1

‖D̂‖2

(

(4/3
√
5)λ
√

sδ+2s(PD̂
Z)

2δ−2s(Z)− δ+2s(Z)− 2δ+2s(PD̂
Z)

)

. (13)

Condition (12) includes the RIP constants, δ−2s(Z), δ
+
2s(Z), and δ

+
2s(PD̂

Z). Unfortunately,

these RIP constants in (12) are difficult to evaluate. Hence, in some applications, it is more

convenient to use a slightly stronger but much simpler and interpretable condition called

the “mutual incoherence property” (MIP). Specifically, let D̂ = PZD and ‖Z.j‖2 = 1 for all

j = 1, . . . , L. Define the constants µ and ρ as

µ = max
i 6=j

|ZT
.iZ.j| and ρ = max

j
|D̂TZ.j|/‖D̂‖2. (14)

First, the constant µ measures the maximum correlation between any two columns of the

matrix of instruments Z. This is related to Assumption (a) in Section 3.1 where a full rank

Z means the columns of Z are linearly independent. In fact, if µ < 1/(L− 1), Z is full rank.

Second, the constant ρ measures the maximum strength of individual instruments. A high ρ

doesn’t necessarily imply that all L instruments are individually strong; it just implies that

one of the L instruments is strong (i.e. has a high correlation to D); it’s possible that the
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rest of the L−1 instruments are weak. This notion of strength by ρ is slightly different than

the concentration parameter, which measures the overall strength of all the L instruments

(see Section 4 for details). Also, ρ stands in contrast to Condition (b) in Theorem 1 which

looks at the individual values of γj, j = 1, . . . , L, instead of the maximum of γjs.

Given the two MIP constants µ and ρ, we have the following result on estimation per-

formance. Like Theorem 2, Corollary 2 characterizes all the minimizers β̂λ from sisVIVE in

(10).

Corollary 2 (Estimation performance of sisVIVE under MIP). Let the MIP constants µ

and ρ be given in (14). If the number of invalid instruments, s, satisfies

s < min(
1

12µ
,

1

10ρ2
) (15)

the estimate β̂λ given by (10) with tuning parameter λ ≥ 3‖ZTP
D̂⊥ε‖∞ has the following

performance guarantee

|β̂λ − β∗| ≤ |D̂Tε|
‖D̂‖22

+
1

‖D̂‖2

(

4
√
105/9λsρ

1− s(5ρ2 + 6µ)

)

. (16)

We make the following remarks. First, in the Supplementary Materials, we show the

condition in equation (15) directly implies the condition in equation (11). We also provide

an example of a matrix of instruments Z where the RIP condition is satisfied, but the MIP

condition is not satisfied. Second, the constraint on the number of invalid instruments, s,

in Corollary 2 is strict, but is required to precisely characterize the bound on estimation

performance. As two reviewers pointed out, if the instruments are even slightly correlated

at µ = 0.1, s < 10/12, no invalid instruments are allowed, and Corollary 2 is not useful in

characterizing the performance of sisVIVE. In Section 4 and in the Supplementary Materials,

we study the behavior of sisVIVE when this constraint in (15) may not hold. Third, in the
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case where all the instruments are uncorrelated with each other so that µ = 0, a small ρ

provides a less restrictive upper bound on s. At first glance, this may be counterintuitive

since a small ρ implies that all the instruments’ individual correlation to the exposure is

weak and, therefore, having weak instruments allow one to have more invalid instruments.

However, we note that the denominator of the bound (16), specifically ‖D̂‖22 is a function

of the correlation of the instruments, and having a small ρ would translate to having a

small ‖D̂‖22. Hence, even though the condition (15) allows for more invalid instruments,

the upper bound (16) becomes worse and our estimator β̂λ will be far from β∗. Finally,

we emphasize that the conditions in both Theorem 2 and Corollary 2 are sufficient, but

not necessary conditions for the performance bounds to hold. In particular, a violation of

these conditions does not imply that sisVIVE will perform badly (see Section 4 and the

Supplementary Materials).

3.5 Fast Numerical Algorithm

In addition to the theoretical guarantees on estimation performance, in practice, a fast,

scalable numerical algorithm for estimation is desirable, especially for MR where genetic

data can be large. Theorem 3 outlines a two-step numerical method whose solution is

identical to sisVIVE in (10), but is as fast as ordinary least squares.

Theorem 3 (Fast two-step numerical algorithm). Let P
D̂

be the projection matrix onto the

vector D̂ and P
D̂⊥ = I−P

D̂
. We propose the two-step algorithm as follows.

Step 1: For a given λ > 0, solve:

α̂λ ∈ argmin
α

1

2
||P

D̂⊥PZY −P
D̂⊥Zα||22 + λ||α||1
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Step 2: Use α̂λ from Step 1 to estimate β̂λ by

β̂λ =
D̂T (Y − Zα̂λ)

||D̂||22

The solution to the two-step algorithm is identical to the solution to sisVIVE in (10)

In the two-step algorithm, step 1 is the standard Lasso problem with outcome P
D̂⊥PZY

and P
D̂⊥Z; remember, sisVIVE in (10) is not the standard Lasso problem as discussed in

Section 3.2. Fast algorithms for the Lasso exist, most notably LARS (Efron et al. 2004). In

fact, LARS is able to solve α̂λ for all values of λ > 0 at the same computational efficiency

as ordinary least squares. Step 2 is also numerically efficient, requiring a simple dot product

operation between D̂ and Y − Zα̂λ. Thus, the proposed two-step algorithm is, practically

speaking, as fast as ordinary least squares. Best of all, the estimate from this two-step

algorithm is identical to sisVIVE.

4 SIMULATION STUDY

We conduct various simulation studies to study the estimation performance, measured by |β̂−

β∗|, for different methods. Specifically, we compare sisVIVE with TSLS, the most popular

estimator in IV and MR, and ordinary least squares (OLS) under various settings that vary

the instruments’ absolute/overall and relative strength, their validity and correlation among

each other, and endogeneity.

Let there be n = 2000 individuals and L = 10 potential candidate instruments. The

observations (Yi, Di,Zi.), i = 1, . . . , n are generated by

Yi = π∗ + ZT
i.α

∗ +Diβ
∗ + εi

Di = γ∗0 + ZT
i.γ

∗ + ξi

,







εi

ξi







iid∼ N













0

0






,







1 σ∗
εξ

σ∗
εξ 1
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where Zi. is drawn from a multivariate normal with mean 0 and covariance matrix where

the diagonals are all one. Throughout the simulation, the parameters π∗, β∗, and γ∗0 are

fixed. However, we vary (i) the endogeneity parameter σ∗
εξ, (ii) the direct effect parameter

α∗ = (1, 1, . . . , 0, 0) where we change s in ‖α∗‖0 = s, (iii) the pairwise correlation between

instruments, i.e. µ in equation (14), (iv) the absolute/overall strength of instruments, and

(v) the relative strength of instruments, the latter two by changing the parameter γ∗.

In particular, for (i), we vary σ∗
εξ from 0 to 0.9. For (ii), we vary s from 0 to 9. For (iii), we

set µ at four different values, 0, 0.25, 0.5, and 0.75, by setting all the off-diagonal elements of

the covariance matrix of Zi. to this value. For (iv), we vary the absolute/overall instrument

strength by the concentration parameter. The concentration parameter is a popular measure

for instrument strength; high values of the concentration parameter indicate the overall

strength of all L instruments are strong and vice versa. The concentration parameter is also

the population value of the first stage F statistic for the instruments when the exposure is

regressed on them; this first stage F statistic is often used to check instrument strength (Stock

et al. 2002). Based on Table 1 in Stock et al. (2002), a set of instruments with a concentration

parameter (scaled by the number of valid instruments) of around 10 is considered weak in

the absolute/overall sense and instruments with a concentration parameter (scaled by the

number of valid instruments) of around 100 is considered strong in the absolute/overall sense.

Finally for (v), we vary the relative instrument strength by changing the individual entries of

the vector γ∗ while keeping the concentration parameter fixed. Specifically, for a particular

concentration parameter, we consider instruments to have equal relative strength if γ∗j = γ∗k

for all j 6= k and variable relative strength if γ∗j = 2 ∗ γ∗k for various values of j 6= k.

For each simulation setting, we repeat the simulation 1000 times. For each repetition,

we compute sisVIVE’s estimate of the causal effect, β̂λ, where λ is chosen by 10-fold cross

validation outlined in Section 3.3. We also compute estimates from TSLS and OLS. For

TSLS, we run two types of TSLS. First, we run the “naive” TSLS as if all the instruments
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are valid. This is quite common in MR studies where all the instruments are assumed to

be valid and the causal estimate is computed using TSLS. When some of the instruments

are in fact invalid, naive TSLS should give biased estimates. Second, we run TSLS as if we

knew exactly which instruments are valid, i.e. the “oracle” TSLS. Specifically, we use the

knowledge of the support of α∗ and run TSLS controlling for the invalid instruments that are

in the support of α∗ as covariates. Finally, we run OLS with Z and D as our regressors and

Y as our outcome. We expect OLS to perform poorly when there is substantial endogeneity

by D since OLS cannot control for endogenous variables. But, OLS should be more efficient

than IV methods if there is no endogeneity (Richardson and Wu 1971).

Figure 2 shows the estimation error when endogeneity is varied. The number of invalid

instruments is fixed at s = 3 and we consider 16 different sets of instruments based on

their absolute and relative strength as well as their pairwise correlations. For example, the

top lefthand plot of Figure 2 corresponds to instruments whose overall strength is strong

(i.e. scaled concentration parameter is around 100) , their relative strength is equal (i.e.

γ∗j are identical for all j = 1, . . . , L), and their pairwise correlations are 0. In contrast, the

bottom right plot of Figure 2 corresponds to instruments whose their overall strength is weak

(i.e. scaled concentration parameter is around 10), their relative strength is variable (i.e.

γ∗j = 2 ∗ γ∗k for j 6= k) and their pairwise correlations are equal to 0.75.

As expected, OLS dominates naive TSLS, oracle TSLS, and sisVIVE when the endo-

geneity is small and close to zero, with the dominance being greater for weak instruments.

Once there is a sufficient amount of endogeneity, oracle TSLS, which knows exactly which

instruments are valid and invalid, does best. However, sisVIVE, which is a feasible rather

than infeasible oracle estimator, is close to the oracle TSLS; the gap between oracle TSLS

and sisVIVE gets larger as the instruments’ absolute strength gets weaker. Regardless of

instrument strength, naive TSLS, which assumes all the L instruments are valid, has a high

error since it cannot take into account the bias introduced by invalid instruments.
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Figure 2: Simulation Study of Estimation Performance Varying Endogeneity. There are ten
(L = 10) instruments. Each line represents median absolute estimation error (|β∗− β̂|) after
1000 simulations. We fix the number of invalid instruments to s = 3. Each column in the
plot corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured by
varying γ∗ while holding the absolute strength (i.e. concentration parameter) fixed. Each
row corresponds to the maximum correlation between instruments.
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Figure 3 shows the estimation error when the number of invalid instruments is varied. The

endogeneity, σ∗
εξ, is fixed at 0.8. Like Figure 2, we consider the same 16 sets of instruments.

We first see that at s = 0, i.e. when there are no invalid instruments, sisVIVE’s performance

is nearly identical to naive and oracle TSLS. However, sisVIVE does not use the knowledge

that one knows exactly which instruments are valid while the two TSLS estimators do. Also,

sisVIVE’s performance degrades slightly for instruments with weak absolute strength when

the correlation between instruments increases.

When s < L/2 = 5, sisVIVE’s performance is comparable to oracle TSLS and better than

naive TSLS. However, for instruments with weak absolute strength, sisVIVE does slightly

worse compared to the oracle TSLS than for instruments with strong absolute strength. Once

we reach the identification boundary in Corollary 1, s < L/2 = 5, sisVIVE’s performance

becomes similar to naive TSLS. This is the case regardless of the instruments’ absolute and

relative strength. Finally, for any s, oracle TSLS performs much better than all the other

estimators.

Also, in all 16 sets of instruments, we compute the ρ and µ found in the condition for

Corollary 2 from the simulated data and this is detailed in the Supplementary Materials. For

example, the top lefthand plot of Figure 2 has ρ of approximately 0.31 and µ = 0. Based on

this, the upper bound on s in Corollary 2 is 1.04. However, since s = 3 for the simulations in

Figure 2, the condition (15) in Corollary 2 is violated and cannot be used to characterize the

behavior of sisVIVE. Regardless, in our simulation study presented in this Section, sisVIVE

performs just as well as the oracle TSLS.

In the Supplementary Materials, we expand the simulation study to cover different types

of instrument strength, correlation structure between instruments, and total number of po-

tential instruments. We also explore different metrics of error, such as the proportion of

correctly selected valid instruments and invalid instruments, to analyze the relationship be-

tween these proportion-based error metrics and the median bias error metric used in this
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Figure 3: Simulation Study of Estimation Performance Varying the Number of Invalid In-
struments (s). There are ten (L = 10) instruments. Each line represents median absolute
estimation error (|β∗ − β̂|) after 1000 simulations. We fix the endogeneity σ∗

εξ to σ∗
εξ = 0.8.

Each column in the plot corresponds to a different variation of instruments’ absolute and
relative strength. There are two types of absolute strengths, “Strong” and “Weak”, mea-
sured by the concentration parameter. There are two types of relative strengths, “Equal”
and “Variable”, measured by varying γ∗ while holding the absolute strength fixed. Each row
corresponds to maximum correlation between instruments.
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Section. In addition, we also compute the conditions for Corollary 2, specifically ρ, µ, and

λ required to achieve the performance bound. The Supplementary Materials show that

in every case considered, sisVIVE performs no worse than the next best alternative, naive

TSLS. In fact, in most cases, sisVIVE beats naive TSLS and performs similarly to the oracle

TSLS. The only case where sisVIVE’s performance deviated greatly from the oracle TSLS

was when the invalid instruments were weaker than the valid instruments and s = 4. In

addition, the Supplementary Materials show that a good estimate of β∗ depends strongly

on correctly selecting the invalid instruments more than correctly selecting the valid instru-

ments and choosing λ based on cross validation seems to favor this situation. We also find

that choosing λ based on Corollary 2 leads to a higher λ than one based on cross validation.

Finally, we find that sisVIVE based on λ chosen by cross validation always performed at

least as well as sisVIVE based on λ chosen by Corollary 2. In fact, in most cases, sisVIVE

with a cross-validated λ performs better than sisVIVE with a λ chosen by Corollary 2.

Overall, sisVIVE using a cross-validated λ does much better than naive TSLS, the most

frequently used estimator in MR and IV. In many cases, sisVIVE beats the naive TSLS

and it is comparable to oracle TSLS. The promising simulation results suggest that sisVIVE

should be used whenever there is concern about invalid instruments.

5 DATA ANALYSIS

We demonstrate the potential benefit of using sisVIVE in MR by analyzing the effect of

obesity, the exposure, on health-related quality of life, the outcome. An individual’s quality

of life is the general well-being of the individual; an individual’s health quality of life is the

subset of quality of life related to the individual’s health (Torrance 1987). Previous non-MR

studies by Trakas et al. (2001) and Sach et al. (2007) have shown that there is a nega-

tive association between obesity and health-related quality of life. However, a fundamental

difficulty with these studies is that the outcome, health-related quality of life, encompasses
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various factors about the individual, making it difficult to control for all possible confounders

that may affect obesity and health-related quality of life (Cawley and Meyerhoefer 2012).

An MR approach offers the potential of controlling for unmeasured confounders.

For the analysis, we use the data from the Wisconsin Longitudinal Study (WLS), a

well-known longitudinal study that has kept track of American high school graduates from

Wisconsin since 1957. We look at graduates that were reinterviewed in 2003-2005 (Hauser

2005) and who have been genotyped. Similar to another analysis with the WLS genetic data,

we remove individuals with more than 10% missing genotype data (Roetker et al. 2012). Our

analysis of the data set contains n = 3712 individuals with 1913 females and 1799 males

born mostly between 1938 to 1940.

To measure health-related quality of life, we use the Health Utility Index Mark 3 (HUI-3)

which was also used in Trakas et al. (2001). HUI-3 is a composite score of utility between

0 and 1, with 1 indicating highest health state and 0 indicating a health state equivalent to

death; negative utility is possible and indicates that the person is alive, but in a state worse

than death. To measure obesity, we use the body mass index (BMI) and the US National

Institute of Health clinical guidelines (National Institute of Health 1998) that were also used

in Trakas et al. (2001) and Sach et al. (2007) in their analysis. Specifically, we follow Trakas

et al. (2001) and define the exposure by assigning individuals with BMI less than 30 (i.e. not

obese) to be 0, individuals with BMI between 30 and 35 (i.e. obese class I) to be 1, individuals

with BMI between 35 and 40 (i.e. obese class II) to be 2, and individuals with BMI greater

than 40 (i.e. obese class III) to be 3 so that each value of the exposure corresponds to the

increasing obese classes used in Trakas et al. (2001) and the US National Institute of Health

clinical guidelines (National Institute of Health 1998). For instance, exposure value of zero

corresponds to non-obese individuals while exposure value of two corresponds to individuals

in obese class II. Hence, the causal effect of interest is the effect of moving up in the obese

class; specifically β∗ in model (1) will correspond to the effect of moving up one obese class on
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the HUI-3 index of health-related quality of life. In the Supplementary Materials, we explore

different methods to quantify obesity and the resulting estimates from different methods.

For potential candidate instruments, we use the following single nucleotide polymor-

phisms (SNPs) in the WLS that have been previously shown to be associated with obesity:

rs1421085, rs1501299, and rs2241766 (see Table 1). rs1421085 is in the FTO gene and it

has been shown to be strongly associated with obesity (Dina et al. 2007; Price et al. 2008).

rs1501299 (i.e. +276G>T) is in the ADIPOQ gene that encodes adiponectin, a protein en-

coding for lipid metabolism, and has been associated with obesity (Bouatia-Naji et al. 2006;

Yang et al. 2007). Finally, rs2241766 is also in the ADIPOQ gene that has been associated

with obesity (Ukkola et al. 2003; Yang et al. 2003; Beckers et al. 2009). For all the SNPs, we

follow an MR study done by Timpson et al. (2005) and assume an additive model. Although

we have no particular reason to think any of the SNPs is an invalid IV, we are uncertain due

to the lack of complete knowledge about the biological functions of the SNPs, a common

scenario in MR studies. Our sisVIVE estimator will provide a good estimate as long as least

two of the three SNPs are valid IVs.

Table 1. Summary of Instruments in the Data Analysis. MAF stands for minor allele frequency

Instruments Major alleles Heterozygote Minor alleles MAF (SE)
rs1421085 1281 (34.5%; TT) 1818 (49.0%; CT) 613 (16.5%; CC) 0.39 (0.0057)
rs1501299 1950 (52.5%; CC) 1502 (40.5%; AC) 260 (7.0%; AA) 0.24 (0.0049)
rs2241766 2956 (79.6%; TT) 719 (19.4%; TG) 37 (1.0%; GG) 0.10 (0.0036)
rs6265 2437 (65.7%; GG) 1112 (30.0%; AG) 163 (4.4%; AA) 0.19 (0.0046)

A simple ordinary least squares analysis estimates that an increase in one obese class is

associated with a 0.052 (SE: 0.0040) decrease in HUI-3 score. The reduced form estimates

along with the first stage F statistics are summarized in the Supplementary Materials.

If we use TSLS, under the operating assumption that all the instruments are valid, the

estimated causal effect is −0.00094 (SE: 0.081), i.e. climbing up one obese class reduces

your health utility quality of life by 0.00094. Our estimator, sisVIVE, which operates only

under the assumption that a proportion of instruments are invalid, estimates −0.00094 as
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the causal effect, which is identical to the estimate by TSLS. Also, sisVIVE does not select

any SNPs as an invalid IV. The overidentifying restrictions test and the implied structural

correlation between Di and the error term are summarized in the Supplementary Materials.

To further validate our method, we include another instrument, rs6265 (i.e. Val66Met).

rs6265 is in the brain-derived neurotrophic factor BDNF gene and has been shown to not only

be associated with BMI (Thorleifsson et al. 2008; Shugart et al. 2009), but also neurological

and cognitive function (Hwang et al. 2006; Rybakowski et al. 2006). Hence, there is some

reason to believe that rs6265 may be pleiotropic; rs6265 may impact obesity, but also affect

health-related quality of life through mechanisms other than obesity. sisVIVE should be able

to pick up on this instrument being invalid in contrast to TSLS, which will always assume

that all the instruments used are valid.

If we use TSLS under the operating assumption that all the four instruments are valid,

the estimated effect is −0.0086 (SE:0.080). sisVIVE, on the other hand, estimates the

causal effect to be −0.0037, which is closer to the estimates when we used three instruments.

sisVIVE also throws out the instrument, rs6265, which we suspect to be invalid. The reduced

form estimates and the overidentifying restrictions test are summarized in the Supplementary

Materials.

In both data analyses, sisVIVE operates under the assumption of possibly invalid instru-

ments, which are typical in MR studies, while TSLS operates under the assumption of all

valid instruments. In the first data analysis where there was no reason to believe that the

instruments were invalid, sisVIVE provides the same answer as TSLS, but without assuming

that all the instruments were valid. In the second data analysis where one instrument was

suspect, sisVIVE removed the suspected instrument. In both cases, sisVIVE was robust to

possibly invalid instruments compared to TSLS.
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6 DISCUSSION

This paper demonstrates that proper estimation of causal effects using the IV method is

possible without knowledge of all the instruments’ validity. Our results show that simply

knowing a proportion of the instrument is valid, without knowing which are valid, is sufficient

and we construct the sisVIVE estimator that dominates the naive TSLS in almost every

aspect while performing similarly to the oracle TSLS. Both the simulation result and data

analysis show that sisVIVE is a robust alternative to TSLS in the presence of possibly invalid

instruments.

Future work could involve generalizing the model considered. In particular, the current

paper discusses a model in which treatment effects are constant. Angrist et al. (1996)

discusses the setting in which the treatment effects are not constant and individuals may

select into treatment based on expected gains from treatment. Then, qm and qm′ in Theorem

1 might not be equal to each other for different sets of valid instruments and Theorem 1

does not apply. It would be useful to understand what sisVIVE is estimating under this

setting of treatment effect heterogeneity. Other useful directions for future work are relaxing

the conditions on Corollary 2 to encompass more invalid instruments s and deriving tests

for identification. Also, we have focused on the applications of our method to Mendelian

randomization. In economic applications, it is also common to have multiple candidate

instruments and be concerned that some proportion of the instruments are invalid (Murray

2006). Our current work demonstrates that instrumental variable estimation is definitely

possible even in the presence of possibly invalid instruments.

7 SUPPLEMENTARY MATERIALS

unblind-Proofs: The file contains additional information about the Wisconsin Longitu-

dinal Data, the simulation study, further discussions, and all the technical details,
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including the proofs of Theorems 1, 2, and 3. This is the unblinded version. (pdf file)

blind-Proofs: The file contains additional information about the Wisconsin Longitudinal

Data, the simulation study, further discussions, and all the technical details, including

the proofs of Theorems 1, 2, and 3. This is the blinded version. (pdf file)

Supplementary zip file: The file contains the R-package “sisVIVE” which implements the

method proposed in the paper along with documentation and one technical report on

arXiv and one paper on NBER Working Paper series, both of which are cited in the

main manuscript (GNU zipped file)
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