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Abstract

For a family of domains in the Sierpinski gasket, we study harmonic functions of finite energy, characterizing
them in terms of their boundary values, and study their normal derivatives on the boundary. We characterize
those domains for which there is an extension operator for functions of finite energy. We give an explicit
construction of the Green’s function for these domains.
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BOUNDARY VALUE PROBLEMS FOR A FAMILY OF
DOMAINS IN THE SIERPINSKI GASKET

ZIJIAN GUO, RACHEL KOGAN, HUA QIU AND ROBERT S. STRICHARTZ

ABSTRACT. For a family of domains in the Sierpinski gasket, we
study harmonic functions of finite energy, characterizing them in
terms of their boundary values, and study their normal deriva-
tives on the boundary. We characterize those domains for which
there is an extension operator for functions of finite energy. We
give an explicit construction of the Green’s function for these
domains.

1. Introduction

Consider the domain €, in the Sierpinski Gasket (SG) consisting of all
points above the horizontal line L, at the distance x from the top vertex qo,
for 0 <z <1.

Let S(z) =8G N L,. For x not a dyadic rational, this is a Cantor set.
The boundary of Q, consists of S(x) together with gg. By general principles,
harmonic functions on €2, are determined by their boundary values, where
harmonic functions are defined to be solutions of Ah =0 on the interior of
Q., where A is the Kigami Laplacian on SG. The study of such harmonic
functions was initiated in [S1], and continued in [OS] for the special case
x =1. In this paper, we extend the results in [OS] to the general case. In
Section 2, we give an explicit description of the analog of the Poisson kernel
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to recover the harmonic function from its boundary values, in terms of the
Haar series expansion of the boundary values on S(x), and we characterize the
boundary values that correspond to harmonic functions of finite energy. In
Section 3, we define normal derivatives on the boundary and give a description
of the Dirichlet-to-Neumann map as a multiplier transform on the Haar series
expansion.

In Section 4, we study the extension problem for functions of finite energy
on ), to functions of finite energy on SG. We are able to characterize the
values of x for which such extensions are possible. In particular, the value
x =1 studied in [OS] does not admit such extensions. This may be regarded
as the first of a family of Sobolev extension problems, based on Sobolev spaces
on 8§ discussed in [S2]. We leave these as open problems for future research.
Related problems are studied in [LS] and [LRSU].

In Section 5, we give a construction of a Green’s function on 2, to solve the
Dirichlet problem —Au = F on Q,, u|sq, =0 via an integral transform of F.
The construction of the Green’s function is analogous to Kigami’s construction
on S§G.

The reader is referred to the books [Ki] and [S3] for a description of the
theory of the Laplacian on SG, and related fractals. It would be interesting
to extend the results of this paper to other domains in SG, and to domains in
other fractals. In this regard, we offer the following cautionary tale. Consider
the fractal SG3, defined similarly to SG but by subdivisions of the sides of
triangles into three rather than two pieces (see Figure 2).

We may consider domains €, defined as before, with the boundary S(z)
modeled as a Cantor set with divisions into three pieces. There is a natural
analog of Haar functions on S(x), with two generators as shown in Figure 3.

Because the second generator is symmetric rather than skew-symmetric,
we cannot glue to zero at the top, so the analog of Lemma 2.3 does not hold.
It is not clear how to overcome this difficulty.
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FicUurE 3. Haar generators.

2. Harmonic functions on (),

For 0 < x <1, there is a unique representation

(2.1) z=Y 27
k=1

for a sequence

(22) O<n1<n2<...

of increasing positive integers. We will approximate 2, by the increasing
sequence of domains QE{") where each Q;m) is the closure of Qz[m] where

(2.3) Ty = » 27
k=1

is the partial sum of (2.1). (Note that (2.3) is not the representation of i,

of the form (2.1) since it is a finite binary representation.) The domain o™
is a finite union of cells, specifically 1 ni-cell, 2 no-cells, 4 nz-cells, ...,2m"!

F:ijmb41.tex; (Aiste) p. 3
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ny=1,n,=2,n3 =3

m=1 m=2 m=3

ny=1,n,=3,n3 =25

FIGURE 4. Some examples of QU™ for m = 1,2, 3.

nm-cells. Figure 4 illustrates Q;m) for m =1,2,3 for two choices of . The

boundary of Q&’") consists of the top vertex gy together with the 2™ bottom

vertices of the n,,-cells.
Following [S1], we define

(2.4) Rp=) 27" =g—27™
k=2

and the function ag(x) by the identity
_ 1
T 2()) (1 ag(Re))

which is easily solved to obtain a variant of a continued fraction representation

(2.5) ap(x)

(2.6) ap(z) = lim a(()k)(ac)
k—o0
for
1
2.7) ol = .
0 1—|—2(%)nz—m(1— 1+2(%)n3—n2(17¥

. 1
1+2(%)"k*"k‘71

See Figure 5 for the graph of ag(x) on (0,1].
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F1Gure 5. The graph of ag(x).

We also define

28 )=t g = 2l
Note that
(2.9) ap(z) + a1 () + az(x) =1.

These functions enable us to describe harmonic functions in €2,. The
boundary of €, consists of the top vertex go and S(z) =L, NSG. If = is
not a dyadic rational, then S(z) is a Cantor set. We will assume this holds.
Then a harmonic function is determined by the value h(gg) and the expansion
of h|sg in a Haar basis.

DEFINITION 2.1. The harmonic function hg satisfies
The harmonic function h; satisfies

hi1(qo) =0, hls@nrm—1rse) = b

(2.11) .

h1|5(w)mF§1‘1F2(3g)

We write hf and h{ when we need to explicitly show the dependence on z.
Note that 1 — hq satisfies

(2.12) (1 —="o)(q0) =0, (1=ho)ls@) =1,
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6 Z. GUO ET AL.

so that 1 — hg and h; vanish at gg and give the first two Haar functions when
restricted to S(x). Also it is shown in [S1] that

(2.13) ho(F3 ™ Fiqo) = ho(F* ' Fago) = ap(x)

and

(2.14) ha (F ' Figo) = —hi (B Fago) = ai(z) — as(a).
LEMMA 2.2. Let y=2"tRx. Then

(2.15) hi o (Fg" ™ F1) = hi o (Fg* ' Fz) = ao(2)hg

and

(2.16)  hio (F 'Fy) = —h{(F T 'F) =1+ (a1(z) — as(z) — 1)A].

Proof. The function ag(z)h{ is a harmonic function on , with boundary
values ap(z) at o and zero on S(y). Note that Fj' ' Fi(S(y)) = S(x), so
h¢ o (Fy*~'Fy) is also a harmonic function on €, vanishing on S(y), and
it assume the value ag(x) at go by (2.13). Thus, (2.15) holds. A similar
argument shows that (2.14) implies (2.16). O

Next, we consider the general Haar basis functions on L?(S(x)). Let w =
(w1, ..,wm) be a word of length |w| =m, with each w; =1 or 2. Then

(2.17)  Su(z)=S(z)NF R, Fre ™ R, - Ry R, (SG)
describe the dyadic pieces of S(x). In particular,
(2.18) S@)= J Su().

|w]=m

The Cantor measure p on S(x) assigns measure 2" to each piece S, (z).
The Haar function 1, is supported on S, (z) and satisfies

(2.19) Vols@) =2™7 and Py ls,,@) = —2™/>
Then 1U{t,,} is an orthonormal basis for L2(S(z), du). We define hZ to be the
harmonic function on €, with boundary values A (qo) =0 and Al |s(z) = Y.
LEMMA 2.3. Let yn, =2"" R™x. Then hY is supported in
Qu N L g2 Fy e By R, (SG)
and
(2.20) hf) ° (an—lel F07L2—7L1—1Fw2 . F(;L,,ﬁnmﬂlewm) _ 2m/2h11/m'
Proof. The key observation is that, because of skew-symmetry, the function
h1 not only vanishes at go but also has normal derivative vanishing at go.
Thus, we may glue the function defined by (2.20) to zero outside this cell

and still have a harmonic function. This function clearly has the required
boundary values for hl,. O
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THEOREM 2.4. The energies are given by

(2.21) £(hg) =(1—ao(z 222 J( )mw,

and
(2.23) £(h?) 2M<§>nm£(h%’M),

where m = |w|. Moreover, there exist positive constants C1 and Ca, indepen-
dent of x, such that

Nm+1 Nom 41
(2.24) 012’”@) <E(hL) 3022’“(%) .

Proof. We compute the energy of h} on the top cell Fj'* (SG) using (2.13)
to be (3)™2(ag(x) — 1)?, since there are two edges where the difference of
hg is ag(x) — 1. On the remaining cells FJ'* "' Fy(SG) and Fj' ~' Fy(SG) the
function h¥ is equal to ag(z)hd o (Fg* 1 Fy)~" and ag(z)hf o (Fg 1 Fy)~" by
(2.15). These each have energy ag(z)?(3)™E(h), so

5\
22 &) =2(3) (e - 1) +anPE ().
Before iterating this identity, we observe that
1/5\™ "
(2.26) (1—ao(y))ao(z) = 5 (5) (1—ao(z)).

This follows from (2.5) and the observation, from (2.7), that ag(x) de-
pends only on the sequence of differences ny — ni_; and therefore ag(y) =
ap(2" Rx) = ag(Rx). Thus,

=1 (o) ()
+4(2)nz0‘0(95>2ao(y)2<€’(hgz)

and by iterating we obtain (2.21).
Similarly, we use (2.14) to compute the energy of h on the top cell Fj* (SG)

to be (3)™6(as(x) - ai(@))? = (3)™ 6(2200)2 by (2.8). Then by using

(2.16) we compute the energy in each of the other cells to be ()" (ay(z) —

az(x) — 1)2E(hY) = (3 )"1(223‘&31)25(%), and by adding we obtain (2.22).

Then (2.23) follows by Lemma 2.3.
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8 Z. GUO ET AL.

To obtain the estimate (2.24), we observe that since 0 < ap(z) < 5 it
follows from (2.7) that ag(x) is bounded above and below by multiples of
(2)m "2, It follows from (2.21) that £(h{) is bounded above and below by
multiples of ( )™ since the infinite series is dominated by its first term. We
get the same estimate for £(hT) using (2.22) since the second summand is
bounded by a multiple of (3)2(m1=n2)(2)m(3)n2=m1 Then (2.24) follows from
this estimate and (2.23). O

COROLLARY 2.5. Let h be the harmonic function on §; with boundary
values h(qo) = a and h|g() = f, where

(2.27) F=b+) cuth
for

2.28 = Jbw dp.
(2.28) ¢ /S " 1

Then E(h) is bounded above and below by multiples of

5 ny ) o) 5 N1 )
(2.29) (§> (a—b) +1;O| |Z—: 2 (§> lew)?.
In particular, h has finite energy if and only if (2.29) is finite.

Proof. By subtracting a constant we may assume without loss of generality
that @ =0 (this does not change ¢,). Then from (2.27) we have

(2.30) h="b(1— ho) +Z > cohe,

m= O‘w

and the functions hg U {h,} are orthogonal in energy by symmetry consider-
ations. Thus,

(2.31) E(h) =b*E(1 — hy) +Z D fewE(h
m=0 |w|=

and the result follows by the estimates (2.24). O

We are also interested in the corresponding result for the L? norm of h.
Using similar reasoning, we can show that |3 is bounded above and below
by multiples of

(2.32) (%)m (a% +b7) + mz:ou; 2m< )”m+1|cw|2.

Of course this allows the coefficients to grow so that > |c,|* is infinite,
meaning that the boundary values f on S(x) may not be in L2(S(z)).
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3. Normal derivatives

We follow the general outline from [OS] to define a normal derivative on
S(z). We define

(3.1) 8nu|g(w):77}i£nm2m Z (*anu(FwQO))Xs(z)mﬁw(sg)

lw]=m
if the limit exists, where
(3.2) F,=F" R, Fremlip, o pm e e

The cells F,(SG) for |w|=m cover S(z), and F,qq is the top vertex. Since
Onu(F,qo) is outer directed, upward, we insert the minus sign to get an outer
directed normal across S(x).

LEMMA 3.1. 9,h{ is the constant function on S(x) with value —2(5)™ (1—
ao(z)).

Proof. We compute 9,,h¢(q0) =2(3)™ (1 — ag(z)) from the cell F§*(SG).
Next, consider the cell Fj* ~'F,, FJ*~"(8G). The top vertex is F* ' F,, qo,
and by symmetry (on the cell ' (SG)), 0,h&(Fy" ' Fl, q0) = 10,1 (qo) for
wi =1,2. Thus 2Z|w\:1(_a”hg(quO))XS(gc)nﬁ'w(Sg) = —0nhi(q0)xs(x)- By
similar reasoning, there is no change on the right side of (3.1) as m increases.

O

LEMMA 3.2. 0,h% = 62 (3)" 1 (el ).

Proof. On the cell Fj'* (SG) we compute (using (2.14))

5\™
Ophy (FSLl*lFl(Jo) = —0phY (F§171F2QO) = 3<§> (o1 (z) — az(x)),
so we have
o~ 5\ ™
5 20l Foto) st o9 =65 ) ()~ aale)in
|w|=1

and by the same reasoning as in Lemma 3.1, this does not change if we instead
sum over |w|=m for any m > 2. So this gives the correct result for w = 0.
We then use Lemma 2.3 to scale the result for general w. O

THEOREM 3.3. Suppose h and f are given as in Corollary 2.5. Then 9,h
is given by

(3.3) 2b - a) <§)n (1—ao(a)

LRl )

m=0 |w|=m
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10 Z. GUO ET AL.

provided the series converges. In other words, the Dirichlet-to-Neumann map
f — Onh is a Haar series multiplier map with multiplier 6 - 2”‘(%)”m+1 X
( 1—co(ym) )

2a0 (yYm )+17°

COROLLARY 3.4. Suppose f satisfies

o0 ) 5 2n7n+1 9
3.4 27| = w|” < oo.
Then O, h is well-defined in L?(S(x)) and ||0,,h||3 is bounded above and below by
a multiple of (3.4).

Proof. The theorem follows from Lemma 3.2, and the corollary follows from
the fact that 2104%2)(?1 is uniformly bounded above and below independent
of z. 0

Note that the finiteness of (3.4) is a stronger condition than the finiteness
of (2.29), so harmonic functions of finite energy do not necessarily satisfy
(3.4), but functions h satisfying the conditions of Corollary 3.4 automatically
have finite energy.

COROLLARY 3.5. Suppose h is as in Corollary 2.5 with coefficients that
satisfy (3.4), and v is any function of finite energy of Qy, then the following
Gauss—Green formula holds:

(3.5) E(h,v) =v(q0)Onh(qo) + / v, hdj.
S(x)

Proof. v is continuous since v is of finite energy, hence has a well-defined
restriction to S(z) that is bounded and thus in L*(u). Apply the standard
Gauss-Green formula on the domain (J,<,, F.(SG) and take the limit as
m — 00. 0

4. Extending functions of finite energy

In this section, we will write QF for the region above L(z) that was previ-
ously denoted 2, and 2 for the region below L(z). Under the assumption
that z is not a dyadic rational, S(z) is the common boundary of Q; and Q.
For functions u* defined on QF, we use Eqzx (u*) to denote the energies of
u*, which are naturally defined by taking the graph energy sum with edges
restricted to lie in QF, and then computing the usual renormalized limit.
Let dom &g+ to denote the collections of functions of finite energy on 0r
respectively.

The first issue that we address is under what conditions can we glue to-
gether functions u® of finite energy on QF to obtain a function of finite energy
on SG. Since functions of finite energy are continuous, u* must have bound-

ary values on S(z) that agree. It turns out that this is the only condition that
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BOUNDARY VALUE PROBLEMS 11

we need to impose. This is not surprising since the same is true for gluing
functions of finite energy on domains that intersect at a finite set of points.

THEOREM 4.1. Let u* € dom &g+, and suppose

(4.1) Ut s(2) =" |s(2)
the values being defined by continuity. Then
+ o
(4.2) u= {“ on e
u~ onfl,,

belongs to dom& in SG and
(4.3) E(u) =Eqr (uh) +Eo- (u).

Proof. Let Sy, denote the strip of 2™ cells of order n,, containing S(z),
and let BE denote the unions of the cells of order n,, contained in QF. Then

£ (u) = £ () + £ (u) + €8 ().
Since Séni’")(u) — &gz (uF) as m — oo, it suffices to show

(4.4) 5™ (u) — 0.

Let C denote one of the n,-cells in S, with boundary points z,, € Q} and
Yms Zm € 1. We need to estimate

(4.5) <§>nm [(u* (@m) = u (ym))®

4 (u (@) = (zm)) (0 () =1 (20)) ]

It suffices to estimate the first two terms in (4.5) since u™ (Ym) — u™ (2m) =
(Ut (@m) —u™ (2m)) — (W (2m) —u™ (ym)), and by symmetry it suffices to esti-
mate the first term. Let S;& be the portion of S, above or below S(z). There
will be an infinite sequence of points {Zm, Tm41,---} in S and {ym, Ymi1,---}
in S;,, both converging to the same point p € S(z). Since ut(p) =u"(p) by
(4.1), we may write

(46) u+(£’m) —u (ym) = Z (qu(xj) - u+(£j+1))

=m

<.

o0
= > (W () — v (1))
j=m

Now each pair (zj,2;4+1) are vertices of a cell C; of order n;4; in QF. Note
that all these cells are essentially disjoint, and C' = I C;.
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Tm

FIGURE 6
So we have the estimate
3\ /2 1/2
(4.7) |t (a5) — ut (2j40)| < (5) o, (uh)"2.

By the Cauchy—Schwarz inequality, we obtain
- + + N AN 2
(48 Y[ (o) g < (2 (3)

1/2
50]‘ (u+)>
j=m j=m

N, /2
< c@) Egngs ()2,

o0
j=m

By similar reasoning, we obtain the same estimate with |u™ (y;) —u™ (y;+1)],

so by (4.6) we have

49 (3) 1)~ 0 S s (%) + g (1)

Summing (4.9) over all the 2™ cells C yields
(4.10) £ (u) < gy (u™) + c€g- (u7)

and Eg+ (ut) — 0 because (), S
Kusuoka measure (this follows easily from Theorem 5.1 of [AHS]).

F:ijmb41.tex; (Aiste) p. 12

+ — S(x) and S(x) has measure zero in the
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BOUNDARY VALUE PROBLEMS 13

It is easy to characterize the restrictions to S(z) of functions of finite energy
on QF.

THEOREM 4.2. A function f on S(z) is the restriction to S(x) of a function
u™ of finite energy on QF if and only if f has a Haar series expansion (2.27)
with (2.29) finite (here a =0), and (2.29) is bounded by a multiple of Eq+ (u™).

Proof. Let h be the harmonic function on ) with the same boundary
values f. Since harmonic functions minimize energy, £o+(h) < Eq+ (uh), and
the result follows from Corollary 2.5. O

However, there is no such simple result for Q. We pose the following
extension problem.

PROBLEM 4.3. Does there exist a bounded linear extension operator (mean-
ing Tu|q+ =u) T': domgy (€) — domsg (£)?

There is a simple obstruction to solving this problem.

DEFINITION 4.4. z satisfies the nonconsecutive condition with bound N if
there are no N consecutive integers in the sequence {n,,}. If there is some N
for which this holds then x is said to satisfy the nonconsecutive condition.

Note that a generic value of xz will not satisfy this condition. However,
there are uncountably many (of Hausdorff dimension 1) values of = that do
satisfy the condition. Perhaps the simplest choice has n,, = 2m — 1, with
N =2.

THEOREM 4.5. Let E denote the collection of x satisfying the nonconsec-
utive condition. Then the Hausdorff dimension of E is 1.

Proof. Let En denote the collection of x satisfying the nonconsecutive
condition with bound N. Then E =Jy~, En and

(411) FEeCEsC---CENC---.

We will first prove that the Hausdorff dimension of Ep is the unique positive
root of the equation

(4.12) 228 —27Ns =,

Consider the set Ey. We divide it into the disjoint union Ex =J,~; En
where Fy i is the set of z in Fx whose ni-digit is k. Obviously, for each
k, En} is a similar copy of En 1 with contraction ratio 2=k Since the
Hausdorff dimension is stable for countable unions, we just need to compute
the dimension of Ey ;. For this set, by the nonconsecutive condition, we can

© 00 N o g~ W N =

A A DA D DWW WWWWWWWWNNDNDNDNDNDNDNDNDNNDNRE R B BB B B B R
A W N H O ©O 0N O G A W N H O ©O W N O O & WNH O O 0O N O O W N = O



© 00 N O a b W N =

S OA DB B B WWWWWWWWWWNNNDNNDNDDNDNDNDNFEEHE B2 2 2 e
A W N HF O O 0N O 0 & W N R O O W NO OGO P WN R O O WSNO G S WN = O

IJM 2015/03/06Prn:2015/05/19; 9:07 F:ijmb41.tex; (Aiste) p. 14

14 Z. GUO ET AL.
write
(4.13) Eni= (U (27! +EN,j)> U
i>3
U ( U @'+ +27 D +EN,j)>.
j>N+1

Since |En ;| <1/279, it is easy to check that the above union is disjoint. More-
over, (4.13) is essentially a self-similar identity for the set Ex; with contrac-
tion ratios,

272973 ;273 974 27N o= (NHD
satisfying the open set condition (with the open set (271,1)). (See [M] for the
theory of infinitely generated self-similar sets.) Hence the Hausdorff dimension
of Ey; is the solution of the equation

)

N (275)’6 9-2s _ 9—s(N+1)

N , _
(4.14) 1= > @) =) 1= = =27

k=2j>k k=2

which simplifies to (4.12). So we get the Hausdorff dimension of Ey.
Using (4.11), an easy calculation will show that the Hausdorff dimension
of Fis 1. O

If x fails to satisfy the nonconsecutive condition, then there are pairs of
points in QF that are much closer to each other in SG than in Q. For
example, if n; = j for j < N then the points F1F2N_1q0 and F2F1N_1q0 in QFf
are distance on the order of (%)N apart in the resistance metric on SG, but are
far apart in Q. Note that h{ (Fy F ~'qo) —hi (FoFY ~'qo) = 203 (FLFy' ' qo0)
and £(h7) is bounded. The estimate analogous to (4.7) shows

3y V/2
c< (3) E(u)/?

for any extension u of hY to SG, hence €(u) > ¢(3)V. This means that the

bound on the operator T, if it exists, would be bounded below by a multiple
of (3)N /2,

The same reasoning applies locally if {n,,} has a consecutive string of N
integers. Thus if such strings exist for all N then T cannot be bounded. On
the other hand, it is easy to see that if the nonconsecutive condition holds
for z then distances in QF and SG are comparable. Note that this is very
reminiscent of the type of condition that appears in the work of Peter Jones
in the Sobolev extension problem in domains in Euclidean space ([J], [R]).

THEOREM 4.6. The extension Problem 4.3 has a positive solution if and
only if x satisfies the nonconsecutive condition, in which case the bound on T

is O((12)N/2).
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FIGURE 7

0 0 0 0 0 0 0 0 0 0

extension of 1 — hg extension of hy

FIGURE 8

Proof. We need to construct an extension operator 1" under the assumption
that = satisfies the nonconsecutive condition. In view of our previous results,
it suffices to solve the extension problem for the functions h,, (and also 1 — hyg),
say Thy, = h,, where the functions h,, are orthogonal in energy and

Nm41
(4.15) E(hy) < C(N)2™ (g) .

Suppose first that N =2. Consider first 1 — hg and hy. Assume for simplic-
ity that ny = 1. Then ny > 3. Then S(x) passes through the cells F Fy(SG)
and F»Fy(SG). We will extend 1 — hg to be identically 1 on the bottom por-
tions of these cells, and hyg to be 1 on Fy F(SG) and —1 on F2 Fp(SG). On the
remaining four cells of level 2, we make the extension harmonic with boundary
values 0 on the bottom vertices (see Figure 8).

Note that the added energy of these extensions is exactly 8(%)2. Also,
since one extension is symmetric and one is skew-symmetric with respect
to the vertical reflection, they are orthogonal in energy. If ny > 1, we may
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16 Z. GUO ET AL.

repeat the same process on Fg“*(sg) and then continue the extension to
be identically zero on the complement of F' 1_1(89). The added energy is
exactly 8(%)”1“, but the energy of the original functions was also a multiple
of (3)™, so this is consistent with (4.15) with m =0 and gives a uniform
bound on the extension operator.

For the extension of h,,, we just have to repeat the same procedure minia-
turized. If |w| = m then h,, is supported on a cell of order 7n,,4+1 — 1 and since
Nmt2 > Nm41 + 2 the right side of Figure 8 describes h,, and its extension
(except for a factor of 27/2) to that cell, and then we may glue this to zero
in the complement of the cell. Thus, we get an extension with the same en-
ergy bound. For words w with |w| = m, the extended function have disjoint
support, so the energies are orthogonal. Comparing extensions for words of
different length with overlapping support, we again have a symmetry/skew-
symmetry dichotomy with respect to the local reflection in the vertical axis
of the smaller supporting cell (this is the overlap of the supports) and so we
again have energy orthogonality. This completes the proof for N = 2.

For general NV, the argument is simlar. In Figure 9, we show the extension
of hy when N =3 and ny =1,ns =2,n3 > 4.

Here we have 2V cells of order N contributing to the energy, and this multi-
plies the energy by O((4)"). Since the norm of the extension is measured in

terms of the square root of the energy, we obtain the O((X2)N/?) bound. O

FIGURE 9
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BOUNDARY VALUE PROBLEMS 17

The optimal extension operator would produce functions that are harmonic
on . In particular, it would be interesting to have an explicit description
of the functions h, that are harmonic on Q and are equal to ¢, on S(z),
again under the nonconsecutive condition.

We may regard Theorem 4.2 as a trace theorem and Theorem 4.6 as an
extension theorem for dom & regarded as a Sobolev space, and then we should
ask if there are analogous results for other Sobolev spaces. In [S2], the
spaces domp:(AF) on SG are considered as Sobolev spaces (domp:(A*) =
{u € L*(8G) : Alu € L*(8G) for all j <k}). Similarly for the space {u €
domyz2(A*) : £(AFu) < oco}. These spaces are easily characterized in terms
of expansions in eigenfunctions of the Laplacian. A complete theory of the
eigenspaces of the Laplacian on 2 is given in [Q].

PROBLEM 4.7. For each of these Sobolev spaces, characterize the space
of traces on S(z) and restrictions to Qf, for z satisfying the nonconsecutive
condition.

It seems plausible that the trace problem may have a solution with a condi-
tion similar to (2.29) for the Haar expansion (2.27) with different multiples of
|c,|* depending on the Sobolev space. The restriction problem is likely to be
more challenging. It is clear that restrictions of functions in domp2(AF) must
satisfy Adu € L?(QF) for j <k, but that is not sufficient because all harmonic
functions automatically have Afu = 0. It would seem that the characteriza-
tion of restriction Sobolev spaces would also have to involve conditions on
traces on S(z). Related problems are discussed in [LS] and [LRSU].

5. Green’s function

For a given k, let V}, denote the set of vertices on the k-level graph approx-
imation of SG. For a point z € V} \ Vo, let ¢* denote the piecewise harmonic
spline of level k satisfying ¢*(t) = 4. for t € V}, and extended harmonically on
SG. Notice that ¢* € domg & because z ¢ Vo, and it is supported in the two k-
cells meeting at z. Recall that in the standard theory (see the books [Ki] and
[S3]), the Green’s function G(s,t) to solve the Dirichlet problem —Au = F
on 8G, subject to the boundary condition u|y, =0 via an integral transform
fsg G(s,t)F(t) dt, has the following explicit formula,

(5.1) G(s,t) = N}im GM(s,t) (uniform limit)
with

M
(52) GM(s,t) =) 9(2,2') 9% ()% (1),

k=12z2"eVi\Vi_1
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18 Z. GUO ET AL.

Nym-cell

FIGURE 10. The support of ¢7™.

where

for z=2" € Vi \ Vi—_1,
for z#£ 2" € Vi \ Vi1,
contained in the same (k — 1)-cell,

S|~ 2l
—

lleo il
—

>

—~
~—
B

(5.3) g(z, z’) =
0, otherwise.

To get an analogous Green’s function on €,, we should first modify the
definition of those piecewise harmonic splines ¢* whose support intersects the
boundary S(z) of the domain 2,,. More specially, let w be a word of symbols
{1,2} with |w| =m and z = F,(go). We redefine ¢ to be the piecewise
harmonic spline with value 1 on z, 0 on V,,_ N Q, and S(x), and extended
harmonically on €,. Obviously the support of ¢7™ is contained in two ny,-

cells meeting at z, with ¢?m = h¥™ o F;* on the cell F,(SG) and with values

unchanged on the other cell, denoted by F,,(SG), where

x F(;’LlilelF(;winlile2"'
(5.4) F,={ Fymmme2tE  FPTTN for m> 2,

Wm—1

Fg* for m=1.

LEMMA 5.1. Let z = F,(qo), then

55 eaformo)=(3) (ARt o) - o)

Oéo(qu)

for any v € domg Eq, , where 2/ = le...w7n71(3_wm)(qo) and w=F,, ... _,(q0)
are the two n,,-neighbors of z (see Figure 10).
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Proof. On the cell FW(SQ), by using the localized Gauss—Green formula
(see (3.5)),
(56) ggzmﬁw(sg) (¢Z’" ’ U) = U(Z)an¢zm (Z)
5 Nm41
:2<§> (1= ao(ym))v(z).

The last equality follows from the same argument as the proof of Lemma 3.1
with suitable scaling.

On the other cell F,,(SG), by using the standard theory,

(5.7) Sme;w(Sg)(gi)Z’",v) = <§) " (2v(2) —v(2) — v(w)).

Summing the energies on the two cells, we get the desired result by using
(2.5). O

Let T2 be the set of vertices in V;,,, N, which can be expressed as Fw(qo)
for some word w =wx,...,wy, of symbols {1,2}, and T, =J,,,>, T;"

DEFINITION 5.2. For fixed m, let

Nm

(5.8) ast)=Y_ > 92 (2,2") 0% (s)8%. (1),

k=12z,2'€(Vix\Vi—1)Ns
with

(5.9)  g2(2,2)

O‘O(yzlojol()yf'_)‘f)(i’flf ()™ for z=2' € T. with [ <m,
%(%)"l for z # 2’ € TL, being n;-neighbors,
_ with [ <m,
g(z,2") for z,2" € Vi, \ Vi—1 contained in
a (k—1)-cell in Q,,
0, otherwise.

Then it is obvious that G} (s,t) converges uniformly to a function Go, (s,t)
as m goes to infinity.

THEOREM 5.3. Gq, is the Green’s function for Q,, namely
(5.10) u(s) = / Go. (s, )P (t) dt
Qo

solves the Dirichlet problem —Au=F on , with ulsq, =0, for any contin-
uous F.
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20 Z. GUO ET AL.

Proof. Similar to the SG case, suppose we could prove

(5.11) Ea, (G () 0) = > w(z)elm(t)

2EVy,, NQy

Nm

for any v € domg &g, .
Then just multiply (5.11) by F'(¢) and integrate, using the standard argu-
ments to interchange the energy and integral, to obtain

(5.12) Eo, (ttmy0) = /Q F) Y u()ern (bt

@ 2€V,, N
for
(5.13) iy (5) = /Q G (s,0)F (1) dt.
Since
(5.14) > w(2)grm(t) > o(t)
2eV, N

uniformly as m — oo, the right side of (5.12) converges to [, F(t)v(t)dt, and
the left-hand side converges to £q,_ (u,v) as m goes to co. Thus, we have

(5.15) ng(u,v):/ Fodt
Q

™

for any v € domg &q, , which yields that —Awu = F with u|aq, = 0.

Hence, our goal is to prove (5.11). The function Gg} (s,t), which we regard
as a function of the single variable s, could be viewed as a linear combination
of terms ¢¥(s). Then it is clear that o, (G} (-,),v) is a linear combination of
v(z) for z €V, NQ,. So we need to compute the combination coefficient of
v(z) for each z.

Let 29 € Vi, N Q. If 29 ¢ T, it is easy to observe that there exists an
nm-cell containing zp as an interior point. The terms in Gy that contribute
to the coefficient of v(zg) all have supports away from S(z). Thus, the stan-
dard argument for the SG case shows that the coefficient of v(zy) should be

)

Hence, we only need to consider the case that zg € T,,. We first do this
when zp € T)*. Let z; denote the unique n,,-neighbor of zy in the same
level. Then the only terms in Gy that contribute to the coefficient of v(z)

are
9x(20,20)95" (8)OZ (1), gu (20, 20) DLy (s)0L (1),
92 (20, 20) 92 ()05 (), 9 (20, 20) D% ()17 (2).
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By Lemma 5.1, the total contribution is

516 (3) (ARt (o z) g (o) o 0

3 @0 (Ym—1)
#(3) (Frtnlumatdy, (o ) - . (o) ot

o (Ym—1)F+0(Ym—1)> (Q)nm
200 (Ym—1)+1 5
a()(ynl 1)

9]
and g, (20, 2) = g2(20, 20) = m(%)"m into (5.16), it is easy to verify
that

ern (3)7 () o) — g (eh) ) =1,

By substituting the value of g, (20, 20) = g (2}, 2)) =

aO(ymfl)
and
5\"" 1+O‘0(ym—1) / o )
5.18 — — " 0.(20,20) — 92 (20, 2 =0.
( ) (3) ( ao(ym71) g ( 0 O) g (O 0)

So the coefficient of v(zp) is @I ().

Next, we consider the general case. Suppose zg = Fw(qo) € T! with
1 <il<m. We need to compute the coefficient of v(zp). The previ-
ous discussion immediately shows that the contribution of terms in GlQm
to v(z0) is ¢Zi(t). Now we consider the terms in G — Gl . Let 2z =
le(qo) and z9 = ng(qO) Notice that in all the terms in G¢ — Géz
that contribute to v(z), only those which contain ¢2'*'(s) or ¢r*(s)
have supports intersecting the boundary S(z). Moreover, in calculating

the energy &g, (¢»",v), only the part (bz’“\ 4(50) is involved in con-

tributing to the coefficient of v(zp), for i = 1,2. Comparing to the stan-
dard SG case, the function ¢-/*'(s) has been redefined, but the restric-

tion of it to FM(SQ) is unchanged. So the total contribution of G¢ -

G§, to v(z) is as same as the standard case, namely ¢Zm(t) — ¢2(%).
Thus we get that in Eq, (G ,v), the coefficient of v(29) is ¢7m(t), as re-
quired.

Thus, we have proved (5.11). O

THEOREM 5.4. For continuous F', the normal derivative of the solution u
given by (5.10) is continuous on S(x).

Proof. From Theorem 5.3,
(5'19) 0 U"S’ (z) = Z Z ga: 2, Z n(b LmlS / (bnm
m2>1z,2/ €T

since only those terms containing ¢* whose supports intersect S(x) contribute
to the value of 0, u|g(y)-
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For fixed m, let z = F,,(qo) € T7". Note that on the cell F,,(SG), ¢"m =
h¢{™ o F;t. By Lemma 3.1, we have

5 Nm 41
(5.20) f%¢?ﬂsu)=—2<§) (1= 0 (ym)) 2" X 50 (2)-

On the other hand, for z,2’ € T}, g.(z,2’) is bounded above by a multiple
of ag(ym—1)(2)™, hence by a multiple of (2)"m+! using (2.7). It is also easy
to see that me @2 (t)F(t) dt is bounded above by a multiple of zi—||F||sc.
Combing these estimates with (5.20), we conclude that [9,u||g(y) is bounded

above by a multiple of
2m
(5.21) Z Z %HFHOOX&U(JC)'
m2>1|w|=m

From (5.21), one can easily verify that 0,u is continuous on S(x). O
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