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Abstract

Within sports analytics, there is substantial interest in comprehensive statistics intended
to capture overall player performance. In baseball, one such measure is Wins Above Replace-
ment (WAR), which aggregates the contributions of a player in each facet of the game: hitting,
pitching, baserunning, and fielding. However, current versions of WAR depend upon propri-
etary data, ad hoc methodology, and opaque calculations. We propose a competitive aggregate
measure, openWAR, that is based on public data, a methodology with greater rigor and trans-
parency, and a principled standard for the nebulous concept of a “replacement” player. Finally,
we use simulation-based techniques to provide interval estimates for our openWAR measure
that are easily portable to other domains.

Keywords: baseball, statistical modeling, simulation, R, reproducibility

1 Introduction

In sports analytics, researchers apply statistical methods to game data in order to estimate key
quantities of interest. In team sports, arguably the most fundamental challenge is to quantify the
contributions of individual players towards the collective performance of their team. In all sports the
ultimate goal is winning and so the ultimate measure of player performance is that player’s overall
contribution to the number of games that his team wins. Although we focus on a particular measure
of player contribution, wins above replacement (WAR) in major league baseball, the issues and
approaches examined in this paper apply more generally to any endeavor to provide a comprehensive
measure of individual player performance in sports.

A common comprehensive strategy used in sports such as basketball, hockey, and soccer is
the plus/minus measure (Kubatko et al., 2007; Macdonald, 2011). Although many variations of
plus/minus exist, the basic idea is to tabulate changes in team score during each player’s appearance
on the court, ice, or pitch. If a player’s team scores more often than their opponents while he is
playing, then that player is considered to have a positive contribution. Whether those contributions
are primarily offensive or defensive is not delineated, since the fluid nature of these sports make it
extremely difficult to separate player performance into specific aspects of gameplay.

In contrast, baseball is a sport where the majority of the action is discrete and player roles are
more clearly defined. This has led to a historical focus on separate measures for each aspect of the
game: hitting, baserunning, pitching and fielding. For measuring hitting, the three most-often cited
measures are batting average (BA), on-base percentage (OBP ) and slugging percentage (SLG)
which comprise the conventional “triple-slash line” (BA/OBP/SLG). More advanced measures
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of hitting include runs created (James, 1986), and linear weights-based metrics like weighted on-
base average (wOBA) (Tango et al., 2007) and extrapolated runs (Furtado, 1999). Similar linear
weights-based metrics are employed in the evaluation of baserunning (Lichtman, 2011).

Classical measures of pitching include walks and hits per innings pitched (WHIP ) and earned run
average (ERA). McCracken (2001) introduced defense independent pitching measures (DIPS) under
the theory that pitchers do not exert control over the rate of hits on balls put into play. Additional
advancements for evaluating pitching include fielding independent pitching (FIP ) (Tango, 2003)
and xFIP (Studeman, 2005). Measures for fielding include ultimate zone rating (UZR) (Lichtman,
2010), defensive runs saved (DRS) (Fangraphs Staff, 2013), and spatial aggregate fielding evaluation
(SAFE) (Jensen et al., 2009). For a more thorough review of the measures for different aspects of
player performance in baseball, we refer to the reader to Thorn and Palmer (1984); Lewis (2003);
Albert and Bennett (2003); Schwarz (2005); Tango et al. (2007); Baumer and Zimbalist (2014).

Having separate measures for the different aspects of baseball has the benefit of isolating different
aspects of player ability. However, there is also a strong desire for a comprehensive measure of overall
player performance, especially if that measure is closely connected to the success of the team. The
ideal measure of player performance is each player’s contribution to the number of games that his
team wins. The fundamental question is how to apportion this total number of wins to each player,
given the wide variation in the performance and roles among players.

Win Shares (James and Henzler, 2002) was an early attempt to measure player contributions on
the scale of wins. Value Over Replacement Player (Jacques, 2007) measures player contribution on
the scale of runs relative to a baseline player. An intuitive choice of this baseline comparison is a
“league average” player but since average players themselves are quite valuable, it is not reasonable
to assume that a team would have the ability to replace the player being evaluated with another
player of league average quality. Rather, the team will likely be forced to replace him with a minor
league player who is considerably less productive than the average major league player. Thus, a
more reasonable choice for this baseline comparison is to define a “replacement” level player as the
typical player that is readily accessible in the absence of the player being evaluated.

The desire for a comprehensive summary of an individual baseball player’s contribution on the
scale of team wins, relative to a replacement level player, has culminated in the popular measure of
Wins Above Replacement (WAR). The three most popular existing implementations of WAR are:
fWAR (Slowinski, 2010), rWAR (sometimes called bWAR) (Forman, 2010, 2013a), and WARP
(Baseball Prospectus Staff, 2013). A thorough comparison of the differences in their methodologies
is presented in our supplementary materials.

WAR has two virtues that have fueled its recent popularity. First, having an accurate assessment
of each player’s contribution allows team management to value each player appropriately, both for
the purposes of salary and as a trading chip. Second, the units and scale are easy to understand. To
say that Miguel Cabrera is worth about seven wins above replacement means that losing Cabrera
to injury should cause his team to drop about seven games in the standings over the course of a full
season. Unlike many baseball measures, no advanced statistical knowledge is required to understand
this statement about Miguel Cabrera’s performance. Accordingly, WAR is now cited in mainstream
media outlets like ESPN, Sports Illustrated, The New York Times, and the Wall Street Journal.

In recent years, this concept has generated significant interest among baseball statisticians, writ-
ers, and fans (Schoenfield, 2012). WAR values have been used as quantitative evidence to buttress
arguments for decisions upon which millions of dollars will change hands (Rosenberg, 2012). Re-
cently, WAR has achieved two additional hallmarks of mainstream acceptance: 1) the 2012 American
League MVP debate seemed to hinge upon a disagreement about the value of WAR (Rosenberg,
2012); and 2) it was announced that the Topps baseball card company will include WAR on the
back of their next card set (Axisa, 2013). Testifying to the static nature of baseball card statistics,
WAR is only the second statistic (after OPS) to be added by Topps since 1981.

1.1 Problems with WAR

While WAR is comprehensive and easily-interpretable as described above, the use of WAR as a
statistical measure of player performance has two fundamental problems: a lack of uncertainty
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estimation and a lack of reproducibility. Although we focus on WAR in particular, these two
problems are prevalent for many measures for player performance in sports as well as statistical
estimators in other fields of interest.

WAR is usually misrepresented in the media as a known quantity without any evaluation of the
uncertainty in its value. While it was reported in the media that Miguel Cabrera’s WAR was 6.9 in
2012, it would be more accurate to say that his WAR was estimated to be 6.9 in 2012, since WAR
has no single definition. The existing WAR implementations mentioned above (fWAR, rWAR and
WARP ) do not publish uncertainty estimates for their WAR values. As Nate Silver articulated in
this 2013 ASA presidential address, journalists struggle to correctly interpret probability, but it is
the duty of statisticians to communciate uncertainty (Rickert, 2013).

Even more important than the lack of uncertainty estimates is the lack of reproducibility in
current WAR implementations (fWAR, rWAR and WARP ). The notion of reproducible research
began with Knuth’s introduction of literate programming (Knuth, 1984). The term reproducible
research first appeared about a decade later (Claerbout, 1994), but quickly attracted attention.
Buckheit and Donoho (1995) asserted that a scientific publication in a computing field represented
only an advertisement for the scholarly work – not the work itself. Rather, “the actual scholarship is
the complete software development environment and complete set of instructions which generated the
figures” (Buckheit and Donoho, 1995). Thus, the burden of proof for reproducibility is on the scholar,
and the publication of computer code is a necessary, but not sufficient condition. Advancements in
computing like the knitr package for R (Xie, 2014) made reproducible research relatively painless.
It is in this spirit that we understand “reproducibility.”

Interest in reproducible research has exploded in recent years, amid an increasing realization that
many scientific findings are not reproducible (Ioannidis, 2013; Naik, 2011; Zimmer, 2012; Johnson,
2014; Nature Editorial, 2013; The Economist Editorial, 2013). Transparency in sports analytics is
more tenuous than other scientific fields since much of the cutting edge research is being conducted
by proprietary businesses or organizations that are not interested in sharing their results with the
public.

To the best of our knowledge, no open-source implementations of rWAR, fWAR, or WARP
exist in the public domain and the existing implementations do not meet the standard for repro-
ducibility outlined above. Two of the three methods use proprietary data sources, and the third
implementation, despite making overtures toward openness, is still not reproducible without needing
extra proprietary details about their methods. This is frustrating since these WAR implementations
are essentially “black boxes” containing ad hoc adjustments and lacking in a unified methodology 1.

1.2 Contributions of openWAR

We address both the lack of uncertainty estimates and the lack of reproducibility in Wins Above
Replacement by presenting a fully transparent statistical model based on our conservation of runs
framework with uncertainty in our model-based WAR values estimated by resampling methods. In
this paper we present openWAR, a reproducible and fully open-source reference implementation for
estimating the Wins Above Replacement for each player in major league baseball.

In Section 3, we introduce the notion of conservation of runs, which forms the backbone of our
WAR calculations. The central concept of our model is that the positive and negative consequences of
all runs scored in the game of baseball must be allocated across four types of baseball performance: 1)
batting; 2) baserunning; 3) fielding; and 4) pitching. While there are four components of openWAR,
each is viewed as a component of our unified conservation of runs model.

In contrast, the four components of WAR are estimated separately in each previous WAR imple-
mentation (rWAR, fWAR, or WARP ) and these implementations only provide point estimates of
WAR. We employ resampling techniques to derive uncertainty estimates for openWAR, and report
those alongside our point estimates. While the apportionment scheme that we outline here is specific
to baseball, the resampling-based uncertainty measures presented in Section 4 are generalizable to
any sport.

1For example, rWAR and fWAR are constrained to sum to 1000 in a season for no apparent substantive reason.
See Section 3.8 for a fuller discussion.
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Our goal in this effort is to provide a coherent and principled fully open-source estimate of player
performance in baseball that may serve as a reference implementation for the statistical community
and the media. Our hope is that in time, we can solidify WAR’s important role in baseball by
rallying the community around an open implementation. In addition to the full model specification
provided in this paper, our claim of reproducibility is supported by the simultaneous release of a
software package for the open-source statistical computing environment R, which contains all of the
code necessary to download the data and compute openWAR.

1.3 OpenWAR vs. previous WAR implementations

In our approach, WAR for a player is defined as the sum of all of their marginal contributions in each
of the four aspects of the game, relative to a hypothetical replacement level player after controlling
for potential confounders (e.g. ballpark, handedness, position, etc.). Previous WAR estimates,
such as rWAR, fWAR, and WARP , serve as an inspiration for our approach but we make several
key assumptions that differentiate our WAR philosophy from these previous efforts. In addition to
using higher resolution ball-in-play data than previous methods, we also have several differences in
perspective.

First, openWAR is a retrospective measure of player performance – it is not a measure of player
ability to be used for forecasting. It is not context-independent, because we feel that context is
important for accurate accounting of what actually happened. Second, we control for defensive
position in both our batting and fielding estimates. We do this at the plate appearance level, which
allows for more refined comparisons of players to their appropriate peer group. Third, we believe
that credit or blame for hits on balls in play should be shared between the pitcher and fielders. We
use the location of the batted ball to inform the extent to which they should be shared. Fourth, we
propose a new definition of replacement level based on distribution of performance beyond the 750
active major league players that play each day, which is different from existing implementations.
Thus, openWAR is not an attempt to reverse-engineer any of the existing implementations of WAR.
Rather, it is a new, fully open-source attempt to estimate player performance on the scale of wins
above replacement.

2 Preliminaries: Expected Runs

A major hurdle in producing a reproducible version of WAR is the data source. openWAR uses
data published by Major League Baseball Advanced Media for use in their GameDay web appli-
cation (Bowman, 2013). A thorough description of the MLBAM data set obtainable using the
openWAR package is presented in our supplementary materials.

Our openWAR implementation is based upon a conservation of runs framework, which tracks
the changes in the number of expected runs scored and actual runs scored resulting from each in-
game hitting event. The starting point for these calculations is establishing the number of runs that
would be expected to score as a function of the current state of the game. Here, we illustrate that
the expected run matrix—a common sabermetric construction dating back to the work of Lindsey
(1959, 1961)—can be used to model th1ese quantities. 2

There are 24 different states in which a baseball game can be at the beginning of a plate ap-
pearance: 3 states corresponding to the number of outs (0, 1, or 2) and 8 states corresponding to
the base configuration (bases empty, man on first, man on second, man on third, man on first and
second, man on first and third, man of second and third, bases loaded). A 25th state occurs when
three outs are achieved by the defensive team and the half-inning ends.

We define expected runs at the start of a plate appearance given the current state of an inning,

ρ(o, b) = E [R | startOuts = o, startBases = b ] ,

2The expected run matrix is also the basis for Markov Chain models, which have been used to, among other things,
optimize batting order (Freeze, 1974; Pankin, 1978; Bukiet et al., 1997; Sokol, 2003).
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where R is a random variable counting the number of runs that will be scored from the current plate
appearance to the end of the half-inning when three outs are achieved. startOuts is the number
of outs at the beginning of the plate appearance, and startBases is the base configuration at the
beginning of the plate appearance. The value of ρ(o, b) is estimated as the empirical average of the
number of runs scored (until the end of the half-inning) whenever a game was in state (o, b). Note
that the value of the three out state is defined to be zero (i.e. ρ(3, 0) ≡ 0).

We can then define the change in expected runs due to a particular plate appearance as

∆ρ = ρendState − ρstartState ,

where ρstartState and ρendState are the values of the expected runs in the state at the beginning of
the plate appearance and the state at the end of the plate appearance, respectively. However, we
must also account for the actual number of runs scored r in that plate appearance, which gives us

δ = ∆ρ+ r .

For each plate appearance i, we can calculate δi from the observed start and end states for that
plate appearance as well as the observed number of runs scored. This quantity δi can be interpreted
as the total run value that the particular plate appearance i is worth. Sabermetricians often refer
to this quantity as RE24 (Appelman, 2008)3.

3 openWAR Model

The central idea of our approach to valuing individual player contributions is the assumption that
every run value δi gained by the offense as a result of a plate appearance i is accompanied by a
corresponding −δi gained by the defense. We call this principle our conservation of runs framework.
The remainder of this section will outline a principled methodology for apportioning δi among the
offensive players and apportioning −δi among the defensive players involved in plate appearance i.

3.1 Adjusting Offensive Run Values

As outlined above, δi is the run value for the offensive team as a result of plate appearance i. We
begin our modeling of offensive run value by adjusting δi for several factors beyond the control of
the hitter or baserunners that make it difficult to compare run values across contexts. Specifically,
we want to first adjust for the ballpark of the event and any platoon advantage the batter may have
over the pitcher (i.e. a left-handed batter against a right-handed pitcher). We control for these
factors by fitting a linear regression model to the offensive run values,

δi = BBBi · ααα + εi , (1)

where the covariate vector BBBi contains a set of indicator variables for the specific ballpark for plate
appearance i and an indicator variable for whether or not the batter has a platoon advantage over
the pitcher. The coefficient vector ααα contains the effects of each ballpark and the effect of a platoon
advantage on the offensive run values. Regression-based ballpark factors have been previously esti-
mated by Acharya et al. (2008). Estimated coefficients α̂αα are calculated by ordinary least squares
using every plate appearance in our dataset.

The estimated residuals from the regression model (1),

ε̂i = δi −BBBi · α̂αα (2)

represent the portion of the offensive run value δi that is not attributable to the ballpark or platoon
advantage, and so we refer to them as adjusted offensive run values.

3RE for “run expectancy” and 24 for the 24 distinct states
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3.2 Baserunner Run Values

The next task is determining the portion of ε̂i that is attributable to the baserunners for each plate
appearance i based on the following principle: baserunners should only get credit for advancement
beyond what would be expected given their starting locations, the number of outs, and the hitting
event that occurred. We can estimate this expected baserunner advancement by fitting a second
regression model to our adjusted offensive run values,

ε̂i = SSSi · βββ + ηi , (3)

where the covariate vector SSSi consists of: 1) a set of indicator variables that indicate the specific
game state (number of outs, locations of baserunners) at the start of plate appearance i and; 2)
the hitting event (e.g. single, double, etc.) that occurred during plate appearance i. The 31 event
types in the MLBAM data set that describe the outcome of a plate appearance are listed in our

supplementary materials. Estimated coefficients β̂ββ are calculated by ordinary least squares using
every plate appearance in our dataset. The estimated residuals from the regression model (3),

η̂i = ε̂i −SSSi · β̂ββ , (4)

represent the portion of the adjusted offensive run value that is attributable to the baserunners.
If the baserunners take extra bases beyond what is expected, then η̂i will be positive, whereas if
they take fewer bases or get thrown out then η̂i will be negative. Note that η̂i also contains the
baserunning contribution of the hitter for plate appearance i.

We apportion baserunner run value, η̂i amongst the individual baserunners involved in plate ap-
pearance i based upon their expected base advancement compared to their actual base advancement.
If we denote kij as the number of bases advanced by the jth baserunner after hitting event mi, then
we can use all plate appearances in our dataset to calculate the empirical probability

κ̂ij = P̂r(K ≤ kij |mi)

that a typical baserunner would have advanced at least the kij bases that baserunner j did advance
in plate appearance i. If baserunner j does worse than expected (e.g. not advancing from second
on a single) then κ̂ij will be small whereas if baserunner j takes an extra base (e.g. scoring from
second on a single), then κ̂ij will be large. These advancement probabilities κ̂ij are used as weights
for apportioning the baserunner run value, η̂i, to each individual baserunner,

RAAbr
ij =

κ̂ij∑
j κ̂ij

· η̂i (5)

The value RAAbr
ij is the runs above average attributable to the jth baserunner on the ith plate

appearance.

3.3 Hitter Run Values

As calculated in (4) above, η̂i represents the portion of the adjusted offensive run value ε̂i, that is
attributable to the baserunners during plate appearance i. The remaining portion of the adjusted
offensive run value,

µ̂i = ε̂i − η̂i (6)

is the adjusted offensive run value attributable to the hitter during plate appearance i. Our remaining
task for hitters is to calibrate their hitting performance relative to the expected hitting performance
based on all players at the same fielding position. 4 We fit another linear regression model to adjust

4This is necessary because players who play more difficult fielding positions tend to be weaker hitters. In the
extreme case, pitchers as a group are far worse hitters than those who play any other position. Thus, to evaluate the
batting performance of pitchers without correcting for their defensive position would result in almost every pitcher
being assigned a huge negative value for their batting performance. This would result in a dramatic undervaluation
of pitchers (in the National League, at least) since they are obligated to hit while they are pitching.

6



the hitter run value by the hitter’s fielding position,

µ̂i = HHHi · γγγ + νi (7)

where the covariate vector HHHi consists of a set of indicator variables for the fielding position of the
hitter in plate appearance i. Note that pinch-hitter (PH) and designated hitter (DH) are also valid
values for hitter position. Estimated coefficients γ̂γγ are calculated by ordinary least squares using
every plate appearance in our dataset. The estimated residuals from this regression model,

RAAhit
i = ν̂i = µ̂i −HHHi · γγγ (8)

represent the run values (above the average for the hitter’s position) for the hitter in each plate
appearance i.

3.4 Apportioning Defensive Run Values

As we discussed in Section 2, each plate appearance i is associated with a particular run value
δi, and we apportioned the offensive run value δi between the hitters and various baserunners in
Sections 3.1-3.3. Now, we must apportion the defensive run value −δi between the pitcher and
various fielders involved in plate appearance i.

The degree to which the pitcher (versus the fielders) is responsible for the run value of a ball
in play depends on how difficult that batted ball was to field. Surely, if the pitcher allows a batter
to hit a home run, the fielders share no responsibility for that run value. Conversely, if a routine
groundball is muffed by the fielder, the pitcher should bear very little responsibility.

We assign the entire defensive run value −δi to the pitcher for any plate appearance that does
not result in a ball in play (e.g. strikeout, home run, hit by pitch, etc.). For balls hit into play, we
must estimate the probability p that each ball-in-play would result in an out given the location that
ball in play was hit.

The MLBAM data set contains (x, y)-coordinates that give the location of each batted ball, and
we use a two-dimensional kernel density smoother (Wand, 1994) to estimate the probability of an
out at each coordinate in the field,

p̂i = f(xi, yi)

Figure 1 gives the contour plot of our estimated probability of an out, p̂i, for a ball in play i
hit to coordinate (xi, yi) in the field. For that ball in play i, we use p̂i to divide the responsibility
between the pitcher and the fielders. Specifically, we apportion

δpi = −δi · (1− pi) to the pitcher

δfi = −δi · pi to the fielders

The fielders bear more responsibility for a ball in play that is relatively easy to field (p̂i near 1)
whereas a pitcher bears more responsibility for a ball in play that is relatively hard to field (p̂i near
0).

3.5 Fielding Run Values

In Section 3.4 above, we allocated the run value δfi to the fielders. We must now divide that run
value amongst the nine fielders who are potentially responsible for ball in play i. For each fielding
position `, we use all balls in play to fit a logistic regression model,

logit(pi`) = XXXi · θθθ`

where pi` is the probability that fielder ` makes an out 5 on ball in play i hit to coordinate (xi, yi)
in the field. The covariate vector XXXi consists of linear, quadratic and interaction terms of xi and
yi. The quadratic terms are necessary to incorporate the idea that a player is most likely to field

5Here we interpret “making an out” as successfully converting a ball in play into at least one out.
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Figure 1: Contour plot of our estimated probability of an out p̂i for a ball in play i as a function of
the coordinates (xi, yi) for that ball in play. Numerical labels give the estimated probability of an
out at that contour line.

a ball hit directly at him, and the interaction term captures the notion that it may be easier to
make plays moving to one side (e.g. shortstops have better range moving to their left since they are

moving towards first base). Estimates of the coefficients θ̂θθ` are calculated from all balls in play . As
an example, the surface of our fielding model for centerfielders is illustrated in Figure 2.

For ball in play i, we use the coordinates (xi, yi) and the estimated coefficients θ̂θθ` for each fielding
position ` to estimate the probability p̂i` that fielder ` makes an out on ball in play i. We normalize
these probabilities across positions to estimate the responsibility si`

ŝi` =
p̂i`∑
` p̂i`

,

of the `th fielder on the ith play, which gives us the run value δfi · ŝi` for each fielder `. Finally, we fit
a regression model to adjust the fielding run values for the ballpark in which ball in play i occurred,

δfi · ŝi` = DDDi · φφφ+ τi` (9)

where the covariate vector DDDi contains a set of indicator variables for the specific ballpark for plate
appearance i. The coefficient vector φφφ contains the effects of each ballpark which is estimated across
all balls in play. The estimated residuals of this model,

RAAfield
i` = τ̂i` = δfi · ŝi` −DDDi · φ̂φφ (10)

represent the run value above average for fielder ` on ball in play i.

3.6 Pitching Run Values

In Section 3.4 above, we allocated run value δpi to the pitcher for plate appearance i. We need to
adjust these run values to account for ballpark and platoon advantage, since both factors affect our
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Figure 2: Contour plot of fielding model for centerfielders. The contours indicate the expected
probability that any given centerfielder will catch a fly ball hit to the corresponding location on the
field.

expectation of pitching performance. We fit the following regression model,

δpi = BBBi · ψψψ + ξi , (11)

where the covariate vector BBBi contains a set of indicator variables for the specific ballpark for plate
appearance i and an indicator variable for whether or not the batter has a platoon advantage over
the pitcher (same as in equation 1). The coefficient vector ψψψ contains the effects of each ballpark

and the effect of a platoon advantage on the pitching run values. We estimate the coefficients ψ̂ψψ
using the pitching run values for all plate appearances i. The estimated residuals of this model,

RAApitch
i = ξ̂i = δpi −BBBi · ψ̂ψψ (12)

represent the run value above average for the pitcher on plate appearance i.

3.7 Tabulating Runs Above Average

As outlined in Sections 2-3.6, we can calculate the run value for the hitter (RAAhit
i ), the run values

for each baserunner (RAAbr
ij ), the run values for each fielder (RAAfield

i` ) and the run value for the

pitcher (RAApitch
i ) in each plate appearance i.

The overall run value for a particular player q is calculated by tabulating these run values across
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Figure 3: Schematic Diagram of openWAR: The red ellipse labelled RE24 represents the estimated
change in run value of a plate appearance. This value is then split into many parts and atrributed to
the appropriate source. The diamonds represent fractions of RE24 that are not attributable to the
player, whereas the ellipses on the outside correspond the four components of openWAR (hitting,
baserunning, pitching, and fielding) that are attributable to a player.

all plate appearances involving that player as a hitter, pitcher, baserunner or fielder,

RAAq =
∑
i

RAAhit
i · I (hitter = q) +∑

j

∑
i

RAAbr
ij · I (runner j = q) +

∑
`

∑
i

RAAfield
i` · I (fielder ` = q) +∑

i

RAApitch
i · I (pitcher = q)

We present a logical summary of our WAR calculation in Figure 3.

3.8 Replacement Level

As noted in our introduction, it is desirable to calibrate our comprehensive measure of player per-
formance relative to a baseline “replacement level” player. However, the definition of a replacement
level player remains controversial. The procedure used by both the fWAR and rWAR implementa-
tions is to set replacement level “at 1,000 WAR per 2,430 Major League games, which is the number
of wins available in a 162 game season played by 30 teams. Or, an easier way to put it is that our new
replacement level is now equal to a .294 winning percentage, which works out to 47.7 wins over a full
season” (MacAree, 2013). This definition is ad hoc, with the primary motivation for the definition
seems to be the use of a convenient round number. In contrast, we derive a natural definition for
replacement level from first principles.

The purpose of the replacement-level player is the need to replace a full-time major league player.
There are only so many major league players, and all other players who participate in major league
baseball are necessarily replacement players. Since there are 30 major league teams, each of which
carries 25 players on its active roster during the season6, there are exactly 750 active major league

6In September, active rosters may expand to as many as 40 players, although in practice, few teams carry more
than 30.

10



players on any given day. We use this natural limitation to demarcate the set of major league players,
and deem all others to be replacement-level players. Since most teams carry 13 position players and
12 pitchers, we designate the 30 · 13 = 390 position players with the most plate appearances and
the 30 · 12 = 360 pitchers with the most batters faced as major league players. We submit that this
naturally-motivated definition of replacement level is preferable to the ad hoc definition currently in
use.

We can associate a replacement-level shadow with an actual player by multiplying the average
performance across all replacement-level players by the number of events for that actual player.
The WAR accumulated by each player’s replacement-level shadow provides a meaningful baseline
for comparison that is specific to that player. Using the convention that approximately 10 wins are
equivalent to one win 7, our openWAR value is computed as

WARq =
RAAq −RAArepl

q

10
,

where RAArepl
q is the runs above average figure for player q’s replacement-level shadow.

4 Sources of Variability

Existing implementations of WAR discuss uncertainty vaguely or not at all. We can delineate
three sources of variability in the WAR values for each player in a given season: model estimation
variability, situational variability, and player outcome variability. Model estimation variability comes
from the errors that are made in estimating the parameters of our models for batting, pitching,
fielding and baserunning in Section 3 as well as the expected runs model in Section 2. These models
are trained on up to hundreds of thousands of observations and so this source of variability is small
relative to the player outcome variability described below.

Situational variability comes from the differences in game situations across occurrences of the
same batting event. For example, some home runs are hit when the bases are loaded whereas
other home runs are hit when the bases are empty. These two situations have very different run
consequences despite the fact that they are driven by the same batting event (a home run). In
traditional WAR calculations, a linear weights estimator is used for the batting component that
assigns a run value to players based on aggregate batting statistics (such as wOBA) regardless
of the game state. In other words, all home runs are given the same value in traditional WAR
implementations, which introduces error into a player’s WAR value in the sense that an equal
weighting of all home runs is a less accurate description of what actually happened. (See Wyers
(2013) for a discussion of quantifying situational error associated with WARP .) In contrast, our
openWAR system is not subject to this type of error as we compute WAR based on each plate
appearance rather than using aggregate statistics, which is a key distinction from the three previous
implementations of WAR (fWAR, rWAR and WARP ).

Player outcome variability is the uncertainty inherent in the outcomes of all events involving a
particular player for a particular season. Imagine a particular player with a fixed ability, but repeat
the same season for that player many times. In each of these seasons, the events involving that
player would have variation in their outcomes, which would aggregate to a different WAR value
for that particular player. The random variation in individual events dominates the variability in a
player’s WAR value, which is why our variance estimation targets this source of uncertainty.

Specifically, we estimate player outcome variability using a resampling strategy. In a particular
season, we resample (with replacement) the RAA values for individual plate appearances, and re-
aggregate them into a new WAR value for each player. A single resampling (a theoretical simulated
season) will result in a second set of point estimates for the WAR of each player for which the
models have not changed but the number of different individual events (e.g. the number of home
runs hit by a player) could have changed. By performing this resampling procedure many times, we
quantify the outcome variability for each player while preserving any inherent correlation within the

7Justification for this convention is provided in our supplementary materials.
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Figure 4: openWAR RAA values for the 2012 MLB season. Each blue dot is a major league player,
while each pink dot is a replacement-level player. For each player, we also plot a gray dot that
represents their replacement-level shadow with the same amount of playing time. For three specific
players, we show the vertical distance between their RAA and the RAA for their replacement-level
shadow. Playing time is calculated as “plate appearances + batters faced” to provide an equivalent
scale for both pitchers and batters: playing time for pitchers is the number of batters faced, whereas
playing time for batters is the number of plate appearances. For pitchers, we also add any plate
appearances they had as a batter.

individual events.8. Although we have discussed uncertainty specifically for WAR, we believe that
the above delineation of variability sources is generalizable to most aggregate measures of player
performance across sports.

5 Results

In the 2012 MLB season, 534 of the N = 1284 players were designated as replacement-level.
openWAR was distributed approximately normally among these replacement-level players, with
a mean of 0.01 and a standard deviation of 0.41. Conversely, the distribution of openWAR across
all players was skewed heavily to the right, reflecting the disproportionate amount of openWAR
accumulated by relatively few players. While the median openWAR was close to zero (0.36), the
mean was a bit larger (0.91). openWAR values for all players fell between −2.6 and 8.6 wins above
replacement, giving a range of 10 wins between the best player (Mike Trout) and the worst (Nick
Blackburn). In Figure 4, we depict openWAR values for 2012, illustrating each player’s replacement-
level shadow and differentiating the major league players from the replacement-level players. There
are 2N dots in Figure 4: N non-gray dots representing the RAA values for actual players and N
gray dots representing the RAA values for the replacement-level shadows of those players.

We note that the variability associated with player performance is not constant. Figure 5 shows

8We could use a similar resampling strategy to evaluate the model estimation variability as well, by re-fitting all
of our openWAR models on each resampled season. However, the computational burden for re-fitting each model
on each resampled season is quite high and hard to justify given the relatively small size of the model estimation
variability compared to the player outcome variability.
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Figure 5: openWAR density estimates for Miguel Cabrera (blue), Robinson Cano (pink), and Mike
Trout (green). Note that while Trout’s density curve is further to the right, it is narrower than the
others.

density estimates for the distribution of openWAR values under the resampling scheme described
in Section 4 for three prominent players: Miguel Cabrera, Robinson Cano, and Mike Trout. Trout’s
point estimate for WAR is higher than that of Cabrera or Cano, but the 95% confidence interval
for his true openWAR is narrower, which suggests that Trout’s performance is more consistent on a
play-by-play basis than the others. Table 1 shows various quantiles of the distribution of openWAR
for the top 20 performers in 2012.

Figure 6 depicts the width of 95% confidence intervals for openWAR based on resampling all
plays that occurred in the 2012 season. As expected, the width of the confidence interval for a
particular player widens as that player is exposed to more playing time. In general, the confidence
intervals for pitchers tend to be smaller than those for position players with comparable playing
time. This may suggest that pitchers perform more consistently across plate appearances, or merely
reflect the fact that the replacement level for pitchers is higher (closer to 0) than it is for position
players.

As noted in the introduction, WAR was at the core of the debate about the 2012 American League
MVP Award. Miguel Cabrera of the Detroit Tigers had become the first player since 1967 to win
the Triple Crown, leading the AL in the conventional statistics of batting average, home runs, and
runs batted in. However, sabermetricians advocated strongly for Mike Trout, a rookie centerfielder
who excelled in all aspects of the game. While it was acknowledged on both sides that Cabrera
was likely the better hitter, sabermetricians argued that Trout’s superior skill at baserunning and
fielding more than made up for Cabrera’s relatively small edge in batting. In fact, for adherents of
sabermetrics, the decision was clear – point estimates showed Trout leading Cabrera by 3.2 fWAR
and 3.6 rWAR.

Our openWAR values provide a more sophisticated perspective on this debate. Trout’s point
estimate for openWAR in 2012 is 1.05 wins larger than Cabrera’s, but it is important to note that
their interval estimates overlap considerably. In Figure 7, the joint distribution of openWAR values
for Cabrera and Trout’s 2012 seasons are plotted. In nearly 32% of those simulated seasons, Cabrera’s
openWAR was higher than Trout’s. Thus, our results suggest that there is a high probability that
Trout had a better season than Cabrera, but there is substantial uncertainty in their comparison.
This exercise illustrates two strengths of openWAR: 1) distinctions made through point estimates
tend to accord with those made via the existing implementations (note that Cabrera was not even
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Name q0 q2.5 q25 q50 q75 q97.5 q100
Mike Trout 3.52 5.81 7.58 8.53 9.48 11.27 13.91

Robinson Cano 2.56 4.88 6.85 7.92 8.96 11.11 13.74
Chase Headley 1.97 4.47 6.42 7.47 8.50 10.53 13.12
Miguel Cabrera 1.99 4.31 6.43 7.46 8.49 10.49 12.84

Edwin Encarnacion 2.67 4.54 6.36 7.32 8.29 10.29 13.17
Andrew McCutchen 2.02 4.29 6.18 7.19 8.17 10.17 12.07

Joey Votto 2.82 4.76 6.21 7.00 7.77 9.34 10.80
Prince Fielder 2.57 4.16 5.98 6.96 7.90 9.89 12.18

Joe Mauer 2.51 4.32 5.89 6.78 7.64 9.27 11.01
Buster Posey 2.49 4.08 5.79 6.73 7.62 9.46 11.98

Aaron Hill 1.29 3.72 5.64 6.62 7.59 9.52 12.67
Ryan Braun 1.97 3.68 5.55 6.60 7.62 9.56 11.44
Ben Zobrist 1.67 3.94 5.52 6.44 7.33 9.06 11.65

Josh Willingham 0.83 3.33 5.25 6.29 7.27 9.44 11.75
Martin Prado 1.59 3.69 5.27 6.16 7.05 8.65 10.97

Aramis Ramirez 0.52 3.19 5.18 6.15 7.09 9.05 11.73
Elvis Andrus 0.83 3.52 5.25 6.14 7.03 8.89 11.10
Matt Holliday 0.54 3.22 5.07 6.09 7.09 9.02 11.20

Adrian Gonzalez 1.40 3.04 4.91 5.93 6.96 8.84 10.89
David Wright 1.20 3.22 4.95 5.88 6.81 8.64 10.63

Table 1: Distribution of openWAR for 2012. Quantiles reported are based on 3500 simulated
seasons.
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Figure 6: Spread of 95% Confidence Intervals for openWAR based on resampling all plays that
occurred in the 2012 season. Intervals are narrower for pitchers compared to position players and
variation in the length of CIs exists among players.
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Simulated 2012 openWAR: Mike Trout
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Figure 7: Joint distribution of openWAR for Mike Trout vs. Miguel Cabrera, 2012. We note that
in about 68% of 3500 simulated seasons, Trout produced a higher WAR than Cabrera.

Best RAA Worst RAA
Mike Trout 14.79 Paul Konerko -9.28

Martin Prado 9.03 David Ortiz -8.43
Desmond Jennings 8.84 Jamey Carroll -8.27

Jarrod Dyson 8.62 Michael Young -8.07
Evereth Cabrera 8.62 Todd Helton -7.08

Drew Stubbs 7.86 Prince Fielder -6.82
Jason Heyward 7.75 Adrian Beltre -6.34
Darwin Barney 7.67 Justin Morneau -6.29

Torii Hunter 7.64 Adrian Gonzalez -6.26
Dustin Ackley 7.51 Howie Kendrick -5.90

Table 2: 2012 baserunning RAA Leaders

the second-best player in any implementation); and 2) the interval estimates provided by openWAR
allow for more nuanced conclusions to be drawn.

Table 2 shows the top ten best and worst baserunners, according to openWAR in 2012. We note
many true positives (Mike Trout and Desmond Jennings are considered to be excellent baserun-
ners, while Paul Konerko, David Ortiz and Adrian Gonzalez are plodding) with no eyebrow-raising
surprises.

Similarly, Table 3 shows the top ten best and worst fielders according to openWAR in 2012.
Here again we see some true positives (Brandon Crawford, Darwin Barney, and Adam Jones are
reputedly excellent fielders) but also some head-scratchers (Prince Fielder is anecdotally considered
a poor fielder). We also note that the magnitudes of the fielding numbers reported by openWAR
are smaller than those reported by UZR. This may be a result of the fact that openWAR currently
only measures some defensive skills, or it could reflect weaknesses in the unknown models underlying
UZR, which merits further study.

Results for openWAR in the 2013 seasons were similar to those of 2012, with an observed range
of −2.0 to 10.7. Mike Trout was again the best player, and Clayton Kershaw was again the best
pitcher (6.5 openWAR). Figure 8 shows the full openWAR results for all players in 2013, and
quantiles for simulated openWAR for 2013 are presented in Table 4.
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Best RAA Worst RAA
Jason Heyward 10.17 Colby Rasmus -10.44

Brandon Crawford 9.91 Jose Altuve -9.03
Yunel Escober 9.19 Tyler Greene -8.30

Ben Zobrist 8.23 Brian Dozier -7.82
Darwin Barney 8.05 Lucas Duda -7.82
Prince Fielder 7.66 Shin-Soo Choo -7.77

Adrian Gonzalez 7.43 Orlando Cespedes -7.49
Alejandro De Aza 7.13 Justin Smoak -7.34

Adam Jones 7.05 Garrett Jones -6.83
Craig Gentry 6.72 Rickie Weeks -6.64

Table 3: 2012 fielding RAA Leaders

Number of Players = 1303 , Number of Replacement Level Players = 553
Playing Time (plate appearances plus batters faced)
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Figure 8: openWAR RAA values for the 2013 MLB season. Each blue dot is a major league player,
while each pink dot is a replacement-level player. For each player, we also plot a gray dot that
represents their replacement-level shadow with the same amount of playing time. Playing time is
calculated just as in Figure 4. Mike Trout and Clayton Kershaw were the best position player and
pitcher, respectively, while Joe Blanton was the worst player.
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Name q0 q2.5 q25 q50 q75 q97.5 q100
Mike Trout 5.48 7.60 9.58 10.60 11.60 13.58 15.39

Miguel Cabrera 2.74 5.70 7.62 8.71 9.79 11.83 14.74
Chris Davis 3.14 5.39 7.41 8.53 9.64 11.82 13.87

Matt Carpenter 2.99 5.00 6.77 7.67 8.56 10.34 12.52
Paul Goldschmidt 1.47 4.39 6.46 7.64 8.78 10.93 13.81
Josh Donaldson 1.76 4.35 6.22 7.21 8.17 10.15 12.73
Matt Holliday 2.07 4.34 6.16 7.07 7.97 9.89 12.58
Shin-Soo Choo 2.63 4.33 6.14 7.06 7.98 9.89 12.02

Freddie Freeman 1.13 4.28 6.03 7.05 8.04 9.93 11.59
Robinson Cano 1.23 4.07 5.94 6.98 8.01 10.03 12.10

Andrew McCutchen 1.75 4.00 5.74 6.71 7.70 9.53 11.80
David Ortiz 1.61 3.87 5.60 6.63 7.63 9.59 12.08

Clayton Kershaw 2.12 4.31 5.77 6.54 7.31 8.79 10.60
Carlos Santana 2.35 3.89 5.54 6.42 7.30 8.89 11.04
Jason Kipnis 1.68 3.62 5.35 6.29 7.23 9.04 11.23
Ian Kinsler 1.17 3.33 5.06 5.92 6.79 8.47 10.76

Edwin Encarnacion 1.03 3.12 4.94 5.91 6.84 8.90 11.71
Joey Votto 1.43 3.31 4.96 5.91 6.82 8.63 10.44

Troy Tulowitzki 1.15 3.33 5.02 5.88 6.75 8.47 10.04
Cliff Lee 1.41 3.15 4.60 5.39 6.18 7.70 9.48

Table 4: Distribution of openWAR for 2013. Quantiles reported are based on 3500 simulated
seasons.

5.1 Comparison to Previous WAR Implementations

Our openWAR point estimates are similar to existing implementations of WAR, though as noted
above, we also provide uncertainty estimates. In Table 5, we list the top 10 performance in openWAR
alongside those of fWAR. There is considerable (though not universal) agreement with respect to
these players and the magnitudes of the WAR values are similar. Comparison to rWAR yields
similar results.

We can examine the overall correlation between previous WAR implementations and our open-
WAR point estimates in Table 6. openWAR correlates highly with both fWAR and rWAR,
although not as highly as they correlate with each other.

We also examined the consistency of openWAR from season-to-season by calculating the auto-
correlation within players between their 2012 and 2013 seasons. As seen in Table 7, the within-player
autocorrelation of our openWAR values are similar to those of fWAR and rWAR.

As illustrated in Figure 4, the sum of all RAA values in 2012 is exactly 0, and the sum of all

Name fWAR Name openWAR
Mike Trout 10.0 Mike Trout 8.57

Robinson Cano 7.7 Robinson Cano 7.91
Buster Posey 7.7 Miguel Cabrera 7.52
Ryan Braun 7.6 Chase Headley 7.50

David Wright 7.4 Edwin Encarnacion 7.28
Chase Headley 7.2 Andrew McCutchen 7.24
Miguel Cabrera 6.8 Joey Votto 6.96

Andrew McCutchen 6.8 Prince Fielder 6.92
Jason Heyward 6.4 Joe Mauer 6.73
Adrian Beltre 6.3 Buster Posey 6.71

Table 5: 2012 WAR Leaders, fWAR (left) and openWAR (right)
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rWAR fWAR openWAR
rWAR 1 0.918 0.881
fWAR 0.918 1 0.875

Table 6: Correlation matrix between openWAR, fWAR, and rWAR.

rWAR fWAR openWAR
Autocorrelation 0.522 0.596 0.571

Table 7: Autocorrelation of WAR implementations. Each player’s WAR in 2012 and 2013 was
calculated, and the correlation between the matched pairs is shown.

openWAR values is 1166. Whereas the former figure is guaranteed based on the way we have defined
runs above average, the latter is sensitive to changes in the definition of replacement-level. However,
as noted in Section 3.8, replacement-level is defined in both fWAR and rWAR so that the sum of all
WARs is 1000. In order to compare the magnitudes of openWAR to fWAR and rWAR directly, we
can generate more comparable values by increasing the number of replacement-level players. This in
turn raises the performance of the replacement-level shadows, and lowers the amount of WAR in the
system (see Figure 9). Given the ad hoc nature of the previous definition of replacement-level, we
prefer our definition. Moreover, the fact that the total unnormalized openWAR was nearly identical
in 2012 and 2013 (1166 and 1173), suggest that there may be some intrinsic meaning to this number.
Additionally, the total RAA values for rWAR did not add up to 0 in either 2012 or 2013 – a logical
weakness in that system.

6 Summary and Further Discussion

The concept of Wins Above Replacement has been one of the great success stories in the long history
of sabermetrics, and sports analytics in general. However, there are major limitations in previous
methodology both in terms of calculating WAR, and in the public’s understanding of what WAR
values mean. Chiefly, the previous implementations of WAR are not reproducible and do not contain
uncertainty estimates. This leads to the unpleasant situation where journalists are forced to take
WAR estimates on faith, with no understanding of the accuracy (or construction) of those estimates.
In this paper, we have addressed the issues of reproducibility and uncertainty estimation by providing
a fully open source, statistical model for Wins Above Replacement based on our conservation of runs
framework with uncertainty in our model-based WAR values estimated by resampling methods.

There remain several limitations of openWAR that offer the opportunity for further research.
The first limitation is data quality. Although the fidelity of the MLBAM data is very high, it is
not perfect. There were instances in the data where players were listed with the wrong ID and for
most balls in play, there was not a description of whether that ball was hit on the ground or in the
air. Furthermore, there is no indication of how long each batted ball took to get to the specified
location, making both the trajectory and speed of each batted ball unknown.

The accounting of baserunner movement for non-batting events like stolen bases, caught stealings,
wild pitches, and errors merits further work. All baserunner movement is captured, but it is modeled
implicitly. Our approach only takes into account the actual baserunner movement but is indifferent
to the various mechanisms by which a baserunner advanced. For example, a runner on first who
steals second base and advances to third on a single is rewarded the same amount as a baserunner
who advances to second on a wild pitch and then advances to third on a single. The same holds for
a runner who simply advances directly from first to third on a single.

The defensive models used in openWAR are somewhat rudimentary and could certainly be
improved with more resolute data. Since there is no record in the data of where each fielder was
standing at the beginning of the play, there is no way to distinguish between fielder range versus
fielder positioning. This drawback is also true in most current fielding measures, such as UZR and
SAFE. Some fielding measures such as UZR add additional components for throwing and the ability
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Number of Players = 1284 , Number of Replacement Level Players = 603
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Figure 9: openWAR RAA values for 2012, normalized so that the total WAR is about 1000. Com-
pared to Figure 4, here the definition of replacement-level is more inclusive. Playing time is calculated
just as in Figure 4.

to turn a double play, which we hope to add to openWAR in future work.
Another interesting idea would be a conservation of wins framework for openWAR rather than

the conservation of runs. Rather than assigning the value of each plate appearance based on the
change in expected runs, the value of a plate appearance could alternatively be based on the change
in win probability from the beginning to the end of a plate appearance. The openWAR framework
could then be altered to take changes in win probability as inputs rather than the change in the
expected run matrix. One rationale for using win probability is that we may not wish to treat each
run scored as contributing equally to a win. For example, extra runs when a team is winning by a
large margin are not as valuable as an extra run when the teams are tied.

We suspect that using a framework based on the change in win probability will give similar results
in terms of magnitude and ranking of players, since every day hitters will get plate appearances in
many different game situations. However, certain types of players (closers, relief specialists, pinch
hitters, defensive replacements, pinch runners) may only make appearances in games in specific
situations such that the runs that they create or prevent may be systematically more (or less)
valuable than the approximately 10% of a win that is assigned to each run now. It would be
particularly interesting to look at relief pitchers as they are often only in a game because of the
specific game situation (the game is close and near the end of the game), which would make the
runs they prevent more valuable than most runs created over the course of the season.
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A openWAR Package

Code for the openWAR package is available for download on GitHub at https://github.com/

beanumber/openWAR.

B Previous Implementations of WAR

The major components of each existing implementation of WAR are summarized in Table 8. The
details of how each of these components is calculated are beyond what we can present here. In-
structions for how to reproduce these numbers are illustrative, but not rigorous (Slowinski, 2010;
Forman, 2010, 2013a,b; Tango, 2008; Lichtman, 2010; Wyers, 2013). At best, the authors may pro-
vide a step-by-step example calculation, but never specify a statistical model in formal notation,
nor do they include code that would unambiguously reveal the algorithms used. The Baseball Info
Solutions (BIS) data set, which is used to compute the fielding component of rWAR and fWAR, is
proprietary, and thus cannot be part of a reproducible piece of scholarship in which the results (as
opposed to the models or algorithms) are the primary contribution. The high cost of obtaining this
data (tens of thousands of dollars per year) prevents all but a few persons from verifying any results
that stem from its use. The fielding metrics used by those two implementations, Defensive Run
Saved (DRS) and Ultimate Zone Rating (UZR) are also proprietary. While extensive descriptions
of each have been published (Fangraphs Staff, 2013; Lichtman, 2010), they too are illustrative—
rather than specific—and none include source code. Occasionally, these organizations publish “bug”
fixes (Hamrahi, 2013) or updates (Appelman, 2010) that change previously published point esti-
mates. Baseball Prospectus has announced plans to include more uncertainty and transparency in
WARP (Wyers, 2013), but it is not known if this will include a release of source code9.

rWAR fWAR WARP
Data Source BIS BIS Retrosheet

Batting modified wRAA wRAA Linear Weights
Baserunning Baserunning Runs BsR Baserunning Runs Above Average

Fielding DRS UZR Fielding Runs Above Average
Pitching Runs Allowed FIP Pitching Runs Above Average

Table 8: Comparison of WAR implementations Forman (2013b). The Baseball Info Solutions (BIS)
data source is proprietary. Defensive Runs Saved (DRS) is a proprietary fielding metric developed
by BIS. Ultimate Zone Rating (UZR) is a proprietary fielding metric developed by Lichtman (2010)
and licesensed to Fangraphs.

C MLBAM data set

There are two main open sources of baseball data. Lahman (2013) maintains a database of seasonal
data that has also been packaged for R by Friendly (2013). However, this data does not contain
play-by-play information, making it insufficiently granular for WAR-type calculations, especially
with respect to fielding. Retrosheet (Smith (2013)) is an excellent source of free play-by-play data,
but the batted ball locations are discrete, rather than continuous. That is, each batted ball is
reported as falling into one of several dozen pre-defined polygonal zones. This level of detail is
sufficient for some sophisticated defensive metrics, such as Humphreys (2011), but not others, such
as UZR or SAFE (Jensen et al., 2009). Both of these data sources are updated periodically (usually
at the end of the season).

As noted in the paper, openWAR uses data obtained from MLBAM. This data is not libre, but
it does reside on a publicly-available web server, making it gratis. Furthermore, it is updated in

9Incidentally, no further uncertainty updates to WARP have been published since Wyers left Baseball Prospectus
to joined the Houston Astros in November 2013.
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team G PA AB R H HR BB K G PA AB R H HR BB K
ana 162 6121 5537 766 1517 187 449 1112 162 6120 5536 767 1518 187 449 1113
ari 162 6152 5466 734 1414 165 539 1266 162 6148 5462 734 1416 165 539 1266
atl 162 6126 5427 699 1339 149 567 1289 162 6125 5425 700 1341 149 567 1289
bal 162 6160 5562 712 1374 214 480 1315 162 6158 5560 712 1375 214 480 1315
bos 162 6200 5636 737 1460 166 430 1204 162 6166 5604 734 1459 165 428 1197
cha 162 6111 5518 748 1409 211 461 1202 162 6111 5518 748 1409 211 461 1203
chn 162 5967 5411 613 1295 137 447 1235 162 5967 5411 613 1297 137 447 1235
cin 162 6115 5477 669 1375 172 481 1266 162 6115 5477 669 1377 172 481 1266
cle 162 6196 5526 667 1385 136 555 1087 162 6195 5525 667 1385 136 555 1087
col 162 6183 5584 758 1525 166 450 1213 162 6176 5577 758 1526 166 450 1213
det 162 6119 5477 726 1465 163 511 1103 162 6119 5476 726 1467 163 511 1103
hou 162 6014 5409 583 1276 146 463 1364 162 6012 5407 583 1276 146 463 1365
kca 162 6151 5638 676 1492 131 404 1032 162 6149 5636 676 1492 131 404 1032
lan 162 6091 5438 637 1367 116 481 1156 162 6091 5438 637 1369 116 481 1156
mia 162 6059 5440 610 1329 137 484 1228 162 6056 5437 609 1327 137 484 1228
mil 162 6226 5559 776 1443 202 466 1240 162 6224 5557 776 1442 202 466 1240
min 162 6209 5562 701 1446 131 505 1069 162 6209 5562 701 1448 131 505 1069
nya 162 6231 5524 803 1462 245 565 1175 162 6231 5524 804 1462 245 565 1176
nyn 162 6091 5454 650 1356 139 503 1250 162 6089 5450 650 1357 139 503 1250
oak 162 6187 5532 714 1317 195 550 1386 162 6183 5527 713 1315 195 550 1387
phi 162 6174 5546 684 1413 158 454 1094 162 6172 5544 684 1414 158 454 1094
pit 162 6014 5412 651 1311 170 444 1354 162 6014 5412 651 1313 170 444 1354
sdn 162 6112 5425 651 1336 121 539 1237 162 6112 5422 651 1339 121 539 1238
sea 162 6061 5499 621 1285 149 466 1259 162 6057 5494 619 1285 149 466 1259
sfn 162 6200 5559 718 1492 103 483 1097 162 6200 5558 718 1495 103 483 1097
sln 162 6326 5624 765 1524 159 533 1192 162 6326 5622 765 1526 159 533 1192
tba 162 6106 5401 697 1289 175 571 1324 162 6103 5398 697 1293 175 571 1323
tex 162 6216 5592 808 1523 200 478 1103 162 6214 5590 808 1526 200 478 1103
tor 162 6137 5525 723 1353 200 478 1255 162 6093 5487 716 1346 198 473 1251
was 162 6221 5615 729 1467 194 479 1325 162 6221 5615 731 1468 194 479 1325

Table 9: Cross-check between MLBAM data collected by openWAR (left) and Lahman data (right),
2012. These data are aggregated by team from 187,739 observations.

real-time, and contains (x, y)-coordinates for each batted ball in every major league game. The R
package (Baumer and Matthews, 2013) which has been developed simultaneously, will retrieve all
data necessary to compute openWAR. The package contains simple R functions that will enable
any user with an Internet connection to download the data of their choice.

The data available through this package is generally accurate. For example, summary statistics
aggregated by team from all 184, 739 observations in 2012 are shown in Table 9 in the Appendix,
next to the corresponding figures available through the Lahman database (Lahman, 2013). The
agreement between the numbers presented in Table 9 is over 99.8%10, indicating that the data
collected and processed by openWAR is of high fidelity.

In Table 10, we list the 31 event types in the MLBAM data set, along with their frequencies of
occurrence in 2012.

Nevertheless, there are some significant limitations to this data set (Fast, 2009). It is important
to note that these data are collected for the purposes of entertainment (e.g. feeding the MLBAM
web application) and not for the purposes of data analysis.

D Converting Runs to Wins

As changes in the run expectancy matrix are measured in runs, but the units of WAR are wins, it
is necessary to convert runs to wins. A common convention used by all providers of WAR is that 10
runs is equivalent to 1 win (Cameron, 2008). This value can thought of as a slope in the relationship
between runs and wins at a point representing the average team. More specifically, this value can
be derived as the partial derivative of Pythagorean Win Expectation evaluated at a specific point.

Consider the general form of James’ formula for expected winning percentage, which is derivable
if run scoring follows independent Weibull distributions (Miller, 2007). That is, with p equal to a

10Specifically, the ratio of the Frobenius norm of the difference between the two sets and the Frobenius norm of the
Lahman set is very small.
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Event Type N Frequency
Strikeout 36286 0.196
Groundout 35266 0.191
Single 27954 0.151
Flyout 24890 0.135
Walk 13660 0.074
Pop Out 9072 0.049
Double 8221 0.045
Lineout 6666 0.036
Home Run 4937 0.027
Forceout 3984 0.022
Grounded Into DP 3613 0.020
Field Error 1705 0.009
Hit By Pitch 1494 0.008
Sac Bunt 1478 0.008
Sac Fly 1213 0.007
Intent Walk 1056 0.006
Triple 927 0.005
Double Play 494 0.003
Runner Out 463 0.003
Bunt Groundout 410 0.002
Fielders Choice Out 352 0.002
Bunt Pop Out 209 0.001
Strikeout - DP 146 0.001
Fielders Choice 114 0.001
Fan interference 46 0.000
Batter Interference 35 0.000
Catcher Interference 23 0.000
Sac Fly DP 11 0.000
null 5 0.000
Bunt Lineout 4 0.000
Triple Play 3 0.000
Sacrifice Bunt DP 2 0.000

Table 10: Frequency of Events in MLBAM data set (2012)
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parameter (originally 2), then

WPctp(RS,RA) =
1

1 +
(
RA
RS

)p
where RS and RA are the runs scored and allowed by a team, respectively. The gradient of this
function is

∇WPctp(RS,RA) =

〈
∂WPctp
∂RS

,
∂WPctp
∂RA

〉
=

p · (RA/RS)p

(1 + (RA/RS)p)2
·
〈

1

RS
,− 1

RA

〉
.

Thus, if r = RS = RA (as it will be for an average team), then this becomes:

∇WPctp(r, r) =
p

4

〈
1

r
,−1

r

〉
=

p

4r
· 〈1,−1〉 .

The gradient points in the direction of scoring more runs and allowing fewer, and from the magnitude
we recover that the number of runs associated with one win over a 162 game season is:

Runs per Winp(r) =
( p

4r

)−1

/162 =
2r

81p
.

The optimal choice of the parameter p may depend on the run-scoring environment. While James
originally chose p = 2 for convenience, better fits for Major League Baseball have been obtained
using p = 1.83 (Davenport and Woolner, 1999) and p = 1.86 (Tung, 2010). The average number of
runs scored per 162 games has been approximately r = 714 since 1901, and r = 761 since the league
expanded to 30 teams in 1998. Reasonable choices for p and r will yield conversion factors in the
neighborhood of 10.
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