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Robust and Computationally Feasible Community Detection in the
Presence of Arbitrary Outlier Nodes

Abstract
Community detection, which aims to cluster NN nodes in a given graph into rr distinct groups based on the
observed undirected edges, is an important problem in network data analysis. In this paper, the popular
stochastic block model (SBM) is extended to the generalized stochastic block model (GSBM) that allows for
adversarial outlier nodes, which are connected with the other nodes in the graph in an arbitrary way. Under
this model, we introduce a procedure using convex optimization followed by k-means algorithm with k=r.
Both theoretical and numerical properties of the method are analyzed. A theoretical guarantee is given for the
procedure to accurately detect the communities with small misclassification rate under the setting where the
number of clusters can grow with N. This theoretical result admits to the best-known result in the literature of
computationally feasible community detection in SBM without outliers. Numerical results show that our
method is both computationally fast and robust to different kinds of outliers, while some popular
computationally fast community detection algorithms, such as spectral clustering applied to adjacency
matrices or graph Laplacians, may fail to retrieve the major clusters due to a small portion of outliers. We
apply a slight modification of our method to a political blogs data set, showing that our method is competent
in practice and comparable to existing computationally feasible methods in the literature. To the best of the
authors’ knowledge, our result is the first in the literature in terms of clustering communities with fast growing
numbers under the GSBM where a portion of arbitrary outlier nodes exist.
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ROBUST AND COMPUTATIONALLY FEASIBLE COMMUNITY

DETECTION IN THE PRESENCE OF ARBITRARY

OUTLIER NODES1

By T. Tony Cai and Xiaodong Li

University of Pennsylvania

Community detection, which aims to cluster N nodes in a given
graph into r distinct groups based on the observed undirected edges,
is an important problem in network data analysis. In this paper, the
popular stochastic block model (SBM) is extended to the generalized
stochastic block model (GSBM) that allows for adversarial outlier
nodes, which are connected with the other nodes in the graph in
an arbitrary way. Under this model, we introduce a procedure using
convex optimization followed by k-means algorithm with k = r.

Both theoretical and numerical properties of the method are ana-
lyzed. A theoretical guarantee is given for the procedure to accurately
detect the communities with small misclassification rate under the
setting where the number of clusters can grow with N . This theoret-
ical result admits to the best-known result in the literature of com-
putationally feasible community detection in SBM without outliers.
Numerical results show that our method is both computationally fast
and robust to different kinds of outliers, while some popular compu-
tationally fast community detection algorithms, such as spectral clus-
tering applied to adjacency matrices or graph Laplacians, may fail to
retrieve the major clusters due to a small portion of outliers. We ap-
ply a slight modification of our method to a political blogs data set,
showing that our method is competent in practice and comparable
to existing computationally feasible methods in the literature. To the
best of the authors’ knowledge, our result is the first in the literature
in terms of clustering communities with fast growing numbers under
the GSBM where a portion of arbitrary outlier nodes exist.
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2 T. T. CAI AND X. LI

1. Introduction. Driven by applications in a wide range of fields, in-
cluding engineering, genomics, sociology, psychology and computer science,
analysis of graph and network data has drawn significant recent interest.
Random graph models have been introduced to characterize the structure
of the networks and a large number of algorithmic approaches have been
proposed for various applications. See, for example, Fienberg (2010, 2012),
Goldenberg et al. (2010), and the references therein for overviews and recent
work.

An important problem in the analysis of network data is that of commu-
nity detection which aims to cluster the nodes in a given graph into distinct
groups or communities based on the observed undirected edges. Community
detection has proven to be both technically and computationally challenging.
It also has deep connections to other fields such as spin-glass theory and sig-
nal processing. In terms of statistical modeling, the most well-known model
for community detection is perhaps the stochastic block model (SBM) pro-
posed in Holland, Laskey and Leinhardt (1983). Under the SBM, the graph
of interest is assumed to be a random one with independent edges, and the
within-group edge density is assumed to be greater than the between-group
edge density.

To be specific, suppose G= (V,E) is a random graph where V is a fixed
set of vertices consisting of n nodes, and E is a random set of edges. Assume
that the n nodes are indexed by [n] := {1, . . . , n} and each of these nodes
belongs to one and only one of the r nonoverlapping groups. This amounts
to assigning each node j ∈ [n] a group label by a labeling function φ(j) ∈
{1, . . . , r}. We denote by A = (Aij)1≤i,j≤n the random adjacency matrix
of this random graph. Then for each pair (i, j), 1 ≤ i, j ≤ n, Aij = 0 or 1,
indicating whether the nodes i and j are connected or not, respectively. We
only consider undirected graph with no self loops, so A is symmetric, and all
its diagonal entries are 0. For pairs (i, j) with 1≤ i < j ≤ n, Aij ’s are assumed
to be independent Bernoulli random variables with parameters Bφ(i)φ(j),

where the symmetric matrix B ∈ R
r×r is referred to as the connectivity

matrix. In a basic model, denote by q+ and p− the maximum cross-group
density and the minimum within-group density, namely

q+ := max
1≤i<j≤r

Bij, p− := min
1≤i≤r

Bii.(1.1)

Moreover, the within-group densities are assumed to be greater than the
cross-group densities, that is,

p− − q+ := δ > 0.(1.2)

This is a common assumption in the literature of community detection under
the SBM; see, for example, Rohe, Chatterjee and Yu (2011), Chaudhuri,
Chung and Tsiatas (2012). Denote the minimum community size by nmin :=
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min1≤l≤r |φ−1(l)|, where |S| denotes the cardinality of the set S. Then the
difficulty of the community detection problem is determined by the tuple
(n, r, q+, p−, nmin).

Under the SBM, various community detection algorithms have been pro-
posed and studied in the literature, with different emphases on computa-
tional complexity and statistical accuracy. These include greedy algorithms,
such as hierarchical agglomeration [see, e.g., Clauset, Newman and Moore
(2004)]; greedy methods guided by global criterion maximization, such as
modularity function maximization [see, e.g., Newman and Girvan (2004)]
and profile likelihood function maximization [see, e.g., Bickel and Chen
(2009), Zhao, Levina and Zhu (2012)]; stochastic model based methods,
such as variational likelihood methods [see, e.g., Bickel et al. (2013), Celisse,
Daudin and Pierre (2012)], pseudo-likelihood methods with EM algorithm
[see, e.g., Amini et al. (2013)], Bayesian methods with Gibbs sampling,
Markov chain Monte Carlo and belief propagation [see, e.g., Snijders and
Nowicki (1997), Nowicki and Snijders (2001), Decelle et al. (2011)]; graph
distance methods [see, e.g., Bhattacharyya and Bickel (2014)]; spectral clus-
tering, its variations and other spectral methods [see, e.g., McSherry (2001),
Giesen and Mitsche (2005), Rohe, Chatterjee and Yu (2011), Chaudhuri,
Chung and Tsiatas (2012), Coja-Oghlan and Lanka (2009/10), Balakrish-
nan et al. (2011), Sussman et al. (2012), Fishkind et al. (2013), Jin (2015),
Joseph and Yu (2013), Sarkar and Bickel (2013), Lei and Rinaldo (2015)];
and convex optimization methods [see, e.g., Mathieu and Schudy (2010),
Oymak and Hassibi (2011), Jalali et al. (2014), Ames and Vavasis (2014),
Chen, Sanghavi and Xu (2012), Ames (2014)].

Among these methods, greedy methods are usually computationally feasi-
ble, while their statistical accuracy has not been fully established in theory.
Modularity or profile likelihood methods are proven to be consistent when
the number of groups is fixed. However, they are in principle computationally
NP hard. Similarly, stochastic model based methods are usually computa-
tionally difficult and not fully justified in theory. Spectral clustering is a
popular algorithm for community detection, since it is fast in computation
and easy to implement. It has been proven that spectral clustering is con-
sistent even when the number of groups r grows on the order of O(

√
n).

Although in practice spectral clustering is believed to work well only for
dense graphs, several recent papers, Amini et al. (2013), Sarkar and Bickel
(2013), Joseph and Yu (2013), Lei and Rinaldo (2015), have shown that
spectral clustering or its variations also work well for sparse graphs.

The SBM is admittedly an oversimplified model for many applications,
and different generalizations have been proposed in the literature, which
encompass mixture model [see Newman and Leicht (2007)], where the para-
metric model for the connectivity probabilities is based on the relationship
between vertices and groups, instead of between different groups; degree
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corrected model [see Coja-Oghlan and Lanka (2009/10), Karrer and New-

man (2011), Zhao, Levina and Zhu (2012)]; Latent variable method [see

Handcock, Raftery and Tantrum (2007)] and mixed membership model [see

Airoldi et al. (2008)]. However, each of these GSBMs focuses on a single

latent graph structure, while in practice, due to lack of information, this

additional structure is not easy to detect if it only applies to a few nodes of

the graph. Different types of outliers may appear in a single graph, and it is

difficult to use a complex generalization of the SBM to model multiple types

of outlier nodes. The SBM is usually the first model to fit the data because

of its simple form, even if it is believed that there is possibly a small portion

of nodes which are not modeled well. Robustness in presence of arbitrary

outliers is an important property for given community detection algorithms.

In this paper we consider robust community detection in the presence of

arbitrary outlier nodes, and the main question we wish to answer is the

following:

Does there exist a computationally fast community detection method that is

robust to a portion of arbitrary outlier nodes with theoretical guarantees?

Our answer is affirmative, and we will introduce our model, methodology,

numerical results and theoretical guarantees with rigorous proofs in this

paper. We begin by formalizing the GSBM which allows for a small portion

of arbitrary nodes.

1.1. Generalized stochastic block model. We introduce a flexible model

for community detection which covers a range of settings in practice where

the usual SBM is not suitable. More specifically, we assume the undirected

graph G= (V,E) has N := n+m nodes, among which there are n “inliers”

obeying the SBM described above, while the other m nodes are “outliers”

which are connected with the other nodes in an arbitrary way. We refer to

this model as generalized stochastic block model (GSBM ). Denote V = [N ] =

I∪O, where I is the set of indices of the inliers, while O is the set of indices of

outliers. Each inlier node i ∈ I is assigned a label φ(i) ∈ {1, . . . , r}, while all

outliers are simply labeled φ(i) = r+1. For any two nodes i, j ∈ I , P((i, j) ∈
E) =Bφ(i)φ(j), and moreover we assume the event {(i, j) ∈E}, i < j ∈ I are

independent. The r×r symmetric connectivity matrix B only represents the

likelihood of connectivity of the inlier nodes. The connectivity between the

outliers and the inliers and the connectivity among the outliers themselves

are arbitrary. The only restriction of the connectivity of the outliers is that

there is no self-loop.
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The GSBM can be equivalently expressed in terms of its adjacency matrix
A. To be specific, define

A=P

[
K Z

Z⊺ W

]
P⊺ =P




K11 . . . K1r Z1

...
. . .

...
...

K
⊺
1r . . . Krr Zr

Z
⊺
1 · · · Z

⊺
r W


P

⊺,(1.3)

where W ∈ R
m×m is an arbitrary symmetric 0–1 matrix with all diagonal

entries being 0, Z ∈R
n×m is an arbitrary 0–1 matrix, P is an unknown N ×

N permutation matrix, in which there is only one 1 in each row and column,
while all other entries are 0’s, and K is an n× n symmetric matrix which
captures the connectivity of the inliers, thus corresponding to the usual
SBM. The off-diagonal entries of K are independent Bernoulli variables,
with parameter Bij if the entry belongs to the submatrix Kij . Denote the
dimension of Kii to be li for i= 1, . . . , r. Then n=

∑r
i=1 li. Similar to SBM,

nmin = min1≤i≤r li. The parameters p− and q+ are defined as in (1.1) and
δ in (1.2). Then the difficulty of community detection under the GSBM is
parameterized by the tuple (n,m, r, p−, q+, nmin).

Here we emphasize that Z and W are not necessarily fixed with respect
to the randomness of K. Both Z and W can depend on K in arbitrary
forms. In other words, the connectivity between the outliers and the inliers
is allowed to depend on the connectivity among the inlier nodes. This is
also a generalization of standard SBM, where the connectivity between each
pair of nodes is stochastically independent of the connectivity between other
pairs.

The GSBM is a flexible model and is widely applicable. It covers various
types of outliers which are common in practice, and we name a few as follows:

• Mixed membership. The SBM assumes that each node belongs to one
and only one predetermined cluster. If most nodes obey this property,
while there is a small portion of nodes each belonging to more than one
clusters, these nodes are referred to as having mixed membership. When
only a small portion of nodes have mixed membership, it is natural to
treat them as outliers in an ordinary SBM.

• Hubs. In social networks and others, it is natural that some nodes have
many more connections than most of others. Moreover, it is possible that
these nodes belong to several groups without obvious bias to any specific
one. These nodes are referred to as hubs, and can be treated as outliers
in our GSBM.

• Small clusters. The SBMs are usually employed to model big and signif-
icant clusters, while small clusters are difficult to detect. Small clusters
are often not detectable because they are too small and possibly weak.
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The number of small clusters is also difficult to estimate; however, this in-
formation is essential for most popular algorithms in the literature, such
as spectral clustering and modularity methods. The nodes in the small
clusters can be treated as outliers in our GSBM.

• Independent neutral nodes. In a given graph, in addition to the well-
classified nodes, there might be some nodes which do not belong to any
significant groups, and also have fewer connections than most other nodes.
We refer to these objects as independent neutral nodes. For example, in
the political blogs data set introduced later, a small portion of blogs have
very few connections. Such blogs may have strong preference in politics;
however, this cannot be seen from only the graph representation. There-
fore, these nodes are regarded as independent neutral nodes, which are
naturally taken as outliers.

In practice, it is difficult or even impossible to modify the usual SBM to
model precisely the possible combinations of mixed membership, hubs, small
clusters, independent neutral nodes and other types of settings. Moreover,
complex statistical models may also result in overfitting and high computa-
tional complexity in clustering. Therefore, the SBM is usually set up based
on the basic properties of the graph. For example, in the political blogs
network application discussed in Section 4.2, an SBM with 2 clusters is
preferred, since it is known that there are mainly two significant clusters:
liberals and conservatives. However, it is also known that there are many
independent groups advocating various causes that lie outside of the two
main clusters.

The GSBM can also be taken as a criterion to evaluate the robustness
of community detection algorithms. When an SBM is adopted based on the
properties of most nodes of a given graph, or equivalently, most nodes can
be well modeled by an SBM in use, the robustness of a given community
detection algorithm depends on whether a small portion of outliers will com-
pletely change the clustering result, or most nodes can be still well clustered.
Therefore, a graph clustering algorithm is robust if it is guaranteed to have
good performance under the GSBM.

1.2. Organization of the paper. The rest of the paper is organized as
follows. In Section 2 the method of convexified likelihood method is intro-
duced, followed by a detailed alternating directional augmented Lagrangian
algorithm. Section 3 is focused on the theoretical consistency of the convex
optimization method in the inference of the underlying groups specified by
the GSBM. Numerical results on the analyses of the simulated data and
a real data set about political blogs are presented in Section 4. A discus-
sion is given in Section 5, and the proofs of the main theoretical results are
contained in Section 6. Additional technical proofs are given in the Supple-
mentary Material.
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2. Methodology. In this section we propose a community detection al-
gorithm which is robust and computationally feasible with theoretical guar-
antee of consistency. In the literature, greedy algorithms such as hierarchi-
cal clustering are not fully justified in theory, while modularity and pro-
file maximum likelihood methods are computationally NP hard. Stochastic
model based methods, such as maximum likelihood or variational likelihood
method, have been proven to have certain consistency when the number
of blocks is fixed as the number of nodes going to infinity. However, they
are also computationally difficult. EM algorithm is naturally proposed for
solving relevant maximum likelihood formulation, but there is no theoreti-
cal guarantee of convergence with reasonable rate. Bayesian methods such
as Gibbs sampling and belief propagation have also been proposed in the
literature without rigorous theoretical justifications.

Unlike the aforementioned methods, the spectral clustering methods have
the advantage of fast algorithms. Spectral clustering algorithms are easy to
implement because there is no tuning parameter. Moreover, strong theoreti-
cal results have been established under various conditions; see the references
mentioned in the previous section. However, as indicated in Joseph and Yu
(2013), ordinary spectral clustering applied to the graph Laplacian may not
work due to the existence of small and weak clusters. We use a simulated
data set to illustrate that ordinary spectral clustering applied to the graph
Laplacian or the adjacency matrix is not consistent under the GSBM. Other
types of numerical examples can be found in Joseph and Yu (2013).

First, we create a data set of n= 1000 nodes obeying the ordinary SBM
with r = 2 clusters. We also assume that the two clusters are perfectly bal-
anced; that is, there are 500 nodes in each cluster. The within-group prob-
ability is p= 0.17, while the cross-group probability is q = 0.11. Under this
set-up, the adjacency matrix is shown as in Figure 1.

Spectral clustering applied directly to either the graph Laplacian or the
adjacency matrix of this graph data has good performance of clustering.
To illustrate this, we plot the eigenvectors corresponding to the top two
eigenvalues (in absolute value) of the graph Laplacian and the adjacency
matrix, respectively, in Figure 1. In each case, the two eigenvectors combined
are capable of discriminating between the two clusters. Therefore, spectral
clustering methods work for our data set when there are no outliers.

Now we consider the GSBM by adding only m = 30 outliers into the
above model with r = 2 clusters. To specify this GSBM, it suffices to ex-
plain Z and W in (1.3). We assume W is the adjacency matrix of a random
graph with 30 nodes and independent edges. Moreover, we assume the prob-
ability of connectivity is 0.7. We define Z as a 1000× 30 with independent
Bernoulli entries. We also let EZ= β1⊺ = [β,β, . . . ,β]. The components of
β are 1000 i.i.d. copies of U2, and U is a uniform random variable on [0,1].
The unordered and ordered adjacency matrices are given in Figure 2.
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Fig. 1. The upper left panel illustrates the adjacency matrix of 1000 nodes satisfying the
ordinary SBM. The upper right panel is the adjacency matrix obtained by permuting the
adjacency matrix such that nodes 1 to 500 belong to the same cluster while the remaining
ones constitute another cluster. The lower left panel plots the eigenvectors of the graph
Laplacian corresponding to the top 2 eigenvalues in absolute value (red for the first and
black for the second), while those for the adjacency matrix are plotted in the lower right
panel. In both cases, these two eigenvectors are capable of discriminating between the two
communities.

Suppose the data set is still modeled approximately by the SBM with
r = 2. For this new data set, the two eigenvectors corresponding to the top
two eigenvalues (in absolute value) of the graph Laplacian or the adjacency
matrix cannot discriminate between the two major clusters. Even if we treat
the 30 outliers as a single group due to their homogeneous behavior in the
graph and thereby use r = 3, the third eigenvector of the adjacency matrix
is still unable to distinguish the two major clusters. The third eigenvector
of the graph Laplacian can only discriminate a part of nodes in the two
major clusters. Actually, our numerical simulation shows that after applying
spectral clustering on the graph Laplacian with r = 3, the misclassification
rate among the inliers is above 30 percent. These three eigenvectors are
plotted in Figure 2 for both cases. The figures indicate that standard spectral
clustering is not a robust community detection method in the presence of
very few adversarial outliers.

It was shown in Joseph and Yu (2013) that under certain conditions,
penalized spectral clustering may reduce the effects of the small weak clus-
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Fig. 2. The upper left panel illustrates the adjacency matrix of 1030 nodes satisfying
the GSBM with two major clusters and 30 outliers. The upper right panel is obtained by
permuting the nodes such that nodes belonging to the same group are consecutive. The lower
left panel plots the eigenvectors of the graph Laplacian corresponding the top 3 eigenvalues
in absolute value (red for the first, black for the second and green for the third), while those
for the adjacency matrix are plotted in the lower right panel. Ordinary spectral clustering
with r = 2 or r = 3 is ineffective or even powerless on this data set since the top three
eigenvectors cannot clearly discriminate between the two main communities.

ters, but it is not clear whether penalized spectral clustering applied to the
graph Laplacian can diminish the influence of other types of outliers. An-
other method to improve standard spectral clustering methods is to detect
outlier nodes based on the first several eigenvectors. However, it is not clear
whether there exists an approach which can uniformly detect all kinds of
outliers with a theoretical guarantee.

In order to find in one shot the major clusters among the inlier nodes, we
introduce in Section 2.1 a convex optimization method as well as a detailed
algorithm which is implementable. It will be shown in Section 3 that the
proposed procedure is robust against a small portion of arbitrary outliers
with theoretical guarantees.

2.1. Convex optimization. In this section, we will choose the method of
semidefinite programming (SDP) to fit the GSBM, followed by a k-means
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clustering. Numerically, SDP is well known to be computationally feasible,
and various efficient algorithms were proposed for solving different types of
SDP. Theoretically, under the ordinary SBM, SDP methods are shown to be
capable in detecting communities; see Mathieu and Schudy (2010), Oymak
and Hassibi (2011), Jalali et al. (2014), Ames and Vavasis (2014), Chen,
Sanghavi and Xu (2012). We propose a new convex optimization method
inspired by existing SDP methods in the literature. The significantly novel
part is that we will prove that this SDP method can consistently cluster
the nodes when there is a portion of arbitrary type of outliers. The formal
statement is given in Section 3, and all the proofs are deferred to Section 6
and the supplemental article Cai and Li (2015).

First, we derive the convex optimization from the viewpoint of fitting a
parametric model. This viewpoint was originally proposed in Chen, Sanghavi
and Xu (2012), but we are going to derive a different convex optimization.
For now we only consider the ordinary SBM, which implies that m = 0
and N = n. By the definition of SBM, for all 1 ≤ i < j ≤ n, the events
{Aij = 1} are independent. Recall that here A is the observed adjacency
matrix. Moreover, we define a symmetric matrix X with all diagonal entries
equal to 1. For any 1 ≤ i < j ≤ n, we let Xij = 0 if the labeling functions
φ(i) 6= φ(j), while Xij = 1 if φ(i) = φ(j). Obviously, this matrix X is of rank
r since there are r groups.

Moreover, we consider a special case of the ordinary SBM. Suppose 1>
p> q > 0. For any 1≤ i < j ≤N , when Xij = 0 let P(Aij = 1) = q; otherwise
let P(Aij = 1) = p. This gives

logP(Aij = 1|Xij) =Xij log p+ (1−Xij) log q

and

logP(Aij = 0|Xij) =Xij log(1− p) + (1−Xij) log(1− q).

Since {Aij = 1} are independent events, we have the log-likelihood function

ℓ(A|X) =
∑

1≤i<j≤n

[Aij(Xij log p+ (1−Xij) log q)

+ (1−Aij)(Xij log(1− p) + (1−Xij) log(1− q))].

For any fixed p and q, given A, we would like to choose an appropriate X

to maximize ℓ(A|X). If we let

λ=
log(1− q)− log p

log p− log q + log(1− q)− log(1− p)
,(2.1)

since the diagonal entries of A are all equal to 0, the maximization is equiv-
alent to

max
X

〈X, (1− λ)A− λ(JN − IN −A)〉,
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where JN is the N × N matrix with all entries 1. Now let us figure out
the constraint of X. By the SBM, it is easy to check that X must have the
following form:

X=P



Jl1

. . .

Jlr


P⊺,(2.2)

where P is some unknown permutation matrix, while Js is an s × s ma-
trix with all entries 1’s. Solving optimization (2.2) under such constraint is
computationally infeasible, so we seek for some relaxed form. Here we no-
tice there are three major features of X. First, it is positive semidefinite;
second, all its entries are between 0 and 1; third, it is of rank-r, which is
relatively low. If we convexify the second integer constraint and neglect the
third requirement, the relaxed maximum likelihood method becomes

max 〈X̃, (1− λ)A− λ(JN − IN −A)〉
subject to X̃� 0,

0≤ X̃ij ≤ 1 for 1≤ i, j ≤N.

The above optimization method is different from that in Chen, Sanghavi
and Xu (2012), where the relaxation is based on the observation that X

is of low rank and hence a nuclear norm penalization is added up to the
original objective function. On the contrary, our convex relaxation is derived
from the observation that X is both low-rank and positive semidefinite, and
consequently we impose constraint of the positive semidefinite cone.

Now let us come back to the robust community detection under the
GSBM. To control the possible outliers as formalized in the GSBM model,
for the convenience of theoretical analysis, we add an additional term in the
objective function to penalize the trace

min 〈X̃, αIN − (1− λ)A+ λ(JN − IN −A)〉
subject to X̃� 0,

0≤ X̃ij ≤ 1 for 1≤ i, j ≤N,

which is equivalent to

min 〈X̃,E〉
subject to X̃� 0,(2.3)

0≤ X̃ij ≤ 1 for 1≤ i, j ≤N,

where

E := αIN − (1− λ)A+ λ(JN − IN −A).(2.4)
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Remark 2.1. At first glance, there are seemingly two tuning parame-
ters: α and λ. In our theoretical result as shown later in Section 3, the pa-
rameter α is required to be much greater than the number of outlier nodes
m. The introduction of α amounts to the trace penalization of X̃, which
is usually adopted in the literature of SDP relaxation in order to recover
a low-rank structure; see, for example, Candès, Strohmer and Voroninski
(2013), Li and Voroninski (2013). In our problem, we intend to use (2.3) to
solve for a low-rank matrix to reveal the clustering structure of the GSBM,
so this trace penalization is possibly a natural heuristic. However, in our
numerical simulations in Section 4, the clustering effectiveness of the convex
optimization method (2.3) is not significantly improved by choosing a pos-
itive α. Instead, (2.3) works even by letting α be a small constant or zero.
On the contrary, there is a risk for choosing a large α, which may result in
a positive definite E. If so, the solution to (2.3) must be 0, which is useless
in analyzing the networking data.

Therefore, we only need to tune the parameter λ in practice, and it has a
clear statistical meaning as indicated in (2.1) in a special case of the ordinary
SBM. In Section 3, it is shown that if λ lies in an interval determined by
p− and q+ as defined in (1.1), under mild technical conditions, any solution

X̂ to (2.3) is capable of detecting the underlying group structure among
the inliers. A simple and heuristic data dependent choice of λ is given in
Section 4, where we also show numerically that the performance of our
method for clustering is robust to the choice of λ.

When X̂ is obtained, in the pursuit of an explicit clustering solution, a
further step of k-means clustering is conducted to the normalized column
vectors of X̂ with k = r, provided the number of major clusters r is assumed
known. Furthermore, in Section 3 it is shown that the misclassification rate
after the k-means clustering can be tightly controlled.

In summary, our proposed community detection procedure consists of the
following two steps:

Step 1. Choose an appropriate tuning parameter λ, and then solve (2.3).

The solution is denoted as X̂.
Step 2. Conduct k-means clustering algorithm to the normalized column

vectors of X̂ with k = r, so that we can solve for the assigning function φ̂
that maps from {1≤ i≤N} to {1, . . . , r}.

Finally, we introduce the augmented Lagrange multiplier algorithm to
solve (2.3). Augmented Lagrange multiplier algorithms have been employed
in a variety of SDP optimizations in order to recover the underlying low-
rank matrix structure; see, for example, Lin, Liu and Su (2011), Candès
et al. (2011), Jalali et al. (2014), Chen, Sanghavi and Xu (2012) and a nice
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review paper on alternating direction method of multipliers (ADMM) Boyd
et al. (2010). Notice that (2.3) can be rewritten as

min
Y,Z

ι(Y � 0) + ι(0≤ Z≤ JN ) + 〈Y,E〉,

subject to Y= Z,

where the indicator function ι(a ∈A) is defined as

ι(a ∈A) =

{
0, a ∈A,

+∞, a /∈A.

By this definition, we can easily conclude that ι(a ∈A) is a convex function
if and only if A is a convex set. Define the augmented Lagrangian of this
optimization problem as

Lρ(Y,Z;Λ) := ι(Y � 0) + ι(0≤ Z≤ JN ) + 〈Y,E〉+ ρ

2
‖Y−Z+Λ‖2F .

If both Λ and Z are fixed, and we aim to minimize Lρ(Y,Z;Λ) with
respect to Y, it is equivalent to minimizing

ι(Y � 0) +
ρ

2

∥∥∥∥Y−Z+Λ+
E

ρ

∥∥∥∥
2

F

.

For any symmetric matrix X whose eigenvalue decomposition is VΣV⊺,
define X+ :=VΣ+V

⊺. Then the solution to the above minimization has an
explicit form

argmin
Y

Lρ(Y,Z;Λ) =

(
Z−Λ− E

ρ

)

+

.

Remark 2.2. This step has dominating computational complexity in
each iteration of ADMM. In fact, an exact implementation of this subprob-
lem of optimization requires a full SVD of Z−Λ− E

ρ , whose computational

complexity is O(N3). When N is as large as hundreds of thousands, the
full SVD has scalability issue. An open question is how to facilitate the im-
plementation, or whether there exists a surrogate that is computationally
inexpensive. A possible remedy is applying the low-rank iterative method,
which means in each iteration of ADMM, the full SVD is replaced by a par-
tial SVD where only the leading eigenvalues and eigenvectors are computed.
Although this type of method may be stuck in local minimizers, given the
fact that SDP implementation can be viewed as a preprocessing before k-
means clustering, such a low-rank iterative method might be helpful. We
leave this large-scale computing problem as a future research project.
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On the other hand, if both Λ and Y are fixed, to minimize Lρ(Y,Z;Λ)
with respect to Z is equivalent to minimizing

ι(0≤ Z≤ JN ) +
ρ

2
‖Z−Y−Λ‖2F .

Again, we have a closed-form solution

argmin
Z

Lρ(Y,Z;Λ) := min(max(Y+Λ,0),JN ),

which changes the negative entries of Y +Λ into zeros and those greater
than one into one.

As to the Lagrange multiplier, as the convention in the literature of aug-
mented Lagrange multiplier algorithms, Λ is updated to Λ+ (Y−Z).

The above augmented Lagrange multiplier method derives an iterative
algorithm for solving the convex optimization (2.3), which is summarized in
Algorithm 1. In numerical simulations, we let Z0 = 0 and Λ0 = 0 for ini-
tialization, and simply choose ρ = 1 and run the algorithm for iter = 100
iterations. Numerical analyses of the algorithm applied to simulated data
and a real data set of political blogs are deferred to Section 4, where its
efficiency and effectiveness are clearly demonstrated. Moreover, for the pur-
pose of comparison, we also implement ordinary spectral clustering meth-
ods on the synthetic data sets. The numerical simulations clearly show that
our method outperforms spectral clustering methods in terms of robustness
against outliers.

3. Theoretical guarantees. In this section, we will introduce our main
theoretical results that guarantee that the clustering procedure derived in
the previous section can detect the underlying communities under the GSBM.

Algorithm 1 Robust community detection via alternating direction method

Initialization: Z0 = 0, Λ0 = 0, ρ= 1 and iter = 100.

while k < iter

1. Yk+1 := (Zk −Λk − E
ρ )+;

2. Zk+1 := min(max(Yk+1 +Λk,0),JN );

3. Λk+1 :=Λk + (Yk+1 −Zk+1);

end while.

Output the final Yiter .
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The following theorem provides an explicit condition of the parameters n,
m, p−, q+ and nmin, as well as the tuning parameters (α,λ), under which
the solution to (2.3) is capable of unveiling the underlying group structures
among the inliers in presence of a portion of outlier confounders.

Theorem 3.1. Let A be the adjacency matrix of the semi-random graph
under the GSBM, as defined in (1.3). Let X̂ be a solution to the semidefinite
program (2.3) and the density gap δ be defined as in (1.2), and the minimum
within-group density p− and the maximum cross-group density q+ be defined
as in (1.1). As defined in Section 1, the integer n denotes the number of
inlier nodes, m denotes the number of outlier nodes and nmin denotes the
minimum community size among the inliers. Suppose that p− ≥C logn

nmin
, α≥

3m and

δ > C

(√
p− logn

nmin
+

α

nmin
+

√
nq+

nmin
+

m
√
r

nmin
+

nmp−

(α− 2m)nmin

)
(3.1)

for some sufficiently large numerical constant C, and the tuning parameter
λ satisfies

q+ +
δ

4
< λ< p− − δ

4
.(3.2)

Then with probability at least 1− 1
n − 2r

n2 − cr
n4
min

for some numerical constant

c, X̂ must be of the form

X̂=P




Jl1 Ẑ1

. . .
...

Jlr Ẑr

Ẑ
⊺
1 · · · Ẑ

⊺
r Ŵ



P⊺,(3.3)

where P is defined as in (1.3).

Theorem 3.1 guarantees that any solution to (2.3) X̂ satisfies X̂jk = 1 for

φ(j) = φ(k)≤ r, and X̂jk = 0 for φ(j) 6= φ(k) and φ(j)≤ r,φ(k)≤ r. In other
words, for each pair of inlier nodes j and k, whether they belong to the same

group or not solely depends on whether X̂jk equals 1 or 0. It is noteworthy
that condition (3.2) is similar to the tuning parameter condition imposed in
Chen, Sanghavi and Xu (2012).

To interpret condition (3.1), it is helpful to consider two examples. First,

let us consider the very sparse case where p− ≃ q+ ≃ δ ≃ O( lognn ), nmin ≃
O(n) and hence r ≃O(1). This condition implies that our procedure works
even for a graph whose average degree of inlier nodes is on the oder of
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O(logn). This is consistent with the best-known result in the literature of
community detection without outliers by spectral clustering based on the ad-
jacency matrices or graph Laplacians [see Lei and Rinaldo (2015)], although
the logn barrier could be resolved by more sophisticated nonbacktracking
matrix methods; see Krzakala et al. (2013). In this case, condition (3.1)
becomes

δ > C

(
logn

n
+

α

n
+

m

n
+

m

α−m

logn

n

)
.

Then by letting α= logN , m= logn outliers are allowed.
In the second example, we assume δ ≃ p− ≃ q+ ≃ O(1), and the number

of clusters r grows with n. As a specific example, we let r ≃ n1/4. Moreover,
we assume nmin ≃ n3/4. Then condition (3.1) becomes

1%
√

lognn−3/8 +αn−3/4 +
√

lognn−1/4 +mn−5/8 + n1/4 m

α− 2m
.

Then by letting α=N3/4, m=O(n1/2−ε) outliers are allowed for any ε > 0.
A prominent feature of Theorem 3.1 is its consistency with the state-

of-the-art community detection under the ordinary SBM in the literature.
Assume there is no outlier node, that is, m= 0, and we simply let α=O(1)
or just α= 0. Then condition (3.1) becomes

δ > C

(√
p− logn

nmin
+

√
nq+ logn

nmin

)
.

If the number of clusters is fixed, that is, r =O(1), we also assume the size
of the smallest community nmin = O(n). As mentioned above, this condi-
tion is guaranteed by letting the minimum within-group density p− to be
as low as O( lognn ) and the density gap δ = O( lognn ). In another example
where p− =O(1), q+ = O(1) and δ =O(1), condition (3.1) is equivalent to
nmin ≥O(

√
n logn). By modifying Lemma 6.7 as discussed in Section 6, this

condition can be relaxed to nmin ≥O(
√
n). This is consistent with the state-

of-the-art result in the community detection literature by spectral clustering
[see, e.g., Chaudhuri, Chung and Tsiatas (2012)], and planted partition [see,
e.g., Giesen and Mitsche (2005), Shamir and Tsur (2007), Oymak and Has-
sibi (2011), Ames (2014), Chen, Sanghavi and Xu (2012)] where the within-
group densities are usually assumed to be the same, so do the cross-group
densities. The O(

√
n) barrier of the small cluster size is well known in the

literature of planted clique problems; see Deshpande and Montanari (2015)
and the references therein.

Remark 3.1. The proof of Theorem 3.1 is involved, and the details are
given in Section 6. It is helpful to understand the intuition behind the proof.
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The optimization (2.3) consists of two parts: a linear objective function and
a constraint set which is the intersection of a polytope and the semidefinite
cone. In order to show that the solution of (2.3) has the form of (3.3), we
find a point on the boundary of the constraint set such that this point
has the form of (3.3). Moreover, we prove that a level set of the linear
objective function is tangent to the tangent cone of the constraint set at the
selected point. This shows that the selected point is the solution of (2.3). It
is noteworthy that the level set of the linear objective function is in fact a
hyperplane with co-dimension 1, so the selected point is a sharp vertex of the
constraint set. For more details, see the remark before the proof Lemma 6.10
in the supplemental article Cai and Li (2015).

Theorem 3.1 shows that the semidefinite programming (2.3) can discrim-
inate the different groups among the inlier nodes. However, the clustering
result is not clear by only the observation of X̂, and it is not clear how the
outliers could affect the final clustering result. Given the extra knowledge of
the number of clusters, we propose to cluster the normalized column vectors
of X̂ by k-means with parameter r. To be specific, without loss of generality,
let us assume P= I, and define

X̂=




Jl1 Ẑ1

. . .
...

Jlr Ẑr

Ẑ
⊺
1 · · · Ẑ

⊺
r Ŵ



= [x1, . . . ,xN ].

Moreover, define yi = xi/‖xi‖2. Then all yi’s belong to the set of N -
dimensional vectors with two-norm 1 and all coordinates being nonnega-
tive. Notice that if xi = 0, we then define yi as an arbitrary nonnegative
vector with norm 1. Then, for any inlier indices i, j ∈ I and φ(i) 6= φ(j), we
have

‖yi − yj‖22 = 2− 2y⊺
i yj ≥ 2− 2m

nmin
,

and for any i, j ∈ I and φ(i) = φ(j) = k, we have

‖yi − yj‖22 = 2− 2y⊺
i yj ≤ 2− 2lk

lk +m
=

2m

lk +m
≤ 2m

lk
.

Moreover, for any yi and yj , since both of them are nonnegative, we have

‖yi − yj‖22 = 2− 2y⊺
i yj ≤ 2.

By definition, the solution to the k-means applied to {y1, . . . ,yN} is

argmin
S,µ1,...,µr

r∑

k=1

∑

yj∈Sk

‖yj −µk‖2,(3.4)
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where S = {S1, . . . , Sr} is all r nonoverlapping partitions of [N ]. It is obvious

that µk =
1

|Sk|

∑
yj∈Sk

yj . We define Di = φ−1(k) for all k = 1, . . . , r+1, and

choose µ̃k as any vector yi belonging to the kth community, that is, φ(i) = k.
Then there holds

min
S,µ1,...,µr

r∑

k=1

∑

yj∈Sk

‖yj −µk‖2 ≤
r−1∑

k=1

∑

yj∈Dk

‖yj − µ̃k‖2 +
∑

yj∈Dr∪Dr+1

‖yj − µ̃r‖2

≤
r∑

k=1

∑

yj∈Dk

‖yj − µ̃k‖2 +
∑

yj∈Dr+1

‖yj − µ̃r‖2(3.5)

≤
(

r∑

k=1

lk
2m

lk

)
+ 2m= 2mr+2m.

Suppose the solution to the k-means clustering is Ŝ1, . . . , Ŝr and µ̂k =
1

|Ŝk|

∑
yj∈Ŝk

yj . For each j ∈ Ŝk, define φ̂(j) := k. Now we show that if m<
nmin
2r+4 , each Di, i= 1, . . . , r must account for more than 50 percent in some

cluster Ŝk. Assume this is not true. Then there is a Di being minority in each
Ŝk, and hence for each yaj ∈Di, there exists a ybj /∈Di, but φ̂(yaj ) = φ̂(ybj ).
Moreover, all these 2li indices are distinct. This implies

r∑

k=1

∑

yj∈Ŝk

‖yj − µ̂k‖2 ≥
li∑

j=1

1

2
‖yaj − ybj‖22 ≥ (li −m)

(
1− m

nmin

)
.

We then have (nmin −m)(1− m
nmin

)≤ 2m(r + 1), which is contradictory to

the assumption m< nmin
2r+4 .

Since each Di is the majority of some estimated community Ŝk, we can
give the definition of misclassification rate among the inliers: suppose there
are p pairs (ya1 ,yb1), . . . , (yap ,ybp) such that all 2p indices are distinct,

1 ≤ φ(yaj ) < φ(ybj ) ≤ r for all j = 1, . . . , p but φ̂(yaj ) = φ̂(ybj ). The mis-
classification rate among the inliers is defined as max p

n for all possible p
satisfying the above property. Now we give an example showing why this
definition of misclassification rate is appropriate. Suppose n balls have r
colors as well as m uncolored balls, and we assign them into r boxes. In the
ith box, we assume there are si balls having color i, while there are ti balls
which are colored other than i. Moreover, we also assume the assignment
is acceptable in the sense that si > ti. In the ith box, there are at most ti
distinct pairs of colored balls such that in each pair the colors are different.

By our definition, the misclassification rate is t1+···+tr
n , which is the natural

definition.
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Back to our robust community detection problem, if we assume the mis-
classification rate among the inliers is p

n , we have

r∑

k=1

∑

yj∈Ŝk

‖yj − µ̂k‖2 ≥
1

2

p∑

j=1

‖yaj − ybj‖22 ≥ p

(
1− m

nmin

)
.

Therefore, we have

p

n
≤ 2mr+2m

(1− (m/nmin))n
≤ (2r+3)m

n

provided m < nmin
2r+4 . In summary, we have proven the following theorem,

which guarantees that the misclassification rate among the inliers can be
well controlled:

Theorem 3.2. Suppose the assumptions in Theorem 3.1 hold as well as
m< nmin

2r+4 . Then, with high probability, the misclassification rate among the

inlier nodes i ∈ I is less than or equal to (2r+3)m
n .

Rigorously speaking, k-means minimization is computationally NP-hard,
although in practice it is often easy and fast to implement with a number
of repetitions. However, as shown in Kumar, Sabharwal and Sen [(2011),
Theorem 4.9], there is a (1 + ε) approximate k-means clustering for (3.4)

with computational time O(2(r/ε)
O(1)

N2), which is polynomial time when
r is a constant. Suppose {Š1, . . . , Šr} is a polynomial time approximate k-
means solution, such that

r∑

k=1

∑

yj∈Šk

‖yj − µ̌k‖2 ≤ (1 + ε) min
S,µ1,...,µr

r∑

k=1

∑

yj∈Sk

‖yj −µk‖2

≤ (1 + ε)(2mr+ 2m).

Then if within the inliers there are p misclassified nodes by {Š1, . . . , Šr},
similarly to the previous argument, we get p

n ≤ (1+ε)(2r+3)m
n .

When r grows with N , one can also cluster the rows of X̂ in (3.3) based
on the ℓ1 distance. If two inlier nodes belong to the same community, their
corresponding rows in X̂ have ℓ1 distance less than m; on the other hand, if
two inlier nodes belong to different communities, their corresponding rows
have ℓ1 distance greater than 2nmin. If the number of outliers is far less
than the minimum size of the major clusters, for example, nmin >O(m2), a

pairwise comparison between the rows of X̂ can detect the inlier communities
accurately even without the knowledge of r. However, this method does
not work as effectively as k-means clustering in numerical simulations. An
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interesting direction for future research is to figure out whether there is a
polynomial time (1 + ε) approximation k-means clustering for (3.4) when r
grows with N .

4. Numerical results. In this section, synthetic data and a real-world
network data are employed to demonstrate the efficiency and effectiveness
of our community detection procedure: convex optimization (2.3) followed
by k-means. As discussed in Section 2, throughout all numerical simulations
of the augmented Lagrange multiplier method Algorithm 1, we fix α= 0. All
simulations were carried out with MATLAB R2014b on a MacBook Pro with
a 2.66 GHz Intel Core i7 Processor and 4GB 1067 MHz DDR3 memory. As
indicated in Algorithm 1, for the initialization, let Λ0 = Z0 = 0. Also, we fix
iter = 100 and ρ= 1. As to the k-means clustering to the normalized columns
of X̂, we use the “kmeans” function in MATLAB with 100 replicates.

4.1. Synthesized data simulations. We consider again the synthetic data
set used in Section 2. Figure 2 illustrates the adjacency matrix of a concrete
realization of the original network. Suppose one knows that there are 2 major
clusters, and a GSBM with r = 2 clusters is adopted.

We now explain in detail our implementation of Algorithm 1. First, we
need to choose the tuning parameter λ between the maximum cross-group
density q+ and the minimum within-group density p−. Ideal choices of λ
are formalized by condition (3.2) in Theorem 3.1. In practice, we propose a
simple method to choose λ as the mean connectivity density in a subgraph
determined by nodes with “moderate” degrees. If the adjacency matrix of
the graph is denoted as A, and 1N represents the N -dimensional vector
with all coordinates equal to 1, then A1N represents the degrees of the
N nodes. The nodes with degrees above the 80th percentile or below the
20th percentile are eliminated from the graph, and λ is chosen as the mean
density of the subgraph determined by the remaining nodes. The purpose
of choosing nodes with moderate degrees is to diminish the influence of the
outliers. Notice that the mean density of the subgraph may be very different
from the mean of A1N , which is usually significantly affected by the outliers.

The convex method is implemented with λ mentioned above. As an illus-
tration, in one realization of the synthetic data set, the solution to convex
optimization (2.3), and the community detection result by further imple-
menting k-means clustering with k = r = 2 are plotted in Figure 3.

We generated 10 independent graphical data sets, and correspondingly
implemented 10 trials of Algorithm 1 followed by k-means clustering, as
well as spectral clustering on the graph Laplacians and adjacency matri-
ces. The average misclassification rate among the 1000 inlier nodes of our
convex optimization method is 0.0063, which is much smaller than 1 per-
cent. The average time cost for running Algorithm 1 followed by k-means
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Fig. 3. On the right is the plot of the solution to convex optimization (2.3). Based on
it, the community detection result followed by k-means algorithm is shown on the left.

clustering is 87.65 seconds. In contrast, if we apply spectral clustering to
the graph Laplacians and adjacency matrices with k = 2, respectively, the
average misclassification rates among the 1000 inlier nodes are 0.4792 and
0.5000, which are almost equivalent to random guessing. If we treat the 30
outliers as an additional group, and apply spectral clustering to the graph
Laplacians and adjacency matrices with k = 3, the misclassification rates
among all 1030 nodes are correspondingly 0.3083 and 0.4730. Consequently,
the misclassification rates are high in terms of detecting the two major clus-
ters.

Now let us study the sensitivity of our algorithm to the choice of λ. To
be sure that λ is between q = 0.11 and p= 0.17, in Figure 4 the community
detection results are plotted with λ= 0.11,0.12, . . . ,0.16. It is obvious that
for our data set the clustering power is robust to λ, unless λ is too close to p.
To our surprise, even when λ= q, the two major clusters are well clustered.
This is possibly due to the facts that the graph is relatively sparse and the
solution after 100 iterations is still not exactly the solution to (2.3).

On the right of Figure 3, we see that the solution to (2.3) is close to but
not exactly equal to what Theorem 3.1 predicts. A possible reason is that the
density gap in our synthetic data is not large enough. It is interesting that
although the solution does not have exactly the same form as in Theorem 3.1,
the k-means in the second step can still successfully cluster the two groups of
nodes. We replace the within density p= 0.17 with 0.19,0.21, . . . ,0.29, and
the solutions to (2.3) are plotted in Figure 5, respectively. The solutions
appear to be closer to the form in Theorem 3.1 as the density gap increases.

4.2. Real data application. In this section, our robust community de-
tection procedure is tested by implementing a modified version of convex
optimization (2.3) on a political blogs network data set analyzed in Adamic
and Glance (2005). This network data set collected in 2005 is composed of
political blogs and their connections by hyperlinks, and it demonstrates the
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Fig. 4. The performance of convex community detection with different values of λ.

division and interaction between the liberal and conservative blogs prior to
the 2004 presidential election. By ignoring the directions of the hyperlinks
and selecting the largest connected component, there are totally 1222 nodes
and 16,714 edges, which implies that the average degree is about 27. As
indicated in Zhao, Levina and Zhu (2012), the distribution of the degrees is
highly skewed to the right and has high variability. Also, the political mem-
berships of all blogs are clearly studied and labeled manually in Adamic and

Fig. 5. The solutions of (2.3) with different values of p.
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Fig. 6. Political blogs data of two clusters of conservatives and liberals, along with the
performance of convex optimization.

Glance (2005), and are treated as the truth for the purpose of evaluating the
clustering efficacy of different algorithms. The upper left panel of Figure 6
plots the adjacency matrix of the observed political blogs network.

Since the degrees in this real-world network data have high variability,
most community detection methods derived from the simple SBM do not
perform well. Instead, algorithms based on the so-called degree-corrected
SBM are proposed and proven to work well. For instance, a polynomial
time spectral method based on such a model is introduced in Coja-Oghlan
and Lanka (2009/10). Back to convex optimization (2.3), modification of
the matrix E is needed to adapt to the heterogeneity of the degrees. As
mentioned earlier in Section 4.1 on the synthetic data simulation, λ is chosen
data dependently as the mean of the degrees in a trimmed graph. When the
degrees have high variability, we propose to change the scalar matrix λIN
to the diagonal matrix D = Diag(A1N )/N , the diagonal entries of which
are the degrees of all nodes divided by N . In brief, the modified convex
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optimization is (2.3) with

E :=−(IN −D)1/2A(IN −D)1/2 +D1/2(JN − IN −A)D1/2.(4.1)

In the second step of our proposed community detection procedure, we
choose k = r = 2 in the k-means clustering. As a result, our community
detection procedure applied to the real-world network data set only costs
137.16 seconds to accurately cluster these 1222 nodes with a misclassifica-
tion rate about 63/1222 ≈ 0.052. The lower right panel of Figure 6 shows this
clustering result by plotting the adjacency matrix of the clustered graph, in
which two nodes are connected if and only if they are clustered in the same
group.

The misclassification rate is comparable to the best-known results in the
literature. The SCORE method proposed in Jin (2015) leads to a misclas-
sification rate of 58/1222. Profile likelihood method under degree-corrected
SBM [Karrer and Newman (2011)] and Newman–Girvan modularity method
[Newman and Girvan (2004), Zhao, Levina and Zhu (2012)] usually have
misclassification rates about 0.05. However, as indicated in Jin (2015), the
tabu algorithm implemented to maximize these criteria is computationally
expensive and is numerically unstable due to bad initializations. It is shown
in Jin (2015) that the average misclassification of the modularity method is
about 105/1222 based on 100 independent repetitions.

As to classical spectral clustering, the upper right and lower left panels of
Figure 6 show that the two eigenvectors of the graph Laplacian/adjacency
matrix corresponding to the top two eigenvalues are not capable in detect-
ing and distinguishing the liberal and conservative political blogs. Hence,
ordinary spectral clustering does not work when applied to this data set.
A data-dependent penalized spectral clustering applied to the graph Lapla-
cian was proposed in Joseph and Yu (2013), but the misclassification rate is
nearly 0.2, which is much worse than our result.

5. Discussion. In this paper we introduce the GSBM for robust com-
munity detection in the presence of arbitrary outlier nodes, and propose a
computationally feasible method using convex optimization. Strong theoreti-
cal guarantees are established under mild technical conditions. In particular,
when the number of clusters is fixed and the edge density within the inliers
is O( lognn ), O(logn) outliers are allowed; when the edge density within the
inliers is on the order of O(1), and the number of clusters grows with n, for
example, O(n1/4), our method is robust against O(n1/2−ε) adversarial out-
liers. Under the special case when there is no outlier node, our theoretical
result is also consistent with the state-of-the-art results in the literature of
computationally feasible community detection under the SBM.
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There are a number of possible extensions to the current results. The
proposed community detection procedure as well as the theoretical guaran-
tees depend on the assumption δ = p− − q+ > 0. Although this assumption
is common in the literature of community detection, it is actually a strong
assumption which sometimes does not hold in real-world network data appli-
cations. For example, suppose there are r = 3 clusters, and the connectivity
matrix is




0.4 0.2 0.05

0.2 0.3 0.05

0.05 0.05 0.1


 .

For each node, its associated within-group density is bigger than its associ-
ated cross-group densities; however,

max
1≤i<j≤r

Bij > min
1≤i≤r

Bii.

Therefore, in the current framework no choice of the tuning parameter λ is
capable of the consistent community detection, which implies the matrix E

in the convex optimization step must be modified. In fact, in our simulations,
λ is replaced by a data-dependent diagonal matrix based on the degrees of
all nodes in order to adapt to high-degree variation. We are interested in
justifying this choice under the degree-corrected SBM proposed in Coja-
Oghlan and Lanka (2009/10) and analyzed in Karrer and Newman (2011),
Zhao, Levina and Zhu (2012), Chaudhuri, Chung and Tsiatas (2012), Jin
(2015), Lei and Rinaldo (2015).

In our numerical simulations, contrary to the established theoretical guar-
antees, the choices of α are much smaller than the number of outlier nodes
m. In fact, the procedure works well with the choice α= 0. An open ques-
tion is whether this tuning parameter is actually redundant. In addition, in
the second step of our procedure, the number of major inlier clusters r is
needed. Since the solution of the convex optimization usually increases the
connections within the major groups and diminishes the connections across
them, it is natural and interesting to investigate whether r can be inferred
exactly from the data. For reasons of space, we leave these as future work.

6. Proofs.

6.1. Notation. Throughout the proofs we will use the following notation:
the ℓ× ℓ identity matrix is denoted by Iℓ. An ℓ1 × ℓ2 matrix whose entries
all equal to 1 is denoted as J(ℓ1,ℓ2). For square matrices, we write Jℓ := J(ℓ,ℓ).
An ℓ-dimensional vector whose coordinates all equal to 1 is denoted as 1ℓ.

If all coordinates of a vector v are nonnegative, we write v ≥ 0. When
all coordinates of v are positive, we write v > 0. We use u ≥ v to denote
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u−v≥ 0, and similarly, u> v denotes u−v> 0. We also denote by ‖x‖∞
the maximum absolute values over all coordinates of x.

Similarly, if all entries of the matrix M are nonnegative, we write M≥ 0.
When all entries ofM are positive, we writeM> 0. The inequalityM1 ≥M2

denotes M1 −M2 ≥ 0, while M1 >M2 denotes M1 −M2 > 0. Denote by
‖M‖∞ the maximum absolute value over all entries of M. The norms ‖ · ‖
and ‖ · ‖F represent the operator and Frobenius norms, respectively.

We use M≻ 0 to denote that the symmetric matrix M is positive definite
and useM� 0 to denote that M is positive semidefinite. Similarly M1 ≻M2

and M1 � M2 represent that M1 − M2 is positive definite and positive
semidefinite, respectively.

For any vector v ∈R
n, we denote by Diag(v) the n× n diagonal matrix

whose diagonal entries are correspondingly the coordinates of v.
Denote by C,C0, c, etc. numerical constants, whose values could change

from line to line.

6.2. Preliminaries. Before proving Theorem 3.1, we introduce several
well-known theorems in linear algebra and probability theory.

Lemma 6.1 (Weyl [Horn and Johnson (2013), Theorem 4.3.1]). Let H
and P be two n×n Hermitian matrices. Suppose that H+P, H and P have
real eigenvalues {λi(H+P)}ni=1, {λi(H)}ni=1 and {λi(P)}ni=1, each arranged
in algebraically nonincreasing order. Then for i= 1, . . . , n we have

λi(H) + λn(P)≤ λi(H+P)≤ λi(H) + λ1(P).

Lemma 6.2 (Cauchy’s interlacing theorem [Horn and Johnson (2013),
Theorem 4.3.28]). Let H be an n × n Hermitian matrix and G its k × k
principal submatrix. Suppose that H and G have real eigenvalues {λi(H)}ni=1

and {λi(G)}ki=1, each arranged in algebraically nonincreasing order. Then
for j = 1, . . . , k we have

λj(H)≥ λj(G)≥ λj+n−k(H).

Lemma 6.3 (Chernoff’s inequality [Chernoff (1981)]). Let X1, . . . ,Xn be
independent random variables with

P(Xi = 1) = pi, P(Xi = 0) = 1− pi.

Then the sum X =
∑n

i=1Xi has expectation E(X) =
∑n

i=1 pi, and we have

P(X ≤ E(X)− λ)≤ e−λ2/(2E(X)),

P(X ≥ E(X) + λ)≤ e−λ2/(2(E(X)+λ/3)).
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Finally, we consider the following problem: suppose that A= (aij)1≤i,j≤n

is a random symmetric matrix, whose diagonal entries are all zeros, while
aij ,1 ≤ i < j ≤ n are independent zero-mean Bernoulli random variables
obeying |aij | ≤ 1 and Var(aij)≤ σ2. Can we prove that with high probability,
‖A‖ ≤ C(σ

√
n logn+ logn) for some numerical constant C? In the sequel,

this upper bound is derived by applying the following matrix Bernstein
inequality, which is an improvement of Ahlswede and Winter (2002):

Lemma 6.4 [Tropp (2012), Theorem 6.1]. Consider a finite sequence
{Xk} of independent, random, self-adjoint matrices with dimension d. As-
sume that

EXk = 0 and ‖Xk‖ ≤R.

If the norm of the total variance satisfies
∥∥∥∥
∑

k

E(X2
k)

∥∥∥∥≤M2,

then the following inequality holds for all t≥ 0:

P

{∥∥∥∥
∑

k

Xk

∥∥∥∥≥ t

}
≤ 2d exp

( −t2/2

M2 +Rt/3

)
.

Corollary 6.5. Let A = (aij)1≤i,j≤n be a symmetric random matrix
whose diagonal entries are all zeros. Moreover, suppose aij , 1≤ i < j ≤ n are
independent zero-mean random variables satisfying |aij | ≤ 1 and Var(aij)≤
σ2. Then, with probability at least 1− c

n4 , we have

‖A‖ ≤C0(σ
√

n logn+ logn)

for some numerical constants c and C0.

Proof. For each pair (i, j) : 1≤ i < j ≤ n, let Xij be the matrix whose
(i, j) and (j, i) entries are both aij , whereas other entires are zeros. Then we
have

A=
∑

1≤i<j≤n

Xij .

Moreover, we can easily have EXij = 0, ‖Xij‖ ≤ 1 and

0�
∑

1≤i<j≤n

EX2
ij � (n− 1)σ2In.

They by applying Lemma 6.4, the proof is complete. �
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6.3. Supporting lemmas. Notice that optimization (2.3) is determined
by the adjacency matrix A. Here we derive some properties of A and leave
the detailed proofs in the supplemental article Cai and Li (2015). More pre-
cisely, we give some properties of the random matrix K, which is a principal
submatrix of A; see (1.3).

Lemma 6.6. Recall that p− = min1≤i≤rBii, q+ = max1≤i<j≤rBij and
δ = p− − q+. If

δ > C

(√
q+ logn

nmin
+

logn

nmin

)
,(6.1)

for some sufficiently large numerical constant C, then with probability at
least 1− 2

n − 2r
n2 , for all i= 1, . . . , r and 1≤ j < k ≤ r, we have

Kii1li ≥ ((li − 1)Bii − 2
√

(li − 1)Bii logn)1li ,(6.2)

Kjk1lk ≤
(
Bjk +

δ

16

)
lk1lj ,(6.3)

K
⊺
jk1lj ≤

(
Bjk +

δ

16

)
lj1lk ,(6.4)

1
⊺
lj
Kjk1lk ≥

(
Bjk −

δ

16

)
lklj .(6.5)

Lemma 6.7. Suppose p− ≥C( lognnmin
). With probability at least 1− c r

n4
min

,

we have

‖Bii(Jli − Ili)−Kii‖ ≤C0

√
liBii log li, 1≤ i≤ r(6.6)

and

‖U‖ ≤C0(
√

nq+ logn+ logn),(6.7)

where U is an n× n symmetric matrix defined as

U :=




0 . . . B1rJ(l1,lr) −K1r

...
. . .

...

B1rJ(l1,lr) −K
⊺
1r . . . 0




whose diagonal blocks are all 0’s. Here C, C0 and c are some numerical
constants.

It is worth noting that by applying a very recent result Vu [(2014),
Lemma 8], which is an improvement of Füredi and Komlós (1981), Vu (2007),
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we can prove ‖U‖ ≤ C0(
√

nq+ +
√
logn). Condition (3.1) in Theorem 3.1

can then be relaxed to

δ > C

(√
p− logn

nmin
+

α

nmin
+

√
nq+

nmin
+

m
√
r

nmin
+

nmp−

(α− 2m)nmin

)
.

The benefit is that when m = O(1), p− = O(1), q+ = O(1) and δ = O(1),
nmin can be as small as O(

√
N) by letting α=

√
N . In particular, if there

is no outlier node, that is, the ordinary SBM, this is consistent with the
state-of-the-art result in the literature of computationally feasible commu-
nity detection.

6.4. Proof of Theorem 3.1. In this section, we will rigorously prove The-
orem 3.1. First, to simplify the calculations, we can assume the permutation
matrix P to be the identity matrix IN . This suggestion is formalized by the
following lemma:

Lemma 6.8. If Theorem 3.1 is true for P= IN , it is also true for any
permutation matrix P.

The proof is given in the supplemental article Cai and Li (2015). Lemma 6.8
guarantees that in order to prove Theorem 3.1, we can assume without loss

of generality that P= I, that is, A= [
K Z

Z⊺ W
].

In the following, we will prove Theorem 3.1 based on the following idea:
In order to analyze a solution X̂ to (2.3), we need to explore several in-

equalities that it satisfies. The obvious ones are X̂ � 0 and 0 ≤ X̂ ≤ JN

as the feasibility conditions in (2.3). However, the optimality condition of

X̂ implies that for any feasible X̃, we have 〈X̂,E〉 ≤ 〈X̃,E〉. To sufficiently
utilize this condition, we need to construct a feasible matrix X, such that
〈X̂,E〉 ≤ 〈X,E〉 is a tight constraint. In Section 6.4.1 we will show how to
construct this X.

After establishing these inequalities for any solution X̂, we give in Sec-

tion 6.4.2 a sufficient condition which guarantees that X̂ has the form (3.3)
(with P= I), and then in Section 6.4.3 we prove that with high probabil-
ity this sufficient condition is true by using the supporting lemmas proven
previously. Consequently, these three steps imply Theorem 3.1.

6.4.1. Solution candidate. In this section, we will construct a candidate
solution X feasible to (2.3). Denote

E = αIN + λ(JN − IN )−A
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:=




(α− λ)Il1 + λJl1 −K11 . . . λJ(l1,lr) −K1r Z̃1

...
. . .

...
...

λJ(lr ,l1) −K
⊺
1r . . . (α− λ)Ilr + λJlr −Krr Z̃r

Z̃
⊺
1 . . . Z̃

⊺
r W̃



,

which is equivalent to defining

Z̃i = λJ(li,m) −Zi, i= 1, . . . , r,(6.8)

W̃ = (α− λ)Im + λJm −W.(6.9)

The following lemma, the proof of which is given in the supplemental article
Cai and Li (2015), guarantees the existence of r vectors x1, . . . ,xr ∈ R

m,
which will be employed to construct a candidate solution:

Lemma 6.9. If α≥ 2m and 0< λ< 1, the solution to

min

r∑

i=1

〈xi, Z̃
⊺
i 1li〉+

1

2

r∑

i=1

x
⊺
i W̃xi

subject to xi ≥ 0 for 1≤ i≤ r,(6.10)

r∑

i=1

x
⊺
i (eje

⊺
j )xi ≤ 1 for 1≤ j ≤m,

exists uniquely. Moreover, denote the solutions by x1, . . . ,xr ∈R
m, which by

definition satisfy ‖xi‖∞ ≤ 1. Then there are nonnegative vectors β1, . . . ,βr ∈
R
m and an m×m nonnegative diagonal matrix

Ξ= diag(ξ1, . . . , ξm),

such that

W̃xi + Z̃
⊺
i 1li = βi −Ξxi,(6.11)

ξj

(
1−

r∑

i=1

x
⊺
i (eje

⊺
j )xi

)
= 0, j = 1, . . . ,m(6.12)

and

〈xi,βi〉= 0, i= 1, . . . , r.(6.13)

For all 1≤ j, k ≤ r, there holds

x
⊺
j (W̃+Ξ)xk ≤m

√
lj lk.(6.14)
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Furthermore, for all i= 1, . . . , r and j = 1, . . . ,m, we have

βij + e
⊺
jZ

⊺
i 1li ≤ (α− λ+ ξj)xij + λli + λ

m∑

k=1

xik .(6.15)

Finally, for all i= 1, . . . , r,

0≤ βi ≤ (m+ li − 1)1m.(6.16)

Throughout the paper, we define

V := [v1, . . . ,vr] :=




1l1 0 . . . 0

0 1l2 . . . 0

...
...

. . .
...

0 0 . . . 1lr

x1 x2 . . . xr




and

X=VV⊺ =




Jl1 . . . 0 1l1x
⊺
1

...
. . .

...
...

0 . . . Jlr 1lrx
⊺
r

x11
⊺
l1

· · · xr1
⊺
lr

x1x
⊺
1 + · · ·+ xrx

⊺
r



.

Since xi’s are feasible to optimization (6.10), we can easily see that X is

feasible to optimization (2.3). We aim to prove that under mild technical

conditions, X is actually a solution to optimization (2.3).

6.4.2. Sufficient condition for the optimality of X. In this section, we

propose a condition which guarantees that any solution X̂ to (2.3) must

be in the form of (3.3) with P= IN . This sufficient condition is equivalent

to constructing a matrix Λ satisfying a series of equalities and inequalities

as indicated in the following lemma. We call it a dual certificate. In Sec-

tion 6.4.3, we will show that with high probability, this dual certificate can

be constructed in an explicit way.

Lemma 6.10. Suppose Ξ and β1, . . . ,βr are defined as in Lemma 6.9.

If there exist symmetric matrices Λ ∈ R
N×N , Ψjj ∈ R

lj×lj (1 ≤ j ≤ r) and
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matrices Φjk ∈R
lj×lk (1≤ j < k ≤ r), such that

Λ=




(α− λ)Il1 + λJl1 −K11 +Ψ11 . . . λJ(l1,lr) −K1r −Φ1r Z̃1 −
1

l1
1l1β

⊺

1

.

.

.

.
.
.

.

.

.

.

.

.

λJlr,l1 −K
⊺

1r −Φ
⊺

1r . . . (α− λ)Ilr + λJlr −Krr +Ψrr Z̃r −
1

lr
1lrβ

⊺

r

Z̃
⊺

1 −
1

l1
β11

⊺

l1
. . . Z̃⊺

r −
1

lr
βr1

⊺

lr
W̃+Ξ




(6.17)

satisfies Ψii > 0, Φjk > 0, ΛV = 0 and Λ � 0, then any minimizer X̂ to
(2.3) must be of the form

X̂=




Jl1 . . . 0 1l1x
⊺
1 +H1

...
. . .

...
...

0 . . . Jlr 1lrx
⊺
r +Hr

x11
⊺
l1
+H

⊺
1 · · · xr1

⊺
lr
+H

⊺
r x1x

⊺
1 + · · ·+ xrx

⊺
r +H0



,

which is the same as (3.3). Moreover, X is a solution to (2.3).

An intuition behind the theorem and the rigorous proof are given in the
supplemental article Cai and Li (2015). It is noteworthy that the condition
on Λ is weaker if the number of clusters r gets smaller. The reason is that the
equality condition is ΛV = 0. Obviously when r gets smaller, V has fewer
columns, and hence the equality constraint becomes milder. We emphasize
that the choices of Ψii and Φij are intended to fit the equality constraint of
Λ, that is, ΛV= 0. To make sure Λ� 0, we need to first project Λ onto the
orthogonal compliment of V, and then show the projection is positive defi-
nite. This is based on the spectral norm bound as indicated in Lemma 6.7,
which provides a concentration inequality for a random matrix.

6.4.3. Construction of dual certificate. It suffices to construct a matrix
Λ in the form of (6.17) in Lemma 6.10, which satisfies ΛV = 0, Ψii > 0,
Φjk > 0 and Λ� 0. The following lemma guarantees the existence of such
Λ, and its proof is given in the supplemental article Cai and Li (2015).

Lemma 6.11. Suppose p− ≥C( lognnmin
), q++ δ

4 < λ< p− − δ
4 and α≥ 3m.

Moreover, assume

δ > C

(√
p− logn

nmin
+

α

nmin
+

√
nq+ logn

nmin
+

m
√
r

nmin
+

nmp−

(α− 2m)nmin

)
(6.18)

for some sufficiently large numerical constant C. Then, with probability at
least 1− 1

n− 2r
n2 − cr

n4
min

, there exist matrices Ψii’s and Φjk’s satisfying Ψii > 0,

Φjk > 0 and the matrix Λ defined by Ψii’s and Φjk’s obey ΛV = 0 and
Λ� 0.
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SUPPLEMENTARY MATERIAL

Supplemental materials to “Robust and computationally feasible commu-

nity detection in the presence of arbitrary outliers nodes”

(DOI: 10.1214/14-AOS1290SUPP; .pdf). We give in the supplement proofs
to Lemmas 6.6, 6.7, 6.8, 6.9, 6.10 and 6.11.
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Zhang, P. (2013). Spectral redemption in clustering sparse networks. Proc. Natl. Acad.
Sci. USA 110 20935–20940. MR3174850

Kumar, A., Sabharwal, Y. and Sen, S. (2011). A simple linear time (1 + ǫ)-
approximation algorithm for k-means clustering in any dimensions. J. ACM 58 11.

Lei, J. and Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block
models. Ann. Statist. 43 215–237. MR3285605

Li, X. and Voroninski, V. (2013). Sparse signal recovery from quadratic measurements
via convex programming. SIAM J. Math. Anal. 45 3019–3033. MR3106479

http://www.ams.org/mathscinet-getitem?mr=0614640
http://www.ams.org/mathscinet-getitem?mr=2570199
http://dx.doi.org/10.1007/s10208-014-9125-y
http://www.ams.org/mathscinet-getitem?mr=2758081
http://www.ams.org/mathscinet-getitem?mr=3005799
http://www.ams.org/mathscinet-getitem?mr=3032990
http://www.ams.org/mathscinet-getitem?mr=0637828
http://www.ams.org/mathscinet-getitem?mr=2194866
http://www.ams.org/mathscinet-getitem?mr=2364300
http://www.ams.org/mathscinet-getitem?mr=0718088
http://www.ams.org/mathscinet-getitem?mr=2978290
http://arxiv.org/abs/arXiv:1312.1733
http://www.ams.org/mathscinet-getitem?mr=2788206
http://www.ams.org/mathscinet-getitem?mr=3174850
http://www.ams.org/mathscinet-getitem?mr=3285605
http://www.ams.org/mathscinet-getitem?mr=3106479


ROBUST COMMUNITY DETECTION 35

Lin, Z., Liu, R. and Su, Z. (2011). Linearized alternating direction method with adaptive
penalty for low rank representation. In Advances in Neural Information Processing
Systems (NIPS) 612–620.

Mathieu, C. and Schudy, W. (2010). Correlation clustering with noisy input. In Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms
712–728. SIAM, Philadelphia, PA. MR2768627

McSherry, F. (2001). Spectral partitioning of random graphs. In 42nd IEEE Symposium
on Foundations of Computer Science (Las Vegas, NV, 2001) 529–537. IEEE Computer
Soc., Los Alamitos, CA. MR1948742

Newman, M. and Girvan, M. (2004). Finding and evaluating community structure in
networks. Phys. Rev. E 69 026113.

Newman, M. and Leicht, E. (2007). Mixture models and exploratory analysis in net-
works. Proc. Natl. Acad. Sci. USA 104 9564–9569.

Nowicki, K. and Snijders, T. A. B. (2001). Estimation and prediction for stochastic
blockstructures. J. Amer. Statist. Assoc. 96 1077–1087. MR1947255

Oymak, S. and Hassibi, B. (2011). Finding dense clusters via low rank + sparse decom-
position. Available at arXiv:1104.5186.

Rohe, K., Chatterjee, S. and Yu, B. (2011). Spectral clustering and the high-
dimensional stochastic blockmodel. Ann. Statist. 39 1878–1915. MR2893856

Sarkar, P. and Bickel, P. J. (2013). Role of normalization in spectral clustering for
stochastic blockmodels. Available at arXiv:1310.1495.

Shamir, R. and Tsur, D. (2007). Improved algorithms for the random cluster graph
model. Random Structures Algorithms 31 418–449. MR2362638

Snijders, T. A. B. and Nowicki, K. (1997). Estimation and prediction for stochas-
tic blockmodels for graphs with latent block structure. J. Classification 14 75–100.
MR1449742

Sussman, D. L., Tang, M., Fishkind, D. E. and Priebe, C. E. (2012). A consistent ad-
jacency spectral embedding for stochastic blockmodel graphs. J. Amer. Statist. Assoc.
107 1119–1128. MR3010899

Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Found.
Comput. Math. 12 389–434. MR2946459

Vu, V. H. (2007). Spectral norm of random matrices. Combinatorica 27 721–736.
MR2384414

Vu, V. (2014). A simple SVD algorithm for finding hidden partitions. Available at
arXiv:1404.3918.

Zhao, Y., Levina, E. and Zhu, J. (2012). Consistency of community detection in net-
works under degree-corrected stochastic block models. Ann. Statist. 40 2266–2292.
MR3059083

Department of Statistics

The Wharton School

University of Pennsylvania

400 Jon M. Huntsman Hall

3730 Walnut Street

Philadelphia, Pennsylvania 19104-6340

USA

E-mail: tcai@wharton.upenn.edu
xiaodli@wharton.upenn.edu

http://www.ams.org/mathscinet-getitem?mr=2768627
http://www.ams.org/mathscinet-getitem?mr=1948742
http://www.ams.org/mathscinet-getitem?mr=1947255
http://arxiv.org/abs/arXiv:1104.5186
http://www.ams.org/mathscinet-getitem?mr=2893856
http://arxiv.org/abs/arXiv:1310.1495
http://www.ams.org/mathscinet-getitem?mr=2362638
http://www.ams.org/mathscinet-getitem?mr=1449742
http://www.ams.org/mathscinet-getitem?mr=3010899
http://www.ams.org/mathscinet-getitem?mr=2946459
http://www.ams.org/mathscinet-getitem?mr=2384414
http://arxiv.org/abs/arXiv:1404.3918
http://www.ams.org/mathscinet-getitem?mr=3059083
mailto:tcai@wharton.upenn.edu
mailto:xiaodli@wharton.upenn.edu

	University of Pennsylvania
	ScholarlyCommons
	2015

	Robust and Computationally Feasible Community Detection in the Presence of Arbitrary Outlier Nodes
	Tony Cai
	Xiaodong Li
	Recommended Citation

	Robust and Computationally Feasible Community Detection in the Presence of Arbitrary Outlier Nodes
	Abstract
	Keywords
	Disciplines


	1 Introduction
	1.1 Generalized stochastic block model
	1.2 Organization of the paper

	2 Methodology
	2.1 Convex optimization

	3 Theoretical guarantees
	4 Numerical results
	4.1 Synthesized data simulations
	4.2 Real data application

	5 Discussion
	6 Proofs
	6.1 Notation
	6.2 Preliminaries
	6.3 Supporting lemmas
	6.4 Proof of Theorem 3.1
	6.4.1 Solution candidate
	6.4.2 Sufficient condition for the optimality of X
	6.4.3 Construction of dual certificate


	Supplementary Material
	References
	Author's addresses

