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Minimum-Weight Edge Discriminators in Hypergraphs

Abstract
In this paper we introduce the notion of minimum-weight edge-discriminators in hypergraphs, and study their
various properties. For a hypergraph H = (V , E), a function λ : V → Z+∪{0} is said to be an edge-discriminator
on H if ∑v∈Eiλ(v)>0, for all hyperedges Ei ∈ E and ∑v∈Eiλ(v) ≠ ∑v∈Ejλ(v), for every two distinct hyperedges
Ei,Ej, ∈ E. An optimal edge-discriminator on H, to be denoted by λH, is an edge-discriminator on H satisfying
∑v∈VλH(v) = minλ ∑v∈Vλ(v), where the minimum is taken over all edge-discriminators on H. We prove that
any hypergraph H = (V , E), with |E| = m, satisfies ∑v∈VλH(v) ≤ m(m+1)/2, and the equality holds if and only
if the elements of E are mutually disjoint. For r-uniform hypergraphs H = (V,E), it follows from earlier results
on Sidon sequences that ∑v∈VλH(v) ≤ |V|r+1+o(|V|r+1), and the bound is attained up to a constant factor by
the complete r-uniform hypergraph. Finally, we show that no optimal edge-discriminator on any hypergraph
H = (V,E), with |E| = m (≥3), satisfies ∑v∈VλH(v) = m(m+1)/2−1. This shows that all integer values between
m and m(m+1)/2 cannot be the weight of an optimal edge-discriminator of a hypergraph, and this raises
many other interesting combinatorial questions.
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Abstract

In this paper we introduce the notion of minimum-weight edge-discriminators in
hypergraphs, and study their various properties. For a hypergraph H = (V,E ), a
function λ : V → Z+∪{0} is said to be an edge-discriminator onH if

∑
v∈Ei λ(v) > 0,

for all hyperedges Ei ∈ E , and
∑

v∈Ei λ(v) 6= ∑v∈Ej λ(v), for every two distinct hy-
peredges Ei, Ej ∈ E . An optimal edge-discriminator on H, to be denoted by λH,
is an edge-discriminator on H satisfying

∑
v∈V λH(v) = minλ

∑
v∈V λ(v), where

the minimum is taken over all edge-discriminators on H. We prove that any hy-
pergraph H = (V,E ), with |E | = m, satisfies

∑
v∈V λH(v) 6 m(m + 1)/2, and

the equality holds if and only if the elements of E are mutually disjoint. For r-
uniform hypergraphs H = (V,E ), it follows from earlier results on Sidon sequences
that

∑
v∈V λH(v) 6 |V|r+1 + o(|V|r+1), and the bound is attained up to a constant

factor by the complete r-uniform hypergraph. Finally, we show that no optimal
edge-discriminator on any hypergraph H = (V,E ), with |E | = m (> 3), satisfies∑

v∈V λH(v) = m(m+ 1)/2− 1. This shows that all integer values between m and
m(m+1)/2 cannot be the weight of an optimal edge-discriminator of a hypergraph,
and this raises many other interesting combinatorial questions.

Keywords: Edge discrimination, Graph labeling, Hypergraphs, Irregular networks.
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1 Introduction

A hypergraph is a pair H = (V ,E ) where V is a finite set and E is a collection of subsets
of V . The elements of V are called vertices and the elements of E are called hyperedges.
A vertex labeling of a hypergraph is a function from the vertex set V to the set of non-
negative integers. In this paper, we introduce the notion of edge-discriminating vertex
labelings in hypergraphs. A vertex labeling λ : V → Z+ ∪ {0} is said to be an edge-
discriminator on H if

∑
v∈Ei λ(v) > 0, for all hyperedges Ei ∈ E , and

∑
v∈Ei λ(v) 6=∑

v∈Ej λ(v), for every two distinct hyperedges Ei, Ej ∈ E . For any edge-discriminator λ

on H, the value of the sum
∑

v∈V λ(v) will be called the weight of the edge-discriminator
and shall be denoted by ωλ(V). An edge-discriminator λH on H is said to be an optimal
edge-discriminator if it has the least weight, that is, if ωλH(V) = minλ ωλ(V), where the
minimum is taken over all edge-discriminators on H. Henceforth, the weight of an optimal
edge-discriminator on H, that is, ωλH(V), will be denoted by ω0(H).

1.1 Related Works

Graph labeling is an assignment of integers to the vertices or edges, or both, of a graph
which satisfy certain conditions. Refer to the survey of Gallian [20] for a comprehensive
view into the huge literature in graph labeling. Hypergraph vertex labelings where the
sum of the labels of the vertices along the edges are mutually distinct, has been studied
in the literature in many different contexts. One of them is the notion of anti-magic
labeling of graphs. For a graph G = (V,E) an edge-antimagic vertex labeling l : V → Z+

is an injective function such that the quantities l(x)+ l(y) are mutually distinct, whenever
(x, y) is an edge in G. Edge-antimagic vertex labeling was studied by Wood [36]. Later,
Bollobás and Pikhurko [6] defined the sum magic number of a graph G = (V (G), E(G)),
denoted by S(G), as the smallest value of the largest vertex label in an edge-antimagic
vertex labeling. They proved that S(Kn) = (1+o(1))n2 and S(n,m) < (1−c)n2 whenever
m 6 cn2, where S(n,m) = max{S(G) : |V (G)| = n, |E(G)| = m}. Note that, unlike in
the case of edge-discriminators, edge anti-magic vertex labeling of a graph is an injective
function. Moreover, the sum magic number minimizes the maximum label, and not the
the sum of the labels as required in the optimal edge-discriminator.

Another relevant topic is the notion of irregular networks. A network is a simple graph
where each edge is assigned a positive integer weight. The degree of a vertex in a network
is the sum of the weights of its incident edges. A network is irregular if all the vertices
have distinct degrees. The strength of a network is the maximum weight assigned to any
edge. The irregularity strength of a graph G is the minimum strength among all irregular
networks on G, and is denoted by s(G). The notion of irregularity strength was first
introduced by Chartrand et al. [8], where it was shown that for any given graph G,

s(G) > λ(G) = max
i6j

(ni + ni+1 + . . .+ nj) + i− 1

j
,

where ni denotes the number of vertices of degree i. If G contains a K2 or multiple
isolated vertices, the irregularity strength s(G) =∞. Nierhoff [30] proved a tight bound
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s(G) 6 n − 1, for graphs G with |V (G)| = n (> 3) and s(G) < ∞. Faudree and Lehel
[18] proved bounds on the irregularity strength of d-regular graphs. Upper bounds on the
irregularity strength for general graphs, in terms of the minimum degree, were first given
by Frieze et al. [19], and later by Przyby lo [33, 34] and Kalkowski et al. [26]. However,
computing the irregularity strength of a graph exactly is difficult in general. It is known
only for some very special graphs and in almost all of these cases, it is found to be within
an additive constant of λ(G). It was conjectured by Lehel [27], that s(G) is within an
additive constant of λ(G) for connected graphs. This has been verified for some special
families of graphs like, complete graphs [8], cycles, most complete bipartite graphs, Turan
graphs [17], wheels, hypercubes, and grids [13]. The notion of irregularity strength was
extended to hypergraphs by Gyárfás et al. [23].

Edge-discriminators on hypergraphs and irregular networks are dual concepts. For a
hypergraph H = (V ,E ), the dual hypergraph is defined as D(H) = (W ,F), whereW = E
and F = {E (v)|v ∈ V}, where E (v) is the set of all edges in E which are incident on
v ∈ V . Note that if κ : E → Z+ is an irregular edge assignment for H, then κ transforms
to an edge-discriminator λ : W → Z+ on D(H) as follows: For every vertex v ∈ W ,
let ev ∈ E be the corresponding hyperedge in H and define λ(v) = κ(ev). However, the
most important difference between irregularity strength of a hypergraph and the optimal
edge-discriminator in the dual hypergraph is the optimization criterion. In the case of
irregularity strength the maximum label is minimized, whereas we minimize the sum of
the labels in the optimal edge-discriminator. Another difference is that in an irregular
network, the value assigned to an edge is always positive, which means that the edge-
discriminator in the corresponding hypergraph assigns a positive weight to every vertex,
which is not required by an edge-discriminator.

Another related problem involves the power set hypergraph. The power set hypergraph
on a set V , with |V| = n, is the hypergraph (V , 2V), where 2V denotes the set of all non-
empty subsets of V . Note that any edge-discriminator on the power set hypergraph is a
set of positive integers such that all its non-empty subsets have distinct sums. A set of
positive numbers satisfying this property is called sum-distinct. A sum-distinct set of m
elements with the minimum total sum is the optimal edge-discriminator on the power set
hypergraph, which can be easily computed to be 2|V|−1. In 1931 Erdős asked for estimates
of smallest possible value of the largest element in a sum-distinct set of n elements, which
we denote by w(n). Erdős offered $500 for verifying whether w(n) = Ω(2n), and Guy [22]
made the stronger conjecture that w(n) > 2n−3. In 1955 Erdős and Moser proved that
w(n) > 2n/(4

√
n) [15]. The constant was later improved by Elkies [14], which was further

improved by Aliev [1]. A set consisting of the first n powers of 2 has distinct subset sums,
and has maximal element 2n−1, which implies that w(n) 6 2n−1. Conway and Guy [12]
found a construction which gave an interesting upper bound on w(n). This was later
improved by Lunnon [29] and then by Bohman [5], who showed that w(n) < 0.22002 · 2n
for sufficiently large n.
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1.2 Our Results

In this paper we study edge-discriminators on hypergraphs such that the sum of the labels
of the vertices is minimized. We begin by proving a general upper bound on the weight
of an edge-discriminator, which holds for any hypergraph. The bound is relatively simple
to obtain, but it is tight.

Theorem 1. For any hypergraph H = (V ,E ), with |E | = m, ω0(H) 6 m(m + 1)/2, and
the equality holds if and only if the elements of E are mutually disjoint.

Next, we show that the edge-discrimination problem for r-uniform hypergraphs is
related to Sidon sequences from additive number theory. A Sidon sequence is a sequence
of natural numbers A = {a1, a2, . . .} such that all the pairwise sums ai + aj (i 6 j) are
different [16]. The Bh-sets are generalizations of Sidon-sequences in which all h-element
sums are mutually distinct [31]. Using the connection between edge-discriminators and
Bh sets, we obtain another bound on the weight of the optimal edge-discriminator for
r-uniform hypergraphs in terms of the number of vertices.

Proposition 2. For any r-uniform hypergraph H = (V ,E ), with |V| = n, ω0(H) 6
nr+1 + o(nr+1), and the bound is attained up to a constant factor by the optimal edge-
discriminator of the complete r-uniform hypergraph on V.

Obtaining nontrivial lower bounds on the weight of the optimal edge-discriminator
for general hypergraphs seems to be difficult. It is easy to show that

∑
v∈V λH(v) >

max{m, δ(δ + 1)/2}, where |E | = m and δ is the size of the maximum matching in
H. Moreover, there is a hypergraph, which attains this lower bound. However, like
the irregularity strength, finding the optimal edge-discriminator is generally difficult for
most hypergraphs. For examples where the optimal edge-discriminators can be explicitly
computed refer to Bhattacharya et al. [2].

In Theorem 1 we show that the weight of an optimal edge-discriminator for a hyper-
graph with m hyperedges is at most m(m + 1)/2. Moreover, the weight of any edge-
discriminator is at least m. This motivates us to ask the following question: Given any
integer w ∈ [m,m(m + 1)/2], whether there exists a hypergraph H with m hyperedges
such that w is the weight of the optimal edge-discriminator on H. We provide a negative
answer, by proving the following theorem:

Theorem 3. There exists no hypergraph H = (V ,E ) with |E | = m (> 3), such that the
weight of the optimal edge-discriminator on H is m(m+ 1)/2− 1.

The above result indicates that the problem of attainability of weights is an inter-
esting combinatorial problem which might have surprising consequences. We discuss the
attainability problem in more detail later on.

The rest of the paper is organized as follows: The proof of Theoerem 1 where we give a
general upper bound on the weight of an optimal edge-discriminator is given in Section 2.
In Section 3 we outline the connection between Sidon sequences and edge-discriminators
in uniform hypergraphs. A short discussion on lower bounds is given in Section 4. The
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problem of non-attainable weights and the proof of Theorem 3 are in Section 5. In Section
6 we discuss edge-discriminators in geometric hypergraphs and its potential application to
digital image indexing. Finally, in Section 7 we summarize our work and give directions
for future research.

2 Constructing Edge-Discriminators in General Hy-

pergraphs

In this section, we give an algorithm for constructing an edge-discriminator for a general
hypergraph. We begin by introducing some definitions and notations. For any set S,
denote by |S| the cardinality of S. Consider a hypergraph H = (V ,E ), with |V| = n
and E = {E1, E2, . . . , Em}, where |E | = m and Ei ⊆ V for i ∈ [m] := {1, 2, . . . ,m}. An
ordering on V is a bijective function ν : [n] → V . We shall write νi := ν(i), for i ∈ [n].
Thus, with respect to the ordering ν, the vertices in V will be indexed as {ν1, ν2, . . . , νn}.
For two vertices νi, νj ∈ V , we say νi is less than νj with respect to ν, if i < j. The
maximal vertex of W ⊂ V is the vertex νk ∈ W such that for all vertices νi ∈ W\{νk},
we have i < k. The maximal vertex of W will be denoted by ν(W). For two hyperedges
Ei, Ej ∈ E (i 6= j) the vertex ν(Ei, Ej) := ν(Ei∆Ej) will be called the differentiating
vertex of the edges Ei and Ej, where for any two sets A and B, A∆B = (A\B) ∪ (B\A).
The edge which contains the differentiating vertex ν(Ei, Ej) will be denoted by Eij, and
the edge which does not contain the differentiating vertex will be denoted by Eij.

For any function λ : V → Z+ ∪ {0}, the weight of any subset W of V is defined as
ωλ(W) =

∑
v∈W λ(v). Thus, a function λ is edge-discriminating if the weights of all the

edges in E are distinct.

2.1 Proof of Theorem 1

Given a hypergraphH = (V ,E ), with |V| = n and |E | = m, consider the hypergraphH0 =
(V ,F), where F = E ∪ {∅}. Fix an ordering ν on V . Let λ : V → Z+ ∪ {0} be a function
initialized as λ(v) = 0, for all v ∈ V . We iteratively update the value of the function
at the vertices according to the ordering induced by ν. Abusing notation we will denote
the function by λ throughout the iterative procedure. Once λ(ν1), λ(ν2), . . . , λ(νk−1) are
updated, update λ(νk) by adding the least non-negative integer not in the set

A(νk) = {ωλ(Eij)− ωλ(Eij) : ν(Ei, Ej) = νk, Ei, Ej ∈ F}.

This implies that λ(νk) is at most |A(νk)|, since initially λ(νk) was 0. Note that for any two
hyperedges Ei, Ej ∈ F , such that ν(Ei, Ej) = νk, all the vertices which are greater than
νk are common to both or belong to neither of the edges Ei and Ej. Therefore, according
to the above construction, ωλ(Eij)−ωλ(Eij) cannot change once λ(νk) is assigned. Hence,
by the choice of λ(νk), ωλ(Ei) 6= ωλ(Ej), from the k-th step onwards. In particular, taking
one of the edges in the pair as ∅ implies that ωλ(Ei) > 0 for all Ei ∈ E , as ωλ(∅) = 0.
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Therefore, at the end of the updating procedure, the function λ is an edge-discriminator
on H = (V ,E ).

Next, observe that |A(νk)| is at most the number of pairs of edges in F which has νk
as a differentiating vertex. As ν(Ei, ∅) = ν(Ei), it immediately follows that |A(νk)| 6
χ(νk) + π(νk), where χ(νk) denotes the number of pairs of edges in E for which νk is a
differentiating vertex, and π(νk) is the number of edges in E for which νk is the maximal
vertex. This implies that

∑
v∈V

λ(v) =

|V|∑
k=1

λ(νk) 6
n∑
k=1

χ(νk) +
n∑
k=1

π(νk)

=
m(m− 1)

2
+m =

m(m+ 1)

2
, (1)

which completes the proof of the first part of Theorem 1.

2.1.1 General Algorithm for Constructing Edge-Discriminators

Before completing the proof of Theorem 1, we slightly generalize our procedure for con-
structing an edge-discriminator. This will be needed to complete the proof of Theorem
1. Moreover, it gives better insight into the structure of the discriminating functions,
and ultimately leads to an improved upper bound on the weight of the optimal edge-
discriminator.

The general algorithm is very similar to the algorithm in the proof of Theorem 1,
but instead of starting with the zero function, we start with any arbitrary integer-valued
function κ, and execute the same procedure to get an edge-discriminator. Typically,
depending on the structure of the hypergraph one can choose the initial function to
obtain sharper bounds. More formally, the Construction Algorithm takes a hypergraph
H = (V ,E ), an ordering ν on V , and any function κ : V → Z+ ∪ {0}, and returns an
edge-discriminator λκ,ν : V → Z+ ∪ {0}.

Lemma 1. Given any hypergraph H = (V ,E ), an ordering ν on V, and any function
κ : V → Z+∪{0}, the Construction Algorithm produces an edge-discriminator λκ,ν : V →
Z+ ∪ {0} on H such that ωλκ,ν (V) 6 m(m+1)

2
−∑n

k=1 π(νk)111{κ(νk) > 0}+
∑n

k=1 κ(νk).

Proof. The proof that λκ,ν is an edge-discriminator is very similar to the proof of Theorem
1. For κ(νk) = 0, we compare all pair of hyperedges Ei, Ej ∈ F , such that ν(Ei, Ej) = νk.
As all the vertices which are greater than νk are common to both or belong to neither
of the edges Ei and Ej, according to the construction ωλ(Eij) − ωλ(Eij) cannot change
once λ(νk) is assigned. Hence, by the choice of λ(νk), ωλ(Ei) 6= ωλ(Ej), from the k-th
step onwards and therefore eventually, for any pair of edges such that ν(Ei, Ej) = νk and
κ(νk) = 0.

When κ(νk) > 0, we define λκ,ν(νk) = κ(νk) + inf{Z+ ∪ {0}\B(νk)}. This choice of
λ(νk) differentiates any pair of edges Ex, Ey ∈ E , with ν(Ex, Ey) = νk. Note that here
we ignore the pairs (Ez, ∅), where ν(Ez, ∅) = νk. However, as κ(νk) > 0, ωλκ,ν (Ez) > 0,
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Input: A hypergraph H = (V ,E ), an ordering ν on V , and any function
κ : V → Z+ ∪ {0}.

Output: An edge-discriminator λκ,ν : V → Z+ ∪ {0}.
Initialize λκ,ν(v) = κ(v), for all v ∈ V .
while 1 < k 6 n do

Denote B(νk) = {|ωλκ,ν (Eij)− ωλκ,ν (Eij)| : ν(Ei, Ej) = νk, Ei, Ej ∈ E },
C(νk) = {ωλκ,ν (Ei) : ν(Ei, ∅) = νk, Ei ∈ E }, and A(νk) = B(νk) ∪ C(νk);
if |A(νk)| 6= 0 then

if κ(νk) = 0 then
Define λκ,ν(νk) = inf{Z+ ∪ {0}\A(νk)},

end
if κ(νk) > 0 then

Define λκ,ν(νk) = κ(νk) + inf{Z+ ∪ {0}\B(νk)}.
end

else
Define λκ,ν(νk) = κ(νk),

end
k ← k + 1.

end
Return the function λκ,ν : V → Z+ ∪ {0}.

Algorithm 1: Construction Algorithm: Edge-Discriminator Construction Algorithm.

for any edge Ez such that ν(Ez, ∅) = νk. Hence, any pair of edges has distinct weights in
this case as well.

Now, from the algorithm we can bound the weight of λκ,ν as follows:

n∑
k=1

λκ,ν(νk) 6
n∑
k=1

|A(νk)|111{κ(νk) = 0}+
n∑
k=1

|B(νk)|111{κ(νk) > 0}+
n∑
k=1

κ(νk)

6
n∑
k=1

|B(νk)|+
n∑
k=1

|C(νk)|111{κ(νk) = 0}+
n∑
k=1

κ(νk)

6
n∑
k=1

χ(νk) +
n∑
k=1

π(νk)111{κ(νk) = 0}+
n∑
k=1

κ(νk)

=
m(m− 1)

2
+

n∑
k=1

π(νk)−
n∑
k=1

π(νk)111{κ(νk) > 0}+
n∑
k=1

κ(νk)

=
m(m+ 1)

2
−

n∑
k=1

π(νk)111{κ(νk) > 0}+
n∑
k=1

κ(νk).

We will use the above lemma in completing the proof of Theorem 1 and also in the
proof of Theorem 3.
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2.1.2 Completing the Proof of Theorem 1

To complete the proof of Theorem 1 we need to show that given any hypergraph H =
(V ,E ), which contains two egdes Ex, Ey ∈ E such that Ex ∩ Ey 6= ∅, it is possible to
construct an edge-discriminating function λ on V such that

∑
v∈V λ(v) < m(m+ 1)/2.

Let |V| = n and vo ∈ Ex∩Ey. Consider an ordering ν̃ : [n]→ V such that ν̃n = ν̃(n) =
vo. Then vo is the maximal vertex of both the edges Ex and Ey, that is, π(ν̃n) > 2. We
start with the function κ = δvo which takes the value 1 at vo and 0 everywhere else.
Then from Lemma 1, we know that there exists an edge-discriminator λκ,ν̃ such that∑

v∈V λκ,ν̃(v) 6 m(m + 1)/2 − 1, which proves the tightness of the upper bound and
completes the proof of Theorem 1.

2.1.3 Consequences of Lemma 1

In this section we discuss an immediate corollary of Lemma 1 which gives a slightly better
upper bound on the weight of an edge-discriminator than in Theorem 1.

To this end, we need the following definition. For a hypergraph H = (V ,E ), a set
S ⊆ V is called a hitting set of H if, for all edges E ∈ E , S ∩ E 6= ∅. A hitting set of
the smallest size is called the minimum hitting set of H. Hitting sets are also known as
vertex covers or transversals.

Corollary 4. For any hypergraph H = (V ,E ), ω0(H) 6 m(m−1)
2

+N (H), where N (H) is
the size of the minimum hitting set of H.

Proof. For a fixed ordering ν, denote by N(ν) the set of vertices v ∈ V with π(v) > 0.
Observe that minν |N(ν)| = N (H).

Now, consider any ordering ν on V . Define κ(v) = 111{π(v) > 0}. Lemma 1 then implies
that there exists an edge-discriminator λκ,ν such that

∑
v∈V λκ,ν(v) 6 m(m−1)/2+|N(ν)|.

The result follows by taking minimum over all orderings on V .

Remark 1. Note that the bound in Corollary 4 is slightly better than the general upper
bound proved in Theorem 1. Moreover, it is easy to see that this bound is attained by
the optimal edge-discriminator of the star-graph Tm on m+ 1 vertices and m edges. This
follows from the fact that the central vertex of Tm is the minimum hitting set for Tm, and
so N (H) = 1.

3 Edge Discriminators in r-Uniform Hypergraphs

A r-uniform hypergraph is a hypergraph H = (V ,E ), where all the hyperedges in E have
cardinality r. If E consists of the set of all r-element subsets of V then the hypergraph
H = (V ,E ) is called the complete r-uniform hypergraph on V , and is denoted by Krn.

Consider a r-uniform hypergraph on n-vertices and let V = {v1, v2, . . . , vn}. We can
obtain an edge discriminator λ : V → Z+ ∪ {0} if the sequence {λ(v1), λ(v2), . . . , λ(vn)},
has the property that the sum of the elements in each its r-element subset is distinct.
This property of the sequence λ(v1), λ(v2), . . . , λ(vn) is closely related to the notion of
Sidon sequences from additive number theory.
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3.1 Sidon Sequences and Generalizations

A Sidon sequence is a finite or infinite sequence of natural numbers A = {a1, a2, . . .} such
that all the pairwise sums ai + aj (i 6 j) are different. This problem was introduced by
Sidon in 1932, during his investigations in Fourier analysis. A celebrated combinatorial
problem asks for estimates of the maximum number of elements s(N) from {1, 2, . . . , N}
which form a Sidon sequence. This was posed by Erdős and Turán [16], and they proved
that s(N) 6 N1/2 + O(N1/4), which is the best possible upper bound except for the
estimate of the error-term. The upper bound was refined by Lindström [28] to s(N) 6
N1/2 + N1/4 + 1 and further improved by Cilleruello [9]. A conjecture of Erdős, with a
$500 prize, says that s(N) = N1/2 +O(1).

Sidon-sequences can be generalized by considering sequences in which all h-element
sums are mutually distinct. This leads to the following definition:

Definition 5. For a positive integer h > 2, a finite or infinite sequence of positive integers
A = {a1, a2, . . .} is called a Bh-set if for every positive integer c, the equation

c = a1 + a2 + . . .+ ah, a1 6 a2 6 . . . ,6 ah, ai ∈ A,

has, at most, one solution. Let Fh(N) denote the cardinality of the largest Bh set that can
be selected from the set {1, 2, . . . , N}.

Bose and Chowla [7] proved that Fh(N) > N1/h+o(N1/h). An easy counting argument
shows Fh(N) 6 (hh!N)1/h. This upper bound has gone through many improvements and
refinements. The general upper bound has the form Fh(N) 6 c(h)N1/h + o(N1/h), where
c(h) is a constant depending on h. For specific values of c(h) refer to Cilleruello [10],
Cilleruello and Jimenez [11], Jia [25], and the references therein. Other related results
and problems on Sidon sequences and Bh-sets can be found in the surveys [24, 31].

3.2 Proof of Proposition 2

In this section we use the notion of Bh-sets to obtain new bounds on the weight of an
edge-discriminator in r-uniform hypergraphs. Consider a r-uniform hypergraph H =
(V ,E ), with V = {v1, v2, . . . , vn}. Note that a function λ : V → Z+ ∪ {0} such that
{λ(v1), λ(v2), . . . , λ(vn)} is a Br-set, is an edge-discriminator for H. Let Gh(n) be the
minimum of the maximum element taken over all Bh-sets of length m. In other words,
Gh(n) is the inverse function of Fh(n), and a lower bound for Fh(n) corresponds to an
upper bound for Gh(n). Now, as Gr(n) 6 nr + o(nr), we have

ωλ(H) =
n∑
i=1

λ(vi) 6 n · max
16i6n

λ(vi) 6 nr+1 + o(nr+1).

In the case of the complete r-uniform hypergraph Krn = (V ,E ), |E | =
(
n
r

)
and every

vertex v ∈ V belongs to
(
n−1
r−1
)

hyperedges. This implies that any edge-discriminator
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λ : V → Z+ ∪ {0} on Krn satisfies∑
E∈E

ωλ(E) =
∑
E∈E

∑
v∈E

λ(v) =

(
n− 1

r − 1

)∑
v∈V

λ(v).

As ωλ(E) is distinct for all E ∈ E ,
∑

E∈E ωλ(E) > |E |(|E |+ 1)/2. Therefore,

ωλ(Krn) =
∑
v∈V

λ(v) =
1(
n−1
r−1
) ∑
E∈E

ωλ(E) >

(
n
r

) ((
n
r

)
+ 1
)

2
(
n−1
r−1
) =

n
r

((
n
r

)
+ 1
)

2
> cnr+1,

for n large enough and some constant c. This proves that the weight of the optimal
edge-discriminator of Krn is within a constant factor of the upper bound, and completes
the proof of Proposition 2.

Remark 2. The upper bound on the weight of an edge-discriminator for a r-uniform
hypergraph obtained in Proposition 2 is often better than the general |E |(|E | + 1)/2 =

O(|E |2) upper bound proved in Theorem 1. In particular, when |E | > c|V| r+1
2 , then

Proposition 2 provides a better bound on the weight of an edge-discriminator. For exam-
ple, if the r-uniform hypergraph is dense then Proposition 2 gives a sharper upper bound.
On the other hand, if we have a sparse r-uniform hypergraph, then Theorem 1 gives a
better bound.

4 Lower Bound

In this section we prove a simple lower bound on the weight of an edge discriminator onH.
Given a hypergraph H = (V ,E ), a subset E ′ ⊆ E is said to be a matching if the elements
in E ′ are mutually disjoint. A maximum matching of H is the largest size matching in H.

Proposition 6. For any edge-discriminator λ on a hypergraph H = (V ,E ), with |E | = m,

ωλ(V) > max{m, δ(δ+1)
2
}, where δ is the size of the maximum matching of H. Moreover,

there is a hypergraph with m edges which attains this bound.

Proof. Observe that the weights ωλ(E1), ωλ(E2), . . . , ωλ(Em) are all positive and distinct.
This implies that

ωλ(V) > max
Ei∈E

ωλ(Ei) > m. (2)

Next, suppose that E ′ = {Ei1 , Ei2 , . . . , Eiδ} is a matching of H. Since the hy-
peredges Ei1 , Ei2 , . . . , Eiδ are mutually disjoint and the corresponding weights ωλ(Ei1),
ωλ(Ei2), . . . , ωλ(Eiδ) are distinct,

ωλ(V) >
δ∑
j=1

ωλ(Eij) >
δ(δ + 1)

2
. (3)

Finally, consider the hypergraph H1 = (V1,E1), with V1 = [n] and E1 = {E1,
E2, . . . , Em}, where Ei = [i]. Then it is easy to see that the function λ1 : V1 → Z+ ∪ {0}
defined by λ1(i) = 1, for all i ∈ [m], is the optimal edge-discrimiator for H1 and
ω0(H1) = ωλ1(V) = m attains the lower bound.
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Remark 3. A hypergraph is called d-regular if every vertex is in d hyperedges. Let
H = (V ,E ) be a d-regular hypergraph with |E | = m. Then any edge discriminator λ on

H satisfies ωλ(V) =
∑

v∈V λ(v) = 1
d

∑
E∈E ωλ(E) > m(m+1)

2d
= O(m2/d). If d = O(1), that

is, the hypergraph is sparse, this lower bound has the same order of magnitude as the
O(m2) upper bound proved in Theorem 1.

5 Non-Attainable Optimal Weights: Proof of Theo-

rem 3

We have shown that an optimal edge-discriminator on a hypergraph with m hyperedges
can have weight at most m(m + 1)/2 and this is attained when the m hyperedges are
mutually disjoint. Moreover, there exists a hypergraph for which the weight of the optimal
edge-discriminator is m, as demonstrated in Proposition 6. This raises the question
that whether all weights between m and m(m + 1)/2 are attainable. More formally, we
are interested in knowing that given any integer w ∈ [m,m(m + 1)/2], whether there
exists a hypergraph H(m,w) on m edges such that w is the weight of the optimal edge-
discriminator on H(m,w). We say that w is attainable if there exists a hypergraph H on
m edges such that the weight of the optimal edge-discriminator on H is w. An integer
w ∈ [m,m(m + 1)/2] is said to be non-attainable if it is not attainable. In this section
we prove Theorem 3 which shows that for all m > 3, the weight m(m + 1)/2 − 1 is
non-attainable.

5.1 Proof of Theorem 3

For m = 3, the result can be proved easily by considering the different possible distinct
hypergraphs on 3 edges.

Now, fix an integer m > 4. We prove the theorem by contradiction. Assume that
there exists a hypergraph HO = (V ,E ), with |V| = n and |E | = m, such that ω0(HO) =
m(m+ 1)/2− 1. Fix any ordering ν on V . From the proof of Theorem 1 we get an edge

discriminator λ′ for HO, such that ωλ′(V) > m(m+1)
2
− 1.

We now have the following observation:

Observation 7. Under the above assumption, for any fixed ordering ν on V, either one
of the following statements must be true:

(i) There exists j ∈ [n] such that π(νj) = 2 and π(νk) 6 1 for all k ∈ [n]\{j}.
(ii) π(νk) 6 1 for all k ∈ [n].

Proof. Suppose we have an ordering ν such that π(νj) > 3 for some j. Without loss of
generality, we assume that j = n because otherwise we can work with a new ordering ν ′

such that νj = ν ′n.
Let νn ∈ Ex ∩Ey ∩Ez. We start with the function κ(v) = δνn which takes the value 1

at νn and 0 everywhere else. From Lemma 1 we get an edge-discriminator λκ,ν such that
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∑n
k=1 λκ,ν(νk) 6 m(m+ 1)/2− 2, which contradicts the hypothesis that the optimal edge

discriminator has weight m(m+ 1)/2− 1.
Now suppose there are two numbers i and j such that both π(νi) and π(νj) are equal to

2. Then applying the same argument as above and starting with the function λ = δνi +δνj
and using Lemma 1 we get an edge-discriminator λκ,ν such that

∑n
k=1 λκ,ν(νk) 6 m(m+

1)/2− 2, which gives us a contradiction.

Using the above observation we now formulate the following important lemma:

Lemma 2. No vertex in V can be incident on more than 2 hyperedges in E .

Proof. If possible, suppose that there exists a vertex vo ∈ V such that vo is incident on
` (> 3) hyperedges in E . Define the ordering ν ′ : [n] → V , where |V| = n, such that
ν ′n := ν ′(n) = vo. Therefore, vo must be the maximal vertex of all the ` hyperedges
incident on it, that is, π(ν ′n) = ` > 3. This contradicts Observation 7 and the proof of
the lemma follows.

Next, suppose that the second possibility in Observation 7 holds for some ordering ν,
that is, π(νk) = 1 for all k ∈ [n]. Clearly, HO cannot be the hypergraph in which all the
m are hyperedges disjoint. Therefore, we may assume that at least a pair of hyperedges
intersect. Now, similar to the proof of Lemma 2, we can define a new order ν ′ on the
vertices such that ν ′n := ν ′(n) > 2, and the problem reduces to the first possibility of
Observation 7 with respect to the ordering ν ′.

Therefore, it suffices to consider the first possibility in Observation 7, that is, there
exists j ∈ [n] such that π(νj) = 2 and π(νk) = 1 for all k ∈ [n] and k 6= j. Let F and G
be the two hyperedges having ν(ij) as the maximal vertex. We now have the following
lemma:

Lemma 3. For any two hyperedges A,B ∈ E \{F,G}, A ∩B = ∅.

Proof. Suppose there exists vo ∈ V such that vo ∈ A∩B. Now, from Lemma 2, vo /∈ F∪G.
Similarly, as νj ∈ F ∩G we have νj /∈ A ∪B.

Let us consider a new ordering ν ′ on V such that ν ′n−1 := ν ′(n − 1) = νj and ν ′n :=
ν ′(n) = vo. Therefore, ν ′(A) = ν ′(B) = vo, and so π(ν ′n) > 2. Moreover, as vo /∈ F ∪ G
and νj ∈ F ∩ G, ν ′(F ) = ν ′(G) = νj. This means that π(ν ′n−1) > 2. This contradicts
Observation 7 and the result follows.

The above lemma helps us to deduce a necessary configuration of the hypergraph HO.
This can be visualized by Figure 1 and is summarized in the following lemma, the proof
of which is immediate from Lemma 2 and Lemma 3.

Lemma 4. The set of hyperedges in E \{F,G} can be partitioned into two disjoint sets
FA = {A1, A2, . . . , As} and FB = {B1, B2, . . . , Bt}, with s+ t = m− 2, such that:

(i) Ai ∩ Aj = ∅ and Ai ∩ (F ∪G) = ∅ for distinct indices i, j ∈ [s],

(ii) Bi ∩Bj = ∅, Bi ∩ (F ∪G) 6= ∅, and Bi ∩ (F ∩G) = ∅ for distinct indices i, j ∈ [t].
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. . .

FA

A1 A2 A3 As

F G

B1 B2 B3 BtBi

F ∩G

FB

Figure 1: Illustration for the proof of Theorem 3.

Using properties of this special configuration, we now construct an edge-discriminator
λ1 on HO, such that, ωλ1(HO) < m(m+ 1)/2− 1.

Case 1 s = m− 2. Then |FB| = 0 and F and G are the only two intersecting hyperedges
in HO. We define λ1 : V → Z+ ∪ {0} as follows:

λ1(ν(Ai)) = i, for i ∈ [s];
λ1(ν(F ∩G)) = m− 1;
λ1(ν(F∆G)) = 1;
λ1(x) = 0, otherwise.

It is clear that λ1 is an edge-discriminator on HO, and

ωλ1(HO) =
∑
v∈V

λ1(v) =
m−2∑
i=1

ωλ1(Ai) + ωλ1(F ) + ωλ1(G)− ωλ1(F∆G)

=
m(m− 1)

2
− 1 <

m(m+ 1)

2
− 1.

Case 2 s < m− 2. In this case there are m− s− 2 hyperedges that intersect with F∆G.
We define λ′1 : V → Z+ ∪ {0} as follows:

λ′1(ν(Ai)) = i, for i ∈ [s];
λ′1(ν(Bi ∩ (F∆G))) = i+ s; for i ∈ [t− 1];
λ′1(x) = 0, otherwise.

Now, we look at

q =

∣∣∣∣∣∑
v∈F

λ′1(v)−
∑
v∈G

λ′1(v)

∣∣∣∣∣ .
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If q = m− 1 then we define λ1 : V → Z+ ∪ {0} as

λ1(ν(Ai)) = i, for i ∈ [s];
λ1(ν(Bi ∩ (F∆G))) = i+ s, for i ∈ [t− 1];
λ1(ν(Bt ∩ (F∆G))) = m− 2;
λ1(ν(F ∩G)) = m− 1;
λ1(x) = 0, otherwise.

If q 6= m− 1 then we define

λ1(ν(Ai)) = i, for i ∈ [s];
λ1(ν(Bi ∩ (F∆G))) = i+ s, for i ∈ [t− 1];
λ1(ν(Bt ∩ (F∆G))) = m− 1;
λ1(ν(F ∩G)) = m;
λ1(x) = 0, otherwise.

It is again easy to see that λ1 is an edge-discriminator on HO and as m > 3,∑
v∈V

λ1(v) 6
m(m− 1)

2
+ 2 <

m(m+ 1)

2
− 1.

This contradicts our assumption that ω0(HO) = m(m + 1)/2 − 1 and the proof of
Theorem 3 follows.

6 Geometric Set Discrimination and Potential Ap-

plications

In this section we show how hypergraph edge-discriminators can be used to differentiate
a collection of regions in Rd. Consider a finite collection of regions R = {R1, R2, . . . , Rm}
in Rd, where a region is a subset of Rd. Given any m-tuple (ε1, ε2, . . . , εm) ∈ {0, 1}m,
define R(ε1, ε2, . . . , εm) =

⋂m
i=1R

εi
i , where R0

i = Ri and R1
i = Rd\Ri, for i ∈ [m]. Also

for i ∈ [m], define Ei =
⋃

(ε1,ε2,...,εm)∈AiR(ε1, ε2, . . . , εm), where Ai = {(ε1, ε2, . . . , εm) ∈
{0, 1}n : εi = 0}. The geometric hypergraph generated by R, to be denoted by H(R), is
the hypergraph (VR,ER), where VR = {R(ε1, ε2, . . . , εm) : (ε1, ε2, . . . , εm) ∈ {0, 1}n} and
ER = {E1, E2, . . . , Em}.

An edge-discriminator for the geometric hypergraph H(R) is a finite set M ⊂ Rd such
that |Ri ∩M | > 0, for i ∈ [m], and |Ri ∩M | 6= |Rj ∩M |, for all i 6= j ∈ [m]. The set M is
called the geometric discriminator for R. The optimal edge-discriminator on H(R) is the
geometric discriminator of the least cardinality, and will be called the optimal geometric
discriminator of R. The problem of finding the optimal geometric discriminator for a
geometric hypergraph, generated by a finite collection of regions in Rd, will be called the
Geometric Set Discrimination Problem.

Geometric set discrimination seems to be an interesting computational geometry prob-
lem, which includes devising efficient algorithms or proving hardness results, particularly
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when the regions consist of intervals in R1, or rectangles or circles in R2. These algorith-
mic questions are left for future research. However, we shall discuss three simple examples
of geometric set discrimination which will provide instructive insights into the properties
of edge-discriminators and corroborate some of our earlier results.

S1

S2

Sn

• • . . . •
n points

(a)

...

B1

B2

Bn

...

S2

S1

Sn−1

Sn

(b)

b1

b2

bn−1

bn

S1

S2

Sn−2
• • . . . •
n− 2 points

(c)

...

Sn−1

Sn

• • . . . • n− 1 points

Figure 2: Examples of geometric set discrimination

Example 1 We have shown that the upper bound on the weight of an edge-discriminator
proved in Theorem 1 is attained if and only if the hypergraph has m disjoint edges.
The geometric hypergraph generated by the set S = {S1, S2, . . . , Sm} of mutually
disjoint axis-aligned squares (Figure 2(a)) is such an example. Let Bi ⊂ R2 be
any set of distinct i points in the interior of Si. It is trivial to see that the set
B = {B1, B2, . . . , Bm} is the optimum geometric discriminator of S and ω0(HS) =
m(m+1)

2
.

Example 2 Consider the set S = {S1, S2, . . . , Sm} of axis-aligned squares such that Si ⊂
Si+1 for all i > 1. Let B = {b1, b2, . . . , bm}, where bi ∈ Si\

⋃i−1
j=1 Sj (Figure 2(b)).

Clearly, B is the optimum edge-discriminator of the geometric hypergraph HS .
Since |B| = m, the optimum-weight of the edge-discriminator of HS attains the
lower bound in Proposition 6.

Example 3 Consider the set S = {S1, S2, . . . , Sm} of axis-aligned squares, such that Si ∩
Sj = ∅ for all i 6= j ∈ [m−1], and Si∩Sm = ∅ for all i ∈ [m−2], and Sm−1∩Sm 6= ∅
(see Figure 2(c)). Let Bi be any set of i points in the interior of Si, for i ∈ [m− 2].
Let Bm−1 be any set of m−1 points in the interior of Sm−1∩Sm and bm is any point
in the interior of Sm\Sm−1. It is easy to see that set B = {B1, B2, . . . , Bm−1, bm} is
the optimum geometric discriminator of S, with ω0(HS) = m(m − 1)/2 + 1. Note
that in this example the m hyperedges are almost disjoint, but the weight of the
optimal edge-discriminator is m(m−1)

2
+ 1 = m(m+1)

2
− (m− 1). In fact, this example

leads us to conjecture that all integer values in N :=
[
m(m−1)

2
+ 2, m(m+1)

2
− 1
]

are

non-attainable. In Theorem 3 we only show that m(m+1)
2
− 1 is non-attainable.
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Geometric set discrimination problems may find many potential applications to image
indexing in a large database [3, 4], where the emphasis is specially given on deciding
whether a particular image exists in the database, rather than on finding the similarity
matches of the given image. A novel method for archival image indexing using only the
number of connected components, the number of holes, or the Euler number of an image
was reported by Biswas et al. [4]. A connected component of a digital binary image is
a subset of maximal size such that any two of its pixels can be joined by a connected
sequence of pixels assuming 8-connectivity, lying entirely in the subset. A hole in a digital
image is a region of the background, which is a connected component in 4-connectivity
and is completely enclosed by the object. The Euler number of an image is defined as the
number of connected components minus the number of holes in the image. If C and H
denote the number of connected components and the number of holes in a digital image,
respectively, then its Euler number E = C − H [3, 21, 32]. The ordered pair (C,H) is
called the Euler pair of a digital image. It is apparent that two or more images may
have the same value of the Euler pair, and hence this feature alone often cannot uniquely
characterize an image in a large database. One way to disambiguate the features is to
deploy a mask image [4] as follows: We assume that each image is given as a (k1 × k2)
binary pixel matrix. Let us consider m images I1, I2, . . . , Im, each having the same Euler
pair. In order to discriminate them, another binary image M , called the mask, is to be
constructed such that the Euler pair of the m images I1 �M, I2 �M, . . . , Im �M are
mutually distinct, where � denotes bitwise Boolean operation, like XOR or AND between
the corresponding bits of the two pixel matrices.

As it turns out, finding a simple mask of a given set of images is a challenging problem.
Biswas et al. [4] provided an iterative heuristic using a few synthetic pseudo-random
masks. We now show that finding a mask for a set of images can be modeled as an
instance of the hypergraph edge-discrimination for a collection of geometric regions in
R2. Consider the images I1, I2, . . . , Im, superimposed on each other in the same frame, as
subsets of R2. Suppose M is a geometric discriminator for this collection of regions. Then
the binary image corresponding to M is a mask for the set of images under the bitwise
Boolean AND operation. The process is illustrated with four binary images in Figure 3.1

The mask corresponding to the optimal geometric discriminator is the simplest in the
sense that the pixel matrix has the least number of ones.

7 Conclusions

In this paper we introduce the notion of hypergraph edge-discrimination and study its
properties. We show that given any hypergraph H = (V ,E ), with |V| = n and |E | = m,
ω0(H) 6 m(m+1)/2, and the equality holds if and only if the elements of E are mutually

1As binary images are actually subsets of the discrete space Z2, the mask M should be a subset of
Z2. As a result, several technical difficulties may arise while trying to obtain a geometric discriminator
for a set of binary images containing holes. These problems need to be handled separately and they are
not of interest to this paper. Here we discuss the unique indexing problem as a motivating application
for the edge-discrimination problem on hypergraphs.
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Mask M
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I2

I3

I4

I2 ⊙M

I1 ⊙M

I4 ⊙M

I3 ⊙M

Figure 3: Unique image-indexing by geometric-set discrimination.

disjoint. For r-uniform hypergraphs, using properties of Bh-sets, we prove that ω0(H) 6
nr+1 + o(nr+1), and the bound is attained by the complete r-uniform hypergraph up to a
constant factor.

We also considered the question of attainability of weights: Given any integer w ∈
[m,m(m + 1)/2], whether there exists a hypergraph H(m,w) with m hyperedges such
that the weight of the optimal edge-discriminator on H(m,w) is w. We answer this ques-
tion in the negative by proving that there exists no hypergraph on m (> 3) hyperedges
such that the weight of the optimal edge-discriminator is m(m + 1)/2 − 1. The prob-
lem of characterizing non-attainable weights remains open and might have interesting
consequences.

Also, as mentioned in the previous section, another problem for future research is the
algorithmic study of the geometric set-discrimination problem.
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