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Inventory Competition and Incentives to Back-Order

Abstract
In this paper we consider the issue of inventory control in a multi-period environment with competition on
product availability. Specifically, when a product is out of stock, the customer often must choose between
placing a back-order or turning to a competitor selling a similar product. We consider a competition in which
customers may switch between two retailers (substitute) in the case of a stock-out at the retailer of their first
choice. In a multi-period setting, the following four situations may arise if the product is out of stock: (i) sales
may be lost; (ii) customers may back-order the product with their first-choice retailer; (iii) customers may
back-order the product with their second-choice retailer; or (iv) customers may attempt to acquire the
product according to some other more complex rule. The question we address is: how do the equilibrium
stocking quantities and profits of the retailers depend on the customers' back-ordering behaviors? In this work
we consider the four alternative back-ordering scenarios and formulate each problem as a stochastic multi-
period game. Under appropriate conditions, we show that a stationary base-stock inventory policy is a Nash
equilibrium of the game that can be found by considering an appropriate static game. We derive conditions for
the existence and uniqueness of such a policy and conduct a comparative statics analysis. Analytical
expressions for the optimality conditions facilitate managerial insights into the effects of various back-ordering
mechanisms. Furthermore, we recognize that often a retailer is willing to offer a monetary incentive to induce
a customer to back-order instead of going to the competitor. Therefore, it is necessary to coordinate incentive
decisions with operational decisions about inventory control. We analyze the impact of incentives to back-
order the product on the optimal stocking policies under competition and determine the conditions that
guarantee monotonicity of the equilibrium inventory in the amount of the incentive offered. Our analysis also
suggests that, counterintuitively, companies might benefit from making their inventories “visible” to
competitors' customers, since doing so reduces the level of competition, decreases optimal inventories and
simultaneously increases profits for both players.
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Abstract

In this paper we consider the issue of inventory control in a multi-period environment with
competition on product availability. Speci¯cally, when a product is out of stock, the customer
often must choose between placing a back order or turning to a competitor selling a similar
product. We consider a competition in which customers may switch between two retailers
(substitute) in the case of a stock-out at the retailer of their ¯rst choice. In a multi-period
setting, the following four situations may arise if the product is out of stock: sales may be lost;
customers may back-order the product with their ¯rst-choice retailer; customers may back-order
the product with their second-choice retailer; or customers may attempt to acquire the product
according to some other more complex rule. The question we address is: how do the equilibrium
stocking quantities and pro¯ts of the retailers depend on the customers' back-ordering behaviors?

In this work we consider the four alternative back-ordering scenarios and formulate each
problem as a stochastic multi-period game. Under appropriate conditions, we show that a
stationary base-stock inventory policy is a Nash equilibrium of the game that can be found by
considering an appropriate static game. We derive conditions for the existence and uniqueness of
such a policy and conduct comparative statics analysis. Analytical expressions for the optimality
conditions facilitate managerial insights into the e®ects of various back-ordering mechanisms.

¤The authors would like to thank Ton de Kok, three anonymous referees and Matthew Sobel for helpful comments.
This paper was previously titled \Dynamic inventory competition and customer retention."
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Further, we recognize that often a retailer is willing to o®er a monetary incentive to induce a
customer to back-order instead of going to the competitor. Therefore, it is necessary to coor-
dinate incentive decisions with operational decisions about inventory control. We analyze the
impact of incentives to back-order the product on the optimal stocking policies under competi-
tion and determine the conditions that guarantee monotonicity of the equilibrium inventory in
the amount of the incentive o®ered. Our analysis also suggests that, counterintuitevely, compa-
nies might bene¯t from making their inventories \visible" to competitors' customers, since doing
so reduces the level of competition, decreases optimal inventories and simultaneously increases
pro¯ts for both players.

1 Introduction

Recently one of the authors of this paper purchased a new Volkswagen Passat. Living in a small
city, he was restricted to buying a car from one of two local Volkswagen dealers. Unfortunately,
the ¯rst dealer he visited was out of stock on the sought-after Passat con¯guration, but o®ered to
back-order the car and give an additional discount to make up for the delay. Despite the o®er, the
author decided to take his chances at another dealer, where he found the con¯guration of his choice
and made a purchase.

Situations like this occur quite often in various retail and industrial settings: a customer who does
not ¯nd a certain product at the ¯rst-choice retailer might decide to switch to another retailer sell-
ing the same product or a close substitute. A wealth of research literature addresses the problem of
optimally stocking substitutable products under competition. Traditionally, though, this problem
is analyzed in a single-period, newsvendor-like setting, and hence the standard assumptions include
the risk of lost sales and the salvage of remaining products at a loss at the end of the period. An-
other feature of a single-period model that is not preserved in a more general multi-period setting
is the fact that demand for each retailer depends on the competitor's but not the retailer's own
inventory.

In some situations customers are willing to back-order the product in the case of a stock-out. For
example, a car-buying trip rarely results in an immediate purchase since there are many variations
to choose from. Often, the desired car is not available, and the customer faces the choice of back-
ordering the car with the ¯rst dealer or continuing the search at another dealer. Furthermore, the
second dealer may be out of stock too, and the customer faces the dilemma of back-ordering the
car with this second dealer or perhaps returning to the ¯rst dealer and back-ordering the car there.
In such a situation, the total demand faced by each retailer generally depends on the retailer's own
inventory level as well as the competitor's inventory, and thus retailers compete for customers by
setting the stocking quantities of the product. A recent survey of retailers has found that \of the
customers that do not ¯nd what they want on the shelf, 40% either defer the purchase or go to
another store to ¯nd the item" (Andraski and Haedicke [2]). Clearly, operational decisions about
inventory control that must be made in connection with customer switching and back-ordering
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behavior di®er from those that arise in a single-period setting. We seek to better understand the
in°uence of customers' decisions to back-order a product on the optimal stocking policies and the
resulting pro¯ts of the competing retailers, since this in°uence is key to a conceptual understanding
as well as to generating rules for managerial decisions.

Another major issue arising under multi-period competition is giving customers incentives to back-
order: it might be pro¯table for the retailer to o®er a monetary enticement (as in the Volkswagen
example at the beginning) to induce more customers to back-order the product rather than go to the
competitor. In practice, customer incentives are often handled by the marketing department of a
company, while stocking decisions are independently set by the operations department. Hence, it is
important to understand how the marketing decision to o®er a monetary incentive to back-order the
product a®ects the operational decisions involved in selecting an optimal inventory replenishment
policy under competition.

1.1 Summary of the main results

In this paper, we analyze situations in which retailers compete for customers by setting the stock-
ing quantities of a single product with exogenously given prices. Speci¯cally, in a multi-period
setting we consider two retailers that simultaneously make inventory replenishment decisions at
the beginning of each period using a periodic review base-stock policy. Each retailer's demand is a
function of the retailer's own inventory as well as the competitor's inventory in the current period,
but neither demand depends on any past decisions by either of the two ¯rms. Leftover inventory
at the end of the period is carried over to the next period, incurring an inventory holding cost.
We begin the analysis by formulating the multiple-period problem in a quite general setting and
proving that under appropriate regularity conditions an in¯nite horizon policy under which both
retailers employ stationary base-stock inventory levels is a Nash equilibrium, i.e., a competitive
equilibrium can be found by solving an appropriately de¯ned single-period static game.

With respect to customer back-ordering behavior, we formulate four models. Demand that is
unsatis¯ed by both retailers is either completely lost (Model I), or the product is back-ordered
(Models II-IV), with retailers incurring penalty charges for backlogging customers. For the case
of backlogging we further consider the following scenarios. In Model II we assume that in the
case of a stock-out, at, say, retailer i, those customers who are willing to switch to retailer j do
so and are backlogged with retailer j in the case that retailer j cannot satisfy them in the same
period. In Model III we assume that in the case that demand is not ¯lled initially by retailer i,
those customers who are willing to switch do so only if retailer j has inventory to satisfy them in
the same period; otherwise, they stay and are backlogged with retailer i. As we demonstrate, in
the ¯rst three models we analyze situations in which the total (e®ective) demand that a retailer
faces in each period (from the ¯rst-choice and the second-choice customers) is a piece-wise linear
function of the inventory levels of the two retailers. In Model IV we analyze a backlogging problem
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in which the mean of the total demand that each retailer faces is an arbitrary function of the
stocking quantities of the two retailers. This last model may account for e®ects other than demand
substitution. Examples include the stimulating e®ect of inventory on demand. (Wolfe [35] provides
extensive empirical data to show that weekly sales of some merchandise are strongly correlated
with the weekly beginning inventory. See also Balakrishnan et al. [5].)

For all four models, we derive tractable analytical solutions, and, whenever we are able to, deter-
mine conditions that guarantee the existence/uniqueness of a stationary equilibrium. We show that
Model I results in higher inventories and lower pro¯ts than Model II. We also conduct sensitivity
analysis of equilibrium solutions to changes in the problem parameters. Numerical experiments
suggest that di®erent customer back-ordering behavior may result in drastically di®erent inventory
decisions and pro¯ts. In addition to making an analytical comparison between Model I and II, we
demonstrate numerically that Model II results in higher inventories and lower pro¯ts than Model
III. Therefore, for certain problem parameters it might be in retailers' interest to invest in customer
service so as to transition from Model I to Model II. To transition from Model II to Model III,
it might be worthwhile to invest in an information system that makes the competitor's inventory
visible to customers (if doing so is practical). This result is somewhat counterintuitive: while in
practice competitors often tend to limit the information exchange, we ¯nd that inventory visibility
mitigates competitive overstocking by reducing customer switching, which in turn results in lower
inventories and higher pro¯ts.

As we noted above, it is sometimes reasonable to expect that the number of customers willing to
back-order a product is a function of a monetary incentive that accompanies a back order. We
therefore analyze the impact of o®ering a monetary incentive on the optimal inventory policy by
introducing an appropriate relationship between the proportion of backlogging customers and the
incentive to back-order. Our main result is that, under some technical assumptions, in Models II
and IV the competitors' optimal inventory policies are monotone in the amount of the incentive
o®ered. Speci¯cally, an increase in the incentive o®ered by retailer i leads to an increase in retailer
i's inventory and a decrease in retailer j's inventory. Numerical experiments show that, if these
technical assumptions are not satis¯ed, this monotonicity is not necessarily preserved. Moreover,
if retailers' inventories are visible to competitors' customers, as in Model III, then o®ering any
incentive at all may be detrimental.

The contributions of this paper are twofold. First, we analyze the inventory policies of two com-
peting retailers and make progress in considering four di®erent nonlinear back-ordering scenarios
that arise as a result of competition and customer switching behavior. As such, our paper extends
the stream of research on static inventory competition with lost sales by considering a multi-period
duopolistic environment and analyzing the impact of customer backlogging behavior, phenomena
that previous papers have not studied. As we show, these issues have important implications for
¯rms' pro¯tability. Second, we address the issue of giving customers an incentive to back-order the
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product and provide conditions that guarantee monotonicity of equilibrium inventory levels in such
incentive.

1.2 Literature survey

A large body of operations literature studies the common phenomenon whereby customers sub-
stitute one product with another or switch from one retailer to another when their ¯rst-choice
product or retailer is stocked out. The stream of literature most relevant to our work is the one
that considers substitution under competition, i.e., when substitutable products are sold by dif-
ferent companies that compete for customers. In a single-period (newsvendor) setting, Parlar [26]
models the inventory decisions of two competing retailers selling substitute products and shows the
existence and uniqueness of the Nash equilibrium. Wang and Parlar [34] extend the model to three
retailers. Karjalainen [13], Lippman and McCardle [18], Mahajan and van Ryzin [19, 20], Netessine
and Rudi [24] and Netessine and Zhang [25] further study this problem for an arbitrary number of
retailers. Anupindi and Bassok [3], Avsar and Baykal-Gursoy [4] and Nagarajan and Rajagopalan
[23] analyze the impact of substitution in a multi-period setting with lost sales. To the best of our
knowledge, this line of research has thus far been constrained within the single-period framework
(or a multi-period framework with an assumption of lost sales), where the modeling of demand
backlogging is not an issue and hence di®ers from our multiple-period problem. Papers by Parlar
[26], Wang and Parlar [34], Karjalainen [13], Netessine and Rudi [24] and Anupindi and Bassok
[3] model customer switching behavior similarly to our Model I, where we assume that there is
no back-ordering. Lippman and McCardle [18] have a more general model with several rules for
allocating demand to competing retailers. Mahajan and van Ryzin [19], [20] model demand as a
stochastic sequence of heterogeneous customers who choose dynamically among available products
based on utility maximization criteria. The closest to our work is a recent paper by Li and Ha [16]
in which the authors consider a two-period variant of the inventory competition problem and allow
back-ordering with the ¯rst-choice retailer only. However, a common feature of all of these papers
is that the e®ective demand for each retailer depends only on competitors' inventory. As we show
in Models II-IV, in a more general case of multi-period competition with backlogging, e®ective de-
mand should also depend on the retailer's own inventory (due to back-ordering) so that additional
complexity is introduced into the analysis and optimality conditions. Hence, single-period inventory
competition papers do not capture some of the e®ects that we analyze. A large portion of research
on demand substitution focuses on centralized inventory management decisions. We refer Inter-
ested readers to Mahajan and van Ryzin [19] for a comprehensive review of this stream of literature.

Our work ¯ts within the stream of research on stochastic multi-period games that Shapley [30] initi-
ated with his seminal paper. While a number of papers model single-period inventory competition,
an analysis of multi-period stochastic games involving inventory decisions by competing retailers
is scarce: except for work that includes Kirman and Sobel [14] almost 30 years ago and recent
work by Bernstein and Federgruen [6], the literature has been rather silent on the issues speci¯c
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to multi-period oligopolies with inventories. Kirman and Sobel [14] consider an oligopoly in which
retailers set prices and inventory levels but compete on price only (that is, the demand faced by
each of two retailers is a function of both retailers' prices but not their inventories). They show that
the stationary mixed pricing policy in which ¯rms randomize their prices is a Nash equilibrium.
Bernstein and Federgruen [6] analyze a similar model. They recognize that randomized policies are
undesirable in practice, determine the conditions for the existence of stationary pure strategy equi-
librium policies, and further analyze the game under more speci¯c assumptions about the nature of
competition. The major di®erence between these two papers and our work is that in their models
retailers compete on price (even though inventory decisions are made as well), whereas we take
prices as exogenous (a rather standard approach in operations literature { the same assumption
is made in all the related single-period competition papers cited above) and focus on competition
for inventory (product availability). One standard justi¯cation for taking prices as exogenous is
that in many situations prices are ¯xed for long periods of time, whereas inventory replenishment
decisions are made much more frequently.

Competition for inventory among ¯rms located in di®erent echelons of the supply chain has at-
tracted signi¯cant attention among researchers. Representative publications in this stream include
Cachon and Zipkin [7], Lee and Whang [15], Chen [8] and Porteus [27]. In all of these papers the
supplier and the buyer in a two-stage serial supply chain independently choose base-stock policies
resulting in suboptimal decisions from a supply chain perspective. Clearly, the setting for such a
problem di®ers greatly from ours, where competition among retailers takes place within the same
supply chain echelon. With regard to customer back-ordering behavior under competition, we
are aware only of previous work that considers forms of back-ordering that are no di®erent from
noncompetitive back-ordering, i.e., the customer either back-orders the product or leaves without
making a purchase (as in Kirman and Sobel [14], Bernstein and Federgruen [6], and Cachon and
Zipkin [7]). To the best of our knowledge there is no previous work that considers situations where
the customer can switch to a competitor and back-order the product there. A large body of liter-
ature in marketing extensively studies the customer choice process (see, for example, Chapter 2 in
Lilien et. al. [17]) and hence is related to our models of di®erent back-ordering behavior. However,
the marketing literature rarely accounts for inventory issues and does not explicitly model back-
ordering.

With regard to incentives to back-order, the closest work is DeCroix and Arreola-Risa [10], who
also assume that the number of customers willing to back-order the product can be in°uenced by
monetary incentives. They, however, consider only a single monopolistic company. Furthermore,
our modeling technique di®ers from theirs and, unlike DeCroix and Arreola-Risa [10], we do not
address the optimal incentive that has to be o®ered. Another closely related paper is Moinzadeh
and Ingene [21], which considers a company simultaneously setting inventory levels for two di®erent
but substitutable products: one for immediate and one for delayed delivery. This work is close to
ours in that the authors assume that the price for the product with delayed delivery a®ects the

6



number of customers who are willing to stay with the retailer rather than go elsewhere. The di®er-
ence, however, is that we consider a competitive problem setting and substitution occurs between
the companies rather than within the company. Cheung [9] considers a continuous review model
in which a discount can be o®ered to customers willing to accept the back-ordering option even
before the inventory is depleted, but the proportion of customers back-ordering the product is not
a function of a monetary incentive. The work by Gans [11] is also related to incentives to back-
order, since it provides insight into the e®ect of switching behavior on the service levels o®ered by
competing suppliers. However, Gans focuses on customer loyalty as a result of past experience with
the company, whereas our paper discusses the immediate impact of stock-outs. As such, the model
of Gans is more dynamic than ours.

The remainder of the paper is organized as follows. Section 2 contains the multiple-period model
formulation for two competing retailers, and Section 3 presents our results for the di®erent backlog-
ging scenarios. We demonstrate how o®ering customers a monetary incentive to back-order a®ects
the equilibrium inventory policy in Section 4. We report numerical experiments in Section 5 and
make concluding remarks in Section 6.

2 Multi-period model formulation

We consider a competitive duopoly. For simplicity, we assume that there are in¯nitely many
time periods (a ¯nite-horizon model can be similarly analyzed). At the beginning of each period
t = 1; 2; :::, two retailers review their inventories and simultaneously make replenishment decisions.
We let xti denote the initial inventory of retailer i = 1; 2 at the onset of period t. We let Qti denote
the order quantity chosen by retailer i in period t. We assume that the inventory replenishment is
instantaneous so that yti = xti + Qti, the order-up-to inventory level, is the total inventory available
at retailer i at the beginning of period t. Then, the constraint Qti ¸ 0 is equivalent to yti ¸ xti, and
the decision of choosing an order quantity Qti is equivalent to choosing an order-up-to level yti for
a given initial inventory xti.

We let Dti denote the exogenously given random demand for the product of retailer i in period t
from the customers for whom retailer i is a ¯rst choice. We assume that the ¯rst-choice demand
does not depend on any past decisions made by the two competing ¯rms. This is a strong assumption
because in practice customers may condition their decision to buy from the ¯rm on their past ex-
perience with the ¯rm and its competitor. Relaxing this assumption, however, greatly complicates
the analysis because the players in this case might condition their behavior on their past decisions.
Hence, many equilibrium outcomes arise. We assume such customer behavior away, which is plau-
sible in situations in which each particular customer purchases only once (or very rarely, as is the
case with cars) and his experience is not communicated to other customers (i.e., word-of-mouth
advertising does not have a strong e®ect). Bernstein and Federgruen [6] and Kirman and Sobel
[14] make similar assumptions. We further assume that the demand distribution for each retailer is
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estimated using the exogenously given prices, which accounts for the existing price di®erential (if
any). We assume that Dti is a nonnegative continuous random variable. Continuity of demand is
a common abstraction that is used to simplify the exposition since in practice demand is discrete.
Further, we let Dti denote the total (e®ective) demand for the product of retailer i from both the
¯rst-choice customers and the second-choice customers, i.e., customers who prefer retailer j but
switch to retailer i because retailer j is out of stock. As becomes apparent shortly, in the most
general case Dti depends on the beginning inventory of retailer j in period t, namely ytj, as well as
on the beginning inventory of retailer i, namely, yti , where i; j = 1; 2 and i 6= j (i; j = 1; 2 hereafter).
That is, the demand realization Dti is a function of yti and ytj , which is denoted by Dti

³
yti ; y

t
j

´
. In

the subsequent sections we present several models of Dti
³
yti ; y

t
j

´
. For convenience we often omit

the arguments and simply write Dti. Note that this very general de¯nition of the total demand
that retailer i faces allows for an arbitrary dependence of demand on starting inventory levels. For
example, Dti

³
yti ; y

t
j

´
may include the dependence of demand on inventory levels due not only to

substitution, but also to the stimulating e®ects of inventory on demand.

We let retailer i have the following stationary cost and revenue parameters: unit cost of the product
ci, unit revenue ri, unit inventory holding cost per period hi, unit cost of backlogging demand per
period pi1, and discount factor per period ¯i. Also, fX denotes the density function of random
variable X . We ¯rst consider the problem with the assumption of lost sales. The inventory balance
equations are:

xt+1
i =

³
yti ¡ Dti

´+
; i = 1; 2; t = 1; 2; :::

When the order-up-to levels
³
yti ; y

t
j

´
are chosen by the two retailers in period t, retailer i's single-

period expected net pro¯t under the lost sales assumption is given by

E
·
rimin

³
yti ; ¹Dti

´
¡ hi

³
yti ¡ ¹Dti

´+
¡ ciQti

¸
; i = 1; 2; t = 1; 2; :::

A retailer's total pro¯t is the expectation of the sum of his discounted intra-period pro¯t. Starting
with the initial inventories x1 ´ ¡

x11; x12
¢

for the retailers in period 1, let ¼i
¡
x1

¢
denote the total

in¯nite-horizon pro¯t of retailer i. When the two retailers follow an arbitrary feasible ordering
policy

©¡
yt1; yt2

¢
; t = 1; 2; : : :

ª
, we can write retailer i's total pro¯t for the lost-sales case as

¼i
³
x1

´
= E

1X

t=1
¯t¡1i

·
rimin

³
yti ; ¹Dti

´
¡ hi

³
yti ¡ ¹Dti

´+
¡ ciQti

¸

= E

( 1X

t=2
¯t¡1i

·
rimin

³
yti ; ¹Dti

´
¡ hi

³
yti ¡ ¹Dti

´+
¡ ci

µ
yti ¡

³
yt¡1i ¡ ¹Dt¡1i

´+¶¸

+rimin
³
y1i ; ¹D1

i

´
¡ hi

³
y1i ¡ ¹D1

i

´+
¡ ci

³
y1i ¡ x1i

´¾

1pi represents the compensation paid to the customer who is willing to backlog the product. We assume that all
backlogged demand is immediately satis¯ed in the next period.
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= cix1i + E
1X

t=1
¯t¡1i

·
rimin

³
yti ; ¹Dti

´
¡ hi

³
yti ¡ ¹Dti

´+
¡ ciyti + ¯ici

³
yti ¡ ¹Dti

´+¸

= cix1i + E
1X

t=1
¯t¡1i

·
(ri ¡ ci)yti ¡ (ri + hi ¡ ¯ici)

³
yti ¡ ¹Dti

´+¸
; i = 1; 2;

where the second equality holds, since Qti = yti ¡ xti and xti =
³
yt¡1i ¡ ¹Dt¡1i

´+
for t ¸ 2; the last

equality uses the fact that minfa; bg = a ¡ (a ¡ b)+. Thus, we can write

¼i
³
x1

´
= cix1i + E

1X

t=1
¯t¡1i Gti

³
yti ; y

t
j

´
; i; j = 1; 2;

where

Gti(y
t
i ; y
t
j) = E

·
(ri ¡ ci)yti ¡ (ri + hi ¡ ¯ici)

³
yti ¡ ¹Dti

´+¸
; i; j = 1; 2; t = 1; 2; :::

This expression can be rewritten as

Gti(y
t
i ; y
t
j) = (ri¡ci)E ¹Dti¡E

·
(ri ¡ ci)

³
¹Dti ¡ yti

´+
+ (hi + (1 ¡ ¯i) ci)

³
yti ¡ ¹Dti

´+¸
; i; j = 1; 2; t = 1; 2; :::

Using the notation mi = ri¡ ci for unit margin, uLi = ri¡ ci for unit underage cost in the lost-sales
model (although in this case mi = uLi , the reason to use a di®erent notation for the same quantity
becomes clear shortly), and oi = hi + ci(1 ¡ ¯i) for unit overage cost, we rewrite the single-period
objective function in a ¯nal form:

Gti(y
t
i ; y
t
j) = E

·
mi ¹Dti ¡ uLi

³
¹Dti ¡ yti

´+
¡ oi

³
yti ¡ ¹Dti

´+¸
; i; j = 1; 2; t = 1; 2; ::: (1)

Note that in the case of backlogging, the inventory balance equations are xt+1
i = yti ¡ ¹Dti ; i = 1; 2

and the single-period expected net pro¯t is determined by

E
·
ri ¹Dti ¡ hi

³
yti ¡ ¹Dti

´+
¡ pi

³
¹Dti ¡ yti

´+
¡ ciQti

¸
; i = 1; 2; t = 1; 2; :::

It is readily veri¯ed that in the case of backlogging we arrive at the same expression for a single-
period objective function (1), with the only di®erence being that uLi is replaced by uBi = pi¡ci(1¡¯i)
(there is an explicit backlogging penalty). Hence, for both the lost-sales and backlogging cases we
have a generic expression for a single-period objective function (1). When deriving results that are
common to both models, we write ui for the unit-underage cost. We also assume throughout the
paper that uBi · mi:

2.1 Optimality of the stationary inventory policy

We suppose that Dti ; t = 1; 2; ::: are i:i:d: random variables for i = 1; 2, that is, that demand is
independent across periods but not necessarily independent between retailers. We assume that
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Dti ; t = 1; 2; ::: are nonnegative and possess a continuous di®erentiable distribution function that
is stationary over time. If that is the case, then Gti(y

t
i ; y
t
j) = Gi(yti ; y

t
j) since the order-up-to levels

are achievable. We let ¢ denote the two-person, noncooperative, static (single-period) game in
which player i (i = 1; 2) chooses yi and her payo® function is Gi(yi; yj) as de¯ned in (1). A pure-
strategy Nash equilibrium of this game is such a pair of base-stock policies that no player wants
to deviate unilaterally from it. A pure-strategy Nash equilibrium of the multi-period game is a
sequence of such pairs for every period. We let (¹y1; ¹y2) denote a pure-strategy equilibrium point of
the static game ¢, provided such a point exists. Kirman and Sobel [14] demonstrate that there is a
randomized stationary policy in a price game where stocking decisions of retailers a®ect their own
(but not their competitor's) pro¯t. We now establish that in our inventory game the stationary,
nonrandomized inventory policy is a Nash equilibrium.

Proposition 1 Suppose that demands Dti in each period are i.i.d. random variables, functions
¹Dti

³
yti ; y

t
j

´
have stationary dependence on

³
yti ; y

t
j

´
; ¯i < 1 and

¡
x11; x12

¢ · (¹y1; ¹y2) : Then the sta-
tionary base-stock inventory policy such that

¡
yt1; yt2

¢
= (¹y1; ¹y2) for all t = 1; 2; : : : ; provided it exists,

is a pure-strategy Nash equilibrium in the multi-period game.

Proof: The sequential policy
¡
yt1; yt2

¢
= (¹y1; ¹y2) for all t = 1; 2; : : : is term-by-term optimal for

each player i to maximize its pro¯t ¼i
¡
x1

¢
. Therefore, to prove the proposition it is su±cient to

prove feasibility, i.e.,
¡
xt1; xt2

¢ · ¡
yt1; yt2

¢
= (¹y1; ¹y2) for all t. By assumption in the proposition,

¡
x11; x12

¢ · (¹y1; ¹y2) ; so
¡
y11; y12

¢
= (¹y1; ¹y2) is feasible. Then, for the case of back-ordering (and

similarly for the lost-sales case),

³
xt+1
1 ; xt+1

2

´
=

³
yt1; y

t
2

´
¡

³
¹Dt1; ¹Dt2

´
= (¹y1; ¹y2) ¡

³
¹Dt1; ¹Dt2

´
· (¹y1; ¹y2) ; i = 1; 2; t = 1; 2; :::

since
¡ ¹Dt1; ¹Dt2

¢ ¸ 0. So
³
yt+1
1 ; yt+1

2

´
= (¹y1; ¹y2) is again feasible, and the solution is stationary

according to Chapter 9, \Sequential Games," in Heyman and Sobel [12]. 2

It is worth noting that, even if the equilibrium in a single-period game ¢ is unique, this fact alone
does not guarantee that the multi-period equilibrium is unique as well, since other more complex
nonstationary strategies may arise as a Nash equilibrium. However, since stationary base-stock
inventory policies are intuitively appealing, simple to implement in practice and standard in the
operations literature, it is particularly important to know that such a strategy is a Nash equilibrium.
From now on we focus on stationary equilibria in pure strategies, which means that it su±ces to
characterize equilibria in a static game (1). For the rest of the paper we drop time superscript
t whenever appropriate and analyze a static single-period game with appropriate cost/revenue
parameters and demand distributions.
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3 Models of customer backlogging behavior

First, it is important to ensure that a Nash equilibrium exists in a single-period game. Lippman and
McCardle [18] prove the existence of a Nash equilibrium in a single-period game in a model where
each retailer's demand depends on a competitor's (but not the retailer's own) inventory. Since our
model is more general in this respect, their proof is not directly applicable to our problem setting.
The next two propositions provide quite general conditions for the existence of a pure-strategy
Nash equilibrium in the static game with demand substitution.

Proposition 2 A pure-strategy Nash equilibrium exists in a static game ¢ if each realization of
the single-period demand ¹Di faced by each retailer is concave in the retailer's own inventory yi.

Proof: The su±cient conditions for the existence of a pure-strategy Nash equilibrium are (1)
compact, convex strategy sets, (2) the continuity of the players' payo®s and (3) the concavity of
each player's objective function (Moulin [22]). Condition (1) is satis¯ed by choosing a large-enough
closed set [0; M ] £ [0;M ] containing the players' strategies. Condition (2) is satis¯ed since we
assume continuity of distribution functions. Finally, to show condition (3) we rewrite the objective
function (1) as follows:

Gi(yi; yj) = E
h
mi ¹Di ¡ ui

¡ ¹Di ¡ yi
¢+ ¡ oi

¡
yi ¡ ¹Di

¢+i

= E
£
mi ¹Di ¡ ui ¹Di + uimin

¡ ¹Di; yi
¢ ¡ oiyi + oimin

¡ ¹Di; yi
¢¤

= E
£
(mi ¡ ui) ¹Di + (ui + oi) min

¡ ¹Di; yi
¢ ¡ oiyi

¤
; i; j = 1; 2: (2)

A standard result from Rockafellar [28] is that a point-wise minimum of an arbitrary collection of
concave functions is a concave function. Hence, min

¡ ¹Di; yti
¢

is a concave function, and so Gi(yi; yj)
is an expectation of a sum of concave functions that is itself a concave function (recall that mi ¸ ui).
2

Sometimes requiring concavity, as in Proposition 2, is too restrictive. Alternatively, one may employ
a technique similar to that of Lippman and McCardle [18] and show the existence of an equilibrium
through supermodularity. The following proposition makes precise the regularity condition that is
required in this case.

Proposition 3 A pure-strategy Nash equilibrium exists in a static game ¢ if each realization of
the single-period demand ¹Di faced by each retailer is submodular in variables (yi; yj) and

¡ ¹Di ¡ yi
¢

is a decreasing function of yi; yj.

Proof: The su±cient conditions for the existence of a pure-strategy Nash equilibrium are (1)
the compactness of the strategy space, (2) the continuity of the players' payo®s and (3) the su-
permodularity of each player's objective function (Topkis [32]). Conditions (1) and (2) are shown
similarly to Proposition 2. To show (3) for a two-player game we can rede¯ne variables and prove
supermodularity in (yi; ¡yj); which is equivalent to proving submodularity in (yi; yj): Consider
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expression (2). The ¯rst and third terms are clearly submodular, so it remains to show that the
second term is submodular as well. Rewrite the second term as follows:

(ui + oi)min
¡ ¹Di; yi

¢
= (ui + oi)min

¡ ¹Di ¡ yi; 0
¢
+ (ui + oi) yi:

In this expression, min
¡ ¹Di ¡ yi; 0

¢
is a composition of the concave increasing function min(¢; 0)

with submodular function ¹Di ¡ yi that is monotone. According to Table 1 in Topkis [31] such a
composition is itself a submodular function. Hence, (ui + oi)min

¡ ¹Di; yi
¢

is a submodular function
as well. Finally, Gi(yi; yj) is an expectation of a sum of submodular functions that is itself a sub-
modular function (see Topkis [32]). 2

Proposition 3 generalizes the existence result (Theorem 1) of Lippman and McCardle [18] to the
situation in which the retailers' inventories a®ect both their own and their competitor's demand.
Notice that the requirement that

¡ ¹Di ¡ yi
¢

is decreasing in yi; yj is quite intuitive. We expect that
¹Di is increasing in retailer's own inventory yi but not too fast: a unit increase in inventory should
not generate more than one extra unit of demand. Also, it is quite natural that under competition
¹Di is decreasing in yj:

It is hard to obtain any further analytical results without restricting ourselves to a somewhat
narrower class of e®ective demand functions ¹Di(yi; yj): We now consider four speci¯c models of
backlogging under competition. In Models I-III we assume that the products of the two retailers
are partially substitutable in the customers' eyes. Customers arrive at the store with a product
preference that does not depend on current or past inventory levels. Each customer has a ¯rst-
choice product. If this product is out of stock, only a certain percentage of customers are willing
to purchase the other product. More speci¯cally, let ®ij, 0 · ®ij · 1, denote the deterministic
proportion of retailer i's customers who are willing to buy from (switch to) retailer j in the case
that retailer i experiences a stock-out during this period. We assume that this proportion accounts
for the price di®erential between the two ¯rms. This approach to modeling substitution is a
common abstraction that has been used extensively in the literature (see Netessine and Rudi [23] for
references). Whenever it is necessary to di®erentiate among the three models, we use superscripts
I; II and III.

3.1 Model I: lost sales

The ¯rst model is for lost sales. After accounting for the e®ect of product substitution, we have
the following equation for inventory transition:

xt+1
i =

µ
yti ¡ Dti ¡ ®ji

³
Dtj ¡ ytj

´+¶+
=

³
yti ¡ ¹Dti

´+
; i; j = 1; 2; t = 1; 2; :::;

12



where ¹Dti = Dti + ®ji
³
Dtj ¡ ytj

´+
is the e®ective single-period demand for retailer i. Note that the

single-period static model with lost sales is essentially identical to the one analyzed by Parlar [26]
and Netessine and Rudi [24]. To complete the exposition, we reproduce the optimality condition
here. Netessine and Rudi [24] demonstrate that there exists a unique, globally stable (see Moulin
[22] page 129 for the de¯nition of stability) pure-strategy Nash equilibrium in this game, and it is
characterized by the following ¯rst-order conditions:

Pr( ¹Di < ¹yi) =
uLi

uLi + oi
; i = 1; 2: (3)

Note that in this case the total demand faced by the retailer is a piecewise linear function of the
competitor's inventory (which is captured by ¹Di) but not a function of the retailer's own inventory.

3.2 Model II: back-ordering with the second-choice retailer

In this model, we assume that in the instance where retailer i is out of stock, those customers
who are willing to switch from retailer i to retailer j, i.e., ®ij

¡
Dti ¡ yti

¢+, do so and are backlogged
with retailer j if not ¯lled by retailer j in the same period. Customers that do not switch, i.e.,
(1 ¡ ®ij)

¡
Dti ¡ yti

¢+ ; are backlogged with retailer i. This scenario represents a situation in which
the customer can observe the inventory of only one retailer at a time. The inventory transition
equation can be written as

xt+1
i = yti ¡ Dti + ®ij

³
Dti ¡ yti

´+
¡ ®ji

³
Dtj ¡ ytj

´+
= yti ¡ ¹Dti ; i; j = 1; 2; t = 1; 2; :::

where ¹Dti = Dti ¡ ®ij
¡
Dti ¡ yti

¢+ + ®ji
³
Dtj ¡ ytj

´+
. Clearly, each retailer's demand is a function of

the competitor's as well as the retailer's own inventory, which makes this model quite di®erent from
the previous literature on single-period inventory competition. The next proposition establishes
the uniqueness of the competitive equilibrium without any additional assumptions.

Proposition 4 There exists a unique, globally stable pure-strategy Nash equilibrium in a static,
single-period game in Model II. It is characterized by the following set of optimality conditions:

Pr( ¹Di < ¹yi) =
uBi

uBi + oi
+ ®ij

mi ¡ uBi
uBi + oi

Pr(Di > ¹yi); i; j = 1; 2: (4)

Proof: The expression for the e®ective demand can be rewritten as follows:

¹Di = Di ¡ ®ij (Di ¡ min (Di; yi)) + ®ji (Dj ¡ yj)+

= Di (1 ¡ ®ij) + ®ij min (Di; yi) + ®ji (Dj ¡ yj)+ ; i; j = 1; 2;

where min (Di; yi) is a concave function (Rockafellar [28]). Hence, ¹Di(yi; yj) is concave in yi for any
realization of demand, and by Proposition 2 there exists at least one pure-strategy Nash equilibrium.
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Furthermore, the objective function for Model II can be expanded as follows:

Gi(yi; yj) = E[(mi ¡ uBi ) ¹Di + (uBi + oi)min( ¹Di; yi) ¡ oiyi]

= E[(mi ¡ uBi )
³
Di ¡ ®ij (Di ¡ yi)+ + ®ji (Dj ¡ yj)+

´

+(uBi + oi)min(Di ¡ ®ij (Di ¡ yi)+ + ®ji (Dj ¡ yj)+ ; yi) ¡ oiyi]; i; j = 1; 2:

Using the technique for taking derivatives described in Rudi [29], the ¯rst derivatives are found as
follows:

@Gi(yi; yj)
@yi

= ®ij(mi ¡ uBi ) Pr(Di > yi) + (uBi + oi)Pr( ¹Di > yi)

+®ij(uBi + oi)Pr( ¹Di < yi;Di > yi) ¡ oi; i; j = 1; 2:

It is readily veri¯ed that Pr( ¹Di < yi; Di > yi) = 0: Hence, the ¯rst derivative is

@Gi(yi; yj)
@yi

= ®ij(mi ¡ uBi )Pr(Di > yi) + (uBi + oi) Pr( ¹Di > yi) ¡ oi; i; j = 1; 2;

and the optimality conditions follow. Furthermore, a su±cient condition for the uniqueness of the
Nash equilibrium is that the slopes of the retailers' best-response functions never exceed 1 in an
absolute value (see Moulin [22]), which is equivalent to the following condition:

¯̄
¯̄
¯
@2Gi(yi; yj)

@yi@yj

¯̄
¯̄
¯ <

¯̄
¯̄
¯
@2Gi(yi; yj)

@y2i

¯̄
¯̄
¯ ; i; j = 1; 2: (5)

The second-order derivatives needed to verify these conditions are

@2Gi(yi; yj)
@yi@yj

= ¡®ji(uBi + oi)f ¹DijDj>yj (yi)Pr(Dj > yj):

Furthermore,

@2Gi(yi; yj)
@y2i

= ¡®ij(mi ¡ uBi )fDi(yi) ¡ (uBi + oi)f ¹Di(yi)

+®ij(uBi + oi)f ¹DijDi>yi(yi) Pr(Di > yi)

= ¡®ij(mi ¡ uBi )fDi(yi) ¡ (uBi + oi)f ¹Di(yi)

because f ¹DijDi>yi(yi) Pr(Di > yi) vanishes. To see that the required inequality holds, notice that

f ¹Di(yi) ¸ f ¹DijDj>yj(yi) Pr(Dj > yj):

This completes the proof. 2
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Note that in this model the total demand faced by the retailer is a piecewise linear function of the
competitor's inventory as well as of the retailer's own inventory. The ¯rst-order conditions (4) we
obtained can be interpreted as follows. First, without the second term on the right, the solution
becomes the same as in Model I where the e®ective demand that retailer i faces depends only on
the competitor's inventory. The extra term appears because e®ective demand also depends on the
retailer's own inventory. That is, if demand in the current period exceeds inventory (Di > yi); then
customers switch to the competitor, resulting in the expected relative loss ®ij

mi¡uBi
uBi +oi

Pr(Di > ¹yi) for
player i. Hence, the newsvendor ratio on the right-hand side is adjusted up to account for this e®ect.

We now compare Models I and II in terms of the level of service o®ered to customers as well
as inventory policies. To this end, we de¯ne the equilibrium in-stock probability for ¯rm i as
Pr

³
Di < yi

´
:

Proposition 5 Equilibrium in-stock probabilities are higher in Model I than in Model II, Pr
³
DIi < yIi

´
¸

Pr
³
DIIi < yIIi

´
; i = 1; 2: Furthermore, if the problem is symmetric, then equilibrium order-up-to

levels are higher in Model I than in Model II, yIi ¸ yIIi ; i = 1; 2, and equilibrium pro¯ts are lower
in Model I than in Model II, GIi (¹y

I
i ; ¹yIj ) · GIIi (¹yIIi ; ¹yIIj ); i = 1; 2:

Proof: For Model II, we notice that

Pr( ¹Di < ¹yi) = Pr(Di ¡ ®ij (Di ¡ ¹yi)+ + ®ji (Dj ¡ ¹yj)+ < ¹yi)

= Pr((1 ¡ ®ij) (Di ¡ ¹yi) + ®ji (Dj ¡ ¹yj)+ < 0; Di > ¹yi)

+ Pr(Di + ®ji (Dj ¡ ¹yj)+ < ¹yi;Di < ¹yi)

= Pr(Di + ®ji (Dj ¡ ¹yj)+ < ¹yi;Di < ¹yi)

= Pr(Di + ®ji (Dj ¡ ¹yj)+ < ¹yi):

Furthermore, from (4) we have

Pr(Di + ®ji (Dj ¡ ¹yj)+ < ¹yi) = ®ij
mi ¡ uBi
uBi + oi

Pr(Di > ¹yi) +
uBi

uBi + oi

· ®ij
mi ¡ uBi
uBi + oi

Pr(Di + ®ji (Dj ¡ ¹yj)+ > ¹yi) +
uBi

uBi + oi
:

After simplifying, we obtain

Pr( ¹Di < ¹yi) = Pr(Di + ®ji (Dj ¡ ¹yj)+ < ¹yi) ·
®ij

³
mi ¡ uBi

´
+ uBi

®ij
¡
mi ¡ uBi

¢
+ uBi + oi

:

In order to show that the in-stock probability is higher in Model I, it remains to show that

Pr( ¹Di < ¹yi) =
uLi

uLi + oi
¸

®ij
³
mi ¡ uBi

´
+ uBi

®ij
¡
mi ¡ uBi

¢
+ uBi + oi

, uLi ¸ ®ij
³
mi ¡ uBi

´
+ uBi :
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This is clearly the case because uLi = mi ¸ uBi and ®ij · 1. To compare order-up-to levels, we note
that

Pr( ¹DIi < ¹yIi ) = Pr(Di + ®ji
³
Dj ¡ ¹yIj

´+
< ¹yIi ) ¸ Pr(Di + ®ji

³
Dj ¡ ¹yIIj

´+
< ¹yIIi ) = Pr( ¹DIIi < ¹yIi ):

Since the problem is symmetric, we know that one of the equilibria must be symmetric. Moreover,
since the equilibrium is unique, it follows that this unique equilibrium is symmetric. If we restrict
our attention to the symmetric equilibria, only two situations need to be analyzed: ¹yIi · yIIi ; ¹yIj ·
yIIj and ¹yIi ¸ yIIi ; ¹yIj ¸ yIIj : The ¯rst case clearly does not satisfy the above inequality thus we
are left with ¹yIi ¸ yIIi ; ¹yIj ¸ yIIj : Finally, to compare pro¯ts we note that GIi (¹y

I
i ; ¹yIj ) · GIi (¹y

I
i ; ¹yIIj )

because more demand is available for player i; and furthermore GIi (¹y
I
i ; ¹yIIj ) · GIIi (¹yIi ; ¹yIIj ); because

orders are backlogged in Model II. Finally, it is quite clear that GIIi (¹yIi ; ¹yIIj ) · GIIi (¹yIIi ; ¹yIIj ); and
the result follows. 2

It would seem that in Model I retailers face a total demand that is smaller than in Model II,
and therefore Model II should result in higher inventories. But on the contrary, we see that, if
unsatis¯ed customers back-order with the second-choice retailer, competition is reduced and both
retailers tend to establish lower levels of service as well as lower order-up-to levels because the
danger of losing customers to a competitor is reduced, leading to the reduction in competitive
overstocking. As a result, single-period models with inventory competition are likely to overstate
the e®ect of overstocking because the possibility of back-ordering dampens the competition through
reduction in the number of customers who switch between competitors.

3.3 Model III: back-ordering with the ¯rst-choice retailer

The second backlogging case is to assume that, if their orders are not ¯lled by one retailer, those
customers who are willing to switch do so only if the other retailer has inventory to satisfy them
in the same period; otherwise they stay and are backlogged with the original retailer. Notice that,
intuitively, this model is in some sense less competitive than Model II since customers switch less
often. The number of customers that actually switch from i to j is limited by the number of
customers willing to switch from i to j and the number of customers that can be served by retailer
j immediately, which is given by

min
½

®ij
³
Dti ¡ yti

´+
;
³
ytj ¡ Dtj

´+¾
:

Thus, we have the following inventory transition equation:

xt+1
i = yti ¡ Dti + min

½
®ij

³
Dti ¡ yti

´+
;
³
ytj ¡ Dtj

´+¾
¡ min

½
®ji

³
Dtj ¡ ytj

´+
;
³
yti ¡ Dti

´+¾

= yti ¡ ¹Dti ; i; j = 1; 2; t = 1; 2; :::
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where ¹Dti = Dti ¡ min
½

®ij
¡
Dti ¡ yti

¢+ ;
³
ytj ¡ Dtj

´+¾
+ min

½
®ji

³
Dtj ¡ ytj

´+
;
¡
yti ¡ Dti

¢+
¾

. Due to

the complexity of the expression for e®ective demand, certain di±culties arise with the analysis
of this model. As a result, we are able only to obtain optimality conditions but not to prove the
existence of an equilibrium. To see the complexity of this model, note that the e®ective demand
in Model III is generally not concave in yi since the term ¡ min

n
®ij (Di ¡ yi)+ ; (yj ¡ Dj)+

o
is, in

general, neither concave nor convex in yi: Hence, we cannot employ Proposition 2. Moreover, one
can also verify that demand in this model is generally not submodular in (yi; yj) since the same
term is supermodular in (yi; yj); so we cannot employ Proposition 3 either. However, the optimality
conditions that we obtain shortly allow us to ¯nd the equilibrium numerically. In our numerical
experiments the equilibrium in Model III always exists and is always unique.

Proposition 6 Suppose there exist interior equilibria (possibly multiple) in Model III. Then all
equilibria satisfy the following set of optimality conditions:

Pr( ¹Di < ¹yi) =
uBi

uBi + oi
+

mi ¡ uBi
uBi + oi

®ij Pr

Ã
¹yi < Di < ¹yi +

¹yj ¡ Dj
®ij

!
(6)

+
mi ¡ uBi
uBi + oi

Pr (¹yi ¡ ®ji (Dj ¡ ¹yj) < Di < ¹yi) ; i; j = 1; 2:

Proof: The objective function for Model III can be expanded as follows:

Gi(yi; yj) = E[(mi ¡ uBi ) ¹Di + (uBi + oi)min( ¹Di; yi) ¡ oiyi]

= E[(mi ¡ uBi )
³
Di ¡ min

n
®ij (Di ¡ yi)+ ; (yj ¡ Dj)+

o

+ min
n
®ji (Dj ¡ yj)+ ; (yi ¡ Di)+

o´

+(uBi + oi)min
³
Di ¡ min

n
®ij (Di ¡ yi)+ ; (yj ¡ Dj)+

o

+ min
n
®ji (Dj ¡ yj)+ ; (yi ¡ Di)+

o
; yi

´
¡ oiyi]; i; j = 1; 2:

The ¯rst derivatives are:

@Gi(yi; yj)
@yi

= (mi ¡ uBi )®ij Pr (®ij (Di ¡ yi) < yj ¡ Dj; Di > yi)

+(mi ¡ uBi )Pr (®ji (Dj ¡ yj) > yi ¡ Di; Di < yi)

+(uBi + oi) Pr( ¹Di > yi)

+(uBi + oi)®ij Pr( ¹Di < yi; ®ij (Di ¡ yi) < yj ¡ Dj;Di > yi)

+(uBi + oi) Pr( ¹Di < yi; ®ji (Dj ¡ yj) > yi ¡ Di; Di < yi) ¡ oi; i; j = 1; 2:

We consider ¯rst the term

Pr( ¹Di < yi; ®ij (Di ¡ yi) < yj ¡ Dj ;Di > yi):
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First, we observe that since Di > yi and ®ij (Di ¡ yi) < yj ¡ Dj, we can conclude that ¹Di = Di ¡
®ij (Di ¡ yi) : Hence, the ¯rst inequality inside the bracket, ¹Di < yi; expands to Di¡®ij (Di ¡ yi) <
yi or similarly Di < yi; which contradicts the last inequality inside the bracket, Di > yi: Hence,
this term is always zero. Similarly, in the term

Pr( ¹Di < yi; ®ji (Dj ¡ yj) > yi ¡ Di; Di < yi)

under the conditions Di < yi and ®ji (Dj ¡ yj) > yi ¡ Di, we can conclude that ¹Di = Di +
(yi ¡ Di) = yi, resulting in this term being always zero. Hence, the expression for the derivative
simpli¯es to

@Gi(yi; yj)
@yi

= (mi ¡ uBi )®ij Pr

Ã
yi < Di < yi +

yj ¡ Dj
®ij

!

+(mi ¡ uBi ) Pr (yi ¡ ®ji (Dj ¡ yj) < Di < yi)

+(uBi + oi) Pr( ¹Di > yi) ¡ oi; i; j = 1; 2;

and the resulting optimality conditions follow. This completes the proof. 2

As in the previous model, the retailer's e®ective demand in Model III is a piecewise linear function of
own and the competitor's inventories. The optimality condition can be interpreted as follows. The
fact that the retailer's e®ective demand depends on own inventory level is captured by the second
and third terms on the right-hand side of (6) that adjust the otherwise standard newsvendor ratio
up. Seemingly, this should lead to a higher level of service in Model III than in Model I, but this
assertion is hard to verify analytically. The second term on the right-hand side can be interpreted
as follows: if this period's demand for the products of player i; Di; exceeds current inventory yi,
then there is a chance that customers may switch to player j if she has inventory to satisfy this
demand immediately, Dj < yj: The probability of a simultaneous shortage at player i and excess
at player j is Pr

³
¹yi < Di < ¹yi +

¹yj¡Dj
®ij

´
; and the relative expected cost of losing a customer to the

competitor becomes mi¡u
B
i

uBi +oi
®ij Pr

³
¹yi < Di < ¹yi +

¹yj¡Dj
®ij

´
. This term then adjusts the right-hand

side of the equation up to increase the standard newsvendor ratio to re°ect that losing customers
to competition is costly. The third term on the right mi¡u

B
i

uBi +oi
Pr (¹yi ¡ ®ji (Dj ¡ ¹yj) < Di < ¹yi) has

a di®erent interpretation. Even though player i might have enough inventory to satisfy his own
demand (Di < yi), he has a potential to capture additional demand from player j: However, this
demand only materializes if there is inventory to satisfy it immediately. The probability of both
excess demand at player j and su±cient inventory at player i is Pr (¹yi ¡ ®ji (Dj ¡ ¹yj) < Di < ¹yi) ;
and the relative expected cost of not being able to capture customers switching from player j is
mi¡uBi
uBi +oi

Pr (¹yi ¡ ®ji (Dj ¡ ¹yj) < Di < ¹yi) : This term adjusts the right-hand side of the equation up
to increase the standard newsvendor ratio to re°ect that failure to capture over°ow customers from
the competitor is costly. Finally, the fact that the retailer's demand depends on the competitor's
inventory is captured in ¹D: Note that in Model III conditions su±cient for customers to switch
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between the two ¯rms depend on inventories and demands at both players, whereas in Model II the
condition is simply Di > yi. One way to interpret this observation is that on average there is less
customer switching in Model III than in Model II, so in some sense Model III is less competitive
than Model II. The implications of this result are discussed further in later sections.

3.4 Model IV: nonlinear back-ordering rule

The previous three back-ordering models focus on customer behavior due to substitution and es-
sentially assume that the relationship between inventory and demand is piecewise linear. There
are, however, other situations in which substitution due to stock-outs either does not occur or has
a small impact. Instead, other e®ects may be present. Large inventory by itself might have a
stimulating e®ect on the customers. Car dealers, for example, usually place all their inventory in a
parking lot in front of the dealership to attract customers' attention (see Wang and Gerchak [33]
for other examples and numerous references).

In light of these considerations, we analyze an alternative model that allows us to tackle situations
in which demand for each retailer depends on each retailer's inventory in a nonlinear way, i.e.,
Di (yi; yj) is a nonlinear function of yi; yj. A completely general analysis in such a case is complex,
so we make additional technical assumptions, including the assumption that only the mean of the
total demand that the retailer faces depends on the initial inventory levels of the two retailers.
Such an assumption does not hold for Models I-III, so it is not appropriate when the main e®ect
is the substitution when product is out of stock. However, it captures the essence of the problem
in other situations (e.g., stimulating e®ects of inventory) when demand depends on competitors'
inventory policies. Hence, this model can be used to gain insights into the issues involved, since it
allows for analytical tractability that cannot be achieved using previously described models. This
assumption is also frequently encountered in the operations, marketing, and economics literature.

Previous analysis of Models I-III and common sense lead us to believe that the demand faced by
each retailer should be increasing in the retailer's own inventory and decreasing in the competitor's
inventory. Taken together, these arguments can be summarized as follows:

Assumption 1a. Di (yi; yj) = ´i(yi; yj) + "i, where "i is an arbitrarily distributed random variable,
density f"i(¢), distribution F"i(¢); and ´i(yi; yj) is a positive real-valued function such that Di > 0,
1 ¸ @´i

@yi
¸ 0; @´i@yj · 0; i; j = 1; 2.

To provide a more speci¯c example of when Model IV might be a good approximation of real-life
situations, we suppose that the total market size is known with near certainty and is equal to ´: The
part of the population attracted by each of the two competitors depends on the ¯rms' respective
inventory policies so that each ¯rm gets ´1 (y1; y2) ; ´2 (y1; y2) customers with ´1 + ´2 = ´. There
is, however, some uncertainty with respect to whether each particular customer makes a purchase
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or not. For example, a customer may have some preliminary idea about the product, but his pref-
erence may change when he sees it. This uncertainty is ¯rm-speci¯c (i.e., once the customer visits
the ¯rm, his decision to purchase is not a®ected by the competitor's inventory policy but is only
a®ected by the ¯rm-speci¯c or product-speci¯c characteristics, so that random shocks "i could be
correlated and asymmetric). Hence, the resulting demand is ´i (yi; yj) + "i such that ´i (yi; yj) can
be adjusted up (e.g., customers tend to buy more than one unit of the product) or down (some
customers may not buy at all).

Throughout the analysis it is understood that ´i and its derivatives are functions of yi; yj and are
evaluated at appropriately selected yi and yj. To ensure the existence of an equilibrium in the game,
an additional assumption is needed regarding the second-order e®ects. We present two alternative
and quite intuitive technical assumptions about the demand distributions Di (yi; yj). First, it is
reasonable to believe that in a majority of situations, ´i(yi; yj) should exhibit a decreasing marginal
rate of return in yi. In other words, increasing yi increases demand Di at a decreasing rate:

Assumption 2a. @
2´i
@y2i

< 0; i = 1; 2:

Such an assumption is clearly su±cient to prove the existence of an equilibrium, due to Proposi-
tion 2. An alternative assumption could be made about the second-order cross-e®ect. Since the
products of retailers i and j are physical substitutes, it is reasonable to expect that they are also
substitutes in an economic sense, that is, increasing the stocking quantity of one retailer reduces
the marginal bene¯t of increasing the other retailer's stocking quantity.

Assumption 2b. @2´i
@yi@yj < 0; i; j = 1; 2:

Clearly, Assumption 2b su±ces to guarantee the existence of an equilibrium as well, due to Propo-
sition 3. Moreover, for two players, Assumption 2b is satis¯ed by a number of standard demand
functions including the linear, Logit, Cobb-Douglas and CES demand functions (see Bernstein and
Federgruen [6]).

Proposition 7 Under Assumption 1a and either Assumption 2a or 2b, there exists at least one
pure strategy Nash equilibrium, characterized by the following set of optimality conditions:

Pr
¡ ¹Di < ¹yi

¢
=

uBi
uBi + oi

+
mi

uBi + oi

@´i
@yi

1 ¡ @´i
@yi

; i = 1; 2: (7)

Proof: Existence trivially follows from Propositions 2 and 3. Furthermore, the ¯rst derivatives
of the objective function are found as follows:

@Gi(yi; yj)
@yi

=
³
mi ¡ uBi

´ @´i
@yi

¡
³
uBi + oi

´
Pr

¡ ¹Di < yi
¢ µ

1 ¡ @´i
@yi

¶
+ uBi ; i = 1; 2:
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The set of optimality conditions follows after equating to zero and rearranging. 2

Note that the optimality conditions we obtained have nice interpretable properties. First, the op-
timal fractile (right-hand side of (7)) has two distinct parts. Part one is a standard newsvendor
fractile. Part two is an extra term that accounts for the fact that the e®ective demand depends
on the retailer's own inventory (the fact that demand depends on the competitor's inventory is
captured in ¹Di). This term is similar to the probability terms encountered in Models II and III.
If @´i@yi = 0 (demand does not depend on the retailer's own stocking quantity but perhaps depends
on the competitor's stocking quantity), we arrive at a solution identical to the solution for Model
I. Moreover, if Di(yi; yj) = Di; then we arrive at the classic newsvendor solution. The optimal
in-stock probability is higher for higher values of @´i@yi .

We need some further assumptions to guarantee the uniqueness of the equilibrium. To this end,
we assume that the sum of the absolute changes due to a unit increase in the retailer's own in-
ventory and the competitor's inventory does not exceed 1. This is a reasonable assumption in
most situations, since it is hard to expect that change in one unit of inventory can cause an ef-
fect signi¯cant enough to change demand by more than one unit. For Models I-III, for example,
@EDi (yi; yj) =@yi < ®ij and @EDi (yi; yj) =@yj < ®ji; and therefore Assumption 3 takes the form
of ®ij + ®ji < 1; which is a reasonable condition for most practical situations. Formally, we have

Assumption 3.
¯̄
¯@´i@yi

¯̄
¯ +

¯̄
¯ @´i@yj

¯̄
¯ · 1; i; j = 1; 2:

Finally, we assume that the marginal value of a retailer's own inventory yi is more sensitive to yi
than to yj , an assumption that is rather standard in economics and that holds for a number of
standard demand functions (see Bernstein and Federgruen [6]).

Assumption 4.
¯̄
¯ @

2´i
@yi@yj

¯̄
¯ <

¯̄
¯̄@2´i
@y2i

¯̄
¯̄ ; i; j = 1; 2:

The additional Assumptions 3 and 4 su±ce to show the uniqueness of the equilibrium.

Proposition 8 Suppose that one of the pairs of conditions of Proposition 7 hold and moreover
Assumptions 3 and 4 hold as well. Then there exists a unique, globally stable Nash equilibrium in
the static game of Model IV. It is characterized by optimality conditions (7).

Proof: To demonstrate the uniqueness, we again employ the su±cient condition (5) from Moulin
[22] that was used earlier. The second derivatives are:

@2Gi(yi; yj)
@y2i

=
³
mi ¡ uBi

´ @2´i
@y2i

¡
³
uBi + oi

´
f ¹Di (yi)

µ
1 ¡ @´i

@yi

¶2

+
³
uBi + oi

´
Pr

¡ ¹Di < yi
¢ @2´i

@y2i
; i; j = 1; 2;
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@2Gi(yi; yj)
@yi@yj

=
³
mi ¡ uBi

´ @2´i
@yi@yj

+
³
uBi + oi

´
f ¹Di (yi)

µ
1 ¡ @´i

@yi

¶
@´i
@yj

+
³
uBi + oi

´
Pr

¡ ¹Di < yi
¢ @2´i

@yi@yj
; i; j = 1; 2:

After term-by-term comparison, we see that
¯̄
¯̄@2´i
@y2i

¯̄
¯̄ >

¯̄
¯ @

2´i
@yi@yj

¯̄
¯ by Assumption 4 and that

³
1 ¡ @´i

@yi

´
>

¯̄
¯ @´i@yj

¯̄
¯ by Assumption 3, su±cient for the proof. 2

3.4.1 Example: linear demand function

To give a more speci¯c example for Model IV, we consider the linear form of dependence between the
expected demand and inventory. Speci¯cally, we assume that retailers face the following demand
distributions,

¹Di = Ai + b1i yi ¡ b2i yj + "i; i; j = 1; 2;

where b1i + b2i < 1, b1i > b2i , and b1i ; b
2
i > 0; "i » N(0; ¾i) and Ais are large enough so that the

probability of negative demand is negligible. We denote by ©(¢) the standard Normal distribution
function. Then the optimality conditions (7) yield

¹y1 = A1 + b11¹y1 ¡ b21¹y2 + ¾1z1;

¹y2 = A2 + b12¹y2 ¡ b22¹y1 + ¾2z2;

where zi = ©¡1
µ
uBi
uBi +oi

+ mi
uBi +oi

b1i
1¡b1i

¶
: The solution in a closed form is:

¹yi =
(Ai + ¾izi)

³
1 ¡ b1j

´
¡ (Aj + ¾jzj) b2i

¡
1 ¡ b1i

¢ ³
1 ¡ b1j

´
¡ b2i b

2
j

; i; j = 1; 2:

From this solution, sensitivity analysis to all problem parameters is rather straightforward. In case
the retailers are symmetric, the solution becomes

¹y1 = ¹y2 =
A + ¾z

1 ¡ (b1 ¡ b2)
: (8)

3.4.2 Comparative statics

Assumption 2b is particularly natural in this problem setting and useful when obtaining compar-
ative statics of the game. Namely, using this assumption we are able to characterize the shift in
equilibrium base-stock levels as a response to changes in cost and revenue parameters. The next
proposition makes this statement precise.2

2One can also verify that the same characterizations hold for Models I and II because these games can be shown
to be submodular.
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Proposition 9 Suppose Assumptions 1a, 2b, 3 and 4 hold and further suppose that (y1; y2) is
an equilibrium of the game. Then an increase in ri; pi;¡ci; ¡hi; ¯i (alternatively, a decrease in
rj ; pj; ¡cj; ¡hj; ¯j) leads to a new equilibrium (by1; by2) such that y1 ¸ by1 and y2 · by2:

Proof: Since the game is submodular by Assumption 2b, we rede¯ne ey2 = ¡y2 to obtain a
supermodular game in (y1; ey2): In supermodular games, the su±cient condition for parametric
monotonicity of equilibrium in parameter µ is the property of the increasing di®erences3 of the
players' objective functions in decision variables and parameter µ (see Topkis [32], Theorem 4.2.2).
Furthermore, the su±cient condition for increasing di®erences in (y1; µ) and (ey2; µ) is the non-
negativity of the second-order cross-partial derivatives. We shall consider sensitivity to player i's
parameters (sensitivity to player j's parameters is derived similarly):

@2Gi(yi; yj)
@yi@ri

=
@´i
@yi

¸ 0;

@2Gi(yi; yj)
@yi@pi

=
¡
1 ¡ Pr

¡ ¹Di < yi
¢¢ µ

1 ¡ @´i
@yi

¶
¸ 0;

@2Gi(yi; yj)
@yi@(¡ci)

= ¡¯i
µ

1 ¡ @´i
@yi

¶
+ 1 ¸ 0;

@2Gi(yi; yj)
@yi@(¡hi)

= Pr
¡ ¹Di < yi

¢ µ
1 ¡ @´i

@yi

¶
¸ 0;

@2Gi(yi; yj)
@yi@¯i

= ci
µ

1 ¡ @´i
@yi

¶
¸ 0:

Clearly, all corresponding derivatives for player j with respect to player i's parameters are zero,
and the proof is complete. 2

Proposition 9 extends Theorem 4 of Lippman and McCardle [18] into multiple periods and also
tests sensitivity to parameters pertaining to the multiple-period models. However, since customer
back-ordering behavior is at the heart of the game, one may wonder if our comparative statics
analysis with respect to p (back-order penalty) is too simpli¯ed: it is likely that changing p a®ects
demand distribution for each retailer as well. This issue is thoroughly analyzed in the next section.

4 Incentives to back-order

In practice, retailers often attempt to in°uence customer behavior by o®ering a monetary incen-
tive that persuades the customer to back-order the out-of-stock product rather than go to another
retailer. The natural operational question arises: how does o®ering a monetary incentive in°uence
the optimal stocking decisions in a competitive situation? Promotional decisions (e.g., o®ering
monetary incentives) are usually made by the marketing department, while stocking policies are

3When all functions are continuously di®erentiable (as in this paper), increasing (decreasing) di®erences are
equivalent to supermodularity (submodularity). However, to simplify references to Topkis's results, we use the
terminology of increasing/decreasing di®erences.
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controlled by the operations department. In such a situation it is crucial for operations managers
to understand what e®ect a monetary incentive to back-order the product has on the inventory
replenishment policy. Proposition 9 answers this question only partially, since it does not account
for the e®ects that incentives have on the demand distribution. In particular, we may expect that
an incentive increases the total demand faced by the retailer and decreases his competitor's e®ective
demand and therefore, perhaps, increases the retailer's own stocking quantity and decreases the
competitor's stocking quantity. In this section we de¯ne the precise conditions in which this is
indeed the case. Our numerical experiments later demonstrate that such a reaction is not the only
possible outcome (see Section 5) .

Another interesting problem is to ¯nd out if there is an optimal monetary incentive that maximizes
a retailer's pro¯t. It is beyond the scope of this paper to consider the optimal setting of the mone-
tary incentive. Such a problem deserves a separate investigation mainly due to technical di±culties:
the uniqueness of the solution even without competition can be shown only under rather restrictive
conditions, and it is likely that in a competitive situation even such a basic result might not be
available.

In this section, our goal is to characterize an optimal operational response to the promotional
decisions of the marketing department, or, more precisely, the impact of an incentive to back-
order on equilibrium inventory decisions under competition. We analyze this problem for two
models only: Models II and IV. In Model I such an analysis is not relevant, since there is no back-
ordering. In Model III such an analysis is obscured by the complexity of the demand expression
and hence only numerical analysis is provided (see Section 5). For Models II and IV, however, we
introduce a dependence between the total demand faced by the retailer and the monetary incentives
o®ered. Exploring the structural properties of supermodular games helps us to answer the question
de¯nitively. For the rest of this section, recall that pi is a monetary incentive o®ered by retailer i
to the customer to persuade the customer to back-order the product.

4.1 The incentive to back-order in Model II

In this model, customer behavior is characterized by the coe±cients ®12 and ®21: If the retailer
o®ers a monetary incentive to the customer to increase the proportion of customers willing to back-
order the product rather than switch to a competitor, these coe±cients depend on the amount of
compensation. Speci¯cally, we assume that:

Assumption 5 . ®ij = ®ij(pi);
@®ij
@pi

< 0; @®ji@pi = 0:

The assumption is a very natural one: the proportion of customers willing to switch from retailer
i to retailer j decreases as the amount of compensation retailer i o®ers increases. Since customers
switch from retailer i to retailer j without knowing if retailer j has inventory to satisfy demand
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immediately, it is reasonable to assume that customers who choose retailer i are also unaware of the
incentives o®ered by retailer j and hence ®ij is not a function of pj : We also assume that the ¯rst-
choice demand for each retailer is not a function of the incentive. This is a plausible assumption if
the customer learns about the incentive only after coming to the store (e.g., if the word-of-mouth
e®ect is not too strong). The next proposition shows a condition su±cient for monotonicity of both
players' inventories in the monetary incentive. To this end, we de¯ne ~yj = ¡yj :

Proposition 10 Suppose that Assumption 5 holds in Model II. Then:

1) the players' objective functions are supermodular in (yi; ~yj);

2) player j's objective function has increasing di®erences in (~yj; pi): Furthermore, player i's objec-
tive function has increasing di®erences in (yi; pi) at any poi satisfying

(1 ¡ ®ij(poi )) + (mi ¡ uBi )
@®ij
@pi

¯̄
¯̄
poi

¸ 0; (9)

3) unique optimal inventory policies are such that ¹yi(pi) is increasing and ¹yj(pi) is decreasing in
pi at any poi satisfying (9).

Proof: To prove 10.1, it is su±cient to show that the second-order cross-partial derivatives of the
players' objective functions are positive (see Topkis [32])

@2Gi(yi; yj)
@yi@~yj

= ®ji(uBi + oi)f ¹DijDj>¡~yj (yi) Pr(Dj > ¡~yj) > 0; i; j = 1; 2:

To prove 10.2, it is su±cient to show supermodularity (see Theorem 2.6.1 in Topkis [32]), which is
again veri¯ed through the second-order cross-partial derivatives

@2Gi(yi; yj)
@yi@pi

=
µ

@®ij
@pi

(mi ¡ uBi ) ¡ ®ij
¶

Pr(Di > yi) + Pr( ¹Di > yi)

+(uBi + oi)
@

@pi
Pr( ¹Di > yi); i; j = 1; 2:

Note that

Pr( ¹Di > yi) = Pr( ¹Di > yi; Di > yi) + Pr( ¹Di > yi;Di < yi)

= Pr(Di (1 ¡ ®ij) + ®ji(Dj ¡ yj)+ > yi (1 ¡ ®ij) ; Di > yi)

+ Pr(Di + ®ji(Dj ¡ yj)+ > yi;Di < yi)

= Pr(Di > yi) + Pr(Di + ®ji(Dj ¡ yj)+ > yi; Di < yi);

so that Pr( ¹Di > yi) is independent of ®ij and therefore @
@pi Pr( ¹Di > yi) = 0: We can rewrite the
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expression for the derivative as follows:

@2Gi(yi; yj)
@yi@pi

=
µ

@®ij
@pi

(mi ¡ uBi ) ¡ ®ij
¶

Pr(Di > yi)+Pr(Di > yi)+Pr(Di+®ji(Dj¡yj)+ > yi;Di < yi):

Ignoring the last term since it is positive, we can obtain the su±cient condition for the positivity
of this derivative:

(1 ¡ ®ij) +
@®ij
@pi

(mi ¡ uBi ) ¸ 0:

The second cross-partial derivative is trivially positive:

@2Gj(yi; yj)
@~yj@pi

= ¡(uj + oj)
@

@pi
Pr( ¹Dj > ¡~yj) ¸ 0; i; j = 1; 2:

Finally, 10.3 follows from 10.1 and 10.2 and Theorem 4.2.2 in Topkis [32]. 2

Proposition 10 demonstrates the e®ect that o®ering an incentive to back-order has on the equi-
librium stocking policies of the competitors under condition (9): if the marketing department of
retailer i decides to o®er (or similarly increase) an incentive to customers willing to back-order the
product, then the operations department of retailer i should simultaneously increase the stocking
quantity of the product. At the same time, retailer j should decrease its stocking quantity. Nu-
merical experiments show that other situations are possible besides those implied by condition (9).
Notice also that condition (9) in itself has a nice managerial interpretation: the marginal bene¯t
of an additional unit of the retailer's own inventory is higher at higher values of the incentive as
long as condition (9) is satis¯ed. On the other hand, the marginal bene¯t of an additional unit of
the competitor's inventory is always lower at higher values of the incentive.

4.2 Incentive to back-order in Model IV

As in the previous section, we introduce additional assumptions about the dependence between
demand and compensation. First, we assume that the impact of incentives on total demand fol-
lows a general functional form, but to keep the solution tractable we assume that there are no
cross-e®ects. Clearly, a higher incentive o®ered by retailer i should increase the e®ective demand of
retailer i and decrease the e®ective demand of retailer j. Second, we can expect that an incentive
has a decreasing marginal e®ect. The next assumption formalizes these observations and is an
alternative to Assumption 1a.

Assumption 1b. Di (yi; yj) = ´i(yi; yj)+ »(pi; pj)+ "i, where "i is an arbitrarily distributed random
variable with density f"i(¢) and distribution F"i(¢); and ´i(yi; yj); »(pi; pj) are positive real-valued
functions such that Di > 0, 1 ¸ @´i

@yi
¸ 0; @´i@yj · 0; @»i(pi;pj)@pi

> 0; @»i(pi;pj)@pj
< 0; i; j = 1; 2.

Our main result for Model IV is summarized in the following proposition.
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Proposition 11

1) Under Assumptions 1b and 2b, the players' objective functions are supermodular in (yi; ~yj):

2) Under Assumptions 1b and 3, the players' objective functions have increasing di®erences in
(yi; pi) and (~yj ; pi), respectively.

3) Unique optimal inventory policies are such that ¹yi(pi) is increasing and ¹yj(pi) is decreasing in
pi.

Proof:
Result 11.1 follows directly from the assumptions. To prove 11.2, showing increasing di®erences in
this case is equivalent to demonstrating supermodularity of the objective functions in (yi; pi) and
(~yj; pi); respectively. This, again, is veri¯ed by taking the second-order cross-partial derivatives.
The ¯rst derivatives are:

@Gi(yi; yj)
@yi

=
³
mi ¡ uBi

´ @´i
@yi

¡
³
uBi + oi

´
Pr

¡ ¹Di < yi
¢ µ

1 ¡ @´i
@yi

¶
+ uBi ;

@Gj(yi; yj)
@~yj

= ¡ (mj ¡ uj)
@´j
@~yj

+ (uj + oj)Pr
¡ ¹Dj < ¡~yj

¢
Ã

1 ¡ @´j
@~yj

!
¡ uj ;

and, furthermore:

@2Gi(yi; yj)
@yi@pi

= ¡@´i
@yi

¡ Pr
¡ ¹Di < yi

¢ µ
1 ¡ @´i

@yi

¶
+

³
uBi + oi

´
f ¹Di (yi)

µ
1 ¡ @´i

@yi

¶
@»i
@pi

+ 1

=
µ

1 ¡ @´i
@yi

¶ µ
Pr

¡ ¹Di > yi
¢
+

³
uBi + oi

´
f ¹Di (yi)

@»i
@pi

¶
> 0:

For the second cross-partial derivative we have

@Gj(yi; yj)
@~yj@pi

= ¡ (uj + oj) f ¹Dj (¡~yj)

Ã
1 +

@´j
@~yj

!
@»j
@pi

> 0;

and the proof is complete. Finally, 11.3 follows from Lemmas 1 and 2 and Theorem 4.2.2 in Topkis
[32]. 2

5 Numerical experiments

In our numerical experiments, we investigate answers to the following questions:

1: What is the e®ect of backlogging on inventories and pro¯ts?

2: How much does accounting for di®erent back-ordering behaviors in terms of di®erences a®ect
pro¯ts and inventories across models?
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3: What is the impact of problem parameters on pro¯ts and di®erences in pro¯ts across models?

4: What is the impact of o®ering customers an incentive to back-order?

To simplify the comparison, we work with single-period symmetric models (unless otherwise noted)
since we have demonstrated that there is a stationary solution. Symmetry allows us to reduce the
number of parameters. The following common parameters are used in this section: r = 10; c =
5; ¯ = 0:9 andD » N(100; ¾) (truncated at zero with probability mass added to zero): We have
also veri¯ed that insights point out in the same direction with nonsymmetric parameters as well.

A comparison of equilibrium inventories and pro¯ts
First, we want to compare inventories and pro¯ts in three models to see if consideration of cus-
tomer back-ordering behavior is noticeable and if there are any consistent patterns among models
in addition to those shown in Proposition 5. We have performed an extensive numerical study
using the following set of problem parameters: p 2 f1; 2; 3; 4; 5g ; h 2 f0:5; 1:5; 2:5; 3:5; 4:5; 5:5g ; ¾ 2
f20; 40; 60; 80; 100; 120g, ½ 2 f¡0:9; ¡0:6;¡0:3; 0; 0:3; 0:6; 0:9g and ® 2 f0:1; 0:3; 0:5; 0:7; 0:9g : In
total, we analyzed 5£6£6£7£5=6300 problem instances, capturing most reasonable parameter
combinations. We report averages and standard deviations of inventories/pro¯ts for each model in
Table 1. Evidently, di®erent assumptions about customer back-ordering behavior result in inven-
tories and pro¯ts that di®er quite drastically from model to model, thus demonstrating that it is
important to consider customer back-ordering behavior under competition.

Model I Model II Model III
Mean (inventory) 128.43 113.94 98.72
Standard deviation (inventory) 28.33 31.80 37.99
Mean (pro¯t) 355.52 406.35 417.54
Standard deviation (pro¯t) 80.61 62.23 64.01

Table 1. Averages and standard deviations of pro¯ts/inventories.

Next, we compare di®erences in inventories and pro¯ts among models. As we proved in Proposition
5, Model I results in higher inventory and lower pro¯t than Model II does. Furthermore, we ¯nd
that, in all experiments, Model II results in higher inventory and lower pro¯t than Model III
does. Relative di®erences in pro¯ts/inventories are reported in Tables 2 and 3. For example, the
lower left cell in Table 2 (row \Model III" and column \Model I") shows that the average value of
100% £

³
yIII ¡ yI

´
=yIII was -30.1% (superscripts denote model number).

Model I Model II Model III
Model I X 11.28% 23.14%
Model II -12.71% X 13.36%
Model III -30.10% -15.42% X

Model I Model II Model III
Model I X -14.30% -17.45%
Model II 12.51% X -2.75%
Model III 14.85% 2.68% X

Table 2. Di®erences in inventories. Table 3. Di®erences in pro¯ts.
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Observe that the di®erence between Model I and the other two models is quite large, which is
explained by the lost-sales assumption in Model I. The di®erence between Models II and III is
large in inventories but much smaller in terms of pro¯ts (there are, however, instances in which the
di®erence exceeds 100%). A plausible explanation for this last observation is as follows: it has been
shown in the literature (see, for example, Lippman and McCardle [18], Mahajan and van Ryzin
[19] and Netessine and Rudi [24]) that competition in a similar problem setting typically leads to
overstocking inventory. As we explained earlier, in Model III companies exist in a less competitive
environment since customers switch between two companies only if the competitor has the product
in stock, while in Model II the customers switch more often. Hence, due to competition, in Model II
companies establish higher inventory levels, reducing the likelihood that customers will switch. In
terms of equilibrium pro¯ts, Model I is naturally the least pro¯table since there is no back-ordering.
Between the other two models, Model III generates higher pro¯ts since, as we just described, it
is a less competitive environment and the companies tend to overstock less and as a result su®er
less from the detrimental e®ects of competition. Hence, a reduction in the level of competition
(by moving from Model II to Model III) results in higher pro¯ts for both ¯rms. We discuss the
implications of this comparison shortly.

The impact of problem parameters on pro¯ts
Next, we wish to understand the impact of problem parameters on pro¯ts to gain further insight
into the impact of customer back-ordering behavior and determine if insights from single-period
models with lost sales continue to hold in the presence of back-ordering. Using the same set of
data as above, we study the impact of ½; ¾; p; h and ® on absolute values of pro¯ts as well as on
pair-wise di®erences in pro¯ts for three models (Table 4).

Parameter GI GII GIII GII { GI GIII { GI GIII { GII

½ # # # " " "
¾ # # # " " "
p 0 # # # # #
h # # # " " "
® " "# " # # "

Table 4. The impact of problem parameters on pro¯ts and absolute values of pro¯t di®erences.

As one expects, pro¯ts in all models decrease in ½; ¾; p and h: Several previous papers (see Netessine
and Zhang [25] and Anupindi and Bassok [3]) analyzing models with lost sales have also demon-
strated that the pro¯ts of both players increase in ®: This happens because the proportion of
customers (1 ¡ ®) who do not switch is lost for both ¯rms if they are not immediately satis¯ed.
Hence, increasing ® essentially increases the total demand that both ¯rms face and therefore in-
creases pro¯ts. We found that this result generally holds in Models I and III but not in Model II.
In fact, in many instances the pro¯ts of both players in Model II decrease in ®. To understand
why this happens, we recall that Models II and III include full back-ordering, so increasing ® does
not change the total demand faced by the two ¯rms. Rather, it bene¯ts ¯rms because the total
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demand that the two ¯rms face in the current period increases (so that back-order/holding costs
decrease). In other words, increasing ® reduces the number of customers who back-order with the
retailer of the ¯rst choice instead of switching when a stock-out occurs. In Model II the customer
who is not satis¯ed by his ¯rst-choice retailer is more likely to switch than in Model III. Hence, the
negative impact of increasing ® in Model II is stronger than in Model III. As a result, in Model
III pro¯ts generally increase in ® while in Model II the result is more ambiguous. The result for
Model II does not correspond with the standard result found in the substitution literature that
utilizes a single-period framework. To further illustrate this behavior; in Figure 1 we provide one
speci¯c numerical example (in which h = 1; p = 3; ¾ = 50 and ½ = 0): Note that pro¯t in Model II
is indeed decreasing in ® for large values of ®.
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Figure 1: Equilibrium inventory (left) and pro¯ts (right) for the three models.

The impact of problem parameters on di®erences in pro¯ts
Sometimes ¯rms are in a position to a®ect customer behavior. For example, by training service
representatives better, the ¯rm may be able to increase the number of customers who back-order
instead of leaving in the case of a stock-out. For example, Anderson et al. [1] illustrate how various
ways of handling stock-out situations can dramatically a®ect customers' back-ordering decisions
and hence help a ¯rm transition from Model I to Model II. Naturally, such measures are costly,
so we want to understand when in°uencing customer back-ordering behavior is worth the expense.
Furthermore, an information system that would allow customers to \observe" inventories at com-
peting retailers would help ¯rm to transition from Model II to Model III with corresponding pro¯t
increase. Again, since such systems are quite costly and challenging to implement in practice, we
want to be able to describe situations in which their adoption is worthwhile.

From Table 4, we observe that higher ½; ¾; and h consistently lead to wider pro¯t gaps. This re-
sult is quite intuitive: an increase in these parameters increases the cost of any mismatch between
demand and supply, thereby accentuating the di®erences in pro¯ts among the three models. At
the same time, increasing p leads to a decrease in pro¯t gaps. This happens because an increase
in p induces ¯rms to stock more and hence the substitution e®ect becomes less pronounced since
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¯rms are rarely out of stock. Finally, increasing ® decreases the gap between Model I and the other
two models but increases the gap between Models II and III (see also Figure 1). The ¯rst e®ect
is due to the fact that in Model I increasing ® has a stronger positive e®ect than in the other two
models; customers in Model I have no alternative to back-ordering and hence increasing product
substitutability signi¯cantly enhances pro¯ts. The increase in the gap between Models II and III
is a direct result of the earlier ¯nding that the pro¯t in Model II is almost invariant to changes
in ® while the pro¯t in Model III increases. To summarize, a transition from Model I to Model
II (e.g., through better customer service) is most bene¯cial under conditions of high correlation,
high demand uncertainty, high holding costs, low back-order penalty and low substitutability. A
transition from Model II to Model III (e.g., through the adoption of the information system) is
most bene¯cial under conditions of high correlation, high demand uncertainty, high holding costs,
high substitutability and low back-order penalty.

The impact of the incentive to back-order
We now investigate the impact of the retailer's ability to o®er customers a monetary incentive in
order to reduce switching between retailers. We assume that in Models II and III, retailer i is able
to reduce the proportion of switching customers ®12 by o®ering a higher monetary incentive p1. We
assume that there is a linear relationship between ®12 and p1; ®12 = 1¡ 0:2£ p1, so that p1 2 [0; 5]
and ®12 2 [0; 1]: We also ¯x ®21 = :5 and p2 = 3: For Model II, it is readily veri¯ed that condition
(9) holds as long as p1 ¸ 2:75; i.e., this inequality de¯nes values where we are guaranteed to have
y1 increasing and y2 decreasing in p1. Figure 2 shows resulting equilibrium inventories and pro¯ts
in Model II.
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Figure 2: Equilibrium inventory (left) and pro¯t (right) as a function of incentive in Model II.

We observe that as retailer i increases the incentive p1, the second retailer's inventory and pro¯t go
down. Furthermore, retailer i's inventory appears to be convex and pro¯t appears to be concave
in the amount of the incentive, with the maximum pro¯t achieved at the same time as minimum
inventory is achieved. Notice that retailer j's pro¯t is much more sensitive to the incentive than
retailer i's pro¯t. Furthermore, note that condition (9) is instrumental in de¯ning the region in
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which inventories are monotone increasing in the retailer's own incentive and decreasing in the
competitor's incentive. Outside of this region we still observe monotonicity, but the direction is
reversed. We now turn to Model III (see Figure 3).
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Figure 3: Equilibrium inventory (left) and pro¯t (right) as a function of incentive in Model III.

The behavior of inventory and pro¯ts in Model III is quite di®erent. First, the equilibrium inventory
levels are monotone in the incentive with the ¯rst retailer's inventory increasing and the second
retailer's inventory decreasing. Such a behavior is, perhaps, more easily anticipated than in Model
II. Secondly, in this particular instance, both players' pro¯ts are decreasing, meaning that under
the given assumptions it is optimal not to o®er any incentive at all; by o®ering an incentive, retailer
i lowers both players' pro¯tability. We o®er the following explanation: since competition in Model
III is so much lower than in Model II, the further introduction of the monetary incentive is simply
not pro¯table, while in Model II the incentive is a valuable tool.

6 Concluding remarks

Traditionally, the operations literature considers rather simplistic customer behavior with respect
to stock-out situations: the product is either back-ordered or the sale is lost. We have demonstrated
how the presence of a competing retailer selling a substitute may complicate the environment, since
customers face the choice of back-ordering with either one of two retailers. As a result, the e®ective
demands faced by either retailer are rather complex functions of the competitor's inventory levels.
Three speci¯c back-ordering models that account for substitution in the case of a stock-out are
formulated in this paper. For these models we illustrate how customer switching behavior a®ects
optimal inventory policies. We also consider a fourth model that allows us to incorporate e®ects
such how inventories and service levels stimulate demand. Structural results include conditions for
the existence and uniqueness of a Nash equilibrium and tractable analytical ¯rst-order optimality
conditions for all models, as well as comparative statics results.

Previous research on horizontal competition has demonstrated that competing retailers tend to
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overstock products to prevent customers from switching to a competitor. In this paper we demon-
strate that in single-period models with lost sales the overstocking e®ect might be overstated rel-
ative to a multi-period setting with back-ordering. The option to back-order the product reduces
the overstocking e®ect, because customers are not necessarily lost. We show that the di®erences
in pro¯ts and inventories under various back-ordering scenarios are signi¯cant, so accounting for
back-ordering behavior has important rami¯cations. Our results also indicate that increasing the
proportion of customers who are willing to switch between retailers may not increase either re-
tailer's pro¯ts, as is the case in single-period models without back-ordering. In particular, when
customers are able to back-order with the retailer of their second choice (Model II), increasing the
number of switching customers at the same time reduces the number of customers who are willing
to back-order with the ¯rst-choice ¯rm, and this negative e®ect dominates. In practice managers
should consider the interaction of these two e®ects.

We ¯nd that under the lost-sales assumption (Model I), ¯rms always stock more and earn less than
when customers back-order with the retailer of their second choice (Model II). In practice, ¯rms
can a®ect a customer's propensity to back-order through better customer service and therefore
transition from Model I to Model II. We demonstrate that this transition is most e®ective under
conditions of high demand uncertainty, high correlation, high holding costs but low back-order
penalty and low substitution rates. Furthermore, we ¯nd that when customers back-order with the
retailer of their second choice (Model II) both ¯rms stock more and earn less than when customers
back-order with the retailer of their ¯rst choice (Model III). This ¯nding leads to the counterin-
tuitive insight that revealing their inventories to the competitor's customers may be bene¯cial for
competing ¯rms. In practice, an information system that makes competitors' inventories visible
enables a transition from Model II to Model III. We demonstrate that investment into such a system
is most prudent under conditions of high demand uncertainty, high correlation, high holding cost,
high substitution rates and low back-order penalty. From a practical point of view, there may be
di±culties in implementing the information system needed for inventory transparency because the
¯rst-choice retailer has an incentive to report to the customer (e.g., by manipulating the informa-
tion system) that the other retailer is out of stock. These di±culties may require administration of
this information system by a third party, e.g., an automobile manufacturer could require competing
dealers to adopt such a system and then supervise its use.

Our analysis demonstrates that a ¯rm's stocking decisions and pro¯tability greatly depend on its
ability to retain customers, i.e., to induce them to back-order the product rather than switch to a
competitor. If, however, a retailer decides to o®er a monetary incentive aimed at retaining more
customers, a corresponding correction should be made to its inventory policy. Namely, we pro-
vide conditions in which a retailer's own inventory should be adjusted up while the competitor's
inventory should be adjusted down. Our numerical experiments demonstrate notable di®erences in
pro¯tability among the models. Inventory visibility in Model III results in a higher pro¯tability for
the retailers; in this model the customers' ability to observe the competitor's inventory reduces com-
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petition since customers switch between retailers only when the competitor has inventory. Hence,
this model generates the highest pro¯ts while having the lowest equilibrium inventories. We also
¯nd that one should exercise caution when o®ering a monetary incentive to retain customers: when
inventories are visible to customers (Model III), such an incentive might be detrimental to both
competitors.

Our analysis gives rise to further questions regarding customer back-ordering behavior under com-
petition. First, it is important to be able to calculate the optimal amount of the incentive to be
o®ered. As mentioned earlier, such a problem merits a separate study and is not a primary focus of
this paper. Second, our model takes demand for the product from ¯rst-choice customers as a given.
A more realistic approach might be to introduce a customer choice model which describes how
customers decide on the ¯rst-choice retailer over the second-choice retailer. Also, we constrained
the e®ects that inventory has on demand into a single period, i.e., customers do not have \memory"
that allows them to base their choice of a retailer on previous experience. In this sense, Gans [11]
provides a more advanced model. Finally, we do not address the important question of coordinating
the competing retailers as car manufacturers often attempt to do through centralized information
systems. Again, such a question is an important one and merits a separate study.
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