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Estimation of Causal Effects Using Instrumental Variables With
Nonignorable Missing Covariates: Application to Effect of Type of
Delivery NICU on Premature Infants

Abstract
Understanding how effective high-level NICUs (neonatal intensive care units that have the capacity for
sustained mechanical assisted ventilation and high volume) are compared to low-level NICUs is important
and valuable for both individual mothers and for public policy decisions. The goal of this paper is to estimate
the effect on mortality of premature babies being delivered in a high-level NICU vs. a low-level NICU through
an observational study where there are unmeasured confounders as well as nonignorable missing covariates.
We consider the use of excess travel time as an instrumental variable (IV) to control for unmeasured
confounders. In order for an IV to be valid, we must condition on confounders of the IV—outcome
relationship, for example, month prenatal care started must be conditioned on for excess travel time to be a
valid IV. However, sometimes month prenatal care started is missing, and the missingness may be
nonignorable because it is related to the not fully measured mother’s/infant’s risk of complications. We
develop a method to estimate the causal effect of a treatment using an IV when there are nonignorable missing
covariates as in our data, where we allow the missingness to depend on the fully observed outcome as well as
the partially observed compliance class, which is a proxy for the unmeasured risk of complications. A
simulation study shows that under our nonignorable missingness assumption, the commonly used estimation
methods, complete-case analysis and multiple imputation by chained equations assuming missingness at
random, provide biased estimates, while our method provides approximately unbiased estimates. We apply
our method to the NICU study and find evidence that high-level NICUs significantly reduce deaths for babies
of small gestational age, whereas for almost mature babies like 37 weeks, the level of NICUs makes little
difference. A sensitivity analysis is conducted to assess the sensitivity of our conclusions to key assumptions
about the missing covariates. The method we develop in this paper may be useful for many observational
studies facing similar issues of unmeasured confounders and nonignorable missing data as ours.
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ESTIMATION OF CAUSAL EFFECTS USING INSTRUMENTAL
VARIABLES WITH NONIGNORABLE MISSING COVARIATES:
APPLICATION TO EFFECT OF TYPE OF DELIVERY NICU

ON PREMATURE INFANTS1

BY FAN YANG∗, SCOTT A. LORCH† AND DYLAN S. SMALL∗

University of Pennsylvania∗ and The Children’s Hospital of Philadelphia†

Understanding how effective high-level NICUs (neonatal intensive care
units that have the capacity for sustained mechanical assisted ventilation and
high volume) are compared to low-level NICUs is important and valuable
for both individual mothers and for public policy decisions. The goal of this
paper is to estimate the effect on mortality of premature babies being deliv-
ered in a high-level NICU vs. a low-level NICU through an observational
study where there are unmeasured confounders as well as nonignorable miss-
ing covariates. We consider the use of excess travel time as an instrumental
variable (IV) to control for unmeasured confounders. In order for an IV to
be valid, we must condition on confounders of the IV—outcome relationship,
for example, month prenatal care started must be conditioned on for excess
travel time to be a valid IV. However, sometimes month prenatal care started
is missing, and the missingness may be nonignorable because it is related to
the not fully measured mother’s/infant’s risk of complications. We develop a
method to estimate the causal effect of a treatment using an IV when there are
nonignorable missing covariates as in our data, where we allow the missing-
ness to depend on the fully observed outcome as well as the partially observed
compliance class, which is a proxy for the unmeasured risk of complications.
A simulation study shows that under our nonignorable missingness assump-
tion, the commonly used estimation methods, complete-case analysis and
multiple imputation by chained equations assuming missingness at random,
provide biased estimates, while our method provides approximately unbiased
estimates. We apply our method to the NICU study and find evidence that
high-level NICUs significantly reduce deaths for babies of small gestational
age, whereas for almost mature babies like 37 weeks, the level of NICUs
makes little difference. A sensitivity analysis is conducted to assess the sen-
sitivity of our conclusions to key assumptions about the missing covariates.
The method we develop in this paper may be useful for many observational
studies facing similar issues of unmeasured confounders and nonignorable
missing data as ours.
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1. Introduction.

1.1. Effect of type of delivery NICUs on premature infants. Premature infants
are infants born before a gestational age of 37 complete weeks. Compared to term
infants, premature infants have less time to develop, so that they are at higher risk
of death and complications and often in need of advanced care, ideally in a neona-
tal intensive care unit (NICU) [Profit et al. (2010); Doyle et al. (2004); Boyle et al.
(1983)]. There are two types of NICUs—a high-level NICU is a NICU that has the
capacity for sustained mechanical assisted ventilation and that delivers on average
of at least 50 premature babies per year, whereas a low-level NICU is a unit that
does not meet these requirements. There is literature that shows that delivery at
high-level vs. low-level NICUs is associated with a reduction in neonatal mortal-
ity after controlling for measured confounders [Phibbs et al. (2007); Chung et al.
(2010); Rogowski et al. (2004)]. However, there are unmeasured confounders such
as fetal heart tracing test results and severity of conditions that could bias these re-
sults. The aim of this paper is to use the instrumental variable method along with
a novel method of controlling for nonignorable missing covariates to obtain unbi-
ased inferences about the effect on neonatal mortality of premature babies being
delivered in a high-level NICU vs. a low-level NICU. Understanding how effective
high-level NICUs are compared to low-level NICUs is important for both individ-
ual mothers deciding whether to travel a distance to go to a high-level NICU rather
than going to a local low-level NICU, and for public policy decisions about pre-
mature infant care. In the 1970s, a system of perinatal regionalization was built in
most states in which most infants at risk of complications such as very premature
infants would be sent to regional high-level NICUs [Lasswell et al. (2010)]. This
regionalization system has weakened in recent years with more very premature in-
fants being born in low-level NICUs [Lasswell et al. (2010); Howell et al. (2002);
Richardson et al. (1995); Yeast et al. (1998)]. If high-level NICUs are truly pro-
viding considerably better care for premature babies, then it is valuable to invest
resources in strengthening the perinatal regionalization system, while if high-level
NICUs are providing at best marginal improvements in care, then strengthening
the perinatal regionalization should probably not be a priority. Additionally, if only
certain types of premature babies benefit from high-level NICUs (e.g., only those
below a certain gestational age), then resources would be best spent on increasing
the rate of high-level NICU delivery for those types of babies. To address this,
we will estimate the effect of high-level NICU delivery for babies with different
characteristics, such as different gestational ages.

The ideal way to assess the effectiveness of high-level NICUs vs. low-level
NICUs would be to randomize pregnant women to deliver at different level NICUs,
but such a study is not ethical or practical. We instead consider an observational
study. We have compiled data on all babies born prematurely in Pennsylvania be-
tween 1995–2005 by linking birth certificates to death certificates as well as ma-
ternal and newborn hospital records. More than 98% of the birth certificates could
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be linked to the hospital records [Lorch et al. (2012) for more details]. We will
use the 189,991 records that could be linked in our analysis. The measured con-
founders we will consider are gestational age, the month of pregnancy that prenatal
care started (precare) and mother’s education level. If these measured confounders
are the only confounding variables, that is, the only variables that are related
to both level of NICU delivered at and mortality, then we could use propensity
score/matching/regression methods to control for the confounders. Unfortunately,
some key confounders are unmeasured such as the results of tests like fetal heart
tracing which are related to both how strongly a doctor encourages a woman to
deliver at a high-level NICU and a baby’s risk of mortality. To control for such
unmeasured confounders, we will consider the instrumental variable (IV) method.

1.2. Instrumental variable approach. The IV method is widely used in obser-
vational studies [Angrist and Krueger (1991); Baiocchi et al. (2010)]. An instru-
mental variable (IV) is a variable that is (i) associated with the treatment, (ii) has
no direct effect on the outcome and (iii) is independent of unmeasured confounders
conditional on measured confounders. The relationships between the IV, treat-
ment (D), outcome (Y ), measured confounders (X) and unmeasured confounders
(UC) are shown in the directed acyclic graph in Figure 1. The basic idea of the
IV method is to extract variation in the treatment that is free of the unmeasured
confounders and use this confounder free variation to estimate the causal effect of
the treatment on the outcome. The beauty of the IV method is that although treat-
ment is not randomly assigned in observational studies, the method still allows
consistent estimation of the causal effect of a treatment.

The instrumental variable we consider is whether or not the excess travel time
that a mother lives from the nearest high-level NICU compared to the nearest low-
level NICU is less than or equal to 10 minutes; a mother is said to live “near” to
a high-level NICU if the excess travel time is ≤10 minutes and “far” otherwise.
Excess travel time satisfies the first two characteristics of an IV: (i) association
with treatment: previous studies suggest that women tend to deliver at NICUs near
their residential zip code [Lorch et al. (2012); Phibbs et al. (1993)] and (ii) no di-
rect effect: most women have time to deliver at both the nearest high-level or other

FIG. 1. This directed acyclic graph shows the assumptions for a valid IV. D denotes the treatment,
Y the outcome, X measured confounders and UC unmeasured confounders. The key assumptions for
an IV are (i) the IV affects D; (ii) the IV does not have a direct effect on Y ; (iii) the IV is independent
of the unmeasured confounders UC given the measured confounders.
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delivery NICU so the marginal travel time to either facility should not directly af-
fect outcomes [Lorch et al. (2012)]. The third assumption needed for excess travel
time to be an IV, that it is independent of unmeasured confounders conditional
on measured confounders, is plausible in that most women do not expect to have
a premature delivery and hence do not choose where to live based on distance to a
high-level NICU. However, because high-level NICUs tend to be in certain types
of places (e.g., in cities) and people living in places with high-level NICUs have
different characteristics from people living far away from high-level NICUs, for
the third IV assumption to hold, we need to condition on these characteristics that
may affect the risk of neonatal death in these pregnancies. The measured char-
acteristics we are able to condition on are the month of pregnancy that prenatal
care started (precare), mother’s education and gestational age of the baby. We only
have a small number of measured characteristics; for settings where there are a
large numbers of measured characteristics, it is worth considering Lasso methods
to control for the characteristics as in Imai and Ratkovic (2013). In previous work
[Lorch et al. (2012); Guo et al. (2014)], we used excess travel time as an IV to es-
timate the effect of high-level vs. low-level NICUs, but we did not account for the
potential nonignorable missingness of certain measured characteristics. We will
develop a method for accounting for nonignorable missing covariates.

1.3. Nonignorable missing covariates. Among the measured confounders, the
gestational ages are completely recorded but some subjects’ precare and education
level are missing. We are concerned that the missingness is related with the out-
come (death) and the risks of mother and infant. The information for mother is
usually filled out partly by mother and partly by the nurse or doctor. If the baby
died, the mother may not want to fill out the questionnaire due to her grief or
nurses may not bother the mother to fill out a questionnaire out of caring for the
mother’s grief. When the mother or infant is at high risk of complications, nurses
and doctors focus on this emergency and may ignore recording mother’s informa-
tion. Consequently, missingness is only plausibly ignorable if we condition on the
outcome (death) and mother’s/infant’s risk of complications. The outcome is fully
observed but the mother’s/infant’s risk of complication is not fully observed. The
measured variable gestational age is a strong predictor of risk but other predictors
of risk that are known to the doctor but not recorded in the data include the results
of fetal heart tracing and the doctor’s knowledge about the severity of mother’s
and baby’s condition. These unmeasured confounders may be related to the com-
pliance status of the mother. The compliance status of the mother refers to whether
the mother would deliver at a high-level NICU if she lived near to one (excess
travel time ≤ 10 minutes) and whether she would deliver at a high-level NICU if
she lived far from one (see Section 2.2 for further discussion). If the mother would
always deliver at a high-level NICU regardless of whether she lives near to one, her
compliance status is always taker. If the mother would only deliver at a high-level
NICU if she lives near one, her compliance status is complier. If a doctor knows
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that a baby/mother is at higher risk of complications based on fetal heart tracing or
other knowledge, then the doctor is more likely to recommend the mother to de-
liver at a high-level NICU regardless of how near she lives to the high-level NICU
and the mother is more likely be an always taker. Thus, compliance status is re-
lated to unmeasured risk and, consequently, the missingness of observed variables
is likely to be related to compliance status. Compliance status is only partially ob-
served, for example, under the assumptions in Section 2.2, if a mother lives far
from a high-level NICU but still delivers at a high-level NICU, she is an always
taker, but if she lives near a high-level NICU and delivers at a high-level NICU,
she might be an always taker or complier.

Previous literature on IV with missing data has considered missing outcomes
[Frangakis and Rubin (1999); Mealli et al. (2004); Chen, Geng and Zhou (2009);
Small and Cheng (2009); Levy, O’Malley and Normand (2004)]. In this literature,
it has been argued that ignorability of the missing outcome may only be plau-
sible after conditioning on the covariates and the partially observed compliance
status [see (1)]. Methods have been developed for estimating causal effects under
this “latent ignorability.” For missing covariates rather than missing outcomes, the
only work on IV estimation that we are aware of is Peng, Little and Raghunathan
(2004), which assumes missingness of covariates is ignorable conditional on ob-
served data, but not allowed to depend on compliance behavior. In this paper, we
develop a method for estimation of the causal effect when the missingness of co-
variates may depend on the fully observed data as well as the partially observed
compliance behavior.

Generally, if missingness depends only on observed variables, even on observed
outcome, methods like multiple imputation under the assumption that the data
is missing at random (MAR) can provide reasonably good estimates [Schafer
(1997)]. However, if the missingness of covariates also depends on partially ob-
served compliance status, multiple imputation methods based on MAR assump-
tions may fail to provide valid inference. In this paper, we will provide a model
which allows for missingness to depend on partially observed compliance status
and we use the EM algorithm to obtain the MLE estimates. We also provide a
sensitivity analysis which allows for missingness to depend on further unobserved
confounders besides compliance status.

Many other observational studies face similar issues of unmeasured confound-
ing and missing data as ours, and the methods we develop in this paper may be use-
ful for them. For example, for studying the comparative effectiveness of two types
of drugs, data collected as part of routine health care practice is often used. Such
data may not contain measurements of important prognostic variables that guide
treatment decisions such as lab values (e.g., cholesterol), clinical variables (e.g.,
weight, blood pressure), aspects of lifestyle (e.g., smoking status, eating habits)
and measures of cognitive and physical functioning [Walker (1996); Brookhart and
Schneeweiss (2007)]. To control for such unmeasured confounders, instrumental
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variable methods have been used, for example, the prescribing preference of a pa-
tient’s physician for one type of drug vs. the other has been used as an IV [Korn
and Baumrind (1998); Brookhart et al. (2006)]. For prescribing preference to be
a valid IV, it is often necessary to condition on patient characteristics that differ
between different physicians to account for the possibility that certain physicians
tend to see sicker patients and these physicians may be more likely to prefer one
type of drug than physicians who tend to see less sick patients [Korn and Baumrind
(1998)]. However, there is often missing data on some of these patient character-
istics we would like to condition on, in particular, because the data is collected as
part of routine practice rather than as part of a research study. For example, even if
lab tests are always measured when a lab test is actually administered, since doc-
tors will only order a lab test for some patients, there will be missing data. The
missingness of lab values might be related to the treatment decision and outcome
and be nonignorable. For example, the decision to order a lab test is likely related to
patient symptoms and/or disease severity, and we would expect that the probability
of a lab test being ordered depends on what the value of the test would be, if mea-
sured, with unusual values being more likely to be measured [Roy and Hennessy
(2011)]. Thus, comparative effectiveness studies of drugs may need to consider in-
strumental variable methods with nonignorable missing covariates as in our study.

2. Notation and assumptions.

2.1. Notation. We use the potential outcome approach to define causal effects.
Let Zi represent the binary IV of infant i; 1 if excess travel time is less than
10 minutes, which encourages delivery in a high-level NICU; 0 if excess travel
time is more than 10 minutes, which does not provide encouragement of delivery
in a high-level NICU. In our data, 56.4% of subjects have excess travel time less
than 10 minutes. We use Z to denote the vector of IVs for all infants. Let Di(z) be
the potential binary treatment variable that would be observed for subject i under
IV assignment z. Let Di(z) be 1 if baby i would be delivered at a high-level NICU
under the vector of z and 0 if the baby would be delivered at a low-level NICU.
We also let Yi(z) denote the potential binary outcome, neonatal death indicator,
that would be observed for infant i under IV assignment z, with Yi(z) being 1 in-
dicating that the newborn would die in the hospital (neonatal death). We use Xi

to denote the covariate values for ith subject. The covariates in our study are dis-
crete: infant’s gestational weeks, the month of pregnancy that prenatal care started
and mother’s education, namely, 8th grade or less, some high school, high school
graduate, some college, college graduate and more than college. For simplicity, we
include the intercept in Xi . Finally, we let Rx

i (z) be the binary response indicator
of covariate x under IV z, that is, Rx

i (z) = 1 if covariate x would be observed for
infant i under IV assignment z, and Rx

i (z) = 0 if covariate x would be missing.
There is a Rx

i (z) for each covariate. In the above notation, Di(z), Yi(z) and Rx
i (z)

are all potential outcomes of an infant. For each infant, depending on the value
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of z, one scenario is factual (observed), the other ones are counterfactual (not ob-
served). We use Di , Yi and Rx

i to denote observed treatment received, observed
death outcome of infant and the observed response indicator for covariate x.

2.2. Assumptions. We assume the following assumptions hold in our study.
The first 5 assumptions are the same as Angrist, Imbens and Rubin (1996).

ASSUMPTION 1. Stable unit treatment value assumption (SUVTA), meaning
that a subject’s potential outcomes cannot be affected by other individuals’ status.

SUVTA allows us to write Di(z) as Di(zi), Yi(z) as Yi(zi) and Rx
i (z) = Rx

i (zi).
This assumption is plausibly satisfied for our data since whether a mother delivers
at a high-level NICU and her baby’s outcome is unlikely to be affected by other
mothers’ choice of living near to a high-level NICU or not.

Based on subjects’ compliance behavior, we can partition the population into
four groups:

Ui =

⎧⎪⎪⎨
⎪⎪⎩

n, if Di(1) = Di(0) = 0,
c, if Di(1) = 1, Di(0) = 0,
a, if Di(1) = Di(0) = 1,
d, if Di(1) = 0, Di(0) = 1,

(1)

where n, c, a and d represent never taker, complier, always taker and defier, re-
spectively. Because Di(1) and Di(0) are never observed jointly, the compliance
behavior of a subject is unknown. The parameter of interest in our study is the
complier average causal effect (CACE), E(Yi(1) − Yi(0) | Ui = c,Xi = x).

ASSUMPTION 2. Nonzero average causal effect of Z on D. The average
causal effect of Z on D, E[Di(1) − Di(0)], is not equal to zero.

The excess travel time should affect whether mother delivers at a high-level or
low-level NICU due to near NICUs being more convenient, thus, Assumption 2 is
plausible.

ASSUMPTION 3. Independence of the instrument from unmeasured con-
founders: conditional on X, the random vector [Y(0), Y(1), D(0), D(1)] is
independent of Z.

This assumption is plausible for our study because premature delivery is unex-
pected for women, so people do not choose where to live based on the closeness to
high-level NICU, especially after controlling for measured socioeconomic variable
such as mother’s education level.

ASSUMPTION 4. Monotonicity: D(1) ≥ D(0).
If a mother is willing to travel to deliver at a high-level NICU when living

10 or more minutes further to a high-level NICU than a low-level NICU, she is
probably also willing to travel to deliver at a high-level NICU when living less
than 10 minutes further to a high-level NICU than a low-level NICU.
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ASSUMPTION 5. Exclusion restrictions among never takers and always tak-
ers:

Yi(1) = Yi(0) if Ui = n and Yi(1) = Yi(0) if Ui = a.

This means that the IV only affects the outcome through treatment and has no
direct effect. In our study, this is plausible because most women have enough time
to make it to either the nearest high-level or low-level NICU so that marginal travel
time should not directly affect outcomes.

ASSUMPTION 6. Nonignorable missingness assumption (missingness ignor-
able conditional on compliance class, outcome and fully observed covariates): sup-
pose the first k covariates of X are fully observed and the last m−k covariates have
missing values, then

P
(
R

Xi,j

i (z) | Yi(z),Ui,Xi

) = P
(
R

Xi,j

i (z) | Yi(z),Ui,Xi,1, . . . ,Xi,k

)

∀j = k + 1, . . . ,m.

This is saying that the missingness of covariates precare and mother’s educa-
tion depends only on neonatal death information, compliance status of infant and
gestational age (fully recorded) as well as the delivery level of NICU. It is a plau-
sible assumption for our data given the discussion in Section 1.3. Identifiability in
the simplest setup where there is only one covariate which is binary under both our
nonignorable missingness assumption and an alternative nonignorable missingness
assumption is discussed in the supplementary material for our paper [Yang, Lorch
and Small (2014)].

ASSUMPTION 7. Exclusion restriction on missing indicator among never tak-

ers and always takers. R
Xi,j

i (1) = R
Xi,j

i (0) if Ui = n and R
Xi,j

i (1) = R
Xi,j

i (0) if
Ui = a.

These are analogous assumptions to Frangakis and Rubin (1999). This means
that the IV has no effect on missingness for never takers and always takers. We
think this assumption is plausible for our data for the following reasons. We think
that the missingness of covariates is affected by death and the baby’s risk of death
and complications as captured by gestational age and compliance class. Since for
always takers and never takers, death is not affected by their level of the IV Z (this
is Assumption 5) and, additionally, the gestational age and compliance class are
not affected by the level of the IV, the missingness of covariates for always takers
and never takers should not be affected by the level of the IV.

3. Model and estimation. We use a general location model [Olkin and
Tate (1961); Little and Rubin (2002)] for a mixture of continuous and categor-
ical covariate variables, which could be easily adjusted for cases where covari-
ates variables are all categorical or all continuous. We consider logistic models
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for (i) treatment assignment given covariates, (ii) outcome in each compliance
class/treatment assignment combination given covariates, and (iii) missingness in
each compliance class/treatment assignment combination given covariates, and we
use a multinomial logistic model for compliance class.

Model for covariate: suppose that in the m covariates, the first p are categorical
and the remaining m − p are continuous. We assign probability Wx1,...,xp to each
combination of possible values of those p categorical covariates variables, where
Wx1,...,xp are unknown parameters, and sum up to 1:

• (Xi,1, . . . ,Xi,p) are i.i.d. distributed with

P
(
(Xi,1, . . . ,Xi,p) = (x1, . . . , xp)

) = Wx1,...,xp where
∑

Wx1,...,xp = 1.(2)

• Conditional on (Xi,1, . . . ,Xi,p) = (x1, . . . , xp), we assume that the continuous
covariates random variables (Xi,p+1, . . . ,Xi,m) are multivariate normal with un-
known mean vector μx1,...,xp

, which may depend on the values of (x1, . . . , xp),
and with unknown common positive definite covariance matrix � in order to
reduce the number of parameters,

Xi,p+1, . . . ,Xi,m | (Xi,1, . . . ,Xi,p) = (x1, . . . , xp)
i.i.d.∼ Nm−p(μx1,...,xp

,�).(3)

Model for IV:

P(Zi = 1 | Xi = x) = exp(αT x)

1 + exp (αT x)
.(4)

Model for compliance class:

P(Ui = n | Xi = x) = 1

1 + exp(δT
a x) + exp (δT

c x)
,(5)

P(Ui = c | Xi = x) = exp (δT
c x)

1 + exp (δT
a x) + exp(δT

c x)
,(6)

P(Ui = a | Xi = x) = exp (δT
a x)

1 + exp (δT
a x) + exp (δT

c x)
.(7)

Model for outcome:

P
(
Yi(z) = 1 | Ui = u,Xi = x

) = exp (βT
uzx)

1 + exp (βT
uzx)

.(8)

According to Assumption 4, βa0 = βa1 and βn0 = βn1. The quantity of interest is
the average treatment effect for compliers of each covariate level, which is esti-
mated by E(Y (1) − Y(0) | U = c,X = x) = 1

1+exp (βT
c0x)

− 1
1+exp (βT

c1x)
.
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Model for missingness indicators:

P
(
R

Xi,j

i (z) = 1 | Yi(z) = y,Ui = u,Xi,1,...,k = x1,...,k

)
(9)

= exp (θT
j,ux1,...,k + γj,uIy=1 + ηj,uIz=1)

1 + exp (θT
j,ux1,...,k + γj,uIy=1 + ηj,uIz=1)

,

where j = k + 1, . . . ,m. Based on Assumption 7, ηj,a = ηj,n = 0, ∀j = k +
1, . . . ,m.

Under the models (2)–(9), we seek to maximize the likelihood of the joint dis-
tribution of X, Z, U , Y , R. If we know the compliance classes and the missing
covariates for each subject, we can get the MLE of parameters involved in those
models easily. Based on this idea, we are going to use the EM algorithm.

3.1. EM algorithm. For simplicity, we are going to present the EM algorithm
for the case where all the covariates are categorical and that there are 4 covariates
(including intercept) with only the first two completely observed, which is the case
of our data. The EM algorithm can be easily extended to other scenarios. The first
covariate is the intercept, and we further assume that the other three covariates are
ordered categorical with q2, q3, q4 levels, respectively. For a nominal categorical
variable, we can use indicator functions for each category, which the following
algorithm could be easily adjusted for.

Let Nr3,r4,x2,x3,x4,u,z,y be the number of cases where R
X3
i = r3, R

X4
i = r4,

Xi,2 = x2, Xi,3 = x3, Xi,4 = x4, Zi = z, Yi = y, Ui = u. Notice that Xi,1 = 1, ∀i.
Those numbers are only partially observed, however, if they are known, the com-
plete data log likelihood is

lc = ∑
r3,r4,x2,x3,x4,u,z,y

Nr3,r4,x2,x3,x4,u,z,y

× (
log(Wx2,x3,x4) + log

(
P

(
Zi = z | Xi = (1, x2, x3, x4)

))

+ log
(
P

(
Ui = u | Xi = (1, x2, x3, x4)

))

+ log
(
P

(
Yi = y | Zi = z,Ui = u,Xi = (1, x2, x3, x4)

))

+ log
(
P

(
R

Xi,3
i = r3 | Zi = z,Yi = y,Ui = u,Xi,2 = x2

))

+ log
(
P

(
R

Xi,4
i = r4 | Zi = z,Yi = y,Ui = u,Xi,2 = x2

)))
.

Once we know N , the MLE estimates of the logistic models in (4)–(9) are stan-
dard, and the MLE for Wx2,x3,x4 ∝ N...,x2,x3,x4,..., where N...,x2,x3,x4,... is defined to
be

∑
r3,r4,u,z,y Nr3,r4,x2,x3,x4,u,z,y .

In the E-step, conditional on observed data and parameters’ estimates obtained
through the previous step, we can get the expected values for Nr3,r4,x2,x3,x4,u,z,y .

From the observed data, we can get the following counts:
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1. NNx2,x3,x4,d,z,y , which denotes the number of cases that Xi,3, Xi,4 are both
observed and that Xi,2 = x2, Xi,3 = x3, Xi,4 = x4, Di = d , Zi = z, Yi = y.

2. N3x2,x4,d,z,y , which denotes the number of cases that only Xi,3 are unobserved
and that Xi,2 = x2, Xi,4 = x4, Di = d , Zi = z, Yi = y.

3. N4x2,x3,d,z,y , which denotes the number of cases that only Xi,4 are unobserved
and that Xi,2 = x2, Xi,3 = x3, Di = d , Zi = z, Yi = y.

4. NBx2,d,z,y , which denotes the number of cases that Xi,3,Xi,4 are both missing
and that Xi,2 = x2, Di = d , Zi = z, Yi = y.

Further, let Pr3,r4,x2,x3,x4,u,z,y be the probability of a subject having a case where

R
X3
i = r3, R

X4
i = r4, Xi,2 = x2, Xi,3 = x3, Xi,4 = x4, Zi = z, Yi = y, Ui = u

which are calculated based on models (2)–(9). Then we can get the expected values
for each Nr3,r4,x2,x3,x4,u,z,y , for example,

EN1,1,x2,x3,x4,a,1,y = NNx2,x3,x4,1,1,y

P1,1,x2,x3,x4,a,1,y

P1,1,x2,x3,x4,a,1,y + P1,1,x2,x3,x4,c,1,y

.

To save space, all the formulas to update each Nr3,r4,x2,x3,x4,u,z,y are given in
Appendix. By iteratively finding the E-step estimate of N and maximizing the
expected value of the complete data log likelihood in the M-step until the algorithm
converges, we obtain estimates of the parameters in models (2)–(9). The R code
for the algorithm to analyze our data is in the supplementary materials for our
paper [Yang, Lorch and Small (2014)].

4. Simulation. In this section we conduct simulation studies to estimate the
complier average causal effect in the simplest context where there is only one co-
variate, the values of which could only be 0, 1. We consider the following three
scenarios under Assumptions 1–7: (1) covariate is missing completely at random;
(2) covariate is missing at random, meaning that the missingness does not depend
upon the unobserved data, for example, does not depend on latent compliance sta-
tus; (3) missing mechanism for covariate is nonignorable: the missingness of co-
variate can depend on not only the observed outcome Y , treatment assignment Z,
but also latent compliance status U .

In each scenario, we are going to apply the following three estimation methods
and compare their results: (1) Complete-case analysis, which provides unbiased es-
timates when the missing mechanism of the data is missing completely at random.
(2) The estimates using multiple imputation by chained equations [conducted by
MICE, see Van Buuren and Groothuis-Oudshoorn (2011)] which gives valid esti-
mates when data are missing at random. (3) Our method, which is designed to deal
with nonignorable missingness of covariates.

In the single covariate case, the models described in Section 3 can be repre-
sented simply by the following set of parameters: Wu, which is P(Ui = u); Mu,
which is P(Xi = 1 | Ui = u); ξx , which represents P(Zi = 1 | Xi = x); θzux ,
which denotes P(Yi(z) = 1 | Ui = u,Xi = x); and ρyzu, which are parameters for
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missingness indicators P(Ri(z) = 1 | Yi = y,Ui = u), where Ri = 0 if the covari-
ate for the ith subject is missing. θ1c1 − θ0c1 and θ1c0 − θ0c0 are the corresponding
compliers’ average causal effect for subjects with X being 1 and 0, respectively.

In all three scenarios, the parameters other than the ones in the missingness
model are arbitrarily chosen and fixed as follows:

Wn = 0.2, Wa = 0.375, Mn = 0.5, Ma = 0.25, Mc = 0.8,

ξ1 = 0.4, ξ0 = 0.6,

θ1n1 = 0.5, θ1n0 = 0.3, θ0a1 = 0.8, θ0a0 = 0.7,

θ1c1 = 0.7, θ1c0 = 0.45, θ0c1 = 0.45, θ0c0 = 0.3.

The missingness parameters in each scenario are described below; the values for
ρ’s are chosen to generate 12% missingness for covariate (the same missing rate
as in the NICU study), and satisfy the exclusion restriction for missing indicator,
which implies that ρy0a = ρy1a and ρy0n = ρy1n. In the first case, the missingness
parameters ρ’s are the same for all possible outcomes, IV levels as well as com-
pliance classes, thus, the covariate is missing completely at random; in the second
case, the missing rates are different for different outcomes and IV levels, however
will not be affected by partially observed compliance status, so that the missing-
ness will not depend on unobserved data, which is a case of missing at random;
in the last case, besides outcome and IV, the compliance status also plays a role
in deciding the probability of missingness, and the values of ρ’s are chosen so
that even the largest effect of compliance status on missingness is still moderate
(ρ11a − ρ11n = 0.25) and realistic:

1. Missing completely at random

ρ11n = ρ01n = ρ10a = ρ00a = ρ11c = ρ01c = ρ00c = ρ10c = 0.88.

2. Missing at random

ρ11n = ρ10n = ρ10c = 0.88, ρ10a = ρ11a = ρ11c = 0.78,

ρ01n = ρ00n = ρ00c = 0.94, ρ00a = ρ01a = ρ01c = 0.97.

3. Nonignorable missingness

ρ11n = ρ10n = 0.75, ρ01n = ρ00n = 0.8, ρ10a = ρ11a = 1,

ρ00a = ρ01a = 0.95, ρ11c = 0.8, ρ01c = 0.9,

ρ00c = 0.83, ρ10c = 0.97.

We simulated 500 data sets for each scenario described above with each simu-
lated data set containing 5000 subjects. Under the above setup, the CACE for sub-
jects with covariate being 1 is 0.25, whereas the CACE for subjects with covariate



60 F. YANG, S. A. LORCH AND D. S. SMALL

TABLE 1
Simulation results under MCAR, MAR and nonignorable missing mechanism

EM(NI) Complete case MICE

CACE Mean SD Mean SD Mean SD

MCAR
θ1n1 − θ0n1 = 0.250 0.250 (0.00%) 0.027 0.249 (0.40%) 0.028 0.248 (0.80%) 0.028
θ1n0 − θ0n0 = 0.150 0.149 (0.67%) 0.095 0.148 (1.33%) 0.096 0.154 (2.67%) 0.095

MAR
θ1n1 − θ0n1 = 0.250 0.250 (0.00%) 0.027 0.221 (11.60%) 0.029 0.246 (1.60%) 0.028
θ1n0 − θ0n0 = 0.150 0.147 (2.00%) 0.097 0.113 (24.67%) 0.096 0.160 (6.67%) 0.097

Nonignorable
θ1n1 − θ0n1 = 0.250 0.250 (0.00%) 0.027 0.188 (24.80%) 0.029 0.234 (6.40%) 0.029
θ1n0 − θ0n0 = 0.150 0.148 (1.33%) 0.093 0.089 (40.60%) 0.096 0.221 (47.33%) 0.084

0 is 0.15. Table 1 shows the means and standard deviations for the estimates of
CACE across 500 simulated data sets using the EM algorithm based on our nonig-
norable missingness assumption, the complete-case estimates and multiple impu-
tation estimates using MICE for each missingness mechanism. The corresponding
bias in percentage is given in parentheses.

From Table 1 we see that when data is missing completely at random, all three
methods provide unbiased estimates. In the second scenario when the missing-
ness depends on observed data, we can no longer obtain unbiased estimates from
complete-case analysis, whereas both our EM algorithm for nonignorable miss-
ingness and MICE designed for data missing at random still provide reasonable
estimates as we expected. However, when the missingness of covariates depends
not only on the observed outcome, but also on the partially observed compliance
status, simply using the complete cases or assuming missing at random to impute
missing covariates based on the observed data gives us biased estimates of CACE.
The complete-case analysis provides biased estimates due to the fact that it is ac-
tually estimating E(Yi(1) − Yi(0) | Ui = c,Ri = 1), which is generally different
from E(Yi(1) − Yi(0) | Ui = c) when the data is not missing completely at ran-
dom. Imputation based on missingness at random is actually imputing X as if the
missing mechanisms for compliers and always takers assigned to treatment are the
same, and that for compliers and never takers assigned to control are the same.
When this is not the case, the imputation estimates are biased.

From our simulation study, we can see that even if the missingness rate of a
covariate is low (12%), and the compliance class has only a moderate effect on the
missingness, it is still important and necessary to model the effect of compliance
class on missingness in the analysis, otherwise the results could be significantly
biased.
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5. Application to NICU study. The data describes 189,991 babies born pre-
maturely in Pennsylvania between 1995–2005. These premature babies are the
ones whose gestational ages are between 23 and 37 weeks. The outcome variable
we are interested in is neonatal death of babies, which refers to death during the
initial birth hospitalization; we use Yi to represent the outcome of the ith baby in
the data set, with Yi being 1 indicating the death of baby i. We view infants that
are delivered in a high-level NICU as the treatment group, whereas the ones that
are delivered in a low-level NICU are the control group. Let Di equal 1 if the ith
baby is delivered in a high-level NICU, 0 if in a low-level NICU. The instrumen-
tal variable we consider is whether or not the mother’s excess travel time that a
mother lives from the nearest high-level NICU compared to the nearest low-level
NICU is less than or equal to 10 minutes. As we discussed in Section 2.2, mother’s
excess time is a plausible IV in our study which satisfies the IV Assumptions 1–7
in Section 2.2. We use Zi to denote the IV value for the ith baby, with Zi being
1 indicating that the excess travel time is less than 10 minutes. The measured con-
founders Xi for baby i are baby’s gestational age, the month of pregnancy that
prenatal care started and mother’s education. We also include an intercept in Xi .

In this data set, all variables mentioned above are fully observed except the
month of pregnancy that prenatal care started and mother’s education level. The
missing rates for those two covariates are 10.3% and 2.3%, respectively. We did
Chi-Square tests of independence to test whether the missingness of those two
covariates depends on outcome Y . The p-values are both below 10−15, strong evi-
dence that missingness depends on the outcome. We also did logistic regression to
test whether the missing indicators also depend on the observed risk characteristic
of gestational age given the outcome of neonatal death. The results show that gesta-
tional age has a significant negative association with the missingness of those two
covariates even conditional on outcome (p-values are both below 10−15). Since
we have strong evidence that the missingness depends on observed risk charac-
teristics, we believe that the missingness should also depend on unobserved risk
characteristics which are reflected in compliance status.

Table 2 describes the estimated proportions of each compliance class—always
takers, compliers and never takers—for some typical combinations of covariates.
There is a clear trend that as the gestational ages get larger, the proportion of
always takers gets smaller, and the proportions of the other two compliance classes
get larger. A reasonable explanation for this phenomenon is that the gestational age
is a strong predictor for the risk of complications as well as death—the smaller
the baby is, the higher risk the baby and mother have. For babies or mothers at
higher risk of complications or death, doctors are more likely to encourage them
to go to a high-level NICU no matter if the mother lives near one or not, that
is, those mothers are more likely to be always takers. Notice that from the fit of
our model, there is a substantial proportion of never takers, although it may be
surprising that people would choose to bypass a high-level NICU for a low-level
NICU (i.e., be a never taker). Choice of hospital is driven by a number of factors,
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TABLE 2
Percentages of always takers, compliers and never takers in %

Gestational
age

Precare Mother’s
education

Percentage of always takers Percentage of compliers Percentage of never takers

Estimate 95% CI Estimate 95% CI Estimate 95%CI

24 2 High School 87.2 [86.3, 88.0] 4.4 [3.6, 5.1] 8.4 [7.8, 9.0]
24 4 High School 87.4 [86.5, 88.3] 4.8 [3.9, 5.6] 7.8 [7.3, 8.5]
24 2 College 92.0 [91.5, 92.6] 2.7 [2.2, 3.2] 5.3 [4.8, 5.7]
24 4 College 92.2 [91.5, 92.7] 2.9 [2.4, 3.5] 4.9 [4.5, 5.3]
30 2 High School 59.4 [57.9, 60.2] 20.0 [18.4, 21.4] 21.0 [20.2, 21.8]
30 4 High School 58.9 [57.7, 60.3] 21.6 [19.9, 23.1] 19.5 [18.8, 20.3]
30 2 College 71.1 [70.1, 72.0] 14.0 [12.8, 15.1] 15.0 [14.3, 15.6]
30 4 College 70.9 [69.8, 72.1] 15.1 [13.8, 16.4] 13.9 [13.3, 14.6]
37 2 High School 17.4 [17.1, 17.7] 54.2 [53.6, 54.9] 28.4 [27.9, 28.8]
37 4 High School 17.0 [16.5, 17.4] 57.3 [56.6, 58.0] 25.8 [25.2, 26.3]
37 2 College 26.5 [26.0, 26.9] 48.0 [47.2, 48.8] 25.6 [25.1, 26.0]
37 4 College 25.9 [25.2, 26.6] 50.8 [49.9, 51.8] 23.3 [22.7, 23.9]
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TABLE 3
Estimates of outcome model for compliers

Parameters Intercept Gestational age Precare Mother’s education

βc1 1.400 (1.617) −0.153 (0.043) 0.091 (0.063) −0.522 (0.118)
βc0 9.450 (1.274) −0.395 (0.042) 0.144 (0.055) −0.315 (0.113)

including where a patient’s physician practices, the general view of the hospital
by a specific community of patients, and what family or friends believe about a
hospital. There are families who choose to deliver at smaller hospitals regardless
of where they live and their illness severity. This may be because some families
are suspicious of academic hospitals, which make up the majority of high-level
NICUs, and would rather travel to deliver at a community hospital even if the
hospital has fewer resources to care for them.

Table 3 shows the estimates of parameters in outcome model for compliers,
which are the parameters to estimate the CACE, E(Y (1)−Y(0) | U = c,X = x) =

1
1+exp (βT

c0x)
− 1

1+exp (βT
c1x)

. The standard errors for the corresponding parameters are

provided in parentheses; the standard errors are estimated through bootstrap using
1000 re-samples. From the estimates for the outcome model, we see that larger
gestational age and higher mother’s education level are related to low death rate,
and that for the mothers who started prenatal care late, the baby is at more risk of
death.

Table 4 shows the estimated CACE of delivering at high-level NICU vs. low-
level NICU for various combinations of the measured covariates. High-level
NICUs substantially reduce the probability of death for very premature babies.

TABLE 4
CACE with different covariate values

Gestational age Precare Mother’s education CACE 95% confidence interval

24 2 High School −0.296 [−0.429,−0.137]
24 4 High School −0.343 [−0.490,−0.162]
24 2 College −0.192 [−0.349,−0.064]
24 4 College −0.230 [−0.421,−0.077]
30 2 High School −0.032 [−0.043,−0.017]
30 4 High School −0.040 [−0.056,−0.023]
30 2 College −0.019 [−0.033,−0.008]
30 4 College −0.024 [−0.043,−0.009]
37 2 High School 0.001 [−0.001,0.002]
37 4 High School 0.001 [−0.001,0.002]
37 2 College 0.000 [−0.001,0.001]
37 4 College 0.000 [−0.002,0.001]
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For example, for an infant of gestational age 24 weeks, whose mother started pre-
natal care in the second month of pregnancy and has a high school education, being
delivered in a high-level NICU will reduce the probability of death by 0.296, with
a 95% confidence interval of −0.429 to −0.137. The effect of high-level NICUs is
less for less premature babies; when the baby’s gestational age is about 37 weeks,
the high-level NICU has almost no effect on mortality. This is plausible since a
37-week baby is almost mature and is at less risk and, consequently, the type of
delivery NICU may not matter much.

Using our method, the estimated CACE weighted by the probability of each
combination of the measured covariates is −0.010, with a 95% confidence interval
[−0.014, −0.006]; and the estimated CACE weighted by the number of compliers
in each combination of the measured covariates is −0.002, with a 95% confidence
interval [−0.004, −0.001]. Thus, our analysis shows that high-level NICU signif-
icantly reduce the probability of death for premature babies.

We compare our analysis to several “baseline” methods commonly used to
analyze observational studies that are not designed to allow for unmeasured
confounders or nonignorable missingness. The first method we consider is an un-
adjusted analysis using the observed rates of neonatal death in high-level NICUs
and low-level NICUs to estimate E(Y | D = 1) − E(Y | D = 0). The estimate is
0.01 with a 95% confidence interval [0.009, 0.011], which shows that high-level
NICU is associated with a higher probability of death. The second method we
consider is a logistic regression model of neonatal death indicator Y on treat-
ment D as well as the measured confounders to get an estimate 1

N

∑N
i=1[Ê(Y |

D = 1,X) − Ê(Y | D = 0,X)] to adjust for covariates. We use mice under the
MAR assumption to impute the missing values in the data. This adjusted estimate
is 0.000, with a 95% confidence interval [−0.001, 0.001], which provides no evi-
dence of an association between level of NICU and chance of neonatal death. The
third method we consider is subclassification on the propensity score following
Rosenbaum and Rubin (1984). As suggested in Rosenbaum and Rubin (1984), we
divided babies into five subclasses based on the propensity score, and obtained
the average treatment effect by weighting each subpopulation’s average treatment
effect by the proportion of each subclass. This adjusted analysis shows that the
high-level NICU increases the probability of neonatal death by 0.002, with a 95%
confidence interval [0.001, 0.003]. The conclusions of all the three baseline meth-
ods contradicts with the result of our method, which found evidence that delivery
at a high-level NICU increases a premature baby’s chance of survival. Unlike the
three baseline methods, our method allows for unmeasured confounders and a cer-
tain type of nonignorable missingness of covariates.

6. Sensitivity analysis. In this section we will assess the sensitivity of our
causal conclusions to an unmeasured patient risk characteristic relevant to both
the outcome of death and missingness of covariates, for example, results of tests
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like fetal heart tracing or doctor’s knowledge about mother’s severity of condition.
Following the idea of Rosenbaum and Rubin (1983), we assume that there is an
unobserved binary covariate Q which represents the risk not explained by compli-
ance status and gestational age, and that is independent of the observed covariates,
the compliance status and the instrument. We want to know after accounting for
such an unmeasured covariate if there is still evidence that the high-level NICU
reduces the probability of death for babies of small gestational age.

The adjusted model is as follows:

P(Q = 1) = π,

the parameter π gives the probability that the unobserved binary risk variable is 1.
We assume that the unobserved binary risk variable Q is independent of IV Z,
compliance class U and covariates X, thus, the models (2)–(7) remain the same in
our sensitivity analysis. The model of outcome controlling also for Q is

P
(
Yi(z) = 1 | Ui = u,Xi = x,Qi = q

) = exp (βT
uzx + ξuzq)

1 + exp (βT
uzx + ξuzq)

.

Again, according to Assumption 4, βa0 = βa1, βn0 = βn1, ξa0 = ξa1 and ξn0 = ξn1.
ξuz gives the log odds ratio for Y in two subpopulations q = 1 and q = 0. Finally,
the model for missing indicators of covariate j controlling further for Q is

P
(
R

Xi,j

i (z) = 1 | Yi(z) = y,Ui = u,Xi,1,...,k = x1,...,k,Qi = q
)

= exp (θT
j,ux1,...,k + γj,uIy=1 + ηj,uIz=1 + κj,uq)

1 + exp (θT
j,ux1,...,k + γj,uIy=1 + ηj,uIz=1 + κj,uq)

,

where j = k + 1, . . . ,m. Based on Assumption 6, ηj,a = ηj,n = 0, ∀j = k +
1, . . . ,m. κj,u gives the log odds ratio for R in two subpopulations q = 1 and
q = 0.

For fixed sensitivity parameters π, ξuz, κj,u, there exist unique MLEs of the
remaining parameters. Our EM algorithm for the original model could be eas-
ily extended to obtain those estimates. The average treatment effect for com-
pliers of each covariate level is estimated by E(Y (1) − Y(0) | U = c,X = x) =
π · ( 1

1+exp (βT
c0x+ξc0)

− 1
1+exp (βT

c1x+ξc1)
) + (1 − π) · ( 1

1+exp (βT
c0x)

− 1
1+exp (βT

c1x)
).

In order to limit the size of the sensitivity analysis, (κ, ξ) is assumed in the
sensitivity analysis to be the same across all subclasses defined by IV, compliance
class and covariates. And also as in Table 4, we estimated CACE for some typi-
cal combinations of the measured confounders under each assignment of (π, κ, ξ).
The details are presented in Tables 1, 2 and 3 in the supplementary material [Yang,
Lorch and Small (2014)], where Table 1 describes the result for babies of gesta-
tional age 24 weeks, Table 2 describes the result for babies of gestational age 30
weeks and Table 3 describes the result for babies of gestational age 37 weeks.
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TABLE 5
Effects of Q on the CACE for patients with prenatal care starting at second month of pregnancy,

mother’s education being high school and with gestational age being 24 weeks, 30 weeks and
37 weeks, respectively

Gestational
age

Effect of Q on Y Effect of Q on R P(Q = 1) :π

0.1 0.5 0.9

24 exp(ξ) = 2 exp(κ) = 2 −0.289 −0.283 −0.290
exp(κ) = 1

2 −0.297 −0.296 −0.293

exp(ξ) = 1
2 exp(κ) = 2 −0.293 −0.296 −0.297

exp(κ) = 1
2 −0.290 −0.283 −0.289

exp(ξ) = 3 exp(κ) = 3 −0.273 −0.228 −0.217
exp(κ) = 1

3 −0.296 −0.252 −0.225

exp(ξ) = 1
3 exp(κ) = 3 −0.298 −0.329 −0.379

exp(κ) = 1
3 −0.289 −0.300 −0.352

30 exp(ξ) = 2 exp(κ) = 2 −0.032 −0.031 −0.031
exp(κ) = 1

2 −0.032 −0.033 −0.032

exp(ξ) = 1
2 exp(κ) = 2 −0.032 −0.033 −0.032

exp(κ) = 1
2 −0.031 −0.031 −0.032

exp(ξ) = 3 exp(κ) = 3 −0.029 −0.024 −0.022
exp(κ) = 1

3 −0.032 −0.026 −0.022

exp(ξ) = 1
3 exp(κ) = 3 −0.032 −0.038 −0.046

exp(κ) = 1
3 −0.032 −0.035 −0.043

37 exp(ξ) = 2 exp(κ) = 2 0.001 0.001 0.001
exp(κ) = 1

2 0.001 0.001 0.001

exp(ξ) = 1
2 exp(κ) = 2 0.001 0.001 0.001

exp(κ) = 1
2 0.001 0.001 0.001

exp(ξ) = 3 exp(κ) = 3 0.001 0.001 0.001
exp(κ) = 1

3 0.001 0.001 0.001

exp(ξ) = 1
3 exp(κ) = 3 0.001 0.001 0.001

exp(κ) = 1
3 0.001 0.001 0.001

Table 5 presents part of the sensitivity analysis results, showing how the unob-
served binary covariate Q affects the CACE for patients with prenatal care starting
at second month of pregnancy, mother’s education being high school and babies’
gestational age being 24 weeks, 30 weeks and 37 weeks, respectively. From Ta-
ble 5, we observe that when the odds ratios are doubled, the estimated CACEs
do not change much in each assignment of sensitivity parameters; and when the
odds ratios are tripled, the estimated CACEs vary more. The same phenomenon
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could be observed for other cases in Tables 1–3 in the supplementary material
[Yang, Lorch and Small (2014)]. It is time consuming to conduct a bootstrap for
each combination of sensitivity parameters to obtain the 95% confidence interval
for each scenario, however, due to the fact that we are using the same data set in
outcome analysis in Section 5 and also in our sensitivity analysis, it is reasonable
to assume that the width of the confidence intervals would be similar to the ones
shown in Table 4 for each scenario. Specifically, if the point estimate and the confi-
dence interval for a parameter in Table 4 is a and [b, c], respectively, and the point
estimate for a corresponding parameter in the sensitivity analysis tables (Tables 1,
2 and 3 in the supplementary material) is d , then we estimate the confidence inter-
val for the parameter in the sensitivity analysis to be [d − (a − b), d + (c − a)].
For example, in the first case in Table 5, where the gestational age is 24, precare
is 2 and mother’s education level is high school, if 10% of patients’ unobserved
risk covariate is 1, and the unobserved covariate doubles both odds ratios for Y

and missingness indicators R, the estimated CACE is −0.289, with approximate
95% confidence interval [−0.422, −0.130]. We checked the 95% confidence inter-
vals constructed as above for each case listed in Tables 1–3 in the supplementary
material and find that no confidence intervals cover 0 for cases shown in Tables 1
(gestational age being 24) and 2 (gestational age being 30), and all confidence
intervals cover 0 for cases in Table 3 (gestational age being 37). Consequently,
the unobserved covariate Q would have to more than triple the odds in both the
outcome and missing indicator models, before altering the conclusion obtained in
Section 5 that high-level NICUs reduce the probability of death in babies of small
gestational age. To provide some idea about how large an effect an unobserved
covariate would have to be to change our conclusions, we compare the effect to
that of the observed covariate gestational age, which is a strong predictor for death
and risk of complications. According to the fit of our model (see Table 3), if ges-
tational age is changed by 2 weeks, then the odds ratios for the outcome death
would be altered by a factor of 2.2 and the odds ratios for the response would be
altered by a factor of 1.6. Thus, based on our sensitivity analysis results, an unob-
served covariate with the same effect as changing gestational age by 2 weeks would
not change our conclusion that high-level NICUs reduce the probability of death
in babies of small gestational age. We conclude that even if some confounders,
for instance, results of tests like fetal heart tracing and doctor’s knowledge about
mother’s severity of condition, are unmeasured and affect both the outcome and
missingness of covariates, they would not change our conclusions unless they had
very large effects.

7. Summary. We proposed a series of models to estimate the causal effect
of a treatment using an instrumental variable when the missingness of covariates
may depend on the fully observed outcome, fully observed covariates, IV as well
as the partially observed compliance behavior. Simulation studies show that un-
der our nonignorable missingness assumption where the missingness depends on
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partially observed compliance class, even if the missing rate of covariate is low
(12%), and the effect of compliance class on the missingness is only moderate,
the commonly used estimation methods, complete-case analysis and multiple im-
putation by chained equations assuming MAR could provide substantially biased
estimates; in contrast, our proposed method, which is designed to deal with nonig-
norable missingness of covariates, provides unbiased results.

In this paper we have developed a maximum likelihood method for instrumental
variable estimation with nonignorable missingness of covariates. Further research
could consider a Bayesian version of our model which would enable carrying our
multiple imputation based on our model.

We applied our method to an observational study of neonatal care that aims to
estimate the delivery effect on mortality of premature babies being delivered in a
high-level NICU vs. a low-level NICU. We found that high-level NICUs substan-
tially reduce the death risk for babies with small gestational age, which implies
that high-level NICUs are truly providing considerably better care for babies with
small gestational age. Therefore, it is valuable to invest resources to strengthen the
perinatal regionalization system for those babies. For babies that are almost ma-
ture, strengthening the perinatal regionalization system should probably not be a
priority.

The methods we develop in this paper may be useful for many other obser-
vational studies facing unmeasured confounders as well as nonignorable missing
data like ours. One example we described in the Introduction is comparative effec-
tiveness studies where it is a concern that the missingness of important lab values
might be related with compliance status. For these settings, our simulation study
shows that it is important and necessary to model the effect of compliance status
on missingness to get valid estimates.

In this study, we focus on cases which contain missing covariates, and the miss-
ingness of covariates is nonignorable. However, in practice, many studies face the
issue of not only missing covariates but also missing outcomes. In our nonignor-
able missingness assumption (Assumption 6), we allow the missingness of co-
variates to depend on the outcome. If there are also missing outcomes, since the
covariates are predictors for the outcome, it is likely that the missingness of the
outcome is related to the values of covariates which are unobserved for some sub-
jects. If missingness exists in both the covariates and the outcome, identifiability
is a major issue to study since the missingness of the covariates and outcome may
depend on each other. Additional assumptions beyond what we have considered
are needed for identifiability. Possible assumptions could be developed based on
Peng, Little and Raghunathan (2004) where missingness of outcome is allowed
to depend on compliance and fully observed data, whereas missingness of co-
variates is allowed to depend on only the fully observed data but not compliance
status.
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APPENDIX: E-STEP ESTIMATES

The fomulas to update N in the E-step are as follows, ∀x2, x3, x4, y:

N1,1,x2,x3,x4,a,0,y = NNx2,x3,x4,1,0,y,

N1,1,x2,x3,x4,n,1,y = NNx2,x3,x4,0,1,y,

EN1,1,x2,x3,x4,a,1,y = NNx2,x3,x4,1,1,y

P1,1,x2,x3,x4,a,1,y

P1,1,x2,x3,x4,a,1,y + P1,1,x2,x3,x4,c,1,y

,

EN1,1,x2,x3,x4,c,1,y = NNx2,x3,x4,1,1,y

P1,1,x2,x3,x4,c,1,y

P1,1,x2,x3,x4,a,1,y + P1,1,x2,x3,x4,c,1,y

,

EN1,1,x2,x3,x4,n,0,y = NNx2,x3,x4,0,0,y

P1,1,x2,x3,x4,n,0,y

P1,1,x2,x3,x4,n,0,y + P1,1,x2,x3,x4,c,0,y

,

EN1,1,x2,x3,x4,c,0,y = NNx2,x3,x4,0,0,y

P1,1,x2,x3,x4,c,0,y

P1,1,x2,x3,x4,n,0,y + P1,1,x2,x3,x4,c,0,y

,

EN0,1,x2,x3,x4,a,0,y = N3x2,x4,1,0,y

P0,1,x2,x3,x4,a,0,y∑x3=q3
x3=1 P0,1,x2,x3,x4,a,0,y

,

EN0,1,x2,x3,x4,n,1,y = N3x2,x4,0,1,y

P0,1,x2,x3,x4,n,1,y∑x3=q3
x3=1 P0,1,x2,x3,x4,n,1,y

,

EN0,1,x2,x3,x4,a,1,y

= N3x2,x4,1,1,y

P0,1,x2,x3,x4,a,1,y∑x3=q3
x3=1 P0,1,x2,x3,x4,a,1,y + ∑x3=q3

x3=1 P0,1,x2,x3,x4,c,1,y

,

EN0,1,x2,x3,x4,c,1,y

= N3x2,x4,1,1,y

P0,1,x2,x3,x4,c,1,y∑x3=q3
x3=1 P0,1,x2,x3,x4,a,1,y + ∑x3=q3

x3=1 P0,1,x2,x3,x4,c,1,y

,

EN0,1,x2,x3,x4,n,0,y

= N3x2,x4,0,0,y

P0,1,x2,x3,x4,n,0,y∑x3=q3
x3=1 P0,1,x2,x3,x4,n,0,y + ∑x3=q3

x3=1 P0,1,x2,x3,x4,c,0,y

,

EN0,1,x2,x3,x4,c,0,y

= N3x2,x4,0,0,y

P0,1,x2,x3,x4,c,0,y∑x3=q3
x3=1 P0,1,x2,x3,x4,n,0,y + ∑x3=q3

x3=1 P0,1,x2,x3,x4,c,0,y

,

EN1,0,x2,x3,x4,a,0,y = N4x2,x3,1,0,y

P1,0,x2,x3,x4,a,0,y∑x4=q4
x4=1 P1,0,x2,x3,x4,a,0,y

,

EN1,0,x2,x3,x4,n,1,y = N4x2,x3,0,1,y

P1,0,x2,x3,x4,n,1,y∑x4=q4
x4=1 P1,0,x2,x3,x4,n,1,y

,
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EN1,0,x2,x3,x4,a,1,y

= N4x2,x3,1,1,y

P1,0,x2,x3,x4,a,1,y∑x4=q4
x4=1 P1,0,x2,x3,x4,a,1,y + ∑x4=q4

x4=1 P1,0,x2,x3,x4,c,1,y

,

EN1,0,x2,x3,x4,c,1,y

= N4x2,x3,1,1,y

P1,0,x2,x3,x4,c,1,y∑x4=q4
x4=1 P1,0,x2,x3,x4,a,1,y + ∑x4=q4

x4=1 P1,0,x2,x3,x4,c,1,y

,

EN1,0,x2,x3,x4,n,0,y

= N4x2,x3,0,0,y

P1,0,x2,x3,x4,n,0,y∑x4=q4
x4=1 P1,0,x2,x3,x4,n,0,y + ∑x4=q4

x4=1 P1,0,x2,x3,x4,c,0,y

,

EN1,0,x2,x3,x4,c,0,y

= N4x2,x3,0,0,y

P1,0,x2,x3,x4,c,0,y∑x4=q4
x4=1 P1,0,x2,x3,x4,n,0,y + ∑x4=q4

x4=1 P1,0,x2,x3,x4,c,0,y

,

EN0,0,x2,x3,x4,a,0,y

= NBx2,1,0,y

P0,0,x2,x3,x4,a,0,y∑x4=q4
x4=1

∑x3=q3
x3=1 P1,0,x2,x3,x4,a,0,y

,

EN0,0,x2,x3,x4,n,1,y

= NBx2,1,0,y

P0,0,x2,x3,x4,n,1,y∑x4=q4
x4=1

∑x3=q3
x3=1 P1,0,x2,x3,x4,n,1,y

,

EN0,0,x2,x3,x4,a,1,y

= NBx2,1,1,y

P0,0,x2,x3,x4,a,1,y∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,a,1,y + ∑x4=q4

x4=1
∑x3=q3

x3=1 P0,0,x2,x3,x4,c,1,y

,

EN0,0,x2,x3,x4,c,1,y

= NBx2,1,1,y

P0,0,x2,x3,x4,c,1,y∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,a,1,y + ∑x4=q4

x4=1
∑x3=q3

x3=1 P0,0,x2,x3,x4,c,1,y

,

EN0,0,x2,x3,x4,n,0,y

= NBx2,1,1,y

P0,0,x2,x3,x4,n,0,y∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,n,0,y + ∑x4=q4

x4=1
∑x3=q3

x3=1 P0,0,x2,x3,x4,c,0,y

,

EN0,0,x2,x3,x4,n,0,y

= NBx2,1,1,y

P0,0,x2,x3,x4,c,0,y∑x4=q4
x4=1

∑x3=q3
x3=1 P0,0,x2,x3,x4,n,0,y + ∑x4=q4

x4=1
∑x3=q3

x3=1 P0,0,x2,x3,x4,c,0,y

.

Acknowledgment. We thank Roland Ramsahai for helpful discussion.



IV WITH NONIGNORABLE MISSING COVARIATES 71

SUPPLEMENTARY MATERIAL

Supplement to “Estimation of causal effects using instrumental variables
with nonignorable missing covariates: Application to effect of type of delivery
NICU on premature infants” (DOI: 10.1214/13-AOAS699SUPP; .zip). We in-
clude in the supplementary document the R code for the algorithm to analyze our
data, discussion on identifiability in the simplest setup where there is only one co-
variate which is binary under both our nonignorable missingness assumption and
an alternative nonignorable missingness assumption, and detailed results of our
sensitivity analysis.
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