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Admissible Predictive Density Estimation

Abstract
Let X|μ∼Np(μ, vxI) and Y|μ∼Np(μ, vyI) be independent p-dimensional multivariate normal vectors with
common unknown mean μ. Based on observing X=x, we consider the problem of estimating the true
predictive density p(y|μ) of Y under expected Kullback–Leibler loss. Our focus here is the characterization of
admissible procedures for this problem. We show that the class of all generalized Bayes rules is a complete
class, and that the easily interpretable conditions of Brown and Hwang [Statistical Decision Theory and Related
Topics (1982) III 205–230] are sufficient for a formal Bayes rule to be admissible.
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ADMISSIBLE PREDICTIVE DENSITY ESTIMATION1

BY LAWRENCE D. BROWN, EDWARD I. GEORGE AND XINYI XU

University of Pennsylvania, University of Pennsylvania
and The Ohio State University

Let X|μ ∼ Np(μ,vxI ) and Y |μ ∼ Np(μ,vyI ) be independent p-
dimensional multivariate normal vectors with common unknown mean μ.
Based on observing X = x, we consider the problem of estimating the true
predictive density p(y|μ) of Y under expected Kullback–Leibler loss. Our
focus here is the characterization of admissible procedures for this problem.
We show that the class of all generalized Bayes rules is a complete class,
and that the easily interpretable conditions of Brown and Hwang [Statistical
Decision Theory and Related Topics (1982) III 205–230] are sufficient for a
formal Bayes rule to be admissible.

1. Introduction. Let X|μ ∼ Np(μ,vxI ) and Y |μ ∼ Np(μ,vyI ) be indepen-
dent p-dimensional multivariate normal vectors with a common unknown mean
μ ∈ Rp . We assume that vx > 0 and vy > 0 are known. We let p(x|μ) and p(y|μ)

denote the conditional densities of X and Y , suppressing the dependence on vx

and vy throughout.
Based on observing only X = x, we consider the problem of estimating the

density p(y|μ) of Y . The natural action space A0 consists of all proper densities
on Rp , that is

A0 =
{
g :Rp → R such that g(y) ≥ 0 and

∫
g(y) dy = 1

}
.(1)

For each observation x ∈ Rp , a (nonrandomized) decision procedure p̂(·|x) :
Rp → A0 chooses a g ∈ A0.

We measure the goodness of fit of g(y) to p(y|μ) by Kullback–Leibler (KL)
loss

L(μ,g) =
⎧⎨
⎩

∫
p(y|μ) log

p(y|μ)

g(y)
dy, if g(y) > 0 a.e.,

∞, otherwise,
(2)

and evaluate a procedure p̂(·|x) by its risk function

RKL(μ, p̂) =
∫

L(μ, p̂(·|x))p(x|μ)dx.(3)
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For the comparison of two (nonrandomized) procedures, we say that p̂1 dominates
p̂2 if RKL(μ, p̂1) ≤ RKL(μ, p̂2) for all μ and with strict inequality for some μ.
A procedure p̂(·|x) is called admissible if it cannot be dominated.

Two widely-used methods to obtain predictive densities are “plug-in” rules and
Bayes rules. A plug-in rule

p̂μ̂(y|x) = p
(
y|μ = μ̂(x)

)
(4)

simply substitutes an estimate μ̂ for μ in p(y|μ). In contrast, a Bayes rule inte-
grates μ out with respect to a nonnegative and locally finite prior measure M to
obtain

p̂M(y|x) =
∫

p(x|μ)p(y|μ)M(dμ)∫
p(x|μ)M(dμ)

=
∫

p(y|μ)M(dμ|x).(5)

When writing an expression such as (5), we implicitly assume that the denominator
in the middle expression is finite for all x, and hence all terms in (5) are finite for
all x. We use the symbol π to denote the density of M when it exists, and will
write either p̂π or p̂M in that case.

Aitchison (1975) showed that for proper M , p̂M(y|x) minimizes the average
KL risk

BKL(M, p̂) =
∫

RKL(μ, p̂)M(dμ).(6)

Aitchison also showed that the (formal) Bayes rule (5) under the uniform prior den-
sity πU(μ) = 1, namely p̂πU

(y|x), dominates the plug-in rule p(y|μ̂MLE), which
substitutes the maximum likelihood estimate μ̂MLE = x for μ. Indeed, as will be
seen in Section 3, all the admissible procedures for multivariate normal density
prediction under KL loss are Bayes rules in the sense of (5).

The constant risk Bayes rule p̂πU
is best invariant, minimax, admissible when

p = 1 [Murray (1977), Ng (1980) and Liang and Barron (2004)], and as we shall
show in Section 3, admissible when p = 2. However, it is inadmissible when
p ≥ 3. This was first established by Komaki (2001) who showed that p̂πU

is domi-
nated by the Bayes rule under the (nonconstant) harmonic prior when p ≥ 3. Liang
(2002) further showed that p̂πU

is dominated by proper Bayes rules under Straw-
derman priors when p ≥ 5.

It is interesting to note the parallels between our predictive density estimation
problem and the problem of estimating a multivariate normal mean under quadratic
loss. Based on observing Z|μ ∼ Np(μ,vI) with v known, this latter problem is to
estimate μ under quadratic risk

Rv
Q(μ, μ̂) = Eμ‖μ̂ − μ‖2,(7)

where the dependence of Rv
Q on v is indicated by the superscript v. Here the max-

imum likelihood estimator μ̂MLE, which is best invariant, minimax and admissible
when p = 1 or 2, is dominated by the Bayes rule μ̂π = ∫

μπ(μ|x)dμ under the
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harmonic prior when p ≥ 3 [Stein (1974)] and by the proper Bayes rule under the
Strawderman priors when p ≥ 5 [Strawderman (1971)]. Note that in the KL risk
problem p̂πU

(y|x), rather than p̂(y|μ̂MLE), plays the same role as μ̂MLE in the
quadratic risk problem. Recall that μ̂MLE can also be motivated as the Bayes rule
under πU(μ) = 1 in the quadratic risk problem.

George, Liang and Xu (2006) recently drew out these parallels between the KL
risk and quadratic risk problems, and found that they could be explained by con-
nections between unbiased estimates of risk. These connections were shown to
yield analogous sufficient conditions for the minimaxity of Bayes rules in both
problems. In this paper, we establish further parallels concerning the characteri-
zation of admissibility in both problems. As proper Bayes rules are easily shown
to be admissible in the KL setting, see Section 4.8.1 in Berger (1985), our focus
will be on improper π under which p̂π (y|x) is sometimes more precisely called a
formal or generalized Bayes rule. In Section 3, we establish sufficient conditions
for the admissibility of Bayes rules p̂π (y|x) under KL loss, conditions analogous
to those of Brown (1971) and Brown and Hwang (1982). In Section 3, we prove
that all admissible procedures for the KL risk problems are Bayes rules, a direct
parallel of the complete class theorem of Brown (1971) for quadratic risk.

It might be of interest to note that when vy → 0, p(y|μ) degenerates to a point
mass I {y = μ} and that by (5),

p̂π (y|x) =
∫

p(y|μ)π(μ|x)dμ → π(y|x).

Therefore, the limiting KL risk of a Bayes rule p̂π is

lim
vy→0

RKL(μ, p̂π ) = Eμ

[
I {y = μ} log

I {y = μ}
π(y|X)

]
= −Eμ logπ(μ|X),

where the right-hand side can be viewed as the KL risk for “estimating a point
mass at μ” by a posterior density. Thus, our setup can provide a decision theoretic
framework for evaluating a prior by the extent to which Eμ logπ(μ|X) is large for
all μ.

2. Sufficient conditions for admissibility. For Z ∼ Np(μ, I), Brown (1971)
and Brown and Hwang (1982) developed general sufficient conditions for the ad-
missibility of formal Bayes rules for the quadratic risk problem. To utilize their
results and obtain analogous sufficient conditions for the KL risk problem, we first
establish a relationship between KL risk and quadratic risk. In this section, we as-
sume that the prior measure M has a density π and that RKL(μ, p̂π ) < ∞ for all
μ ∈ Rp . Let

mπ(z;v) =
∫

p(z|μ)π(μ)dμ(8)

be the marginal density of Z ∼ Np(μ,vI) under π .
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THEOREM 1. Let π be a prior density on μ such that mπ(z;vx) is finite for
all z. Then

RKL(μ, p̂πU
) − RKL(μ, p̂π )

(9)

= 1

2

∫ vx

vw

1

v2 [Rv
Q(μ, μ̂MLE) − Rv

Q(μ, μ̂π)]dv

where vw = vxvy/(vx + vy) < vx .

PROOF. Let mπ(w;vw) denote the marginal density under π of

W = vyX + vxY

vx + vy

∼ Np(μ,vwI).(10)

By Lemmas 2 and 3 of George, Liang and Xu (2006),

RKL(μ, p̂πU
) − RKL(μ, p̂π )

(11)
= Eμ,vw logmπ(W ;vw) − Eμ,vx logmπ(X;vx),

mπ(z;v) is finite for any vw ≤ v ≤ vx , and

∂

∂v
Eμ,v logmπ(Z;v) = Eμ,v

(
2
∇2√mπ(Z;v)√

mπ(Z;v)

)
,(12)

where ∇2g(z) = ∑ ∂2

∂z2
i

g(z), and Eμ,v(·) stands for expectation with respect to

the N(μ,vI) distribution. Furthermore, Stein (1974, 1981) showed that for the
quadratic risk problem

Rv
Q(μ, μ̂MLE) − Rv

Q(μ, μ̂π) = −4v2Eμ,v

∇2√mπ(Z;v)√
mπ(Z;v)

.(13)

Combining (11), (12) and (13), the lemma follows. �

Now let BKL(π, p̂) = ∫
RKL(μ, p̂)π(μ)dμ and Bv

Q(π, μ̂) = ∫
Rv

Q(μ, μ̂) ×
π(μ)dμ be the average KL and quadratic risks over π . The following relation-
ship between the average KL risk difference and the average quadratic risk differ-
ence of Bayes rules follows from (9) and averaging over a prior πn that satisfies∫
Rp πn(μ)dμ < ∞.

COROLLARY 1. Let π and πn be priors on μ such that mπ(z;vx) and
mπn(z;vx) are finite for all z. Furthermore, assume πn satisfies

∫
Rp πn(μ)dμ <

∞. Then

BKL(πn, p̂π ) − BKL(πn, p̂πn)
(14)

= 1

2

∫ vx

vw

1

v2 [Bv
Q(πn, μ̂π ) − Bv

Q(πn, μ̂πn)]dv.
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Corollary 1 enables us to extend the approach of Brown and Hwang (1982)
to establish conditions for the admissibility of formal Bayes rules in the KL risk
problem. As in Brown and Hwang (1982), we use Blyth’s method which can be
extended to any statistical estimation problem with a strictly convex loss function
[Brown (1971)].

LEMMA 1. Let p̂ be such that RKL(μ, p̂) < ∞ for all μ ∈ Rp . If there exists
a sequence of densities {πn} such that

∫
Rp πn(μ)dμ < ∞,

∫
‖μ‖≤1 πn(μ)dμ ≥ c

for some positive constant c, and

BKL(πn, p̂) − BKL(πn, p̂πn) → 0(15)

then p̂ is admissible.

PROOF. Suppose p̂ is not admissible. Then there is a p̂′ such that RKL(μ,

p̂′) ≤ RKL(μ, p̂) with strict inequality for some μ. Let p̂′′ = (p̂ + p̂′)/2. Thus

RKL(μ, p̂′′)

=
∫ ∫

p(x|μ)p(y|μ)

[
log

p(y|μ)

p̂′′(y|x)

]
dx dy

=
∫ ∫

p(x|μ)p(y|μ)

[
logp(y|μ) − log

(
1

2
p̂(y|x) + 1

2
p̂′(y|x)

)]
dx dy

<

∫ ∫
p(x|μ)p(y|μ)

[
logp(y|μ) − 1

2

(
log p̂(y|x) + log p̂′(y|x)

)]
dx dy

= 1

2

(
RKL(μ, p̂) + RKL(μ, p̂′)

) ≤ RKL(μ, p̂).

Since RKL(μ, p̂) and RKL(μ, p̂′′) are both continuous in μ, there exists an ε > 0
such that for all μ ∈ {μ :‖μ‖ ≤ 1},

RKL(μ, p̂) − RKL(μ, p̂′′) ≥ ε > 0.

Therefore, we have

BKL(πn, p̂) − BKL(πn, p̂πn) ≥ BKL(πn, p̂) − BKL(πn, p̂
′′) ≥ ε · c > 0

which contradicts (15). The admissibility of p̂ follows. �

We assume without loss of generality that the coordinate system is chosen so
that

∫
‖μ‖≤1 π(μ)dμ ≥ c for some positive constant c. Using Lemma 1, we extend

the approach of Brown and Hwang (1982) to obtain the following.

THEOREM 2. A formal Bayes rule p̂π is admissible under KL loss if for every
v ∈ [vw, vx], the improper π satisfies both:
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(i) the growth condition:∫
Rp−S

π(μ)

‖μ‖2 log2(‖μ‖ ∨ 2)
dμ < ∞,(16)

where S = {μ :‖μ‖ ≤ 1} and a ∨ b = max{a, b}, and
(ii) the asymptotic flatness condition:∫ ∫

π(μ)

∥∥∥∥m∇π(z;v)

mπ(z;v)
− ∇π

π

∥∥∥∥
2

p(z|μ)dμdz < ∞.(17)

PROOF. For v = 1, Brown and Hwang showed that when the prior density π

satisfies the growth condition (16) and the asymptotic flatness condition (17), there
exists a sequence of densities {πn} such that

∫
‖μ‖≤1 πn(μ)dμ = ∫

‖μ‖≤1 π(μ)dμ ≥ c

and that Bv=1
Q (πn, μ̂)−Bv=1

Q (πn, μ̂πn) → 0. Furthermore, they showed that an ex-
plicit construction of such a sequence {πn} is obtained by defining

jn(μ) =

⎧⎪⎪⎨
⎪⎪⎩

1, ‖μ‖ ≤ 1,

1 − log(‖μ‖)
log(n)

, 1 ≤ ‖μ‖ ≤ n,

0, ‖μ‖ ≥ n,

(18)

for n = 2,3, . . . , and letting

πn(μ) = j2
n (μ)π(μ).(19)

It is straightforward to show that the above construction also works for general
v. That is, for any v, if π satisfies conditions (16) and (17), then for the sequence
{πn} obtained by (18) and (19), �n,v ≡ Bv

Q(πn, μ̂π ) − Bv
Q(πn, μ̂πn) → 0. It thus

follows that if π satisfies conditions (16) and (17) for every v ∈ [vw, vx], then by
Corollary 1 and by the continuity in v of �n,v ,

BKL(πn, p̂π ) − BKL(πn, p̂πn) = 1

2

∫ vx

vw

1

v2 �n,v dv → 0.(20)

That p̂π is admissible now follows immediately from Lemma 1. �

EXAMPLE 1 (Uniform prior). Let π(μ) = 1 for any μ, then ∇π = 0. In this
case, the conditions of Theorem 2 are easy to verify when p = 1 or 2. Therefore,
the formal Bayes rule p̂πU

is admissible when p = 1 or 2.

It was pointed out in Brown and Hwang (1982) that if

π(μ) ≤ ‖μ‖2−p,
(21)

∇π(μ)

π(μ)
= o(‖μ‖−1) and

∣∣∣∣ ∂2π(μ)

∂μi ∂μj

∣∣∣∣ = o(‖μ‖−2),

hen (16) is easy to check and (17) can be verified with some difficulty [extending
Lemma 3.4.1 of Brown (1971)]. Hence, by Theorem 2, the corresponding p̂π is
admissible under KL loss.
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EXAMPLE 2 (Harmonic prior). Let πH (μ) = ‖μ‖−(p−2) for p ≥ 3. Because
this prior satisfies (21), the formal Bayes rule p̂πH

is admissible when p ≥ 3.

The following corollary is similarly a straightforward extension from Brown
and Hwang (1982). It replaces condition (17) of Theorem 2 with a condition that
is slightly less general, but more transparent and easier to verify.

COROLLARY 2. If an improper density π satisfies (16) and

∫ ‖∇π(μ)‖2

π(μ)
dμ < ∞,(22)

then the formal Bayes rule p̂π is admissible under KL loss.

Finally, it was also pointed out in Brown and Hwang (1982) that if

π(μ) ≤ ‖μ‖2−p−ε for some ε > 0 and
∇π(μ)

π(μ)
= o(‖μ‖−1),(23)

then (16) and (22) are easy to check. Hence, by Corollary 2, the corresponding p̂π

is admissible under KL loss.
There have been a few treatments of related problems yielding admissibility

results in the same spirit as the above. In particular, Eaton (1982) formulates a pre-
diction problem similar to the above, but under an integrated quadratic (L2) loss
function, rather than our KL loss. Gatsonis (1984) discusses a related problem of
estimating an unknown prior under this quadratic loss. Gatsonis proves an admis-
sibility result in his setting for the Bayes procedure for the uniform prior. Gatsonis’
methods do not easily apply to problems involving Bayes procedures for (gener-
alized) priors other than the uniform prior. Eaton [(1992), Section 6] considers a
prediction problem like ours, but with a different type of loss function. This loss
function is bounded, and leads to a problem that is “quadratically regular” in a
sense of that paper. For such quadratically regular problems the results of Eaton
(1992) show admissibility for a specified class of prior measures. It is shown in
Theorem 5.2 of Eaton et al. (2007) that Eaton’s class of prior measures contains
most of the densities covered by our Theorem 2, and vice-versa.

3. A complete class theorem. We now turn to establishing that all (general-
ized) Bayes rules form a complete class for the KL loss problem. In Section 3.1,
we begin by first establishing properties of some modified action spaces and the
KL loss function. We then make use of these properties in Section 3.2 where we
prove our main complete class results.
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3.1. Preliminary lemmas. Because the true density p(y|μ) is bounded by a
constant C = (2πvy)

−p/2 for any μ, it will eventually be useful to restrict attention
to bounded density estimates. Let

A =
{
g :Rp → R such that 0 ≤ g(y) ≤ C a.e. and

∫
g(y) dy = 1

}
.(24)

Obviously, A is a subset of the action space A0 that is defined in (1).
The following lemma, which is proved in the Appendix, shows that no admissi-

ble actions are lost by restricting the action space to A.

LEMMA 2. Suppose g0(·) ∈ A0. If g0 /∈ A, that is, g0 > C on a set S ⊂ Rp

with positive measure, then there exists a g ∈ A that dominates g0 in the sense that
L(μ,g0) > L(μ,g) for all μ.

It will also be useful to consider extending A to its closure

A∗ =
{
g :Rp → R such that 0 ≤ g(y) ≤ C a.e. and

∫
g(y) dy ≤ 1

}
,(25)

and then to make use of the topological properties of A∗. Because A∗ is a subset of
the Banach space L∞, we will consider the topology on A∗ induced by the weak∗
topology on L∞. Under this weak∗ topology, a sequence {gi} ∈ A∗ converges to
a g ∈ A∗ if ∫

f (y)gi(y) dy →
∫

f (y)g(y) dy ∀f ∈ L1.(26)

We will eventually make use of the following properties of A∗ under the weak∗
topology.

LEMMA 3. Define the action space A∗ as in (25), then:

(i) A∗ is weak∗ compact.
(ii) The weak∗ topology on A∗ is metrizable by

ρ(g,h) =
∞∑

k=1

2−k

∣∣∣∣
∫

[g(y) − h(y)]fk(y) dy

∣∣∣∣ for any g,h ∈ A∗,(27)

where {fk, k = 1,2, . . .} is a countable dense subset of L1. And A∗ is separable
and second countable under this metric (27).

(iii) Suppose g∗(·) ∈ A∗. If g∗ /∈ A, then there exists a g ∈ A that dominates
g∗ in the sense that L(μ,g∗) > L(μ,g) for all μ. Thus, the extension from A to
A∗ does not incur any new admissible actions.

Finally, we also need to make use of the following properties of the Kullback–
Leibler loss function.
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LEMMA 4. For the KL loss function L(μ, ·) in (2):

(i) L(μ, ·) is lower semi-continuous on A∗, that is, if {gi}, g ∈ A∗ and gi →
g ∈ A∗ weak∗, then

lim inf
i→∞ L(μ,gi) ≥ L(μ,g) ∀μ ∈ Rp;(28)

(ii) L(μ, ·) is strictly convex on

A∗+ = {g :g ∈ A∗ and L(μ,g) < ∞ for ∀μ}(29)

for any μ ∈ Rp .

3.2. The main theorems. Having established Lemmas 2, 3 and 4 in Sec-
tion 3.1, we are now ready to prove that all admissible procedures for the normal
density prediction problem under KL loss are (generalized) Bayes rules. This proof
consists of three steps:

(i) All the admissible procedures are nonrandomized.
(ii) For any admissible procedure p̂(·|x), there exists a sequence of priors

Mi(μ) such that p̂Mi
(·|x) → p̂(·|x) for almost every x under the weak∗ topol-

ogy (26).
(iii) We can find a subsequence {Mi′ } and a limit prior M such that p̂Mi′ (·|x) →

p̂M(·|x) weak∗ for almost every x. Therefore, p̂(·|x) = p̂M(·|x) for a.e. x, that is,
p̂(·|x) is a (generalized) Bayes rule.

THEOREM 3. All nonrandomized procedures form a complete class.

PROOF. Let δ :Rp → P(A0) be an admissible and randomized procedure,
where P(A0) denotes the space of probability distributions over A0. We first prove
that δ(x) ∈ P(A) ⊂ P(A∗) for a.e. x. Suppose there exists a set K such that K

has positive measure and for each x ∈ K , δ(·|x) = p̂(·|x) /∈ P(A∗) with a positive
probability. Then by Lemma 2, we can find gx ∈ P(A∗) that satisfies L(μ,gx) <

L(μ, p̂(·|x)) for all μ, and therefore δ is dominated by the decision rule δ̃ that
substitutes gx for p̂(·|x). This contradicts the admissibility of δ.

Now let p̂∗(y|x) = Eδ(·|x)(g(y)). It can be seen that p̂∗(y|x) ∈ A since δ(x) ∈
P(A) ⊂ P(A∗) for a.e. x. By Lemma 4(ii) and Jensen’s inequality,

L(μ, p̂∗(y|x)) ≤ Eδ(·|x)(L(μ, p̂(y))) = L(μ, δ(y|x)) ∀μ.(30)

Furthermore, strict inequality holds in (30) unless either δ(·|x) is nonrandomized
with probability 1 or L(μ, δ(y|x)) = ∞, which implies that δ can be dominated
by a finite-risk nonrandomized procedure. Therefore, it contradicts that δ is ad-
missible and randomized. It then follows that the nonrandomized procedures are a
complete class. �
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Theorem 3 shows that we can restrict attention to nonrandomized procedures
p̂(·|x). Next we prove that for a.e. x, all admissible procedures are limits of Bayes
rules (5). Since the Bayes rules are also nonrandomized, this convergence can be
evaluated with respect to the weak∗ topology for each x.

THEOREM 4. For any admissible procedure p̂(·|x), there exists a sequence of
priors {Mi} supported on finite sets such that p̂Mi

(·|x) → p̂(·|x) weak∗ for a.e. x

under the topology (26).

PROOF. This is essentially Theorem 4A.12 of Brown (1986). There are some
minor differences between the formulations there and here which we now note
in order to clarify how that Theorem 4A.12 yields the current Theorem 4. The
principal difference is that the action space A∗ in Brown (1986) was assumed to be
Euclidean whereas here it is merely compact, separable, and metrizable. Because
the space A∗, here is compact, the one-point compactification {i} introduced in
Brown (1986) is not needed. This simplifies the proof of Proposition 4A.11 there,
which in our context becomes Theorem 3. The remainder of the proof proceeds as
discussed in the text of the proof of Theorem 4A.12. �

Theorem 4 establishes that any admissible procedure p̂(·|x) is a limit of Bayes
rules for a.e. x. To prove p̂(·|x) itself is also a (generalized) Bayes rule, we need
to find a (possibly improper) prior M such that p̂M(·|x) = p̂(·|x) for a.e. x.

THEOREM 5. The set of all generalized Bayes procedures is a complete class
of procedures.

PROOF. Suppose p̂(·|x) is an admissible procedure. Then by Theorem 4, there
exists a sequence of measures Mi supported on finite sets such that p̂Mi

(·|x) →
p̂(·|x) for a.e. x under the weak∗ topology (26).

Let

ri =
∫
‖x‖≤1

∫
p(x|μ)Mi(dμ)dx,

then ri > 0 since p(x|μ) > 0 for all x and μ. Thus we can define a new sequence
of measures M ′

i by M ′
i = Mi/ri . It is easy to check that p̂M ′

i
= p̂Mi

→ p̂ weak∗
a.e. and that ∫

‖x‖≤1

∫
p(x|μ)M ′

i (dμ)dx = 1.(31)

By 2.16(iv) of Brown (1986), there exists a finite limiting measure M such that
M ′

i → M .
Let S be the biggest convex set that satisfies

lim inf
i→∞ sup

x∈S

∫
p(x|μ)M ′

i (dμ) < ∞.
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[The existence of S follows from (31).] Then by Theorem 2.17 in Brown (1986),
for any x in the interior of S,∫

p(x|μ)M ′
i (dμ) →

∫
p(x|μ)M(dμ) as i → ∞.(32)

In fact, we can prove that the closure S̄ = Rp . [Otherwise its complement S̄c has
positive measure and at every x ∈ S̄c, lim infi→∞

∫
p(x|μ)M ′

i (dμ) = ∞. There-
fore,

lim
i→∞

∫
‖y‖≤1

p̂M ′
i
(y|x)dy = lim

i→∞

∫
‖y‖≤1

∫
p(x|μ)p(y|μ)M ′

i (dμ)∫
p(x|μ)M ′

i (dμ)
dy

≤ (2πvx)
−p/2 lim

i→∞

∫
M ′

i (dμ)
∫
‖y‖≤1 p(y|μ)dy∫

p(x|μ)M ′
i (dμ)

= 0,

which implies
∫
‖y‖≤1 p̂(y|x)dy = 0 and thus RKL(μ, p̂) = ∞. This would contra-

dict the assumed admissibility of p̂.] Hence, (32) holds for a.e. x.
Furthermore, by the dominated convergence, for a.e. x and y,∫

p(x|μ)p(y|μ)M ′
i (dμ) →

∫
p(x|μ)p(y|μ)M(dμ).(33)

Combining (32) and (33), we obtain

p̂M ′
i
=

∫
p(x|μ)p(y|μ)M ′

i (dμ)∫
p(x|μ)M ′

i (dμ)
→

∫
p(x|μ)p(y|μ)M(dμ)∫

p(x|μ)M(dμ)
= p̂M(y|x)

for a.e. x and y, so p̂M ′
i

also converges to p̂M(y|x) under the weak∗ topology.
Therefore, p̂ = p̂M is a generalized Bayes procedure. �

APPENDIX

In this appendix, we provide the proofs of Lemmas 2, 3 and 4 from Section 3.1.

PROOF OF LEMMA 2. (i) Suppose g0 = 0 on a set with positive measure. Then
by definition L(μ,g0) = ∞ for any μ. So any g ∈ A with finite risk dominates it
and thus g0 is inadmissible.

(ii) Suppose g0 > 0 almost everywhere. If g0 ≥ C on a set S with Lebesgue
measure ν(S) > 0, then a g can be constructed by truncating g0 on S and lifting it
in the other areas. Notice that

∫
Sc g0(y) dy > 0, so we can define

c = 1 − Cν(S)∫
Sc g0(y) dy

,(34)

where Sc is the complement of S. It is easy to check c > 1. Let

g(y) =
{

cg0, y ∈ Sc,
C, y ∈ S.

(35)

Obviously, g ∈ A. For any μ, the difference between the loss functions of g0 and g
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is

L(μ,g0) − L(μ,g)

=
∫

p(y|μ) logg(y) dy −
∫

p(y|μ) logg0(y) dy

=
∫
S
p(y|μ) logC dy +

∫
Sc

p(y|μ) log(cg0(y)) dy −
∫

p(y|μ) logg0(y) dy

=
∫
S
p(y|μ) logC dy + log c

∫
Sc

p(y|μ)dy

+
∫
Sc

p(y|μ) logg0(y) dy −
∫

p(y|μ) logg0(y) dy

=
∫
S
p(y|μ) logC dy + log c

∫
Sc

p(y|μ)dy −
∫
S
p(y|μ) logg0(y) dy

= log c −
∫
S
p(y|μ) log

cg0(y)

C
dy

≥ log c − log
∫
S
p(y|μ)

cg0(y)

C
dy (Jensen’s inequality)

≥ log c − log
∫
S
cg0(y) dy

> 0.

The last strict inequality holds because
∫
S g0(y) dy = 1 − ∫

Sc g0(y) dy < 1. There-
fore, g dominates g0. �

PROOF OF LEMMA 3. (i) By the Banach–Alaoglu theorem, the L1 unit ball
{g :Rp → R| ∫ g(y) dy ≤ 1} is weak∗ compact. Also, it is easy to check that the
bounded set {g :Rp → R|0 ≤ g(y) ≤ C} is closed and thus compact. So their in-
tersection A∗ is compact.

(ii) Because L1 a separable normed space, the weak∗ topology on the closed
ball of its dual space L∞ can be metrized by (27). And since every compact metric
space is separable and second countable, (ii) follows immediately from (i).

(iii) Suppose g∗ ∈ A∗ but g∗ /∈ A, then
∫

g∗(y) dy < 1. If
∫

g∗(y) dy = 0, its
loss function L(μ,g∗) = ∞ for any μ and thus g∗ is inadmissible. Otherwise let
g′ = g∗/

∫
g∗(y) dy, then

∫
g′(y) dy = 1 and it is easy to check that g′ dominates

g∗. Truncate g′ as in (35) if necessary, and then it yields a g ∈ A that dominates g′
and therefore dominates g∗. �

PROOF OF LEMMA 4. (i) Suppose {gi} is a sequence of functions in A∗ and
gi → g ∈ A∗ under the weak∗ topology.
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(a) We first consider the case where g is bounded away from 0. To prove that
lim infi→∞ L(μ,gi) ≥ L(μ,g) for all μ ∈ Rp , we only need to show

L(μ,g) − lim inf
i→∞ L(μ,gi)

= lim sup
i→∞

∫
p(y|μ) loggi(y) dy −

∫
p(y|μ) logg(y) dy(36)

≤ 0.

If there exists a positive constant ε0 such that g > ε0 a.e., then p(y|μ)
g(y)

≤ p(y|μ)
ε0

is an L1 function. Therefore,

lim sup
i→∞

∫
p(y|μ) loggi(y) dy −

∫
p(y|μ) logg(y) dy

= lim sup
i→∞

∫
p(y|μ) log

gi(y)

g(y)
dy

≤ lim sup
i→∞

∫
p(y|μ)

(
gi(y)

g(y)
− 1

)
dy(37)

= lim sup
i→∞

∫
p(y|μ)

g(y)
gi(y) dy − 1

= 0,

where the inequality follows from the fact that logx ≤ x − 1 for any x > 0. This
proves that the lemma holds whenever g is bounded away from 0.

(b) Let N = {y :g(y) = 0}. If N has positive measure, then the assumption that
gi → g under the weak∗ topology implies that gi(y) → 0 in measure on N . Hence

lim
i→∞

∫
p(y|μ) loggi(y) dy = −∞(38)

by the bounded convergence theorem for convergence in measure.
(c) Now the final possibility is that N has measure 0, but g is not bounded away

from 0. Then for any fixed ε > 0, let L(ε) = {y|g(y) ≥ ε}. Thus,

lim sup
i→∞

∫
p(y|μ) loggi(y) dy

= lim sup
i→∞

[∫
L(ε)

p(y|μ) loggi(y) dy +
∫
Lc(ε)

p(y|μ) loggi(y) dy

]
(39)

≤
∫
L(ε)

p(y|μ) logg(y) dy + logC

∫
Lc(ε)

p(y|μ)dy.

The above inequality follows from the truth of the lemma when g is bounded
away from 0 and the definition that gi ∈ A∗ satisfies gi ≤ C. Now let ε ↓ 0, then
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L(ε) → Rp since g > 0 a.e. Therefore, by the bounded convergence theorem,

lim sup
i→∞

∫
p(y|μ) loggi(y) dy ≤

∫
p(y|μ) logg(y) dy + 0

(40)
=

∫
p(y|μ) logg(y) dy.

This proves (i) since

L(μ,gi) =
∫

p(y|μ) logp(y|μ)dy −
∫

p(y|μ) loggi(y) dy.(41)

(ii) Suppose g1, g2 ∈ A∗+ and gλ(y|x) = λg1 + (1 − λ)g2 with 0 < λ < 1, then

L(μ,gλ) =
∫

p(y|μ) log
p(y|μ)

gλ(y)
dy

=
∫

p(y|μ) logp(y|μ)dy −
∫

p(y|μ) log[λg1(y) + (1 − λ)g2(y)]dy

<

∫
p(y|μ) logp(y|μ)dy −

∫
p(y|μ)[λ logg1(y)

+ (1 − λ) logg2(y)]dy

= λ

∫
p(y|μ) log

p(y|μ)

g1(y)
dy + (1 − λ)

∫
p(y|μ) log

p(y|μ)

g2(y)
dy

= λL(μ,g1) + (1 − λ)L(μ,g2),

where the inequality follows from Jensen’s inequality. Thus, the strict convexity of
L(μ, ·) on A∗+ is verified. �
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