
University of Pennsylvania
ScholarlyCommons

Statistics Papers Wharton Faculty Research

5-2006

Improved Minimax Predictive Densities Under
Kullback-Leibler Loss
Edward I. George
University of Pennsylvania

Feng Liang
Duke University

Xinyi Xu
Ohio State University

Follow this and additional works at: http://repository.upenn.edu/statistics_papers

Part of the Physical Sciences and Mathematics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/statistics_papers/37
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
George, E. I., Liang, F., & Xu, X. (2006). Improved Minimax Predictive Densities Under Kullback-Leibler Loss. The Annals of Statistics,
34 (1), 78-91. http://dx.doi.org/10.1214/009053606000000155

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/132271154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fstatistics_papers%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/wharton_faculty?utm_source=repository.upenn.edu%2Fstatistics_papers%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=repository.upenn.edu%2Fstatistics_papers%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1214/009053606000000155
http://repository.upenn.edu/statistics_papers/37
mailto:repository@pobox.upenn.edu


Improved Minimax Predictive Densities Under Kullback-Leibler Loss

Abstract
Let X|μ∼Np(μ,vxI) and Y|μ∼Np(μ,vyI) be independent p-dimensional multivariate normal vectors with
common unknown mean μ. Based on only observing X=x, we consider the problem of obtaining a predictive
density p̂(y|x) for Y that is close to p(y|μ) as measured by expected Kullback–Leibler loss. A natural
procedure for this problem is the (formal) Bayes predictive density p̂U(y|x) under the uniform prior
πU(μ)≡1, which is best invariant and minimax. We show that any Bayes predictive density will be minimax if it
is obtained by a prior yielding a marginal that is superharmonic or whose square root is superharmonic. This
yields wide classes of minimax procedures that dominate p̂U(y|x), including Bayes predictive densities under
superharmonic priors. Fundamental similarities and differences with the parallel theory of estimating a
multivariate normal mean under quadratic loss are described.
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IMPROVED MINIMAX PREDICTIVE DENSITIES UNDER
KULLBACK–LEIBLER LOSS1

BY EDWARD I. GEORGE, FENG LIANG AND XINYI XU

University of Pennsylvania, Duke University
and Ohio State University

Let X|µ ∼ Np(µ,vxI ) and Y |µ ∼ Np(µ,vyI ) be independent p-dimen-
sional multivariate normal vectors with common unknown mean µ. Based
on only observing X = x, we consider the problem of obtaining a predic-
tive density p̂(y|x) for Y that is close to p(y|µ) as measured by expected
Kullback–Leibler loss. A natural procedure for this problem is the (formal)
Bayes predictive density p̂U(y|x) under the uniform prior πU(µ) ≡ 1, which
is best invariant and minimax. We show that any Bayes predictive density
will be minimax if it is obtained by a prior yielding a marginal that is super-
harmonic or whose square root is superharmonic. This yields wide classes
of minimax procedures that dominate p̂U(y|x), including Bayes predictive
densities under superharmonic priors. Fundamental similarities and differ-
ences with the parallel theory of estimating a multivariate normal mean under
quadratic loss are described.

1. Introduction. Let X|µ ∼ Np(µ,vxI ) and Y |µ ∼ Np(µ,vyI ) be indepen-
dent p-dimensional multivariate normal vectors with common unknown mean µ,
and let p(x|µ) and p(y|µ) denote the conditional densities of X and Y . We assume
that vx and vy are known.

Based on only observing X = x, we consider the problem of obtaining a pre-
dictive density p̂(y|x) for Y that is close to p(y|µ). We measure this closeness by
Kullback–Leibler (KL) loss,

L
(
µ, p̂(·|x)

) =
∫

p(y|µ) log
p(y|µ)

p̂(y|x)
dy,(1)

and evaluate p̂ by its expected loss or risk function

RKL(µ, p̂) =
∫

p(x|µ)L
(
µ, p̂(·|x)

)
dx.(2)
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ate normal, prior distributions, shrinkage estimation, superharmonic marginals, superharmonic pri-
ors, unbiased estimate of risk.
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For the comparison of two procedures, we say that p̂1 dominates p̂2 if RKL(µ,

p̂1) ≤ RKL(µ, p̂2) for all µ and with strict inequality for some µ. By a sufficiency
and transformation reduction, this problem is seen to be equivalent to estimat-
ing the predictive density of Xn+1 under KL loss based on observing X1, . . . ,Xn

when X1, . . . ,Xn+1|µ i.i.d. ∼ Np(µ,�). For distributions beyond the normal, ver-
sions and approaches for the KL risk prediction problem have been developed by
Aslan [2], Harris [10], Hartigan [11], Komaki [12, 14] and Sweeting, Datta and
Ghosh [24].

For any prior distribution π on µ, Aitchison [1] showed that the average risk
r(π, p̂) = ∫

RKL(µ, p̂)π(µ)dµ is minimized by

p̂π (y|x) =
∫

p(y|µ)π(µ|x)dµ,(3)

which we will refer to as a Bayes predictive density. Unless π is a trivial point
prior, p̂π (y|x) /∈ {p(y|µ) :µ ∈ Rp}, that is, p̂π will not correspond to a “plug-in”
estimate for µ, although under suitable conditions on π , p̂π (y|x) → p(y|µ) as
vx → 0.

For this problem, the best invariant predictive density (with respect to the lo-
cation group) is the Bayes predictive density under the uniform prior πU(µ) ≡ 1,
namely

p̂U(y|x) = 1

{2π(vx + vy)}p/2 exp
{
− ‖y − x‖2

2(vx + vy)

}
,(4)

which has constant risk; see [18] and [19]. More precisely, one might refer to
p̂U as a formal Bayes procedure because πU is improper. Aitchison [1] showed
that p̂U(y|x) dominates the plug-in predictive density p(y|µ̂MLE) which simply
substitutes the maximum likelihood estimate µ̂MLE = x for µ. As will be seen in
Section 2, p̂U is minimax for KL loss (1). That p̂U is best invariant and minimax
can also be seen as a special case of the more general recent results in Liang and
Barron [17], who also show that p̂U is admissible when p = 1 under the same loss.

However, p̂U is inadmissible when p ≥ 3. Komaki [13] proved that when p ≥ 3,
p̂U itself is dominated by the (formal) Bayes predictive density

p̂H(y|x) =
∫

p(y|µ)πH(µ|x)dµ,(5)

where

πH(µ) = ‖µ‖−(p−2)(6)

is the (improper) harmonic prior recommended by Stein [21], which we subscript
by “H” for harmonic. Although Komaki referred to πH as harmonic, his proof did
not directly exploit this property.
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More recently, Liang [16] showed that p̂U is also dominated by the proper Bayes
predictive density p̂a(y|x) under the prior πa(µ) (see [23]) defined hierarchically
as

µ|s ∼ Np(0, sv0I ), s ∼ (1 + s)a−2.(7)

Here v0 and a are hyperparameters. The conditions for domination are that
v0 ≥ vx , and a ∈ [0.5,1) when p = 5 and a ∈ [0,1) when p ≥ 6. Note that πa

depends on the constant v0 in (7), a dependence that will be maintained through-
out this paper. The harmonic prior πH is well known to be the special case of πa

when a = 2.
These results closely parallel some key developments concerning minimax es-

timation of a multivariate normal mean under quadratic loss. Based on observing
X|µ ∼ Np(µ, I), that problem is to estimate µ under

RQ(µ, µ̂) = Eµ‖µ̂ − µ‖2,(8)

where we have denoted quadratic risk by RQ to distinguish it from the KL risk
RKL in (2). Under RQ, µ̂MLE = X is best invariant and minimax, and is admissible
if and only if p ≤ 2. Note that µ̂MLE plays the same role here that p̂U plays in our
KL risk problem. A further connection between µ̂MLE and p̂U is revealed by the
fact that µ̂MLE ≡ EπU(µ|x), the posterior mean of µ under πU(µ) ≡ 1.

Stein [21] showed that µ̂H = EπH(µ|x), the posterior mean under πH, domi-
nates µ̂MLE when p ≥ 3, and Strawderman [23] showed that µ̂a = Eπa(µ|x), the
proper Bayes rule under πa when vx = v0 = 1, dominates µ̂MLE when a ∈ [0.5,1)

for p = 5 and when a ∈ [0,1) for p ≥ 6. Comparing these results to those of
Komaki and Liang in the predictive density problem, the parallels are striking.
A principal purpose of our paper is to draw out these parallels in a more unified
and transparent way.

For these and other shrinkage domination results in the quadratic risk estima-
tion problem, there exists a unifying theory that focuses on the properties of the
marginal distribution of X under π , namely

mπ(x) =
∫

p(x|µ)π(µ)dµ.(9)

The key to this theory is the representation due to Brown [4] that any posterior
mean of µ, µ̂π = Eπ(µ|x), is of the form

µ̂π = x + ∇ logmπ(x),(10)

where ∇ = (∂/∂x1, . . . , ∂/∂xp)′. To show that µ̂H dominates µ̂MLE, Stein [21, 22]
used this representation to establish that RQ(µ, µ̂MLE) − RQ(µ, µ̂π) = EµU(X),
where

U(X) = ‖∇ logmπ(X)‖2 − 2
∇2mπ(X)

mπ(X)
(11)

= −4
∇2√mπ(X)√

mπ(X)
(12)
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is an unbiased estimate of the risk reduction of µ̂π over µ̂MLE, where ∇2mπ(x) =∑ ∂2

∂x2
i

mπ(x).

Because µ̂MLE is minimax, it follows immediately from (11) that ∇2mπ(x) ≤ 0
is a sufficient (though not necessary) condition for µ̂π to be minimax, and as long
as mπ(x) is not constant, for µ̂π to dominate µ̂MLE. [Recall that a function m(x)

is superharmonic when ∇2m(x) ≤ 0.] The fact that µ̂H dominates µ̂MLE when
p ≥ 3 now follows easily from the fact that nonconstant superharmonic priors [of
which the harmonic prior πH(µ) is of course a special case] yield superharmonic
marginals mπ for X.

It follows from (12) that the weaker condition ∇2√mπ(x) ≤ 0 is sufficient for
µ̂π to be minimax, although strict inequality on a set of positive Lebesgue mea-
sure is then needed to guarantee domination over µ̂MLE. Fourdrinier, Strawderman
and Wells [6] showed that the Strawderman priors πa in (7) yield superharmonic√

mπ , so that the minimaxity of the Strawderman estimators is established by (12).
In fact, it follows from their results that πa also yields superharmonic

√
mπ when

a ∈ [1,2) and p ≥ 3, thereby broadening the class of formal Bayes minimax esti-
mators.

One major aim of the present paper is to establish an analogous unifying theory
for the KL risk prediction problem. Paralleling (10), we begin by showing how any
Bayes predictive density p̂π can be explicitly represented in terms of p̂U and the
form of the corresponding marginal mπ . Coupled with the heat equation, Brown’s
representation and Stein’s identity, this representation is seen to lead to a new
identity that links KL risk reduction to Stein’s unbiased estimate of risk reduction.
Based on this link, we obtain sufficient conditions on mπ for minimaxity and dom-
ination of p̂π over p̂U. These general conditions subsume the specialized results
of Komaki [13] and Liang [16] and can be used to obtain wide classes of improved
minimax Bayes predictive densities including p̂H and p̂a . Furthermore, the under-
lying priors and marginals can be readily adapted to obtain minimax shrinkage
toward an arbitrary point or subspace, and linear combinations of superharmonic
priors and marginals can be constructed to obtain minimax multiple shrinkage pre-
dictive density analogues of the minimax multiple shrinkage estimators of George
[7–9]. Thus, the parallels between the estimation and the prediction problem are
broad, both qualitatively and technically. The main contribution of this paper is to
establish this interesting connection.

2. General conditions for minimaxity. In this section we develop and prove
our main results concerning general conditions under which a Bayes predictive
density p̂π (y|x) in (3) will be minimax and dominate p̂U(y|x). We begin with
three lemmas that may also be of independent interest. The following general no-
tation will be useful throughout. For Z|µ ∼ Np(µ,vI) and a prior π on µ, we
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denote the marginal distribution of Z by

mπ(z;v) =
∫

p(z|µ)π(µ)dµ.(13)

In terms of this notation, the marginal distributions of X|µ ∼ Np(µ,vxI ) and
Y |µ ∼ Np(µ,vyI ) under π are then mπ(x;vx) and mπ(y;vy), respectively.

LEMMA 1. If mπ(z;vx) is finite for all z, then for every x, p̂π (y|x) will be a
proper probability distribution over y. Furthermore, the mean of p̂π (y|x) is equal
to Eπ(µ|x).

PROOF. Both claims follow by integrating (3) with respect to y and switching
the order of integration using the Fubini–Tonelli theorem. �

Lemma 1 is important because, for our decision problem to be meaningful, it
is necessary for a predictive density to be a proper probability distribution. By the
laws of probability, a Bayes predictive density p̂π (y|x) will be a proper proba-
bility distribution whenever π(µ) is a proper prior distribution. But by Lemma 1,
improper π(µ) can still yield proper p̂π (y|x) under a very weak condition.

Our next lemma establishes a key alternative representation of p̂π (y|x) that
makes use of the weighted mean

W = vyX + vxY

vx + vy

.(14)

Note that W would be a sufficient statistic for µ if both X and Y were ob-
served. As X and Y are independent (conditionally on µ), it follows that
W |µ ∼ Np(µ,vwI) where

vw = vxvy

vx + vy

.

The marginal distribution of W is then mπ(w;vw).

LEMMA 2. For any prior π(µ), p̂π (y|x) can be expressed as

p̂π (y|x) = mπ(w;vw)

mπ(x;vx)
p̂U(y|x),(15)

where p̂U(y|x) is defined by (4). Furthermore, the difference between the KL risks
of p̂U(y|x) and p̂π (y|x) is given by

RKL(µ, p̂U) − RKL(µ, p̂π )
(16)

= Eµ,vw logmπ(W ;vw) − Eµ,vx logmπ(X;vx),

where Eµ,v(·) stands for expectation with respect to the N(µ,vI) distribution.
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PROOF. The joint marginal distribution of X and Y under π is,

pπ(x, y) =
∫

p(x|µ)p(y|µ)π(µ)dµ

=
∫ 1

(2πvx)p/2 exp
{
−‖x − µ‖2

2vx

}

× 1

(2πvy)p/2 exp
{
−‖y − µ‖2

2vy

}
π(µ)dµ

=
∫ 1

{2π(vx + vy)}p/2 exp
{
− ‖y − x‖2

2(vx + vy)

}

× 1

(2πvw)p/2 exp
{
−‖w − µ‖2

2vw

}
π(µ)dµ

= p̂U(y|x)mπ(w;vw).

The representation (15) now follows since p̂π (y|x) = pπ(x, y)/mπ(x;vx).
To prove (16), the KL risk difference can be expressed as

RKL(µ, p̂U) − RKL(µ, p̂π ) =
∫ ∫

p(x|µ)p(y|µ) log
p̂π (y|x)

p̂U(y|x)
dx dy

=
∫ ∫

p(x|µ)p(y|µ) log
mπ(w;vw)

mπ(x;vx)
dx dy,

where the second equality makes use of (15). The second expression in (16) is seen
to equal this last expression by the change of variable theorem. �

Paralleling Brown’s representation (10), representation (15) reveals the ex-
plicit role played by the marginal distribution of the data under π . Analogous
to Bayes estimators Eπ(µ|x) of µ that “shrink” µ̂MLE = x, this representation
reveals that Bayes predictive densities p̂π (y|x) “shrink” p̂U(y|x) by a factor
mπ(w;vw)/mπ(x;vx). However, the nature of the shrinkage by p̂π (y|x) is dif-
ferent than that by Eπ(µ|x). To insure that p̂π (y|x) remains a proper probability
distribution, the factor mπ(w;vw)/mπ(x;vx) cannot be strictly less than 1. In con-
trast to simply shifting µ̂MLE = x toward the mean of π , p̂π (y|x) adjusts p̂U(y|x)

to concentrate more on the higher probability regions of π . Figure 1 illustrates
such shrinkage of p̂U(y|x) by p̂H(y|x) in (5) when vx = 1, vy = 0.2 and p = 5.

For our purposes, the principal benefit of (15) is that it reduces the KL risk
difference (16) to a simple functional of the marginal mπ(z;v). As will be seen in
the proof of Theorem 1 below, (16) is the key to establishing general conditions for
the dominance of p̂π over p̂U. First, however, we use it to facilitate a simple direct
proof of the minimaxity of p̂U, a result that also follows from the more general
results of Liang and Barron [17].



84
E

.I.G
E

O
R

G
E

,F.L
IA

N
G

A
N

D
X

.X
U

FIG. 1. Shrinkage of p̂U(y|x) to obtain p̂H(y|x) when vx = 1, vy = 0.2 and p = 5. Here y = (y1, y2,0,0,0).
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COROLLARY 1. The Bayes predictive density under π(µ) ≡ 1, namely p̂U, is
minimax under RKL.

PROOF. By a transformation of variables, x → (x − µ) and y → (y − µ), it
is easy to see that RKL(µ, p̂U) = RKL(0, p̂U) = r for all µ, so that RKL(µ, p̂U)

is constant. Next, we show that r is a Bayes risk limit of a sequence of Bayes
rules p̂πn with πn(µ) = Np(0, σ 2

n I ), where σ 2
n → ∞ as n → ∞. By the fact that

r(πn, p̂U) ≡ r and (16),

r − r
(
πn, p̂πn

) =
∫

πn(µ)
[
Eµ,vw logmπn(W ;vw)

(17)
− Eµ,vx logmπn(X;vx)

]
dµ,

where

mπn(z;v) = (
2π(v + σ 2

n )
)−p/2 exp

{
− ‖z‖2

2(v + σ 2
n )

}
.

It is now easy to check that (17) = O(1/σ 2
n ) and hence goes to zero as n goes to

infinity. By Theorem 5.18 of [3], the minimaxity of p̂U follows. �

Our next lemma provides a new identity that links Eµ,v logmπ(Z;v) to Stein’s
unbiased estimate of risk reduction U(x) in (11) and (12) for the quadratic risk
estimation problem. When combined with (16) in Theorem 1, this identity will be
seen to play a key role in establishing sufficient conditions on mπ for p̂π to be
minimax and to dominate p̂U.

LEMMA 3. If mπ(z;vx) is finite for all z, then for any vw ≤ v ≤ vx , mπ(z;v)

is finite. Moreover,

∂

∂v
Eµ,v logmπ(Z;v) = Eµ,v

(∇2mπ(Z;v)

mπ(Z;v)
− 1

2
‖∇ logmπ(Z;v)‖2

)
(18)

= Eµ,v

(
2
∇2√mπ(Z;v)√

mπ(Z;v)

)
.(19)

PROOF. When mπ(z;vx) is finite for all z, it is easy to check that for any fixed
z and any vw ≤ v ≤ vx ,

mπ(z;v) ≤
(

vx

vw

)p/2

mπ(z;vx) < ∞.

Letting Z∗ = (Z − µ)/
√

v ∼ Np(0, I ), we obtain

∂

∂v
Eµ,v logmπ(Z;v) = ∂

∂v
E logmπ

(√
vZ∗ + µ;v)

(20)

= E
(∂/∂v)mπ(

√
vZ∗ + µ;v)

mπ(
√

vZ∗ + µ;v)
,
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where
∂

∂v
mπ

(√
vz∗ + µ;v)

= ∂

∂v

∫ 1

(2πv)p/2 exp
{
−‖√vz∗ + µ − µ′‖2

2v

}
π(µ′) dµ′

=
∫ (

− p

2v
+ ‖z − µ′‖2

2v2 − ‖z∗‖2

2v
− z∗ ′(µ − µ′)

2v3/2

)
p(z|µ′)π(µ′) dµ′

= ∂

∂v
mπ(z;v) −

∫
(z − µ)′(z − µ′)

2v2 p(z|µ′)π(µ′) dµ′.

Using the fact that

∂

∂v
mπ(z;v) = 1

2
∇2mπ(z;v),(21)

which is straightforward to verify, and by Brown’s representation Eπ(µ′|z) = z +
v∇ logmπ(z) from (10),

E
(∂/∂v)mπ(

√
vZ∗ + µ;v)

mπ(
√

vZ∗ + µ;v)
(22)

= Eµ,v

(
1

2

∇2mπ(Z;v)

mπ(Z;v)
+ (Z − µ)′∇ logmπ(Z;v)

2v

)
.

Finally, by (2.3) of [22],

Eµ,v

(Z − µ) ′∇ logmπ(Z;v)

2v

= Eµ,v

1

2
∇2 logmπ(Z;v) = Eµ,v

1

2
∇′ ∇mπ(Z;v)

mπ(Z;v)
(23)

= Eµ,v

1

2

(∇2mπ(Z;v)

mπ(Z;v)
− ‖∇ logmπ(Z;v)‖2

)
.(24)

Combining (20), (22) and (24) yields (18). That (18) equals (19) can be verified
directly. �

It may be of independent interest to note that the intermediate step (21) is in fact
a restatement of the well-known fact that any Gaussian convolution will solve the
homogeneous heat equation, which has a long history in science and engineering;
for example, see [20]. Brown, DasGupta, Haff and Strawderman [5] recently used
identities derived from the heat equation, including one bearing a formal similarity
to (21), in other contexts of inference and decision theory. Furthermore, as the As-
sociate Editor kindly pointed out to us, the proof of Lemma 3 can also be obtained
by appealing to Theorem 1 and equation (54) of that paper.
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THEOREM 1. Suppose mπ(z;vx) is finite for all z.

(i) If ∇2mπ(z;v) ≤ 0 for all vw ≤ v ≤ vx , then pπ(y|x) is minimax under
RKL. Furthermore, pπ(y|x) dominates pU(y|x) unless π = πU.

(ii) If ∇2√mπ(z;v) ≤ 0 for all vw ≤ v ≤ vx , then pπ(y|x) is minimax un-
der RKL. Furthermore, pπ(y|x) dominates pU(y|x) if for all vw ≤ v ≤ vx ,
∇2√mπ(z;v) < 0 on a set of positive Lebesgue measure.

PROOF. As established in Corollary 1, pU is minimax under RKL. Thus, mini-
maxity is established by showing that (16) is nonnegative, and dominance is estab-
lish by showing that (16) is strictly positive on a set of positive Lebesgue measure.
Then (i) and (ii) follow from (18), (19) and the fact that vw < vx . �

COROLLARY 2. If mπ(z;vx) is finite for all z, then pπ(y|x) will be mini-
max if the prior density π satisfies ∇2π(µ) ≤ 0 a.e. Furthermore, pπ(y|x) will
dominate pU(y|x) unless π = πU.

PROOF. It is straightforward to show (see problem 1.7.16 of [15]) that
∇2mπ(z;v) ≤ 0 when ∇2π(µ) ≤ 0 a.e. Therefore, Corollary 2 follows immedi-
ately from (i) of Theorem 1. �

The above sufficient conditions for minimaxity and domination in the KL risk
prediction problem are essentially the same as those for minimaxity and domina-
tion in the quadratic risk estimation problem. What drives this connection is re-
vealed by comparing Stein’s unbiased estimate of quadratic risk reduction in (11)
and (12) with (18) and (19). It follows directly from this comparison that the risk
reduction in the quadratic risk estimation problem can be expressed in terms of
logmπ as

RQ(µ, µ̂MLE) − RQ(µ, µ̂π) = −2
[

∂

∂v
Eµ,v logmπ(Z;v)

]
v=1

.(25)

3. Examples. In this section we show how Theorem 1 and Corollary 2 can be
applied to establish the minimaxity of p̂H and p̂a . Compared to the minimaxity
proofs of Komaki [13] for p̂H, and of Liang [16] for p̂a , this unified approach is
more direct and more general. We further indicate how our approach can be used
to obtain wide classes of new minimax prediction densities.

EXAMPLE 1. Let us return to the Bayes predictive density p̂H, the special case
of (3) under the harmonic prior πH(µ) in (6). Following Komaki [13], the marginal
of Z|µ ∼ Np(µ,vI) under πH can be expressed as

mH(z;v) ∝ v−(p−2)/2φp

(∥∥z/√v
∥∥)

,(26)
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where φp(u) = u−p+2 ∫ (1/2)u2

0 tp/2−2 exp(−t) dt is the incomplete Gamma func-
tion. By Lemma 2, p̂H can be expressed in terms of this marginal as

p̂H(y|x) = mH(w;vw)

mH(x;vx)
p̂U(y|x).(27)

Because πH is harmonic [∇2πH(µ) ≡ 0 a.e.], and hence superharmonic, for p ≥ 3,
the fact that p̂H is minimax and dominates p̂U follows immediately from Corol-
lary 2.

Beyond p̂H, one might consider the class of Bayes predictive densities p̂π corre-
sponding to the (improper) multivariate t priors π(µ) = (‖µ‖2 + 2/a2)

−(a1+p/2).
Because these priors are superharmonic for a1 ≤ −1 and p ≥ 3, the minimaxity
and domination of p̂U by these rules follows immediately from Corollary 2.

EXAMPLE 2. Turning next to p̂a , the marginal of Z|µ ∼ Np(µ,vI) under the
Strawderman prior πa in (7) can be expressed as

ma(z;v) ∝
∫ ∞

0

{
2πv

(
v0

v
s + 1

)}−p/2

(28)

× exp
{
− ‖z/√v‖2

2((v0/v)s + 1)

}
(s + 1)a−2 ds.

Because πH is the special case of πa when a = 2, it follows that mH(z;v)

is the special case of ma(z;v) when a = 2. As Fourdrinier, Strawderman and
Wells [6] showed, the marginal for any proper prior cannot be superharmonic,
so that Theorem 1(i) cannot hold for p̂a when a < 1. However, Theorem 1(ii)
does hold for such p̂a , because

√
ma(z;v) is superharmonic for v ≤ v0 when

p = 5 and a ∈ [0.5,1) or p ≥ 6 and a ∈ [0,1). This fact can be obtained using
h(s) ∝ (1 + s)a−2 in Theorem 2 below, which extends Theorem 1 of [6].

THEOREM 2. For a nonnegative function h(s) over [0,∞), consider the scale
mixture prior

πh(µ) =
∫

π(µ|sv0)h(s) ds,(29)

where π(µ|sv0) = Np(0, sv0I ). For Z|µ ∼ Np(µ,vI), let

mh(z;v) ∝
∫ ∞

0
{2πv(s + 1)}−p/2 exp

{
−‖z/√v‖2

2(s + 1)

}
rh(rs) ds(30)

be the marginal distribution of Z under πh(µ), where r = v/v0. Let h be a positive
function such that:

(i) −(s + 1)h′(s)/h(s) can be decomposed as l1(s) + l2(s), where l1 ≤ A is
nondecreasing while 0 < l2 ≤ B with 1

2A + B ≤ (p − 2)/4,
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(ii) lims→∞ h(s)/(s + 1)p/2 = 0.

Then
√

mh(z;v) in (30) is superharmonic for all v ≤ v0, and when vx ≤ v0, the
Bayes predictive density p̂h(y|x) under πh(µ) in (29) is minimax.

PROOF. The proof of Theorem 1 in [6] shows that
√

mh(z;v0) in (30) is su-
perharmonic when v0 = 1, and it is straightforward to show that this is true for
general v0. From this fact,

√
mh(z;v) will be superharmonic for all v ≤ v0 if

hr(s) := rh(rs) satisfies (i) and (ii) when r ∈ (0,1].
First we show that hr satisfies (i). By the assumptions on h, we have

−(s + 1)h′(s)/h(s) decomposed as l̃1(s) + l̃2(s). Then

−(s + 1)
h′

r (s)

hr(s)
= −r(s + 1)

rs + 1
(rs + 1)

h′(rs)
h(rs)

= r(s + 1)

rs + 1
[l̃1(s) + l̃2(s)].

Choose li to be l̃i multiplied by r(s + 1)/(rs + 1). They can be checked to satisfy
the conditions since the factor (rs + r)/(rs + 1) is a nondecreasing function of s

and less than or equal to 1 when 0 < r ≤ 1. To see that hr satisfies (ii), note that

hr(s)

(s + 1)p/2 = h(rs)

(rs + 1)p/2 r

(
rs + 1

s + 1

)p/2

goes to zero when s → ∞ since the first term goes to zero by the assumption on h.
Thus

√
mh(z;v) will be superharmonic for all v ≤ v0. When vx ≤ v0, the mini-

maxity of p̂h(y|x) then follows from (ii) of Theorem 1. �

Going far beyond these results, Theorem 2 can be used to obtain wide classes
of proper priors that yield minimax Bayes predictive densities p̂h. Following the
development in Section 4 of [6], such p̂h can be obtained with particular classes
of shifted inverted gamma priors and classes of generalized t-priors.

4. Further extensions. Priors such as πH and πa are concentrated around 0,
so that the risk reduction offered by p̂H and p̂a will be most pronounced when
µ is close to 0. However, such priors can be readily recentered around a differ-
ent point to obtain predictive estimators that obtain risk reduction around the new
point. Because the superharmonicity of mπ and

√
mπ will be unaffected under

such recentering, the minimaxity and domination results of Theorems 1 and 2 will
be maintained. Minimax shrinkage toward a subspace can be similarly obtained by
recentering such priors around the projection of µ onto the subspace.

To vastly enlarge the region of improved performance, one can go further and
construct analogues of the minimax multiple shrinkage estimators of George [7–9]
that adaptively shrink toward more than one point or subspace. Such estimators
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can be obtained using mixture priors that are convex combinations of recentered
superharmonic priors at the desired targets. Because convex combinations of su-
perharmonic functions are superharmonic, Corollary 2 shows that such priors will
lead to minimax multiple shrinkage predictive estimators.
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