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The Dual Role of Modularity: Innovation and Imitation

Abstract
Modularity has been heralded as an organizational and technical architecture that enhances incremental and
modular innovation. Less attention has been paid to the possible implications of modular architectures for
imitation. To understand the implications of modular designs for competitive advantage, one must consider
the dual impact of modularity on innovation and imitation jointly. In an attempt to do so, we set up three
alternative structures that vary in the extent of modularity and hence in the extent of design complexity:
nonmodular, modular, and nearly modular designs. In each structure, we examine the trade-offs between
innovation benefits and imitation deterrence. The results of our computational experiments indicate that
modularization enables performance gains through innovation but, at the same time, sets the stage for those
gains to be eroded through imitation. In contrast, performance differences between the leaders and imitators
persist in the nearly modular and the nonmodular structures. Overall, we find that design complexity poses a
significant trade-off between innovation benefits (i.e., generating superior strategies that create performance
differences) and imitation deterrence (i.e., preserving the performance differences). We also examine the
robustness of our results to variations in imitation accuracy. In addition to documenting the overall robustness
of our principal finding, the ancillary analyses provide a more nuanced rendering of the relationship between
the architecture of complexity and imitation efforts.
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Management Insight Statement 
 
What makes competitive advantage enduring and prevents its imitation is a central question in 
strategy research. In this paper, we investigate how and why complexity deters imitation efforts. 
We argue that design complexity captures the ease of making localized changes without affecting 
the whole organization. Based on this idea of complexity we identify three organizational structural 
types: fully modular, nearly modular and non-modular. The three designs differ in the extent to 
which they encapsulate interdependencies. We show that the potential for incremental innovation 
in an organization increases when one moves from non-modular to modular structures. In contrast, 
the potential for an organization to deter imitation decreases from non-modular to modular 
structures. We elaborate how and why design complexity affects the nature of the trade-off 
between innovation and imitation deterrence and thereby help address questions about the effective 
allocation of imitation “energies,” either for imitating firms to increase the efficacy of their 
imitation efforts or for innovating firms to effectively deter imitation. We discuss how our analyses 
shed light on several contemporary examples of innovation and imitation deterrence, such as the 
emergence of low-cost airlines and the rise of IBM in the mainframe computer industry. 
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The Dual Role of Modularity: Innovation and Imitation  
 

Abstract 
 
Modularity has been heralded as an organizational and technical architecture that enhances 
incremental and modular innovation. Less attention has been paid to the possible implications of 
modular architectures for imitation. To understand the implications of modular designs for 
competitive advantage, one must consider the dual impact of modularity on innovation and 
imitation jointly. In an attempt to do so, we set up three alternative structures that vary in the extent 
of modularity and hence in the extent of design complexity: non-modular, modular, and nearly 
modular designs. In each structure, we examine the trade-offs between innovation benefits and 
imitation deterrence. The results of our computational experiments indicate that modularization 
enables performance gains through innovation but, at the same time, sets the stage for those gains 
to be eroded through imitation. In contrast, performance differences between the leaders and 
imitators persist in the nearly modular and the non-modular structures. Overall, we find that design 
complexity poses a significant trade-off between innovation benefits (i.e., generating superior 
strategies that create performance differences) and imitation deterrence (i.e., preserving the 
performance differences). We also examine the robustness of our results to variations in imitation 
accuracy. In addition to documenting the overall robustness of our principal finding, the ancillary 
analyses provide a more nuanced rendering of the relationship between the architecture of 
complexity and imitation efforts. 
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1. Introduction 

 How do firms create or acquire capabilities or positions that generate competitive 

advantage (Porter 1980; Rumelt 1984; Winter 1995)? What are the mechanisms available to 

protect them from being imitated or substituted (Rumelt 1984; Reed and DeFillippi 1990)? These 

are perhaps the two central questions guiding strategy research. While a significant volume of 

research has examined the nature of capabilities and positions and the conditions under which they 

generate competitive advantage, there is comparatively less work on barriers to imitation or 

substitution. The existing work addressing the latter question, mostly conceptual in nature, 

suggests that imitation or substitution barriers are largely a function of complexity in executed 

strategies (Rumelt 1984; Barney 1991). More recently, Rivkin (2000; 2001), using a formal 

computational model, demonstrated how greater complexity of strategies deters imitation efforts. 

In this paper we seek to increase our understanding of the joint effects of complexity on innovation 

and imitation deterrence.  

In addressing this question, we link the issues of capability creation and imitation, 

respectively, by exploiting an important but under-explored link to research on modularity and 

complexity. Simon (1962), in his work on the architecture of complexity, argued that systems that 

are hierarchical and nearly decomposable help reduce the complexity of the design challenge. The 

twin principles of hierarchy and near-decomposability now form the cornerstones of modular 

designs (Parnas 1972; Baldwin and Clark 2000). It is generally accepted that a modular design is 

based on a principle of encapsulating interdependencies within self-contained units called modules 

and minimizing reciprocal interdependencies between modules. Encapsulating interdependencies 

makes a system nearly decomposable, and minimizing reciprocal interdependencies makes it 

hierarchical. As a result, modular structures more easily allow incremental and localized 

innovation within modules and thus help reduce design complexity. Conversely, in non-modular 

(or integral) structures, the management of interdependencies is not the primary guiding principle 
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of design (see Ulrich 1995 for a discussion of the costs and benefits of modular and integral 

designs). As systems grow larger, the disruptive impact of interdependencies on design grows 

greater than proportionately. Other things held constant, for systems of identical size the 

complexity of an integral design will be significantly greater than the complexity of a modular one. 

Therefore, holding size constant, the degree of modularity should provide important insight into 

the fundamental question of how and why complexity deters imitation. 

 We aim to examine the relationship between complexity and imitation deterrence using 

several controlled experiments in a computational model (see Ethiraj and Levinthal 2004b which 

employs a similar model to explore the trade-offs between coarser and finer partitioning of 

modules). In the first experiment, holding the overall level of interdependence in the firm constant, 

we set up three alternative structures that vary in the extent of design complexity: (1) perfectly 

modular structure with no interdependencies between modules, (2) nearly modular structure with 

minimal interdependencies between modules, and (3) non-modular structure with 

interdependencies randomly distributed. We allow firms in each structure to engage in independent 

incremental innovation. This yields performance differences across firms and thus allows a sorting 

among low and high performers. We subsequently allow low-performing firms to imitate high-

performing firms. We seek to contrast, all else held constant, the net effect of firm-centered 

incremental innovation efforts and population-level processes of imitation in the three structures. 

 The imitation of high performers can take several forms. To avoid favoring one form of 

imitation over another, we examine several imitation strategies, including: (1) imitation of module 

decisions, (2) imitation of linkages among decisions, and (3) imitation of both module decisions 

and linkages. We examine whether these alternative imitation strategies provide asymmetric 

benefits to innovators and/or imitators.  

The first experiment examines perfect imitation. Empirical evidence, however, suggests 

that imitation of best practices is error-prone even within firms (Szulanski 1996). Therefore, in 
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experiment 2 we allow imperfect imitation and contrast three forms: (1) imperfect imitation of 

module decisions and intra-module dependencies and no imitation of inter-module dependencies, 

(2) perfect imitation of module decisions and intra-module dependencies but imperfect imitation of 

inter-module dependencies, and (3) imperfect imitation of module decisions, intra-module 

dependencies, and inter-module dependencies. This analysis helps address questions about the 

effective allocation of imitation “energies,” either for imitating firms to increase the efficacy of 

their imitation efforts or for innovating firms to effectively deter imitation.  

 Our results provide several useful insights on the question of how and why alternative 

structures affect the trade-off between innovation and imitation deterrence. First, we find that 

modular structures, in contrast with non-modular ones, generate significant incremental innovation 

benefits. Further, we find few innovation performance differences between modular and nearly 

modular structures. More interesting, however, is the finding that the benefits of modular structures 

are highly susceptible to imitation efforts. In contrast, leader-imitator performance differences 

persist in the nearly modular and the non-modular structures. These results taken together suggest 

that if firms expect to be innovators, then nearly modular structures provide the best trade-off 

between incremental innovation benefits and imitation deterrence. For firms that expect to profit 

from imitation, modular structures would be their preferred structures, accompanied, of course, by 

the hope that the innovators also choose modular structures. In contrast, if design complexity is 

exogenous to firms and designs are modular (e.g., PCs in the case of product design), then 

innovators cannot rely on design structures to deter imitation efforts. 

 In the rest of the paper, we describe in detail how we arrived at these conclusions. Section 2 

provides a brief background to the literature on imitation, innovation, and complexity. Section 3 

outlines the modeling structure that we employed. Section 4 presents the results, and Section 5 

concludes. 
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2. Imitation, innovation, and complexity 

 Strategy research interest in imitation deterrence grew in lockstep with interest in 

explaining intra-industry heterogeneity in performance, i.e., why do firms within industries vary in 

their profitability. Lippman and Rumelt (1982) showed that uncertainty in the choice of production 

functions was sufficient to generate heterogeneity in profits. The focal point of the theory was the 

notion of an “isolating mechanism” that prevented the equilibration of industry rents. Rumelt 

(1984), in pinpointing the isolating mechanism, suggested that “causal ambiguity” – inability to 

understand the causes of efficiency differences – is the key isolating mechanism.  

 The notion of causal ambiguity merely pushed the question back one level. What kinds of 

strategies, under what conditions, are likely to be causally ambiguous? Reed and DeFillippi (1990) 

suggested that tacitness, complexity, and specificity in a firm’s skills and resources generate causal 

ambiguity that deters imitation efforts. Each of these explanations for causal ambiguity has 

spawned somewhat independent research efforts. Knowledge-based theories of the firm (Winter 

1987; Kogut and Zander 1992; Conner and Prahalad 1996) have sought to explore why tacitness of 

knowledge can be a barrier to imitation efforts. The transaction cost economics literature has 

directed attention to the notion of asset specificity and why the presence of specific assets can 

generate intra-industry heterogeneity (Klein, Crawford, and Alchian 1978; Williamson 1985). 

The idea of complexity as the key driver of causal ambiguity, which is the subject matter of 

this paper, has received much less attention in the strategy literature. Although ideas about 

complexity have been present in the organization theory literature for several decades (Simon 

1957), the exact mechanisms through which complexity deters imitation has a more recent history 

in strategy. Porter (1991) argued that activity systems form the cornerstone of competitive 

advantage. “A firm’s strategy defines its configuration of activities and how they interrelate” 

(Porter 1991: 102). The implication is that the multitude of activities that a firm engages in and the 

interrelationships among them pose a formidable challenge of discovery that, in turn, deters 
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imitation. Levinthal (1997), applying the NK fitness landscape structure from Kauffman (1993), 

shows how clusters of interdependent choices can create persistent heterogeneity in firm strategies. 

Rivkin (2000), building on the same modeling platform, addressed the question of how and why 

complexity deters imitation efforts and extends this analysis to consider the dual effect of 

complexity on firms’ own adaptive efforts and other firms’ imitation attempts (Rivkin 2001).  

In contrast to the strategy literature, which advocates greater complexity as a useful 

deterrent to imitation, the modularity literature extols the value of modular designs in reducing 

design complexity. Baldwin and Clark (2000) described how the modular architecture of the 

System/360 multiplied design options and accelerated design evolution. Although the design 

benefits of modularity are empirically documented (Garud and Kumaraswamy 1995), our paper is 

motivated by an often overlooked observation of Baldwin and Clark (2000) that the emergence of 

modular architectures coincided with the beginning of the decline of IBM’s domination in 

computer hardware. The rise of modular designs contributed to the exploding market for third-

party plug-compatible devices in the computer industry that competed with IBM’s own offerings. 

This raises the conjecture that IBM, while accelerating design evolution via a modular architecture, 

perhaps sowed the seeds for the erosion of its competitive advantage by facilitating subsequent 

imitation efforts. 

In a limited attempt at bridging the two views, we see the strategy literature as seeking to 

direct attention at cognitive complexity, which is a function of overall interdependence among 

decisions within the firm.1 In contrast, the modularity literature directs attention, not at the overall 

interdependence within the firm, but at the distribution of interdependencies and how they are 

contained. The intuition is that holding the total number of interdependencies constant but altering 

their distribution can alter design complexity. This is particularly relevant in the implications for 

managerial practice. There is little ambiguity about a structure that is more or less modular. It is 
                                                 
1 The idea is that such complexity overwhelms managerial cognitive capacities for strategy making or imitation. 
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straightforward to visualize and design alternative structures for a given level of interdependencies. 

In contrast, it is, arguably, harder to implement more or less complex strategies via increasing or 

decreasing the degree of interdependence within the system since such changes may be constrained 

by the inherent physics and economics of the underlying system.  

The implied contrast between cognitive complexity and design complexity poses an 

interesting puzzle that provides the motivation for this paper.2 On one hand, strategy research 

seems to indicate that greater cognitive complexity is good from the standpoint of imitation 

deterrence. On the other hand, research in modularity suggests that reduction in design complexity 

via modularization can help firms improve flexibility, increase innovation, and engage in speedier 

response to exogenous environmental change (Baldwin and Clark 2000). This contrast hints at the 

possibility that while decreases in design complexity have some firm-level benefits, such as greater 

innovation, they also can have the unintended effect of facilitating easier and quicker imitation. 

Thus, from the firm’s standpoint there may be significant trade-offs to altering design complexity. 

What form such trade-offs should take is the contribution this paper seeks to advance. 

We hold cognitive complexity constant and set up three stylized structures that vary in the 

level of design complexity. We contrast innovation performance and imitation deterrence across 

the three structures and in the process shed light on how design complexity facilitates the creation 

of competitive advantage and its imitation deterrence. The following section describes the model. 

3. Model 

 The model set-up for examining the implications of modularization on innovation and 

imitation requires the specification of three features of the experiment: (1) the representation of the 

firm and its performance landscape, (2) the characterization of design options, and (3) the 

representation of innovation and imitation. We elaborate each in turn. 

                                                 
2 Design complexity is closely related to Kolmogorov complexity (Adami 2002), which is a measure of regularity in a 

system. Kolmogorov complexity will reach its maximum in a disordered system (non-modular system) and its 
minimum in a well-ordered system (modular system). See Page (1996) for a related distinction. 
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3.1. The firm and its performance landscape 

A firm, f, is represented as a row vector of N attributes or decision variables, f={d1…dN}. 

Without loss of generality, each decision can take on one of two possible values (0, 1). For 

instance, a particular decision might be the use of a group-based work organization, with 1 

representing the use of groups and 0 representing the absence of groups. However, the 

performance implications of using group-based work organization cannot be evaluated in isolation. 

Choice of work organization is likely to have interactions with the incentive system, accounting 

methods, quality of employees, physical layout, and so on. Thus, some combination of “other” 

decision choices may yield performance improvements for the focal decision while others may 

undermine it.  

 This means that the performance of the firm depends on the setting of the decision 

variables and the interactions among them. With no interactions between decision variables, each 

decision makes an independent contribution to overall firm performance. As the interactions 

between decision variables increase, the contribution of each decision choice to firm performance 

becomes increasingly interdependent. This means that tweaking a decision choice that results in 

local performance gains does not always lead to a concomitant increase in firm-level performance. 

The resulting performance landscape is, therefore, rugged with multiple peaks and valleys, as a 

result of actions on one decision having ripple effects on other decisions (Levinthal 1997). 

The performance contribution (ωi) of each decision variable (di) is determined both by the 

state of the ith decision choice and the states of the j other decision choices on which it depends: 

},...,1{    where),;( then ,}},...,1{|{Let NiDDDdNjdD iiiiij ∈∀⊆=∈= ωω  

The value of ωi is treated as an i.i.d. random variable drawn from the uniform distribution 

U[0,1] for each (di; Di). Firm performance, Ω, is a simple average of ωi over the N decisions: 

∑
=

=Ω
N

i
iii Dd

N 1
);(1 ω  
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If we hold the pattern of interdependencies constant across all firms on a given landscape, it results 

in 2N distinct fitness values, one for each possible configuration of the N decision variables, and 

corresponds to the canonical NK model from evolutionary biology (Kauffman 1993). Since we are 

interested in understanding firm performance heterogeneity, we depart from the canonical NK 

model and allow for heterogeneity in the pattern of interdependencies among firms on a given 

landscape. Let R be the total number of interdependencies on a given landscape distributed among 

the N(N-1) cells in an interaction matrix. Thus, allowing for heterogeneity in the distribution of R 

interdependencies across firms on a given landscape, the total number of distinct performance 

values is given by, . Holding R constant and varying the 

distribution of the R interdependencies across the N(N-1) cells accomplishes the goal of holding 

cognitive complexity constant and allowing design complexity to vary.  

)1(  where,
)1(

2 −<⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
NNR

R
NNN

3.2. Modeling the design options 

In order to examine the effects of modularity on innovation and imitation, we specify three 

alternative structures – modular, nearly modular and non-modular – that are identical in R, but vary 

in the degree of modularization.  

For each experiment, the number of modules, M, and the number of decisions, N, are 

specified. We create M modules, where the kth module, mk, is comprised of N/M decision variables. 

We assumed each module to be equal in size to simplify understanding of the results. The 

composition of each module, mk, is determined according to the following rule: 

},...,1{  where,,....,
1)1(

Mkddm
M
Nk

M
Nkk ∈

⎭
⎬
⎫

⎩
⎨
⎧

=
+−

 

We also assign R interdependencies among the pairs of N decisions. In all three structures 

that we model, N, M, and R are held constant. What differs among the three structures is the pattern 

of distribution of the R interdependencies. 
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Differences in the pattern of interdependencies are best understood in terms of an 

interaction matrix (see Figures 1a-1c). This representation is based on Simon’s (1962) exposition 

of the architecture of complex systems. If N decision variables are present, then the interaction 

matrix is an N X N array where an x in cell cij indicates that the performance contribution of 

decision di is dependent on the setting, 0 or 1, of decision dj. In all three designs, we assume that di 

depends on di.  

3.2.1. Non-modular structure 

The number of decisions, N, number of modules, M, and total number of 

interdependencies, R, were specified as above. To generate a non-modular structure, we then 

created a random number of interactions for each decision, di, subject to the constraint that the total 

number of interactions for each firm is equal to R (see Figure 1a). This means that, on average, 

each decision is dependent on R/N other decisions. When looking at Figure 1a, the interaction 

matrix of the non-modular design setup is an N X N diagonal matrix with R randomly selected off-

diagonal elements. In specifying the R interdependencies, each off-diagonal cell had an equally 

likely chance of being selected. 

3.2.2 Modular structure 

In the modular design setup, we assigned the R interdependencies such that each of the M 

modules contain N/M decision variables that are tightly coupled, i.e., reciprocally dependent 

(Thompson 1967). A set of decision variables within a module mk is tightly coupled when the 

performance value for di is a function of the (N/M – 1) other decision variables in the module. 

Formally, 

⎭
⎬
⎫

⎩
⎨
⎧ +−∈∀==

M
Nk

M
NkidmDwhereDd ikiiiii ,...,1)1(\);(ωω  

In terms of the interaction matrix (Figure 1b), the modular structure corresponds to a block-

diagonal matrix, where each block represents a module. However, what we call modular structures 
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do not exactly correspond with Baldwin and Clark’s (2000) notion. Their description of modular 

structures pair block-diagonal structures with visible design rules (see Baldwin and Clark 2000: 

74). The pure-form block-diagonal modular structure implemented here merely provides an 

extreme point of contrast with nearly modular and non-modular structures in our analysis. 

3.2.3 Nearly modular structure 

We made a slight design alteration to the modular set-up to generate the nearly modular 

structure (see Figure 1c). For each of (M-1) modules, we removed X randomly selected intra-

module interdependencies. We re-introduced X interdependencies between randomly selected 

decisions in the focal module and randomly selected decision variables in the remaining (M-1) 

modules. This keeps R constant while altering the pattern of interdependencies. Formally, for each 

module, mk, where , we removed X intra-module linkages resulting in the removal 

of X(M-1) interdependencies for each firm. For each X(M-1) removals, we uncouple decision d

{ 1,...,1 −∈ Mk }

i 

from decision dj, where { }1,...,1  and      where,...,1)1(, −∈≠
⎭
⎬
⎫

⎩
⎨
⎧ +−∈ Mkji

M
Nk

M
Nkji . 

To make this structure nearly modular and maintain a constant R, we replaced the X(M-1) 

removed intra-module couplings with X(M-1) inter-module couplings. Formally, we introduced 

X(M-1) random couplings of decision dh in module mj to decision di in module mk, where, 

 and { } kjMkMj ≠∈−∈  and },...,1{  and  ,1,...,1 .,...,1)1(,...,1)1(
⎭
⎬
⎫

⎩
⎨
⎧ +−∈

⎭
⎬
⎫

⎩
⎨
⎧ +−∈

M
Nk

M
Nki

M
Nj

M
Njh  and  

As seen in Figure 1c, this generates an interaction for each block below the block-diagonal and 

removes an interaction for each block within the block-diagonal (with the exception of the last 

block) when compared to the interaction matrix for the modular design set-up.  

  The characterization of nearly modular structures raises two important questions: Why are 

there interactions only below the principal diagonal, and is there is a continuum of nearly modular 

structures. Our definition of nearly modular structures incorporates two properties – hierarchy and 
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near-decomposability – that go back to Simon (1962). The principle of hierarchy imposes a 

precedence ordering of interdependencies across modules and rules out reciprocal 

interdependencies between modules. This explains why there are interactions only below the 

principal diagonal in nearly modular structures. The principle of near-decomposability stipulates 

that interdependencies within modules should be greater than the interdependencies between 

modules (see Ethiraj and Levinthal 2004a for a discussion of hierarchy and near-decomposability 

or loose-coupling). Thus, for a firm with R interdependencies, the structure is nearly decomposable 

if at least R/2 interdependencies are encapsulated within modules. Thus, we created a continuum of 

nearly modular structures that meet both criteria. Though we report results only for the case where 

X=1, our results are robust for the full range of nearly modular structures (see online supplement).  

3.3. Modeling Innovation and Imitation 

The main objective of the analysis is to examine how altering design complexity affects the 

trade-off between innovation and imitation. In each experiment, we allow each firm in the 

population to engage in incremental innovation attempts. Variance in the success of innovation 

generates heterogeneity in firm performance. This heterogeneity later fuels imitation efforts. Once 

firms stabilize on their local peaks, we turn off innovation and allow the low-performing firms to 

imitate the high-performing firms.3 We contrast both innovation performance and imitation 

deterrence in the three structures. The implementation of innovation and imitation is described 

below. 

3.3.1. Innovation 

 We modeled within-module innovation attempts as a process of incremental local search. 

Modeled managers attempt to enhance module performance by performing simple intra-module 
                                                 
3 We turn off innovation before allowing imitation because allowing innovation will bias the results in favor of 

imitators. Once firms stabilize on local peaks, the only way to improve performance is via a “long-jump” (Levinthal 
1997). Imitation efforts have the effect of acting like a long-jump and positioning the imitating firms in a new region 
of the landscape so they can benefit from subsequent local search attempts. For completeness, we also implemented 
the full set of models in a regime in which innovation and imitation happen in conjunction. All our results in this 
alternative regime were qualitatively similar to that reported in the paper. 
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incremental design changes. In each period of the experiment, each module attempts an 

incremental innovation. Within each module, a randomly selected decision choice is flipped and 

module performance is evaluated. In this evaluation process, the manager evaluating change 

assumes there are no changes to other modules. If the change improves performance, then the 

innovation is implemented. Otherwise, the innovation is discarded (see Ethiraj and Levinthal 

2004b for a discussion of the behavioral assumptions underlying this form of search).  

 More formally, for each time period, t, and for each module, mk, consider a decision choice 

that is flipped to  (i.e., 0→1 or 1→0). Let module performance be kjt md ∈ '
jtd

(
( )

)∑
+−=

=Ω
M
Nk

M
Nki

iii
k

kt Dd
m

11

;1 ω , and let  be the module performance with  substituted for . 

Then, . 

'
ktΩ '

jtd jtd

( ) ⎪⎩

⎪
⎨
⎧ Ω>Ω′′

=+ otherwised

ifd
d

jt

ktktjt
tj 1

3.3.2. Imitation 

Imitation is the process by which a low-performing firm replaces a subset of its own 

decision choices and/or interdependencies with an equivalent set of decision choices and/or 

interdependencies copied from a high-performing firm. Among the high-performing firms, we 

assumed that the probability of choosing a particular firm as the target of imitation is proportionate 

to the firm’s performance level (see  Goldberg 1989). Implementing imitation involves making at 

least three behavioral assumptions – unit of imitation (i.e., individual decisions or modules), target 

of imitation (decisions, linkages, or both), and accuracy of imitation (perfect or imperfect). 

We assumed that firms copy clusters of decision choices or linkages rather than individual 

decision choices or linkages. This assumption has two rationales. First, we believe that managers 

of imitating firms are generally aware of the dysfunctional effects of imitating individual decisions 

or linkages when decisions are interdependent. As a result, there are stronger incentives to copy 
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clusters of decisions and linkages rather than single decisions or linkages.4 Second, imitation is 

assumed to be rational at the module level in that imitation occurs only if the performance of the 

target module is superior to the module being considered for replacement. It is also possible to 

allow imitation based on firm performance improvement. It is far from simple, however, to 

implement such imitation efforts in reality, because imitation based on firm performance 

improvement hinges on compensatory evaluation if there are interdependencies across modules. In 

other words, module managers would have to trade off module performance against firm 

performance, i.e., accept lower module performance for greater firm performance. Though such 

compensatory evaluation can result in higher firm performance, it demands the assumption that 

managers of modules can indeed integrate across module performance and reach the correct 

decision. This assumption is not supported across a wide swath of field studies and experimental 

work on evaluation across categories (Dawes 1979; Thaler 1985; Heath and Soll 1996; Read, 

Loewenstein, and Rabin 1999). This literature suggests that individuals find it cognitively difficult 

to engage in compensatory evaluation. In addition, implementing compensatory evaluation based 

on firm performance improvement raises the issue of coordination across modules (and incentives) 

in imitation decisions. Incorporating these elements is beyond the scope of the research question 

addressed in this paper.  

The issue of targets of imitation turns on the capability to imitate rather than the incentive 

to imitate. Clearly, firms, if they are able, have an incentive to imitate whole organizations of high-

performing firms. Short of imitating whole organizations, however, it is possible to model three 

alternative imitation targets: (1) module decisions and intra-module linkages, (2) inter-module 

linkages only, and (3) module decisions, intra-module linkages, and inter-module linkages.  

                                                 
4 Within the model setup, we evaluated five alternative units of imitation: (1) single decisions, (2) single linkages, (3) 

single decisions and single linkages, (4) modules of decisions, and (5) modules of linkages. We found that imitation 
of individual decisions (1) or linkages (2) yields no benefits, both in an absolute sense as well as in comparison with 
alternatives (3), (4), and (5). See Figure OS1 in the online supplement. 
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There is relatively strong support in the literature that imitating module decisions and 

linkages is possible and widely observed (Baldwin and Clark 1997; Baldwin and Clark 2000). On 

the capability question, Heath and Staudenmeyer (2000) suggest that individuals tend to exhibit a 

strong partition focus (focus on partitioning the task more than on integration) and component 

focus (focus on single components of a tightly interrelated set of capabilities) respectively. 

Thus, this experimental work suggests that modules, rather than linkages or individual decisions, 

would serve as the primary unit of imitation. In reviewing the empirical evidence, Heath and 

Staudenmeyer (2000) make a compelling case that this tendency is not an agency problem that can 

be solved with appropriate incentives, but rather a coordination problem rooted in bounded 

rationality.  

The empirical evidence on inter-module linkage copying is sparse. However, experience of 

firms that implement enterprise software programs such as SAP provides anecdotal evidence of 

linkage imitation. ERP software comprises standardized modules that are linked via thousands of 

configuration tables. In the early years of ERP use, there were several highly visible 

implementation disasters (e.g., Fox-Meyer Drug, Hershey’s) that the ERP suppliers learned from 

and transferred to their later customers (Wah 2000; Anonymous 2002). It appears that much of the 

changes happened not in modules but in the settings of the configuration tables.  

Finally, on the issue of copying both module decisions and linkages, and inter-module 

linkages, there is little empirical evidence that supports its feasibility or prevalence. Given the 

strong managerial incentives to do so, however, we implement this extreme form of imitation with 

the caveat that the interpretation of results should be tempered by the feasibility and capability to 

do so. In the interest of completeness, we suspend disbelief and leave this judgment to the reader. 

With respect to the third assumption about the accuracy of imitation, we varied imitation 

accuracy to range from perfect to modestly coarse. In cases where imitation is imperfect, we 
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assumed that the imitator does not have any information on a subset of choices in the module and 

makes guesses about them. We describe below the various forms of imitation we modeled. 

Module decisions and intra-module linkage copying. Let firm A and firm B denote a high-

performing and low-performing firm respectively and the performance of module k in period t in 

each of the firms is defined as Let module m. and B
kt

A
kt ΩΩ k be defined as the set of all decision 

variables di and their intra-module linkages |Di|. In period t+1, Firm B imitates the module 

decisions and intra-module linkages of firm A according to the following rule: 
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Inter-module linkage copying. Let firm A and firm B be a high-performing and low-performing 

firm respectively and the performance of module k in period t is again defined as  Let 

|D

. and B
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A
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j| be the set of all inter-module linkages between decisions di in module mk with all decisions dj 

in modules mj. In period t+1, Firm B imitates the inter-module linkages of firm A as 
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Module decisions, intra-module linkage copying, and inter-module linkage copying. Let firm A 

and firm B be a high-performing and low-performing firm respectively and the performance of 

module k in period t be defined as  Let module m. and B
kt

A
kt ΩΩ k be defined as the set of all decision 

variables di, their intra-module linkages by |Di|, and let |Dj| be the set of all inter-module linkages 

between decisions di in module mk with decisions dj in modules mj. In period t+1, Firm B imitates 

the module decisions, intra-module linkages, and the inter-module linkages of firm A as 
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Imperfect imitation. The implementation of imperfect imitation is best understood through an 

example. Consider firm A attempting to imitate a module from firm B. In the perfect copying 

regime, the module is copied exactly. If copying is imperfect, then a subset of the copied module is 

unknown. If imitation inaccuracy is 0.1 and there are 5 decisions in the module, then (0.1 x 5) 

decision choices will be unknown. Rounding up to the nearest integer, one decision choice is 

unknown. If the imitation inaccuracy is 0.5, then three decisions are unknown. A random draw of 0 

or 1, representing a guess by the imitating firm, is assigned to each of the unknown decisions. In 

the limiting case of inaccuracy going to 1, each decision in the module is assigned a value at 

random.  

 More formally, let G be the rate of decision copying inaccuracy, 10| ≤≤ℜ∈ GG . If G=0, 

we have perfect copying accuracy and the decision settings are copied as above. If G=1, imitation 

is equivalent to setting the decisions randomly. For any intermediate value of G, let u represent the 

number of decisions in  that is unknown and therefore must be guessed by the imitating firm, 

where 

B
km
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k ,  is a binomial distribution with parameters B
km and G. Then 

let { }u
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represent the set of guesses made by the imitator, where guess '  is randomly assigned 0 or 1 with 

equal probability. Then imperfect imitation of the leader by the imitator in period t+1 is 
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 Imperfect linkage copying occurs in an analogous manner. Let G be the rate of linkage 

copying inaccuracy, 10| ≤≤ℜ∈ GG . Let  be the set of all intra-module dependencies and 

 the set of all inter-module dependencies for decision d

|| B
iD

|| B
jD i in module mk in firm B. For any 

intermediate value of G, let v represent the number of decisions in  for which the linkages are 

unknown, and must be guessed by the imitating firm, where 
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decisions for which their intra-module  and inter-module  linkages respectively are 

unknown. For the set of v decisions, the imitating firms retain the status quo of linkages. Thus, 

imperfect imitation of linkages in period t+1 is defined as 
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4. Analysis 

 We performed two experiments. The first experiment contrasts the innovation benefits and 

imitation deterrence of the three design structures across the three different assumptions about 

imitation. Experiment 2 examines the robustness of the results in experiment 1 to introducing 

imperfections in imitation accuracy. 

 All experiments model the interaction of 100 firms on a given landscape. The initial 

settings for the decision vectors and interactions are independently specified by random 

assignment. Since any single run is sensitive to this inherent randomness, we replicate each 

experiment 100 times with different starting seeds for both the initial state of decision variables and 

for the interaction matrices. Finally, the term “leaders” refers to the top 10% of firms in the 
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population in each period, and the term “imitators” refers to the bottom 10% of firms in the 

population in each period.  

4.1. Experiment 1: Extent of modularity and imitation 

 In all the results reported in experiment 1, we set N=24, M=4, R=120, and G=0. Holding 

R=120, we varied the spatial distribution of interdependencies to create the three structures shown 

in Figures 1a-1c. We allowed each firm to engage in M autonomous and parallel incremental 

innovation attempts in each period of the experiment (i.e., one attempt per module). We implement 

this hill climbing process until period 100, at which point most firms reach a stable asymptote in 

performance (i.e., reach a local peak).5 After period 100, we turn off innovation, sort the firms, and 

determine the high and low performers. We then allowed the low performers (henceforth termed 

imitators) to engage in imitation of the high performers (henceforth termed leaders). In each 

subsequent period of the experiment, we allowed the imitators to imitate a module from a 

randomly chosen leader where the leader is chosen with a probability proportionate to population 

performance. Once an imitation period is complete, we again sort all 100 firms according to their 

performance and identify the leaders and imitators. As a result, the population of imitators and 

leaders can change every period as the imitators improve their performance.  

 Figure 2 graphs the performance levels in the three structures as a function of incremental 

innovation attempts in the first 100 periods. Comparing the three structures, the non-modular 

design performs significantly worse than either the modular or nearly modular design. In the non-

modular structure, the partitions for the M modules are drawn with no consideration for grouping 

highly interdependent decisions. As a result, when one module engages in a local innovation 

attempt without considering shared interdependencies with other modules, the performance 

consequences for the firm as a whole are dysfunctional. Innovation attempts that appear to be 

                                                 
5 Firms in the non-modular structure do not reach a stable asymptote by period 100 due to perturbations caused by the 

off-diagonal interdependencies. 
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locally performance enhancing frequently turn out to be globally performance decreasing. Thus, 

the performance of any single firm with a non-modular structure is highly non-monotonic over the 

100 periods of the simulation, even though the average over 100 firms, shown in Figure 2, trends 

upward smoothly (see Figure OS2 in the online supplement for a plot of individual runs).  

 In contrast, the modular and nearly modular structures exhibit fairly monotonic 

performance increases as a function of local innovation attempts. In the modular structures, the 

monotonic increase in performance is because there are no interdependencies between modules. 

Interestingly, modular and nearly modular structures exhibit nearly identical performance. This is 

because the ignored interdependencies between modules in the latter case are too few to make a 

significant difference in the aggregate, and, more subtly, slight deviations from modularity may 

have a useful consequence by pushing the firm off inferior local peaks. The one-step incremental 

innovation process localizes its impact within modules and only rarely do innovation attempts 

within a module affect the performance of another module. Thus, from the standpoint of 

incremental innovation, it appears that the efficacy of modular and nearly modular structures is 

nearly identical.6

4.1.1. Imitation of module decisions and intra-module linkages 

 Figure 3 graphs the results of the experiment comparing the three structures over the entire 

experiment. For ease of comparison, we plot the average difference in the performance of the 

leaders and imitators in the three structures at every period of the experiment. In the non-modular 

structure, the average leader-imitator performance difference reaches about 0.20 by period 100 

when we turn off innovation. In the modular and nearly modular structures, the average leader-

imitator performance difference is about 0.10 and 0.11 respectively.  

                                                 
6 Note that our results comparing innovation performance across the three structures is strictly confined to incremental 

innovation only. It is possible that modular and nearly modular structures may actually hamper radical, system-wide 
innovation efforts (see Ulrich 1995). 
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 The examination of Figure 3 from period 101 onwards helps identify the imitation 

deterrence potential across the three structures. In the non-modular structure, the average leader-

imitator performance difference increases sharply after imitation is implemented, and this 

difference remains stable until termination of the simulation in period 500. Interestingly, this 

increase in leader-imitator performance difference is not driven by an increase in the performance 

of the leaders, which remains constant throughout. The change is driven by the decrease in 

performance of imitators as a result of dysfunctional effects of imitation. Imitation in non-modular 

structures destroys some of the value of the prior successful innovation attempts of the imitators. 

The intuition underlying these results is rooted in the interdependencies between modules. Recall 

from the description of the model, the linkages between modules are heterogeneous across firms. 

As a result, when imitators copy modules from leaders, they copy only the module decisions and 

the dependencies within modules. Since the distribution of inter-module dependencies of leaders is 

different from the distribution of inter-module dependencies of imitators, imitation efforts hurt the 

performance of imitators and thus increase the average leader-imitator performance difference.7

 In the modular and nearly modular structures, the average leader-imitator performance 

difference declines from period 101 onwards. Whereas in the modular structure the difference 

completely disappears by period 325, in the nearly modular case the performance difference 

persists and remains stable. The intuition behind this result deserves elaboration. In the modular 

structure, all firms in the population share the same groupings of decisions. Thus, performance 

differences are a function of differences in the decision settings. Since there are no inter-module 

interdependencies, imitation of module decisions and intra-module linkages from high-performing 

firms results in the gradual convergence of the population on the same decision choices. In the 
                                                 
7 Consider, for example, Kmart attempting to imitate Wal*mart’s logistics system. Kmart may have made more or less 

the same investments in individual modules such as a trucking fleet, cross-docking system, satellite-guided 
fulfillment, and communication networks with suppliers. The main difference in realized performance might lie not 
in the modules but in how one module utilizes information from another, i.e., in the linkages between modules. 
These linkages of information sharing, coordination mechanisms, and allocation of decision rights within the 
organization may remain idiosyncratic even in the presence of module imitation. 
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nearly modular structure, however, firms differ in the distribution of interdependencies between 

modules. Since imitating firms copy only modules and do not copy the linkages between modules, 

they are unable to mimic the performance of the leaders. Intuitively, the difference between 

modular and nearly modular structures in their imitation deterrence lies in the process of imitation. 

Imitation, unlike innovation, proceeds in larger increments (i.e., modules). Thus, each imitation 

attempt affects other modules within the firm and their disruptive effect is amplified, particularly if 

the interdependencies between modules are heterogeneous across firms. The effect of even small 

interdependencies between modules that are ignored in imitation multiplies over time and hinders 

the complete imitation of high-performing firms. This suggests that the average leader-imitator 

performance difference should be increasing in the extent of inter-module dependencies which we 

confirmed in experiments not reported here.8 Thus, inter-module linkages have a strong imitation 

deterring property if we assume that imitators copy only module decisions and intra-module 

linkages. 

4.1.2. Imitation of module decisions, intra-module linkages, and inter-module linkages9

 In the experiment above, with imitation of modules (decisions and intra-module linkages), 

we saw that the leader-imitator performance differences were driven primarily by heterogeneity in 

inter-module linkages and firms’ inability to imitate such linkages. We retained the assumption that 

inter-module linkages are heterogeneous but relaxed the assumption that they cannot be imitated. 

All other settings in the model were identical to that described in  Section 4.1.1. 

 Figure 4 presents the results of model runs with perfect imitation of both decisions and 

linkages (intra-module and inter-module). Contrasting Figure 4 with Figure 3 reveals the 

implication of assuming that firms can (or cannot) imitate module linkages. In the modular 

                                                 
8 See Figure OS3 in the online supplement. 
9 We also ran a set of models where only inter-module linkages are copied. These results were qualitatively similar to 

the results where only module decisions and intra-module linkages are copied. See Figure OS4 in the online 
supplement. 
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structure, this assumption has no impact since there are no inter-module dependencies. In the 

nearly modular structure, however, the leader-imitator performance difference goes down to almost 

zero. The difference does not completely disappear because we implement imitation based on 

module performance rather than firm performance. An imitating firm might refrain from copying a 

module because her existing module has higher performance. However, at the firm-level the 

modest interdependencies between modules reduce the performance of the imitating firm in 

comparison with the leader. If we implement imitation based on firm performance, then the leader-

imitation performance difference will go down to zero. This finding confirms the intuition that a 

key lever observed in Figure 3 is the inability to imitate inter-module linkages. 

 Apart from the contrast with Figure 3, the striking finding in Figure 4 is that the average 

leader-imitator performance differences continue to persist in the non-modular structures and to a 

marginal extent in the nearly modular structure as well. This runs counter to our expectations that 

imitators endowed with the perfect ability to imitate modules and inter-module linkages should 

over time be able to mimic the performance of the leaders. The starting point for the intuition here 

is again the heterogeneity in inter-module linkages. Recall from Section 3.3.2 that we implement 

intelligent imitation of modules, wherein the imitator copies a module and its inter-module 

linkages from a leader if the performance of the target module is greater than the performance of 

its own module. Much of the persistent performance difference arises from one (or more) 

module(s) that the imitators do not copy from leaders. This happens because the performance of 

the corresponding module within the imitator firm is higher than that of the leader firm. However, 

at the firm level the interdependence between the higher-performing retained module (in imitators) 

and the other imitated modules produces lower performance as compared with the leaders.  

 Consider a simple illustration. Firm A is a leader with average module performances being 

(0.74, 0.78, 0.82, and 0.85). Firm B is the imitator with average module performances being (0.78, 

0.75, 0.82, and 0.81). Firm B has perfectly copied modules 2, 3, and 4 and their linkages from Firm 
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A, but has not copied module 1 since it has a higher performance than the corresponding module in 

Firm A. However, module 1 in Firm B shares interdependencies with modules 2 and 4 such that 

the higher performance of module 1 in Firm A as compared with Firm B is more than offset by the 

poorer performance of modules 2 and 4. In this case, there is a persistent performance difference of 

about 0.03. Thus, idiosyncratic inter-module linkages coupled with intelligent imitation causes 

persistent leader-imitator performance differences even when imitators are endowed with the 

ability to copy modules and their linkages perfectly. Once again, the leader-imitator performance 

difference is increasing in the level of inter-module dependencies and reaches its maximum in non-

modular structures (see Figure OS5 in the online supplement for additional analyses). It is 

important to note that two important assumptions drive this result: heterogeneity in inter-module 

linkages and intelligent imitation. For instance, if we replaced intelligent imitation with the 

random, but perfect, imitation of the individual decisions and linkages, then the leader-imitator 

performance difference will eventually go down to zero in all three structures.10 Thus, evaluating 

the insight from our model results turns on the question of whether the twin assumptions of 

heterogeneity in inter-module linkages and intelligent imitation of modules are in fact behaviorally 

plausible assumptions.  

 The result that the extent of modularity creates a trade-off between maximizing innovation 

and deterring imitation is distinct from, but broadly similar in spirit to, Rivkin’s (2001) findings 

that firms with moderately complex strategies provide the best trade-off between facilitating 

replication (imitation by the focal firm) and deterring imitation. In our analysis, in contrast to 

Rivkin (2001), we hold constant the number of interdependencies and vary the spatial distribution 

of interdependencies to generate structures that vary in the extent of modularity. Thus, while 

Rivkin (2001) finds that greater or lesser interdependence is pertinent to the trade-off between 

replication and imitation, our results suggest that even holding interdependence constant, varying 
                                                 
10 See Figure OS6 in the online supplement for a model of random module imitation based on firm performance gains. 
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design complexity (i.e., ranging from modular to non-modular) affects the trade-off between 

innovation and imitation deterrence.  

 These results raise the question of competition among alternative structures and how 

evolutionary selection forces might differentially favor or penalize them. Comparing the average 

performance and standard deviation over time across the three structures provides some clues. As 

seen from Figure 5, if selection forces play out in the first 100 periods, then modular and nearly 

modular structures are likely to be favored since their average performance is higher and standard 

deviation is lower. The picture reverses if selection occurs after 250 periods. By then, the variance 

among modular structures goes to zero and their average performance is the lowest. Selection at 

this stage is most likely to favor the nearly modular structures. This provides the rationale for why 

Baldwin (personal communication) argues that modularity presents implications that are 

“compelling, surprising, and dangerous.” If in the early stages of an industry firms are faced with a 

choice of alternative structures and selection is expected to unfold rapidly, then choosing modular 

structures seems “compelling.” However, the “dangerous” implication is that the imitation 

deterrence potential of this choice is limited and competition in the later stages of industry 

evolution is less likely to be based on innovation. The “surprising” element is seen if selection 

pressures are delayed and a variety of structures are allowed to coexist for a significant period of 

time. In such a circumstance, modular structures are likely to be selected out. Thus, in the face of 

this conundrum, nearly modular structures appear to be the least risky choice for managers since 

they balance both short-term and long-term considerations. 

4.2. Experiment 2: Imperfect imitation 

 In experiment 1, while we varied the basis of imitation, we assumed that imitation was 

achieved with perfect accuracy. This assumption is at odds with much empirical evidence (Garud 

and Nayyar 1994; Szulanski 1996; Simonin 1999). In experiment 2, we relaxed this assumption 

and varied imitation accuracy, otherwise retaining all the model settings in experiment 1. In all 

 27



models, we set G=0.10. We report two model runs. The first assumes that imitators imperfectly 

imitate module decisions and intra-module linkages and do not imitate inter-module linkages in 

order to facilitate a comparison with Figure 3. The second assumes that imitators perfectly imitate 

module decisions and intra-module linkages, but imperfectly imitate module linkages.11 Assuming 

that leaders (imitators) are budget constrained and have to expend resources to improve imitation 

deterrence (accuracy), this exercise will afford a better understanding of what their relative 

allocation of budgets should emphasize – the modules (decisions and linkages) or the inter-module 

linkages. 

 Figure 6 presents the results of model runs with imperfect imitation of module decisions 

and intra-module linkages. The figure shows that with a reduction in imitation accuracy, the 

salience of design complexity is reduced. On average, inaccurate copying of even one decision in 

each module of modular structures is sufficient to improve their imitation deterrence potential. 

Note, however, that in the case of modular structures, performance differences are completely 

driven by inaccuracies in decision imitation since all decisions in a module are tightly coupled, 

thus making intra-module linkage copying redundant. In this regime, imitators would be better off 

not imitating at all. On the flip side, leaders can afford to pay less attention to design complexity 

from the standpoint of imitation deterrence if they can hamper imitation accuracy.12

 In the nearly modular and non-modular structures, however, the differences continue to 

persist since intra-module linkages are sparse and are thus copied inaccurately. Linkage copying 

affects the results via two mechanisms. First, the parameter G drives the number of linkages that 

are unknown and thus should be guessed. Second, the accuracy of guesses is a function of the 

                                                 
11 We also engaged in two other sets of models: (1) only inter-module linkages are copied imperfectly, and (2) module 

decisions, intra-module linkages, and inter-module linkages are all copied imperfectly. See Figures OS7 and OS8 in 
the online supplement. 

12 This raises the question whether imitators can discover and correct imitation efforts. This is a function of the number 
of decisions that are copied inaccurately. If only a single decision is copied inaccurately then it is possible to recover 
via subsequent local search. As the number of imperfectly copied decisions increases, subsequent local search will 
not eliminate leader-imitator performance differences. 
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space of interactions. The larger the space of possible interactions over which the guesses can be 

made, the greater the inaccuracy of imitation.13  

 This then begs the question as to whether imitators also can discover via a local search 

process the intra-module linkages. In general, it is accepted that the discovery of linkages among 

decisions is an NP-hard problem (Schaefer 1999; Ethiraj and Levinthal 2004a; Aragones et al. 

2005). As intra-module linkages (see footnote 13) become sparse, the number of alternative 

configurations that imitators would need to explore will skyrocket and thus render impractical any 

efforts at independently discovering the linkages. Thus, consistent with this prior research, we 

believe that inaccuracies in copying intra-module linkages are sufficient to preserve leader-imitator 

performance differences in nearly modular and non-modular structures.  

 Figure 7 presents the results of models with perfect imitation of module decisions and intra-

module linkages but imperfect imitation of inter-module linkages. In the modular structure, the 

average leader-imitator performance difference again goes to zero since there are no inter-module 

linkages to imitate and imitators perfectly copy module decisions. This suggests the corollary that 

average leader-imitator performance differences should be increasing in the level of inter-module 

linkages. The results for the nearly modular and non-modular structures confirm this intuition.  

 This again begs the question as to whether imitators can discover and correct the inaccurate 

inter-module linkages via an experimentation process. The answer here is not identical to that 

above. Prior research suggests that the ease with which firms can discover linkages depends on 

whether linkages are reciprocal or sequential. Ethiraj and Levinthal (2004a) show that the problem 

of discovering sequential (or one-way) linkages is solvable via a simple local search process 

without exhaustive enumeration. Reciprocal linkages between decisions, however, severely erode 

the efficacy of local search, and discovering linkages is not possible without exhaustive 
                                                 
13 More precisely, if the space of interactions is ‘n’ and the number of guesses is ‘r’, then the number of possible 

combinations equals 
)!(!

!
rnr

n
−

. Thus, imitation inaccuracy will be highest when n=r. 
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enumeration. This means that in nearly modular structures, it may be possible for imitators to 

discover inaccurate inter-module linkages via a local search process and thus bridge some of the 

leader-imitator performance differences because the nearly modular structures incorporate only 

sequential linkages between modules. In contrast, in the non-modular structure, imitators are 

unlikely to be able to independently discover inter-module linkages since they are reciprocal.  

 In sum, the results of experiment 2 enrich the results from experiment 1. First, modest 

inaccuracies in imitating decisions are sufficient to generate imitation deterrence even for leaders 

with modular structures. Second, imperfect imitation of linkages substantially amplifies the 

imitation deterrence effect of nearly modular structures. In all cases, the relative ranking of the 

alternative designs is the same for perfect and imperfect imitation of decisions and linkages.  

5. Discussion 

 The architecture of complex systems (Simon, 1962) clearly has important implications for 

how firms adapt. However, the focus has been on how firms may increase their performance and 

respond to a changing environment. The dual implications of different structures on adaptive and 

imitative processes have remained unexplored. This gap is particularly salient in recent discussions 

of the power of modular systems. Using a simple model, we show that nearly modular structures 

tend to provide greater incremental innovation benefits as compared with non-modular structures 

and better imitation deterrence as compared to fully modular structures. The interesting question 

from a managerial standpoint is what does it mean to alter design complexity or the pattern of 

interdependencies between departments of an organization or between product components that in 

a real way affects the performance of firms while simultaneously deterring imitation? 

 Altering the interdependencies between departments of an organization or components of 

products has real performance implications as well as imitation-deterrence potential. Take the 

example of the airline pricing wars of the 1980s or the introduction of frequent flier programs. 

Both pricing strategies and the introduction of frequent flier programs were fairly modular in 
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nature. Global price changes in flights were highly visible and public and had little relationship 

with other activities of the airlines such as flight paths, schedules, maintenance activities, or 

staffing. Imitation of pricing strategy simply involved making changes in fare schedules. Thus, 

there was a swift retaliatory imitation of price cuts by all airlines. The introduction of frequent flier 

programs also followed a similar imitation pattern. In contrast, Southwest Airlines developed a 

partially coupled set of mutually reinforcing strategies such as low cost, short-distance point-to-

point flights, quick turnaround of planes, and low maintenance costs from the use of standardized 

aircraft. Imitation of parts of the strategy by other airlines did not generate the same payoffs simply 

because it ignored the interdependencies with other parts. In addition, the tightly coupled or non-

modular nature of the strategies pursued by larger carriers, such as Delta, impeded effective local 

adaptation while disrupting their partial imitation attempts (Rivkin and Therivel 2004).  

Thus, in our view, nearly modular structures outperform the non-modular or modular 

structures because they support a significant degree of localized adaptation while simultaneously 

retaining sufficient interdependence with other mutually reinforcing activities such that partial 

imitation generally does not yield the same benefits. In other words, the performance gains from 

complete modularization come at the expense of ignoring the long-term durability of such gains. 

From the standpoint of managerial practice, our notion of increasing or decreasing design 

complexity amounts to altering the organization of interdependencies within a firm, rather than 

increasing or decreasing total interdependence. The overall level of interdependence may be 

heavily constrained by the inherent nature of physical systems (Baldwin and Clark 2000) or the 

underlying economics of a business system. However, how the interdependence is managed and 

organized is clearly an instrument of design. The main contribution of our study is in explicating 

the trade-offs inherent in real, observable design choices that firms make. 

 It is useful to also consider the normative implications that emerge from our analysis, 

particularly the question of what structure managers should choose if they are concerned with 
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managing the trade-off between innovation and imitation deterrence. This is clearly a difficult 

question to answer without a full picture of the setup costs associated with the three structures. 

Much like the theory of the firm debate (i.e., whether firms are superior to markets), the question 

turns on the issue of whether the default state is fully modular or non-modular. On the one hand, if 

we assume that in the beginning there were non-modular structures and firms need to expend 

resources to attain modular structures, then firms will be better off not getting to the extreme world 

of modular designs. Simply encapsulating reciprocal dependencies within modules and limiting all 

inter-module dependencies to be sequential will suffice to provide an effective trade-off between 

innovation and imitation deterrence. On the other hand, if we assume that modular structures are 

the default and firms need to expend resources to make them less modular, then the implications 

are less sanguine. If selection is expected to operate in the early phases of industry evolution, then 

expending resources to move toward less modular structures will create not only a cost 

disadvantage but also a short-term disadvantage in facing selection pressures and poses a real 

threat of eliminating less modular structures, albeit prematurely. Overall, though, nearly modular 

structures appear to provide a reasonable insurance both against short-term and long-term 

competitive pressures.  

 Third, if choices about design complexity are beyond the control of individual firms in the 

industry (e.g., the PC industry), such as when product standards are controlled by standards bodies 

such as IEEE, then design complexity is unlikely to have significant implications for imitation 

deterrence. For instance, if systems are modular and this choice is exogenous to firms, then 

innovators cannot rely on design complexity to deter imitation efforts. Thus, the usefulness of 

design complexity as an instrument of managerial strategy is contingent on the choices about 

complexity being endogenous to firms. While this is perhaps possible in the case of organization 

design choices, it is less apparent in the case of technology products where industry participants 

often need to agree on architectural specifications and design standards.  
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 The present analysis, however, remains incomplete in a variety of respects. First, we 

explore only the trade-off between innovation and imitation deterrence. This captures only a small 

slice of the full picture of trade-offs that accompany design decisions such as extent of modularity 

and ignores a variety of other competitive considerations that accompany discussions of 

modularity such as standards, interfaces, inter-firm supplier relationships, technological domains, 

industry life cycle and so on. Second, we explore only how design complexity affects incremental 

innovation and modular imitation. Our analysis does not speak to the issue of how design 

complexity affects radical or architectural innovation. Arguably, modular designs may significantly 

hamper radical innovation since it demands coordination across the full system (Ulrich 1995). 

Third, we assume that the pattern of interdependencies is constant over time. If changes in 

interdependencies occur exogenously, then the ordering of the three structures with respect to 

innovation benefits and imitation deterrence may also change. 

 Nonetheless, the current work extends the literature’s prior treatment by jointly considering 

the adaptive consequences of changing to a more modular structure and the competitive 

implications that result from the impact of modularity on the diffusion of organizational practices. 

Baldwin and Clark’s (2000) depiction of the radical decline in absolute and relative value of IBM 

with the adoption of a modular product architecture is a powerful testament to the importance of 

examining the dual role of modularity in enhancing innovation and facilitating imitation. Design 

choices do not take place in a competitive vacuum of a firm’s own performance along a single 

measure of performance such as innovation, but in a competitive context with the threat of 

imitation. A full consideration of design choices must recognize both facets. 
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Figure 1b. Modular Structure 
             

  1 2 3 4 5 6 7 8 9 10 11 12 
1 x x x x          
2 x x x x          
3 x x x x          
4 x x x x          
5     x x x x      
6     x x x x      
7     x x x x      
8     x x x x      
9         x x x x 

10         x x x x 
11         x x x x 
12                 x x x x 

Figure 1a. Non-modular Structure 
             

  1 2 3 4 5 6 7 8 9 10 11 12 
1 x     x x     x    
2 x x x    x x x    x 
3    x    x x x    x 
4   x   x   x       
5    x x          x 
6 x    x x       x 
7   x     x   x x  x 
8         x x   x x 
9        x x       

10    x x    x x    
11  x   x   x x  x   
12                     x x 

 
 
 
 
 
 
 

Figure 1c. Nearly modular Structure 
             

  1 2 3 4 5 6 7 8 9 10 11 12 
1 x x x x          
2 x x  x          
3 x x x x          
4 x x x x          
5     x x x x      
6  x   x x x x      
7       x x x      
8     x x x x      
9         x x x x 

10         x x x x 
11       x  x x x x 
12                 x x x x 
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Figure 2. Innovation performance across the three structures
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Figure 3.  Perfect Imitation of module decisions and intra-module linkages
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Figure 4.  Perfect Imitation of module decisions, intra-module linkages and inter-module linkages
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Figure 5.  Performance average and standard deviation across structures
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Figure 6. Imperfect imitation of module decisions and intra-module linkages and no imitation of 
inter-module linkages
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Figure 7.  Perfect imitation of module decisions and intra-module linkages and imperfect imitation of 
inter-module linkages
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Online Supplement 
 

Figure OS1. Comparison of imitation options in nearly modular structures
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Notes: Figure OS1 evaluates the impact of alternative units of imitation including: (1) incremental 
innovation (single decision choices) only and no imitation; (2) Incremental imitation (single decision 
choices) only; (3) Incremental innovation and incremental imitation; (4) Module imitation; (5) module 
imitation and inter-module linkage imitation. The plot shows the average leader-imitator performance 
difference as the experiment progresses in each of the imitation regimes. The figure shows that in 
interdependent settings firms are better off not imitating at all (alternative 1) to engaging in 
incremental imitation (alternative 2) or incremental imitation in conjunction with incremental 
innovation (alternative 3). This is because imitation in interdependent systems destroys the value of 
incremental innovation and increases the average leader-imitator performance difference. In contrast, 
imitation alternatives (4) and (5) at the module level are superior to the status quo of no imitation. 
Thus, firms in interdependent settings, if they choose to engage in imitation, have a greater incentive to 
imitate modules and their linkages rather than single decision choices. 
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Figure OS2. Individual runs of incremental innovation for the non-modular structure

0.47

0.495

0.52

0.545

0.57

0.595

0.62

0.645

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Periods

Pe
rfo

rm
an

ce

Run 1 Run 2 Run 3
 

 
Notes: Figure OS2 shows three individual runs of incremental innovation in the non-modular 
structure. The single runs reveal the non-monotonicity of performance improvement that is a function 
of the inter-module interdependencies. As a result the non-modular structure does not reach a stable 
asymptote by the end of 100 periods. 
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Figure OS3.  Perfect Imitation of module decisions and intra-module linkages
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Notes: Figure OS3 is an augmented version of Figure 3 in the paper. We sought to parameterize nearly 
modular structures to capture the implications for the full range of such structures. We parameterized 
nearly modular structures by increasing the density of inter-module linkages and correspondingly 
reducing the density of intra-module linkages. We adopted a definition of nearly modular structures as 
those where the density of intra-module linkages are greater than the density of inter-module linkages. 
Thus, we added an upper bound on nearly modular structures and called it nearly modular (U) and re-
labeled the nearly modular structure reported in the paper as nearly modular (L). From the figure 
above, we see that the benefits of imitation deterrence are increasing gradually in the extent of inter-
module linkages and reach their maximum in the case of non-modular structures. 
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Figure OS4. Imitation of inter-module linkages only
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Notes: Figure OS4 shows the effects of imitation of inter-module linkages only. In the modular 
structure no imitation occurs since there are no inter-module linkages and thus the status quo of the 
leader-imitator performance difference is preserved. In the nearly modular structure, imitation of 
linkages initially worsens the performance of imitators before improving. Overall, linkage copying does 
little to bridge the gap between leaders and imitators.  
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Figure OS5.  Perfect Imitation of module decisions, intra-module linkages and 
inter-module linkages
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Notes: Figure OS5 is the augmented version of Figure 4 in the paper. We again parameterized the 
extent of nearly modular structures and added the results for nearly modular (U) structures (see 
description for Figure OS3). Once again the results show that the imitation deterrence potential of 
nearly modular structures is increasing in the extent of inter-module linkages and reaches its maximum 
in the case of the non-modular structures. Furthermore, the imitation deterrence potential remains 
substantial even in the extreme case of imitators being able to copy module decisions, intra-module 
linkages, and inter-module linkages. 
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Figure OS6. Perfect Imitation of module decisions, intra-module linkages and 
inter-module linkages based on firm performance
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Notes: Figure OS6 implements the perfect imitation of module decisions, intra-module linkages and 
inter-module linkages based on superior firm performance rather than superior module performance. 
This is akin to imitating randomly chosen modules of high-performing firms. As seen from the figure, 
this regime diminishes much of the performance differences between leaders and imitators. In the 
nearly modular (L) structures the average leader-imitator performance difference goes to zero by 
period 431 in contrast to period 323 in the case of modular structure. The performance difference in 
the nearly modular (U) and non-modular structures do not go to zero by the 500th period but is likely if 
we run the model for a longer duration. Nonetheless, the relative ordering of the three structures in 
terms of its imitation deterrence potential remains robust. 
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Figure OS7. Imperfect imitation of inter-module linkages and no imitation of 
module decisions and intra-module linkages
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Notes: Figure OS7 shows the effect of imperfect imitation of only the inter-module linkages but not 
the module decisions and intra-module linkages. The modular structure maintains the status quo in the 
performance difference between leaders and imitators since no imitation occurs because there are no 
inter-module linkages. In the nearly modular and non-modular structures imperfect imitation of 
linkages alone hurts the performance of imitators suggesting that they may be better off not imitating 
at all. This again confirms the relative ordering of the three structures in terms of their imitation 
deterrence potential. 
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Figure OS8. Imperfect imitation of modules decision, intra-module linkages and 
inter-module linkages
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Notes: Figure OS8 shows the imperfect imitation of module decision, intra-module linkages, and inter-
module linkages. These results show that the imitation deterrence of the three structures is largely 
similar when imitation is imperfect. Thus, the extent of imperfections in imitation acts as a substitute 
for design complexity. In other words, if imitation is expected to be highly imperfect, design 
complexity is not a discriminating instrument for imitation deterrence. 
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