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Probability Theory for Pseudorandom Numbers

Abstract

The analogue of Hammersley's theorem on the length of the longest monotonic subsequence of independent,
identically, and continuously distributed random variables is obtained for the pseudorandom van der Corput
sequence. In this case there is no limit but the precise limits superior and inferior are determined. The
constants obtained are closely related to those established in the independent case by Logan and Shepp, and
Vershik and Kerov.
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HAMMERSLEY’S LAW FOR THE VAN DER CORPUT SEQUENCE:
AN INSTANCE OF PROBABILITY THEORY FOR
PSEUDORANDOM NUMBERS!

By A. DEL JUNCO AND J. MICHAEL STEELE

Ohio State University and Stanford University

The analogue of Hammersley’s theorem on the length of the longest
monotonic subsequence of independent, identically, and continuously distrib-
uted random variables is obtained for the pseudorandom van der Corput
sequence. In this case there is no limit but the precise limits superior and
inferior are determined. The constants obtained are closely related to those
established in the independent case by Logan and Shepp, and Vershik and
Kerov.

1. Introduction. Pseudorandom numbers form the backbone of computer
simulation and Monte Carlo analysis, yet there are essentially no known theorems
which make explicit the sense in which pseudorandom numbers are replacements
for random numbers. There is probably no general result which can be proved, but
there is still a program by which a deeper understanding of the relationship
between pseudorandom numbers and random numbers can evolve.

For every pseudorandom sequence and every probabalistic theorem, there is
surely some analogue of the probabalistic theorem for that pseudorandom
sequence. The qualities of that analogue should then accurately reflect the random
qualities of the pseudorandom sequence. By a systematic analysis of these pairs of
theorems and sequences, a body of results can be obtained which is capable of

_resolving, or at least eroding, many of the philosophical and practical questions
concerning pseudorandom sequences.

This is no overnight task and there is no obvious place to begin other than with
the theorems and sequences which interest one most. We have begun with a
theorem due to Hammersley and a sequence due to van der Corput.

To introduce Hammersley’s theorem, let X,,i=1,2,---, be independent
random variables with uniform distribution on [0, 1]. By /, = I(X,, X5, - - - , X))
we denote the cardinality of the largest monotone increasing subsequence of the
values X,(w), Xo(w), - - * , X,(w). Hammersley [2] proved that
(1.1) lim,,_mn_%ln =
where ¢ is a constant and the convergence is in probability. We are particularly
interested in (1.1) because of the considerable effort which, has been focused on the
determination of ¢. Even before convergence had been proved in (1.1), Baer and
Brock [1] had conjectured that ¢ =2 on the basis of extensive computation.
Hammersley [2] gave bounds on ¢ which were improved by Kingman [4], but the
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268 A. DEL JUNCO AND J. MICHAEL STEELE

deepest results published so far are due to Logan and Shepp [6] who proved ¢ > 2.
Vershik and Kerov [7] have recently announced that ¢ < 2 but details of their
proof have yet to appear.

In the present context Hammersley’s theorem has a natural appeal as a substan-
tive probabalistic result in which there is much current interest. The tempting
prospects of obtaining ¢ in the analogue of (1.1) for some pseudorandom sequence
provide even more reason to start with Hammersley’s theorem.

One natural candidate for the sequence of pseudorandom numbers is the
sequence generated by the multiplicative congruential method. These are the most
widely used pseudorandom numbers but there are several drawbacks to their
analysis.

In the first place the sequences generated by the multiplicative congruential
method are periodic. Since /, can be properly studied only for »n srall compared to
the period the asymptotic analysis thus is complicated not only computationally

but conceptually.
Primarily for this reason we have begun with the van der Corput sequence. The

sequence is generated in a manner almost as simple as multiplicative congruence,
but it has the great benefit of being aperiodic. Moreover the sequence has
widespread use in numerical integration [3] and considerable historical interest.
(See, for example, Knuth’s interesting discussion “What is a random sequence” [5]
page 127-157.)

To define the van der Corput sequence we first write, for n > 0, n = 3% (a,2'
where a; = 0 or 1. The n + Ist element of the sequence is @,(n) = 22a,27 7.
One can see that ¢,(0) = 0, p(1) =3, 9,(2) =1, ¢,(3) =2, etc. The nature of g,(n)
is more easily seen in binary notation where @,(n) is the “the reflection of # in the
.decimal point.” As the subscript suggests one can define a similar sequence by
@,(n) =2 0ap "' where n = 32 0a,p', 0 < q; <p and p > 2 is an integer.

We now have the theorem:

If Kn) is the cardinality of the largest monotone increasing subsequence of

{q)p(o)’ (Pp(l), Y (Pp(n - 1)} then
(12) lim infn_,oon‘ill(n) = 2%, lim supn_)wn_%](n) =% forp =2,

and
(1.3)
1
lim inf,,_,oon'%l(n) =2(1-p7Y7, lim sup,,_mn‘%l(n) =pT  forp >2.

This result is as precise an analogue to (1.1) as one could realistically expect.
Also, the Logan-Shepp lower bound on ¢ makes it particularly noteworthy that

(14) lim,_,  lim.inf,_,.,n~Z/(n) = 2.

For digestibility, the proof of these results has been divided into four parts. First
we obtain a geometrical characterization of the monotone subsequences of van der
Corput’s sequence. Upper and lower bounds are then obtained for /(n). Finally the
required limits are identified.
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2. The geometrical representation. Our first goal is to obtain a representation
from which detailed information about {,(0), ¢,(1), - - -, @,(n — 1)} can be de-
duced. We define o, to be the unique permutation of {0, 1,---,n — 1} which
puts ¢,(i),0 <i<n—1lin increasing order, i.e.,

(PP(O'”(O)) < (pp(on(l)) <00 < (pp(on(n - 1))
This permutation will be written as a sequence
Oy, = (0,,(0), 0,,(1), T o,,(n - 1))
and our reason for introducing o, is the elementary fact that the length of the

longest monotone increasing subsequence of o, is equal to /(n).
We also have the following law of formation of o,,,» which will be crucial.

LEMMA 2.1. One obtains ©,,. from o, by replacing the entry o,.(i) of a,. by the
sequence 0,.(i) + p"o,,.

REMARK. Here and in the following if x is a sequence then a + bx is a
sequence with the same domain as x defined by (a + bx)(i) = a + bx(i).

PROOF OF LEMMA. Notice that there are two things we must show:

@D 0 (0,+()) + P"0,())) < 9p(0,-(i) + P"0,(J + 1)),
and

(22) 0,(0,+(i) + p"0,,()) < @p(0,-(i + 1) + p"0,,(j)),
for any j, j'.

We first suppose j <p" and k is any integer. Setting j = Sridap' k=
. =M ap' " we have j + p'k = >m o,a;p', and consequently
(23) 9, (j + p"k) = Zfaoap =D

= 312gap =0 + p B ap T

= ¢,(j) +p7"p,(k) for j<p"
Now by (2.3) we see (2.1) is equivalent to

27 "9,(0,,())) <p ", (0, (j + 1)),

which is just the definition of ¢,,. Similarly, (2.2) is equivalent to
(2'4) q’p(op"(i)) + p_nq’p(am(j)) < <pp(op"(i + l)) + p—nq)p(om(j,))'
To check (2.4) we note that, as i runs through {0, 1,- - -, p" — 1}, g,(i) runs
through {0,p~", 2p~", - -+ -, (p" — 1)p™"} so that, in fact, @,(g,-(i + 1)) =p™" +
@,(0,(7)). The proof of the lemma is thus complete.

In many ways it is easier to work with the permutation matrix 4, associated with
0,. We recall that 4, is an n X n matrix defined by

A,(i,j)=1 if i= c,(J))

=10 otherwise.
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To rephrase Lemma 2.1 in terms of matrices we define m different p” X mp”
matrices A—pon, A+ oo, A by

20 (s N\ PR | . .

AN(i,)) = Ap..(z,jm ) if m|j

=1 otherwise

and

20 (: N\ — 40 (: .

Ay(i, j) = A(i, (j — [)mod m).
Intuitively, we get X}?n by inserting m — 1 columns of O’s after each column of 4,
and then shift A7, by / places to the right to get 4.

Finally we can phrase Lemma 2.1 by the following formula for A4,,,. as a block
matrix: - -
279 ')

Ap’l
19:'Q@
25) e

170 '(m)
Ap’l

This matrix representation of the permutation permits a geometrical view of the
decreasing subsequences. Formally an increasing subsequence of g, is a sequence
of integers P = {j, <j2< --- <j;} such that o(j) <o(j;,,). Such a sub-
sequence can be identified in 4, as a path of 1’s which goes down and to the right.
The set of integers [/,,/;] = {k :j; < k < j;} will be called the domain of the path
P and will be denoted by dom(P). The integer interval [0,(j)), 0,(j)] = {k : 0,(J})
< k < 0,(j;)} will be called the range of the path, and naturally /(P) will be called
the length of P.

3. The lower bound lemma. The main result of this section is the following:

LemMA 3.1. For p"~2 < m < p"~! we have
(3.1) I(mp"™) >p" '+ m(p—1) - (Gp - 1),
and for p"~3 < m < p"~? we have
(3.2) Imp™) >p"*(p — 1) + mp — (p* +2p — 1).

PrOOF. First we will consider m such that p”"~2 < m < p"~! and construct an
explicit path through 4,,,.. By setting m; = (p"~' — m)/(p — 1) and m, = m —
m, we have m;p?> + m,p = p". For 0 < i < [m,] we can define a path P, through

. . 2
A, of length 2p — 1 and domain [p%, p*G + 1) — 1] by
P = (p%,pi+p,p%i+2p,---,p(i+1)—p,
, p i+ D) —p+1,---,pHi+1)—1).
For 0 <i <[m,] we then define a path P, ,, through 4, with length p and
domain [ [m,]p* + ip, [m]p* + (i + I)p — 1] by

Pimgei = ([m]p* + ip, [m P>+ ip+ 1, -+, [m]p* + (i + 1)p = 1).
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Now we consider the paths P, in Zp"i'(") which correspond to P;. These paths are
defined by P, = mP; + o, '(i). Finally we define our desired path P through 4,,,
as the concatenation of the P,

P =PyPy - Pimysimy-1-

To make certain that the path P is properly defined we have to check that for
each k € dom P, and / € dom P, we have k >/. This condition will be
abbreviated by dom P,,, > dom P, and it follows immediately from the corre-
sponding fact that dom P,,; > dom P,. By our construction we finally have

mp") > I(P) =[m](2p — 1) +[m,]p
>m2p—1)+mp—-(Cp—1)
=p" '+mp-1)-CGp-1)

which completes the proof of (3.1).

We now consider m, p" 3 < m < p"~? and begin by setting ml = (p"?
m)/(p — 1) and m, = m — m,. This time we have m, p® + myp® = p". As in our
previous construction there is a path of length p? through 4, so for 0 <i < [m]
there is a path P, of length p? through A,» with domain [zp (i + 1p® — 1]. For
0<i<[m)] there is a path P, 1+ of length 2p — 1 through 4,. with domain
[[m,]p +ip? [m]p’ + (i + 1)p? — 1] Next we set P, = mP + o, (i) and
obtain a path through 4% '© by letting

P = PPy Pimyiimy-t.

- Finally we calculate as before:
I(mp™) > I(P) =[m,]p* +[m,](2p — 1)
>mp*+my(2p — 1) - (P2 +2p - 1)
=p"Hp-D+mp—(p*+2p-1)
which completes the proof of (3.2).

ReMARK. The preceding proof probably appears more involved than an ex-
amination of an example would indicate. By calculating 4,,,- for p = 3 and several
small values of m and n one can easily find the path P and see how it evolves as m
and n increase. Similarly in the arguments which follow one should keep the
example p = 3 clearly in mind, perhaps by keeping a small table of the 4,

4. The upper bound lemma. The recursive nature of 4,,. provides the key to
the following, Lemma 4.1. For any positive integer m we have

(4.1) I(mpm~ ) < p" '+ m(p— 1)
and
(42) (mp") < p"~' —p" 7% + mp.
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Proor. For any path P through 4,,,» we can decompose P as a concatenation

P=PpP,---P,_,
where P, is a path through 4% . Here one should note that the range of P isa
subset of [ip”, (i + 1)p" — l]

We now let P, be the corresponding path in A4, of P. Thatis, welet P, = m~ (P,
— 6.7 !(i)). We do not have dom P; < dom P, but we obviously do have dom P,
< dom P,,, so the two paths have at most one common point. If dom P, N
dom P,,, # & we shall say P, and P,,, are linked. Since /[(P) < 27 oI(P;) the
lemma would follow from =7 /(P,) < min(p"~'+ m(p — 1),p"~ T -p" 4
mp). This fact will be proved usmg only the inequality dom P; < dom P,

First we decompose 4, into p” blocks of height p"~ ' and width p. We note that
each block has exactly one 1, and the pattern of 1’s in each column of blocks is the
same as the pattern in 4,,.

The block width w(P) of a path P is defined as the number of distinct columns
of blocks which intersect P. The block height A(P) is defined correspondingly.
Further, we let u equal the number of integers i such that P, is linked to P, .

If P, and P, are linked we define their linkage as the concatenation P,P, )
where P, denotes P; with its first entry removed By forming the successive
linkage of the P, we obtain m — p paths Pl, Pz,- KN Am _, Which are unlinked
and for which

(4.3) p+ 27 H(P) = STU(P).

Next we form all possible concatenations of successive }5, to get s paths

P;, P}, - - -, P/ which allow no further concatenation. One then has s <m — p
~and

4.4) (P =212 “l(P)

Moreover, one notes that no two P/ share a common column of blocks for the
simple reason that dom P; < dom P, and the 1 in any block is to the right of the
1 in any block above it.

The crucial observation is that for each path P/ we have

l(P)<h(P)+w(P)—1 p+w(P)—1
which by summing over i yields
(45) 25 (P)) < Zow(P)) + s(p = 1)
Since no two P/ share a column of blocks we have
(4.6) 5. w(P)) < p"”
By the inequality (4.5) we obtain
(47) S (P) < pr T+ s(p - 1)
which by setting s = m — p — A with A > 0 using (4.3) and (4.4) becomes
(4.8) SrP) <ptl+(m=N(p—1) - up—2)
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This completes the proof of (4.1) since A > 0 and p > 0. On the other hand (4.6)
also yields s < p"~!so —p < p"~! — (m — \) which by (4.8) implies
SEHP) < p T+ (m =N - D+ (p" = (m-N)p -2
<pt—-p '+ m

This implies /[(mp™) < p" — p"~! + m and by replacing n by n — 1 and m by mp
we obtain the proof of (4.2). This completes our proof of the upper bound lemma.

By applying the preceding lemmas, we should note that in certain cases the
inequalities can be made to provide equality. By inspecting the proof of (3.1) in the
cases of m = p"~! and m = p"~? one sees that it is not necessary to estimate

greatest integers so that the 3p — 1 disappears from the right of (3.1). Combining
this with (4.1) we have the identities

(4.9) I(p*»~Y)=p" and I(p* %) =p""*(2p - ).
By similar analysis for p = 2 we also have the identity
(4.10) (m2")y=2"""4+m for 2"72<m<2"!

=2""14+2m for "3 m <2
5. Identification of the limits. To complete the proof of our theorem, we first
1
identify lim sup, N ~2/(N) where N ‘is restricted to S = {mp" : pri<m<
pn—l}-
LeMMa 5.1. Setting K = max(2(1 — p~ 2, p%,2 — p~') and k = min(2(1 —
1 1
p_l)i,pi’ 2 - p_l)a we have

- (5.0) lim supy csN ~ZI(N) = K,
and
(5.2) lim infy c N ~ZI(N) = k.

PROOF. As in Section 3 we deal with p”"2 < m < p"~!(case 1) and p" 3 <m
< p"~? (case 2) separately. This time we begin with case 2. By (3.2) and (4.2) we
have

_1 _1
ga(m) = (P* + 2p + 1)(mp") "> < l(mp")(mp") "% < g,(m)
where g,(x) = (p" " %(p — 1) + xp)(xp ”)‘%. Consequently we have

(53) lim inf /(mp,)(mp")~? = lim inf g,(m),
where the lim inf is taken over the set S; = {mp" : p"~> <m < p"~%,1 < n}. One
has the same equation as (5.3) for. the lim sup.

Next observe g,(m) has its minimum at a, = p"~*(p — 1) and g, is decreasing
for p" 3 < x < a, and increasing for a, < x < p"~% One easily checks that

1 1

8.(p" ) =p?, g(p"") =2~ p~', and g,(a,) = 2(1 — p~')? so we have
(54) lim inf, .c g g,(m) = k and limsup,,.cs, 8,(m) = K.
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To prove the comparable identities for case 1 one sets f,(x) = (p"~' + x(p —
1
1))(xp")~ 2 and obtains from (3.1) and (4.1) that

. 1
lim inf,,,» ¢ 5 /(mp”™)(mp") ™ > = lim sup,,,» 5, f,(m)

where S, = {mp" : p"~2 < mp"~!, n > 1}. The same equality holds for the limsup,
and we note as before that f, has a minimum at p"~!'(p — 1)~! = b,, decreases for
P" 2 < x < b, and increases for b, < x < p"~!. Finally we note f,(b,) = 2(1 —
p Y%, £(p""") = p7, and £(p"~2) = 2 — p~". Hence, we have
(5.5) lim inf,,.cg f,(m) > k and lim sup,,.ecg f,(m) < K.
One has inequality in (5.5) since b, is not an integer. Actually equality can be
proved but is not required for the rest of the proof. By (5.3), (5.4) and (5.5) we have
completed the proof of (5.1) and (5.2) as required by the lemma.

The proof of our theorem can now be completed in a routine way. For an
arbitrary integer N we write
(5.6) N=mp"+r with p"3<m<p"! and 0<r<p
Letting /(i,j) denote the cardinality of the largest increasing subsequence of
(0, (i + 1), - -, g,(j — 1)) we see
(5.7) I(ip%, (i + 1)p*) = I(p*)
as a consequence of (2.3). There is also the obvious fact that I(i, j) is subadditive,

I(i, k) < I(i,j) + I(j, k)  for i<j<k

By choosing an integer ¢ such that p”*? < mp” and mp" + p"*2 < (t + 2)p

one has by (5.6) that

n+2

n+2

I(N) < I(mp™ + p"*?)
< I(mp") + l(mp", mp" + p
< I(mp™) + (p"+2, (¢t + 2)p"*?)
< l(mp™) + 21(p"+2).

n+2)

Hence we have
(5.8) I(mp™) <I(N) < I(mp™) + 2I(p"*?).

Since for large N one has N/mp" is near 1 and /( p”"'z)/(mp")% is near 0, the
inequality (5.8) together with Lemma 5 completes the proof of the theorem.
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