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ABSTRACT

We provide novel estimates of the timing, magnitudes, and potential determinants of the start of the
last housing boom across American neighborhoods and metropolitan areas (MSAs) using a rich new
micro data set containing 23 million housing transactions in 94 metropolitan areas between 1993 and
2009.  We also match transactions data with loan information, enabling us to observe household income
and other demographics for each neighborhood.  Five major findings are reported.  First, the start of
the boom was not a single, national event.  Booms, which are defined by the global breakpoint in an
area’s price appreciation series, begin at different times over a decade-long period from 1995-2006.
Second, the magnitude of the initial jump in house price appreciation at the start of the boom is economically,
not just statistically, significant.  On average, log house prices are over four points higher during the
first year of the boom relative to the previous twelve month period for both MSAs and neighborhoods.
There is no evidence that price growth was trending up prior to the start of the boom.  Third, local
income is the only potential demand shifter found that also had an economically and statistically significant
change around the time that local housing booms began.  Contemporaneous local income growth is
large enough to account for half or more of the initial jump in house price appreciation.  While these
estimates indicate that the beginning of the boom was fundamentally justified on average, they do
not imply that what followed was rational.  Fourth, there is important heterogeneity in that result. 
Income growth is large and jumps at the same time as house price appreciation in areas that boomed
early and have inelastic supplies of housing, but not in late booming areas and those with elastic supply
sides.  Fifth and finally, none of the demand-shifters analyzed show positive pre-trends, but some such
as the share of subprime lending, do lag the beginning of the boom.  This suggests that key players
in the lending market more responded to the boom, rather than caused it to start.
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I. Introduction 

The United States recently experienced house price growth of unprecedented scale, as 

documented in Figure 1’s plot of the national S&P/Case-Shiller and Federal Housing Finance 

Administration (FHFA) real price indexes.  Many researchers have tried to understand whether 

the most recent cycle was a bubble, or if rational theories can account for the variation in prices 

and quantities at the national level and across metropolitan areas (MSAs).1  Despite this work 

and the fact that we are now several years into the current housing crisis, researchers and policy 

makers still have conflicting views and limited knowledge about the causes of that extraordinary 

rise and decline in house prices.2  This may be explained in part by difficulties of estimating 

where, when, and how local housing booms start.  Theoretically, the housing economics 

literature is agnostic about how to define the beginning of a boom.  Empirically, there has not 

been publicly available micro data with high quality information about both prices and 

fundamentals, including the necessary coverage by time and geography for the analysis.3 

Establishing a time line for the housing boom is important for a variety of reasons.  To 

understand why it started requires knowing when it began.  Detailed analysis of the beginning of 

the boom is also likely to inform our knowledge of what transpired subsequently.  For example, 

any study of contagion effects depends critically on when and how the boom began in specific 

areas.  Moreover, the time line would help improve our understanding of the bust, as many 

factors correlated with the current foreclosure crisis could also be responding to the boom instead 

of causing it. 

                                                 
1 Shiller (Chapter 2, 2005) provides perhaps the most famous characterization of the boom as a non-rational event, 
utilizing both aggregate and metropolitan area data.  Others recently have estimated rational expectations general 
equilibrium models to try to explain the national aggregate price data (e.g., Favilukis, Ludvigson, and Van 
Nieuwerburgh (2011)) or the serial correlation and volatility of prices and quantities within and across metropolitan 
areas (e.g., Glaeser et. al. (2011)).  Related work includes Arce and Lopez-Salido (2011), Burnside, Eichenbaum and 
Rebelo (2011), Lai and Van Order (2010), and Wheaton and Nechayev (2008).   
2 A large body of work also has been published about the consequences of the bust and government policy 
responses.  Much of the scholarly analyses focuses on the subprime sector (e.g., Bajari, Chu and Park (2008), Danis 
& Pennington-Cross (2008), Demyanyk and Van Hemert (forthcoming), Gerardi, Shapiro and Willen (2007), 
Goetzmann, Peng and Yen (2009). Mayer and Pence (2008), Haughwout, et. al. (2011)), mortgage securitization 
(e.g., Bubb and Kaufman (2009), Keys et. al. (2010)), the default/foreclosure crisis (e.g., Adelino, Gerardi and 
Willen (2009), Campbell, Giglio and Pathak (forthcoming), Foote, Gerardi and Willen (2008), Gerardi et. al. (2008), 
Mayer, Pence and Sherlund (2009), Mian and Sufi (2009), Mian, Sufi and Trebbi (2010), Piskorski, Seru and Vig 
(2009)) or the role of government regulation (e.g., Avery and Brevoort (2010), Bhutta (2009), Ho & Pennington-
Cross (2008)). 
3 For example, some of the work cited above uses newly available micro data on subprime loans, but this does not 
cover all home purchases or go far enough back in time to capture early booms (as we show below).  There are 
aggregate price series at the national level and for some metropolitan areas that go well back in time, but no high 
quality neighborhood-level have been available heretofore. 
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In this paper, we provide the first estimates of the location, timing, magnitude, and 

potential causes of the beginning of the housing boom at the MSA and neighborhood levels in 

the United States.  We use the price growth rate series in each MSA and neighborhood to look 

for housing booms.  More precisely, the start of the boom is estimated as the global structural 

break in the relevant area’s quality-adjusted house price appreciation rate series.  Price growth 

rates are used instead of price levels due to important features of housing markets:  (a) the 

existence of search frictions and credit constraints that are thought to prevent the immediate 

capitalization of changes in fundamentals into price levels (Wheaton (1990);  Krainer (2001);  

Piazzesi and Schneider (2009));  (b) the empirical fact that house prices do not follow a random 

walk, as evidenced by the significant short-term persistence and longer-term mean reversion of 

prices (Case and Shiller (1989);  Cutler, Poterba and Summers (1991);  Glaeser, et. al. (2011)); 

and (c) potential irrational sentiment about price growth rates (Shiller (2005). 

Our estimates rely on a new micro data set which contains over 23 million housing 

transactions in 94 metropolitan areas from 1993 to 2009, provided by DataQuick.  It contains the 

exact date of the transaction and the precise location of each house, which is critical to the 

construction of neighborhood-level price indexes.  The large micro data set also enables us to use 

a split sample approach (as in Card, Mas and Rothstein (2008)) to solve the specification search 

bias problem in the estimation of the magnitude of price breakpoints (Leamer (1983)).  We 

further match this transactions data with individual loan information from the Home Mortgage 

Disclosure Act (HMDA), which allows us to observe household income of all accepted and 

rejected loan applicants (along with various demographic features), both at the metropolitan area 

and neighborhood levels.  This allows us to investigate whether key fundamental drivers of 

housing demand also change around the time when prices start to boom. 

Our analysis generates five important findings.  First, there is wide heterogeneity in when 

the boom began in different areas.  We find major jumps in price appreciation rates as early as 

1997 in some MSAs and as late as 2005 in others, with only a modestly higher concentration of 

breakpoints around 2004-2005.  Our neighborhood analysis – based on groups of 2 or 3 

contiguous census tracts – also shows similar heterogeneity in timing, with booms beginning as 

early as 1996 and as late as 2006.  Thus, Figure 1’s plot of the two most prominent aggregate 

house price indexes provides a misleading sense that the recent boom was a single national event 

which began in the early to middle part of the last decade.  These results also highlight how 
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problematic it can be to analyze data that has been pooled across markets at a given point in 

time.  Doing so effectively averages across locales which are at very different points in their 

housing boom cycles. 

Second, the magnitude of the initial jump in price growth at the start of the boom was 

economically, not just statistically, significant.  After controlling for time and location fixed 

effects, log house prices are over 4 percentage points higher on average during the first year of 

the boom relative to the previous 12 month period both at the MSA and neighborhood levels.4  In 

addition, there is no evidence that home price growth was trending up prior to the start of the 

boom.  Moreover, our analysis shows that neighborhood data is critical to properly estimate the 

magnitude of the boom in some areas such as San Francisco, where there is wide dispersion in 

the timing of booms by neighborhood.  However, this is not the case in all areas, as illustrated by 

Las Vegas, where more than three quarters of the neighborhoods boom in a single six month 

period. 

Third, of all potential demand shifters examined, ranging from income and demographics 

to credit market variables, only local incomes have an economic and statistically significant jump 

around the time of the global breakpoint in house price appreciation.  The magnitude of the 

income change can account for half or more of the initial jump in price appreciation on average, 

even without appealing to forward looking expectations about future income growth.5  Like price 

growth, income does not exhibit any trend prior to the beginning of the boom and it continues 

growing after the boom has started, but at a much lower rate than housing prices.  While these 

estimates suggest that the beginning of the boom was fundamentally justified on average, they do 

not imply that what followed was rational, as our analysis pertains strictly to the start. 

Fourth, there is important heterogeneity in price and income changes across areas at the 

beginning of their booms.  For example, price growth changes are higher than average among the 

one-third most elastically-supplied markets in our sample (usually late booming markets), but 

there is no jump in income when their housing booms begin, so there is no evidence that any 

fundamentals played a key role in those places.  On the other hand, income growth is nearly as 

large as price growth around the global breakpoints for early booming and inelastically-supplied 

                                                 
4 See equation (5) and the discussion in the text for more details on this result. 
5 See section V for details. 
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markets, so virtually all of their booms can be accounted for by local fundamentals (given 

reasonable assumptions about the income elasticity of demand for housing). 

Fifth and finally, none of the other potential demand shifters have materially positive pre-

trends either, but some do lag the start of the boom.  For example, in the second year after the 

boom there is a reduction in the fraction of government-insured loans targeted towards low-

income households (as reflected in the share insured by the Federal Housing Administration 

(FHA)), and an increase in the market share of private subprime lenders.  Since lending to low 

income homeowners and higher risk borrowers do not exhibit pre-trends or positive jumps at the 

breakpoint, it seems that key players in the lending market responded to the initial jump in price 

appreciation rates, rather than caused it.  This suggests that future work may address the question 

of whether the nature of subprime loans amplified the bust versus the possibility that many of 

these loans simply were issued close to the end of the booms in many markets. 

Our empirical strategy is better designed to understand how factors with local or regional 

variation lead or lag the housing boom.  This is relevant for the interpretation of the role of 

mortgage interest rates, which tend to be quite similar across the country.  Another caveat is that 

we do not investigate how unobserved factors, such as contagion or the influence of irrational 

expectations, contribute to the housing boom.  These factors may have been non-trivial, 

especially in places where we find no evidence that any demand shifter jumped around the time 

the boom began.  Hopefully, future research will fruitfully use the timeline of the beginning of 

the housing boom first provided in this paper to investigate their potential roles in the start and 

subsequent development of the boom. 

The rest of the paper proceeds as follows.  The next section briefly outlines the 

conceptual framework within which house prices and house price growth rates can be analyzed.  

Section III follows with a description of our data sources.  Section IV then describes how we 

create price indexes at the metropolitan area and census tract group/neighborhood levels.  The 

process by which global breakpoints in the price appreciation rate series are estimated also is 

documented here.  Results on the timing and magnitudes of the price growth jumps are then 

presented.  Section V contains the analysis of potential causes of housing booms.  Section VI 

concludes and presents a brief discussion of future research. 

 

II. A Conceptual Framework for Evaluating House Prices and the Beginning of a Boom 
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Theory does not provide a clear guide about how to define the beginning of a boom.  

Empirically, one could use a jump in the level of prices or in their growth rate to determine the 

timing of the starting point.  A standard asset pricing approach suggests that changes in price 

levels are more appropriate, as any given fundamental shock typically results in a discrete jump 

to a new price level, with no impact on the asset’s return.6  However, we define the beginning of 

the boom as occurring when there is a global breakpoint in the relevant area’s rate of price 

appreciation.  This is done for a variety of reasons. 

 One is the nature of the data.  House prices do not follow a random walk.  Rather than 

sharp jumps in price levels followed either by flat prices or values growing at a steady rate over 

time, there are long cycles of varying amplitude as shown by the plot in Figure 1.  Case and 

Shiller (1989) and Cutler, Poterba and Summers (1991) long ago documented the predictability 

of house prices in the form of economically and statistically significant short-term persistence 

and longer-term mean reversion, with Glaeser, et. al. (2011) providing a recent update. 

 Search models with bilateral negotiation between buyers and sellers provide one possible 

explanation for why changes in fundamentals need not be immediately reflected in price levels, 

but can result in changes in price growth over time (e.g., Wheaton (1990);  Krainer (2001);  

Piazzesi and Schneider (2009)).7  More generally, different amounts of price volatility can arise 

from search models depending upon their underlying vacancy conditions and the precise nature 

of the search process. 8  Lagged supply responses also may help account for the slow adjustment 

of prices over time, as well as provide rationales for different price growth depending upon what 

one assumes about a natural rate of vacancy (e.g., Rosen and Smith (1983)).  The presence of 

credit constraints also has been shown to lead to shocks that are reinforcing, generating 

potentially high price volatility across hot and cold markets (e.g., Stein (1995); Krainer (2001)).  

There also could be non-rational factors that justify using changes in the rate of price growth to 

define the time line of a boom.  In this regard, Shiller (2005) argues that some type of irrational 

                                                 
6 Of course, the capital gain does not equal the total return on housing.  However, we do not readily observe the 
implicit rental flow on owner-occupied housing.  Holding constant the service flow, the basic argument still holds. 
7 In these models, which typically are short-run in nature in the sense that the stock of housing is fixed, people 
become mismatched from their current housing units for a variety of demographic (e.g., marriage, divorce, having 
children) and other reasons (unrelated to market fundamentals) that result in a discrete change in the demand for a 
given quality housing unit.  As long as these households cannot immediately be matched with another appropriate 
housing unit, any change in fundamentals will not be fully and immediately reflected in market prices. 
8 See Wheaton’s (1990) seminal article for some examples.  Even without search, there are good reasons not to 
expect straightforward jumps from one equilibrium price level to another.  Poterba’s (1984) classic capital markets 
model of house prices shows that overshooting is to be expected, with a transition to steady state equilibrium. 
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exuberance simply allows individuals to form incredible expectations about the future rate of 

price growth.9  Whatever the cause, there is good reason to focus on changes in price growth 

rates, not price levels, in determining the timing of the beginning of a boom.10   

Once we have determined the timing and magnitudes of the beginning of the different 

local booms, we then investigate potential causes of those initial jumps in price growth.  The 

starting point for that analysis is the core model of spatial equilibrium from urban economics 

(Rosen (1979);  Roback (1982)).  That model views house prices as the entry fee necessary to 

access the underlying productivity and amenities of a local labor market area.  It presumes a 

reference locality that offers a utility level, U*, which defines the minimum level of utility that 

can be obtained anywhere.  Mobility ensures that utility is equated across markets at this level, so 

that nobody has an incentive to relocate in equilibrium.    

A highly simplified, linearized version of this framework would depict utility as the sum 

of wages (W, which reflect local productivity) and amenities (A) less the cost of housing (R for 

rent, which in the traditional model posits absentee landlords).  That is, 

 

(1) U* = W + A – R. 

 

With utility fixed at U*, simple differentiation yields 

 

(2) dU* = dW + dA – dR = 0 or dR = dW + dA. 

 

This equation indicates that house prices (or rents) should increase in places with positive shocks 

to wages and amenities.11 

 This basic insight of the long run equilibrium serves as a useful starting point for our 

investigation of what factors are correlated with the beginning of booms (see Section V), 

although for that part of the analysis, we adopt the following perspective:  in the short-run, any 

                                                 
9 Piazzesi and Schneider (2009) introduce another potential non-rational factor in the form of momentum traders in 
their search model. 
10 Another reason we use the jump in the rate of growth, rather than the level, of prices is that one-time changes in 
the levels can be seasonal in nature. 
11 This model, which serves as the foundation for much empirical work on the spatial distribution of house prices, is 
empirically powerful as indicated by the R2=0.60 resulting from a very simple regression of log house prices on log 
median family income and mean January temperature in a cross section of metropolitan areas (Glaeser and Gyourko 
(p. 348, 2005)). 
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demand shifter could help account for the beginning of a boom because supply is likely to be 

highly inelastic over such a narrow window of time.  Thus, we expand our analysis beyond the 

typical income and amenity factors suggested by the Rosen/Roback model to include credit 

market variables and various demographics that are likely to be correlated with the demand for 

housing.  Before that, however, we briefly describe the data used in the empirical work in 

Section III and then estimate the timing and magnitudes of the beginning of local booms in 

Section IV.   

 

III.  Data Description 

Our primary source of housing market data comes from DataQuick.  This firm provides 

micro observations on home purchases collected from deed records.  Data are available for at 

least one county in 269 MSAs, although the starting point for this information ranges from the 

late 1980s to very recently.  We observe the exact date, price, and location (street address plus 

census tract identification) of each housing transaction, in addition to a variety of housing traits 

such as the number of bedrooms, number of bathrooms, square footage of living space in the 

home, and the year the unit was constructed.  DataQuick also provides information on the 

amounts of up to three loans used to finance the purchase of each home, as well as the names of 

the buyers, sellers, and lender(s). 

The final sample of DataQuick observations used in this analysis contains more than 23 

million arms-length, single-family housing transactions in 94 metropolitan areas spread across 29 

states, from 1993(Q1) to 2009(Q3).  Transactions are included only if they are in MSAs that 

have consistent data at least since 1998(Q1) and if they are from MSAs with full or nearly full 

coverage of their component counties.  The first quarter of 1998 was chosen as the latest possible 

starting point to help ensure that we have enough information to estimate the beginning of the 

boom.12  The online Appendix #1 provides a list of all MSAs in our sample, and their respective 

starting dates.13 

Table 1 reports summary statistics based on the 2000 Census for the nation, the 269 

markets tracked by DataQuick, and our final sample of 94 MSAs.  Southern metropolitan areas 

                                                 
12 We also conducted all the analysis reported below on a larger sample of 112 MSAs.  The additional MSAs had 
imperfect data on housing characteristics or recorded transactions that only start between 1998 and 2000.  Average 
estimates were very similar for both samples. 
13 All appendices  are on-line and available from our individual websites. 
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are underrepresented and western markets overrepresented compared to the nation.14  Typical 

house value is higher in our sample, largely because of the overrepresentation of west coast 

markets.  The same is true for income, although the differences are not so large for this variable.  

Other demographics such as race and educational achievement show similar values across the 

different samples reported in Table 1. 

Further detail on prices, quantities, and select housing traits at the metropolitan area and 

neighborhood levels (proxied by tract groups) is provided in the table in on-line Appendix 2.  We 

pool contiguous tracts into tract groups to provide sufficient observations to estimate price 

indexes at the neighborhood level.  These contiguous census tracts were combined into pairs 

(and sometimes triplets when necessary) using a random process to form tract groups.  Average 

characteristics by MSA (weighted by the total number of transactions) are quite similar to 

averages by neighborhood.  For example, the average price (weighted by population) by MSA is 

about $255,000, while the average price by neighborhoods is nearly $257,000.  The main 

difference between neighborhoods and MSAs obviously is in the total number of transactions:  

MSAs, on average, have around 250,000 transactions in our data, while neighborhoods have just 

over 1,700.  Because neighborhoods have a much smaller number of transactions, we restrict our 

neighborhood-level analysis to a sample of tract groups that have more than 10 observations per 

half-year.15  That constraint mitigates the chances of estimating price indexes and breakpoints 

with substantial error.  The average characteristics for the restricted sample are similar to those 

for the complete set of tract groups.  Naturally, the average number of transactions is higher, as it 

increases to 2,260. 

DataQuick provides no demographic or income-related information, so we merge their 

data with Home Mortgage Disclosure Act (HMDA) files in order to include information on the 

income of all loan applicants, in addition to race and various loan characteristics.16  Various 

procedures were used to select a subsample of DataQuick transactions and HMDA loan 

                                                 
14 A major reason for this is that Texas markets are not in the DataQuick samples.  Western region metropolitan 
areas are overrepresented largely because of extensive coverage of California, where DataQuick started its business. 
15 We further restrict the sample of tract groups when estimating the magnitude of the break points using the split 
sample approach explained in section III.C.  There, we impose the constraint that tract groups have more than 10 
observations per half-year in both random samples.  
16 The Home Mortgage Disclosure Act (HMDA) was enacted in 1975, and implemented by the Federal Reserve 
Board.  It requires that lending institutions report virtually all mortgage application and  loan data.  See 
http://www.ffiec.gov/hmda/ for details. 
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applications to ensure consistency and data quality.17  Both data sets were then merged using a 

straightforward sequential matching process.18  In total, 92.7% of all sales transactions in 

DataQuick were matched at some point in the sequential procedure.  Of those, approximately 

60% can be considered “high quality” matches, as there was a unique match based on tract ID, 

year of transaction, precise house value, and lender name.  Of the matched observations, 25% 

were randomly assigned due to having multiple matches. 

 

IV. The Timing of the Housing Boom 

IV.A.  Price Index 

We begin by creating a MSA-level (m) constant quality house price series by quarter (t) 

using hedonic regressions.  Price (HP), in logarithmic form, is modeled as a function of the 

square footage (Sqft) of the home entered in quadratic form, the number of bedrooms (Bed), the 

number of bathrooms (Bath), and the age of the home (Age).  For the final three variables, 

categorical dummies are created as described in our on line Appendix #3.  The hedonic index 

values are derived from the coefficients in the vector α6 on the year-quarter dummies (YearQtr) 

in the following equation: 

 

(3) Log(HPm,t) = α0 + α1*Bedm,t + α2*Bathm,t + α3*Agem,t + α4*Sqftm,t + α5*Sqft2
m,t + 

+ α6YearQtrt + εm,t, 

 

                                                 
17 For the merge, we restrict each sample to transactions or loan applications pertaining to single family homes with 
a positive first lien amount.  Because HMDA only reports property type and whether a loan was a first or 
subordinate lien starting in 2004, we cannot restrict to single family units prior to this year. [This information is 
reported for all years in DataQuick.]  We separately merge accepted and rejected loans, as reported by HMDA.  The 
rejected loan sample includes outright rejections, loan applications that were voluntarily withdrawn and those that 
were approved but not ultimately used to purchase a home.  For the rejected loans, we assume that the pool of 
houses sold in DataQuick (and their associated lenders) was the relevant target for those non-approved loans.  The 
rejected loan sample is used only to calculate local income, while the sample of actual sales transactions is used in 
the rest of the analysis.  Finally, census tracts were all converted to 2000 boundary definitions for geographic 
consistency. 
18 In the first step, each transaction was matched to a loan using the year in which the transaction occurred, the full 
11 digit Census tract number, the lender name, and the exact loan amount.  In cases where there were multiple 
matches, one of them was randomly assigned as being a true match while the rest were considered unmatched.  In 
the next step, unmatched observations where then merged based only on year, Census tract and exact loan amount 
with multiple matches being randomly assigned as in the first step.  This two-step process was repeated several 
times allowing for the loan amounts to differ from each other in increments of $1,000 up to a total allowable 
difference of $10,000. Any observations remaining after this process then went through an identical matching 
procedure using 9 digit Census tract numbers. 
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where εm,t is an idiosyncratic error term.  The estimated indexes are then normalized to 100 in 

2000(Q1) for all MSAs.  When estimating a similar model for neighborhoods, we replace the 

year-quarter dummies by half-year dummies to increase precision, as each individual 

neighborhood naturally has a much smaller number of transactions in any given time period. 

Our use of hedonic price indexes is in contrast to the now widespread use of repeat sales 

indexes, which were reintroduced and popularized by Case and Shiller (1987).19  We employ 

hedonic price indexes because their data requirements are much less onerous.  This is 

particularly helpful when we create price indexes at the neighborhood level.  To check the 

robustness of our estimates, Figure 2 plots the hedonic index from equation (3), the S&P/Case-

Shiller repeat sales index, and a repeat sales index we created using the DataQuick files for the 

Las Vegas-Paradise metropolitan area.20 

While there are some small differences in the early- to mid-1990s, all three indexes 

capture the remarkable boom and bust in this market – with the hedonic method only slightly 

understating the peak of the boom.  We do observe small differences in the short-run volatility of 

the price level indexes, presumably because Case-Shiller adopts additional procedures to smooth 

its index.  Even so, the simple correlation across any two price indexes is 0.99.  Correlations 

among price appreciation rate series are almost as high (0.97).  Similar results are found for most 

other markets that are comparable with Case-Shiller.21  Hence, our hedonic method captures the 

price movements tracked with other widely used methods to a very great extent. 

Figure 3 then plots the individual hedonic price indexes over time for each of our 94 

metropolitan areas.  Prices tend to be relatively flat for a period of years prior to the great boom, 

and then show fairly long, multiyear swings.  There is a noteworthy expansion in the variation of 

prices across markets during the boom, which has not disappeared as of the end of our data in 

2009(3)).  Figure 4 then displays the dispersion in price index levels across neighborhoods for 

four representative metropolitan areas.  While the dispersion in prices across neighborhoods 

                                                 
19 Their methodology is an update on the approach introduced by Bailey, Muth and Nourse (1963). 
20 Our repeat sales index uses a subsample of houses that had at least two transactions recorded in DataQuick.  The 
index created does not include observations on units that transacted multiple times within a 10-day period.  We also 
account for the most recent major renovation in a house, as that sequence of transactions is unlikely to have similar 
housing features over time. 
21 Of the 14 Case-Shiller markets that overlap with the DataQuick files, the least good match between our hedonic 
index with the S&P/Case-Shiller repeat sales index is for Cleveland.  The correlation between our hedonic index and 
the Case-Shiller repeat sales index is only 0.61 for that market.  The simple correlation of appreciation rates on the 
two different indexes based on DataQuick is higher at 0.87, but still below that for all other comparable markets. 
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increased at least modestly in each area depicted, there is variation in its extent across 

metropolitan areas.  For example, there is very little change in the degree of price dispersion 

across tracts in the Detroit area.  As we discuss below, this is one of the markets that did not 

actually experience a significant jump in house price appreciation rates at any time over the past 

decade or two.  In contrast, the increase in dispersion is quite large in the San Francisco area.  

Las Vegas and Orlando show increases in dispersion across neighborhoods, but the change is 

less stark in these markets. 

 

IV.B.  The Beginning of Local Booms:  Breakpoint Estimation 

 For both MSAs and tract groups, the price growth rate series is constructed by dividing 

the estimated price index from equation (3) in period t by the estimated index in period t-4.  This 

is done to address the large seasonality in home transactions.  We then look for jumps in the 

resulting appreciation rate series.  Because there can be multiple such jumps, we find the quarter 

during which there is a global structural break in the quality-adjusted price appreciation rate 

series.22 

More specifically, we estimate the following equation for all potential structural 

breakpoints (q*
m,t ) for each MSA m and time t : 

 

(4) PGm,t = am + dm1[qm,t  ≥ q*
m,t] + em,t for Tm,0 < qm,t < Tm,N 

 

where PGm,t is annual house price growth computed from the hedonic price indexes created as 

described above, dm estimates the importance of the potential point break, qm,t is a quarter, q*
m,t is 

the location of the potential structural break, Tm,0 is the first quarter of data, and Tm,N is the 

                                                 
22 We also considered scaling growth rates of prices by some metric.  One obvious candidate is rents, but data 
quality limitations prevent us from doing so.  Owner-occupied and rental stocks are not very similar or well 
integrated in most U.S. markets, so it is difficult to credibly compare house prices and rents on the same properties 
(Glaeser and Gyourko (2010)).  Moreover, rent data from REIS are available for only 29 of our MSAs, and are 
derived from surveys of private landlords and, thus, do not reflect observations on actual transactions.  Nevertheless, 
we still use the REIS rent data as a robustness check to see if they exhibit a similar time pattern to house prices.  We 
also examined construction costs.  The available data reveals that these costs are quite stable compared to overall 
house prices (Gyourko & Saiz (2006)).  Thus, the vast majority of the change in the ratio of price-to-construction 
cost is driven by house prices.  Finally, we could use a real house price series, deflating our nominal data with 
national or regional CPIs.  We do not do so explicitly because the quarter fixed effects included in the estimation 
already account for national changes in cost of living.  Moreover, inflation generally does not change much over the 
short time periods compared in the analysis below (i.e., around the quarter of the breakpoint in the house price 
growth series). 
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quarter of the highest appreciation rate.23  The estimated global breakpoint (q**m,t) maximizes 

the R2 of equation (4).  Essentially, the breakpoint occurs in the quarter in which the change in 

the price growth series has its greatest impact in explaining the price growth series itself.24   

 Summary statistics on the breakpoint estimations at the MSA and neighborhood levels 

are presented in on line Appendix #4.  Overall, the average R2 of the global break point is 62 

percent for all MSAs and 49 percent at the neighborhood level.  The average number of quarters 

from the start of the area’s time series to the point of maximum price growth is just under 30 

quarters, so we typically estimate the breakpoint using 7.5 years of data.  Those results include 

the impact of 15 metropolitan areas that we conclude never experienced a boom in house 

prices.25  For six metropolitan areas, we did not find a breakpoint estimate (dm) that was 

statistically significantly different from zero.  For the other nine of these 15 areas, there were less 

than twelve quarters of data in the estimation sample, so we could not reasonably estimate a 

breakpoint for these places.  These tend to be markets with flat or negative price growth trends 

over the long run, so the quarter with the highest price appreciation often was close to the 

starting date of the sample.  Among the 7,335 neighborhoods for which we have price data, 470 

do not have at least twelve quarters of price data with which to estimate a global breakpoint, and 

another 1,728 are found to have estimated breakpoints that cannot be distinguished from zero at 

standard confidence levels. 

For the remaining 79 metropolitan areas and 5,137 neighborhoods for which we did 

estimate statistically significant breakpoints in price growth, Figures 5 and 6 plot the distribution 

of starting points over time.  The striking feature of these plots is how uniform their distributions 

are.  Clearly, it is a mistake to consider what happened a single national event, much less one 

characterized by booming exclusively after 2002.  While there is a concentration of metropolitan 

areas markets with booms beginning in the 2002-2004 period (43 metropolitan areas experienced 

their global breakpoints during this time frame according to Figure 5), 21 metropolitan areas saw 

                                                 
23 We restrict the search for a structural break point within this time frame to minimize any influence of the bust 
period in the estimation of the beginning of the boom. 
24 See Hansen (2000) for a proof of the consistency of this procedure.  
25 All 15 are located in the interior of the country, with nearly half readily characterized as ‘rust belt’ markets.  
These seven include Akron, OH, Cincinnati-Middletown, OH-KY-IN, Cleveland, OH, Columbus, OH, Detroit-
Livonia, MI, Erie, PA, and Springfield, OH.  Another four are small to modest-size metropolitan areas in border or 
southern states (Knoxville, TN, Nashville-Davidson-Murfreesboro, TN, Oklahoma City, OK, Tulsa, OK).  The 
remaining four include three Colorado markets (Colorado Springs, Denver-Aurora, and Ft. Collins-Loveland) and 
Lincoln, NE. 
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the beginning of their housing booms before the year 2000.  And, another seven markets had 

their global breakpoints in 2000 or 2001, before the beginning of the big wave of booms.  

Finally, there were eight more markets there were very late boomers in 2005.  The distribution 

for neighborhoods in Figure 6 is even more uniform than that for metropolitan areas. 

 

IV.B.i. Geographic heterogeneity in the beginning of the boom 

The geography of the timing of the start of housing booms is interesting in its own right, 

and is suggestive of a role for contagion in explaining the spread of the boom across markets.  

Because this paper focuses exclusively on the beginning of the boom, we report data on 

geographic heterogeneity at the metropolitan area level in on-line Appendix #5.  Very briefly, the 

first booms at the metropolitan area level occurred in northern New England (Massachusetts and 

Connecticut) and coastal California.  On the east coast, they then spread east and south from 

northern New England.  They spread north and east from coastal California. 

Figure 7 plots the distribution of tract group-level breakpoints over time in four 

individual metropolitan areas.  Some major coastal metropolitan areas, such as San Francisco, 

show a wide range of breakpoint times across neighborhoods that are almost uniform in nature.  

This is in stark contrast to what happened in Las Vegas, where at least three-quarters of their 

neighborhoods boom in one six month period (the first half of 2004).  The Orlando market is 

somewhere in between these extremes, with almost 40% of its tract groups booming in the same 

six-month period.  A similar middle of the road pattern is seen in Detroit, with the caveat that, by 

our definition, only 11 percent of its neighborhoods had a boom.  This heterogeneity will be 

relevant to the issue of how differences in the timing of booms at the neighborhood level can 

impact measurement of the magnitude of booms at the metropolitan area level (which is 

discussed more fully in the next section).26 

 

IV.C. How Big Were the Booms?  Magnitudes of the Structural Breaks 

That there were statistically significant jumps in appreciation rates in most markets at 

some point in time begs the question of whether these structural breaks were economically 

                                                 
26 The analogous point applies with respect to the variation across metropolitan areas and measurement at the 
national level. 
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significant, too.  Our basic estimation strategy for determining magnitudes is based on the 

following equation: 

 

(5)  PGm,t = ψ(q**m,t) + κt + αm + em,t ,τ  , 

 

where PGm,t is the annual housing price growth in each MSA, ψ(q**m,t) is a set of relative year 

dummies (with the dummy for the twelve month period prior to the estimated structural break—

q**m,t --excluded from the estimation;  thus, the year of the breakpoint includes the quarter of the 

structural break and the three subsequent quarters), κt are year-quarter fixed effects, and αm are 

MSA fixed effects.27  We chose a 12-month horizon to gauge magnitudes of the jumps because 

there is noise in the quarterly data which is not solely related to estimation error.  For example, 

when home prices are agreed upon and when they close can vary by a quarter or more, 

depending upon how long it takes to arrange financing and solve any possible outstanding legal 

issues.  In addition, prices in housing markets move slowly and are positively serially correlated 

over short horizons as discussed above.28   

 Whenever estimating the magnitude of the jump at the breakpoint, we follow Card, Mas 

and Rothstein (2008) in employing randomly drawn split samples of houses, with one sample of 

houses used to estimate the time of the breakpoint and the other used to estimate the magnitude.  

Such an approach mitigates potential specification search bias as described in Leamer (1983).29 

Our estimates are summarized in Table 2.  The first column reports the magnitude of the 

jump when no time or location fixed effects are controlled for.  Price growth is about 7.5% 

higher at the breakpoint at both the MSA and neighborhood-levels in that specification.  Column 

2’s numbers are from a specification including time dummies, so they represent the variation 
                                                 
27 The inclusion of time fixed effects in equation (5), but not (4), is due to our interest in knowing how much of the 
variation in prices can be accounted for by local fundamentals.  See Section V for more on this.  
28 That said, we also estimated magnitudes of the jump (with split samples) using a regression discontinuity 
approach that relies on the precise quarter of the break.  That estimating equation is given by  
(5a) PGm,t,τ = dm1[qm,t   q**

m,t] + P(τm, , γ) +  κt + αm + em,t ,τ  , 
where PGm,t,τ now is the annual housing price growth in each MSA in the quarter relative to the estimated break 
point (τ = qm,t  - q

**
m,t ), dm is the magnitude of the break point, q**

m,t is the estimated structural break, P(τ, γ) is a 
polynomial in τ  (quartic, allowing for different slopes before and after estimated break point), κt are year-quarter 
fixed effects, and αm are MSA fixed effects.  Estimates of the magnitude of the jump in price appreciation rates are 
slightly smaller than those reported below in Table 2 (by about 20%), but each remains highly statistically 
significant. 
29 The estimated timing of the breakpoints in the full sample has a correlation of 0.82 with the analogous estimates 
that use a random split sample.  That correlation increases to 0.91 once we constrain the sample to MSAs that had a 
statistically significant break point using the full sample. 
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remaining after sweeping out the impacts from nationwide changes that are common across all 

locations.  The estimated jumps are lower, ranging from 5.4% at the MSA level to 6.2% at the 

neighborhood level.  Column 3’s results are from a specification that also includes area (MSA or 

neighborhood) fixed effects.  Note that there is little change from column 2, indicating that there 

is plentiful local variation remaining.  Henceforth, we analyze the variation in the magnitudes of 

price growth jumps which remains after controlling for national and local area fixed effects.  The 

remaining two columns of Table 2 report results that either drop the quarter of the breakpoint or 

areas without statistically significant breakpoints.  Because we are most interested in 

documenting and evaluating those places with statistically significant breaks, we focus on the 

results from column 5. 

Figure 8 plots the MSA level results from column 5 of Table 2, including data from two 

years before and three years after the boom begins.  The dashed lines mark the 95% confidence 

interval.  Because everything is measured relative to the pre-breakpoint year, price growth for 

that year is zero, by definition.  Note that there is no pre-trend in price appreciation.  This is not a 

statistical artifact of the estimation procedure, so it appears that the jump in prices is an event 

that just happens at a given point in time, rather than building over time.  The higher level of 

appreciation is maintained for another year before starting to decline.  On average, it takes five 

years after the break year to get back to the level of price appreciation that existed before the 

break. 

The plots in Figure 9 provide some insight into the extent of heterogeneity across 

metropolitan areas in the magnitudes of the price growth jumps and the time patterns of 

appreciation relative to the breakpoints.  The first plot for the Detroit metropolitan area is 

included to illustrate the pattern typical of markets that did not have a significant structural 

breakpoint.  The next two plots for the Las Vegas and Orlando metropolitan areas depict larger 

jumps (20 and 10 percentage points respectively) at the estimated breakpoint.  Note that price 

appreciation falls precipitously in Las Vegas in the 2nd year after the breakpoint, while in 

Orlando it accelerates by another ten percentage points in the subsequent year before plateauing 

and then rapidly declining.  The remaining plot shows the San Francisco metropolitan area had a 

more modest jump, but that could be downward biased because neighborhoods in that MSA had 

a more uniform set of starting points over time (see Figure 7).  Even if each neighborhood in San 
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Francisco had large price growth jumps, the pooled data at the MSA level could show a flat trend 

in price growth rates. 

 The second row of Table 2 reports average estimates that are the neighborhood-level 

analogues to the metro-level results, with Figure 10 plotting the findings.  Neighborhood-based 

point estimates are slightly larger, take longer to converge to pre-trend levels, and have overall 

increases in precision.  Figure 11 then reports neighborhood-level results by MSA.  Estimates are 

similar to MSA level results for Detroit, Las Vegas, and Orlando.  The main difference is for San 

Francisco.  As suggested just above, the neighborhood-level data for this metropolitan area show 

that it has a bigger breakpoint jump, and then a flat trend over the next five years. 

 

V. Potential Explanations of the Boom 

We next investigate how a number of potential demand shifters are correlated with the 

timing and magnitudes of the beginning of local housing booms.  The variables investigated 

include traditional income measure suggested by the Rosen/Roback model of spatial 

equilibrium30, along with other variables that have been suggested by some as potential causes of 

the boom.  Most prominent in this group are credit market factors such as subprime mortgage 

activity and federal low income-housing mortgage programs (FHA).  One omission from this 

latter group is interest rates, as our empirical strategy is best suited to examining factors that vary 

across space and time.  Mortgage rates are roughly constant across local markets and are best 

examined by other approaches.31 

Table 3 first documents what was happening to log prices.  Log prices not only provide a 

robustness test to our magnitude results, but they are also more convenient for two reasons: they 

reduce the importance of outliers, and provide an interesting descriptive of variation in prices for 

many years after the boom.  Metropolitan averages are provided in the first column.  The next 

columns under the heading “pre-Trend” report how log home values at the MSA and 

neighborhood levels were changing relative to the twelve month period leading up to the quarter 

in which the boom starts.  That annual period just prior to the global breakpoint is the baseline 

year relative to which everything is measured (it is called time 0 in the plots below).  The -0.014 

                                                 
30 Because most local amenities do not change at all (e.g., weather) or only slowly over time (e.g., school quality), 
we focus on the potential role of income from this model. 
31For examples, see recent work by Favilukis, et. al. (2011) and Glaeser, et. al. (2011), which reach somewhat 
different conclusions about the likely importance of the role played by rates in accounting for the development of 
the most recent boom.  Neither focuses on the start of the boom.   
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value listed for MSAs implies that prices fell slightly, by 1.4%, relative to our baseline twelve 

month period.  However, this change is not significantly different from zero, so there is no 

economically or statistically significant pre-trend in price growth on average prior to the boom.  

Neighborhood level estimates are statistically significant, but the point estimate has the opposite 

sign of what would be a potentially worrisome (for our purposes) pre-trend.  Thus, there is no 

evidence that prices were trending up prior to our estimated breakpoints. 

Columns (4) and (5), labeled ‘breakpoint jump’, then report what was happening to log 

prices relative to our baseline year in the twelve months beginning with the quarter of the start of 

the boom (time +1 in the plots below).  For MSAs, prices were 4.1% higher, while the point 

estimates for neighborhoods is 4.4%, with both being statistically different from zero.32  The 

final columns, labeled “2 years after break’, report log prices during the next relative year (this is 

called time +2 in our plots).  The data here show that house prices clearly kept growing after the 

boom began, as indicated by the fact that they were 9.3% higher relative to the baseline year for 

both MSAs and neighborhoods. 

  

V.A. Incomes 

The next row of Table 3 documents whether income – measured by the log income of all 

local loan applicants - shows similar patterns.  The strength of this variable is that it reflects the 

household income that was reported on mortgage applications to buy local housing, so it well 

proxies the income of potential demanders of local housing.  Importantly,  it also has quarterly 

variation, so it can be precisely calculated around the breakpoint.  In addition, estimates of 

income changes at the breakpoint denoting the beginning of the boom seem less likely to suffer 

from reverse causality, especially given that we know there is no positive pre-trend in prices.  

This type of endogeneity could be a more significant concern if we were using income only of 

homebuyers, so it is important to include the income of all potential demanders for local housing.  

About one-third of the loans in HMDA are rejected, withdrawn, or approved but not accepted, so 

this measure is based on a pool considerably larger than just the actual homebuyers.33 

                                                 
32 Note that these estimates are slightly smaller than the 6% that we estimated using actual price growth rates as 
reported in Table 2.  The logging of prices appears to be diminishing the impact of outliers, as is common with 
housing data.  In fact, when trimming the top and bottom 1% of the price growth distribution, we find point 
estimates of around 5% for Table 2. 
33Nonetheless, this variable still is not perfect, although we know of no sure way to improve upon it.  For example, it 
does not include data for households that truly are in the pool of demanders, but never applied to get a loan.  
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Income averaged $76,881 in our sample.  The ‘pre-trend’ column shows that homebuyer 

income was flat when compared to the baseline year, so there is no pre-trend in either prices or 

income.  Local income jumped 2.5%-3.3% around the time the boom began, so that both prices 

and incomes jump significantly and at somewhat similar rates in the year of the breakpoint. The 

last column of Table 3 shows that incomes were 4.3% above their baseline levels two years after 

the break using the MSA data (4.4% at the neighborhood level), so incomes also kept rising after 

the boom started, but not as much as house prices.  While we are most interested in the 

comparison at the breakpoint denoting the start of the boom, Figure 12 summarizes the results in 

Table 3 by plotting the price and income point estimates from two years prior to the baseline 

year to five years after it, for both MSAs and neighborhoods. 

While house prices and incomes at both the metropolitan area and neighborhood levels 

are increasing simultaneously at the start of the boom, we have to make further assumptions to 

provide insight into whether the change in income might be large enough to account for most of 

the boom in prices.  This can be done using results from the empirical literature on the income 

elasticity of demand for housing in combination with an assumption that the supply of housing is 

fixed in the short run.  Allowing demand to shift out from growth in income in the face of no 

new supply produces an upper bound impact on prices.  The housing economics literature 

suggests that the income elasticity of demand ranges from 0.75 to 1.34  Applying these parameter 

values to the reported changes in log incomes during the breakpoint year indicates that a 3.3% 

                                                                                                                                                             
Included in this group are homebuyers that made all cash purchases.  The income – and changes in income - of the 
households that are not in our sample can be lower, equal, or higher than the income of loan applicants, so it is 
difficult to sign a bias in our measure.  One strategy is to use an even broader measure such as per capita income.  
We believe this is inadvisable because it clearly reflects income conditions among many households who are not 
potential demanders of owned units.  Moreover, this variable suffers from two very serious drawback given our 
empirical strategy—namely, it is only available annually and at the MSA level.  The former biases down its own 
volatility and its temporal correlation with house price growth.  The latter means we cannot use it at the 
neighborhood level, where we have rich price data.  Still, we do report a robustness test based on log median income 
in the next section.   
34 See Polinsky and Ellwood (1979) for a classic early examination that puts the elasticity in the 0.8-0.9 range.  
Subsequent research that generates higher estimates claims that the larger impact is due to the use of better measures 
of permanent income (e.g., Goodman and Kawai (1982);  see also Quigley (1979)).  We implicitly assume that the 
income changes we observe reflect movements in permanent income.  To the extent they are not, one would not 
expect a positive correlation with house price changes in the short run.  As a very simple robustness check on our 
own data, we ran a regression of log prices on log income interacted with relative year dummies, with time and 
MSA fixed effects included.  The elasticity estimated for the 12 month period following the breakpoint was 0.75. 
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jump in local incomes could account for from 55% to 74% of the 4.4% jump in neighborhood 

house prices.  The analogous range is 46% to 61% for metropolitan areas.35,36 

That the beginning of the past boom is so strongly correlated with a factor such as local 

income that everyone would agree is a key fundamental of housing demand suggests a rational 

underpinning for the start of the boom on average.  And, other tests indicate that conclusion is 

robust to outliers, to including other covariates, and to potential reverse causality.37  However, 

these average results mask important heterogeneity in the relationship between house prices and 

incomes at the start of booms in different types of markets.  It is to that issue that we next turn. 

 

V.B. Heterogeneity in Prices and Incomes 

Here, we systematically investigate the role of heterogeneity across markets along two 

dimensions:  (1) timing of the boom (e.g., early versus late); and (2) elasticity of supply (e.g., 

highly inelastic versus highly elastic).38  Table 4 reports our findings.  Panel (a) shows how MSA 

and neighborhood prices and incomes changed before, during, and after the start of the boom for 

markets that were among the earliest and latest one-thirds of our sample to experience global 

breakpoints in price growth.39  There was no positive pre-trend in prices in any of these groups.  

However, prices jumped during the breakpoint year and the increase in the late boomers was 

                                                 
35 Dynamic characterizations of the Rosen/Roback framework indicate that income variability is sufficient to 
account for the growing heterogeneity in prices across housing markets over long periods of time (Van 
Nieuwerburgh and Weill (2010)), but that answers a different question from the one posed here. 
36These calculations obviously ignore the role of unobservables such as potential changes in expectations.  For 
example, Figure 12 for neighborhoods reports that incomes were 5.5% higher in the 3rd year after the breakpoint, 
and then become relatively stable after that.  A forward-looking model that only captures the impact of the income 
growth in those years would imply an even larger influence for income on the beginning of the boom.  However, 
extending this logic even further to include some type of expectations about the current bust period would work in 
the opposite direction.  A complete analysis of the role of all potential expectations – and how rational or irrational 
they were - is well beyond the scope of this paper.   
37 On-line Appendix #6 reports these robustness tests in more detail.  First, we show MSA-level figures of price 
changes against income changes at both pre-trend and breakpoint periods.  The relationship between both variables 
is only strong at the breakpoint, and is not driven by outliers.  A simple OLS regression of the price change variable 
on the change in income yields a coefficient of 0.68 (s.e. 0.09) and a R2= of 0.37.  Including covariates such as other 
likely demand shifters (e.g., percent minority, migration inflow, percent speculators, average loan-to-value ratio, 
percent subprime loans, and percent FHA loans), reduces the point estimate only modestly to 0.63(0.09), while the 
R2 increases modestly to 0.48.  Thus, there is no empirical evidence that other readily observable demand shifter can 
dramatically reduce the relationship between price and income changes.  In addition, instrumenting homebuyer 
income with per capita income to deal with potential reverse causality does not change the results significantly. 
38 We also investigated two other sources of the heterogeneity: a) size of the MSA; and b) net demand (small 
increases in transactions relative to new supply versus large increases in that difference).  However, we found no 
major differences on either dimension. 
39 The earliest one-third of booms started no later than 2000Q4.  The latest one-third of booms started no earlier than 
2003Q4. 
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greater than that of the early boomers (3.8% versus 3.0% for MSAs, and 6.6% versus 2.1% for 

neighborhoods).  Prices continued to rise after the start of the boom, but more so for late 

boomers: two years after the boom began, prices were 5%-7% above those in the baseline year 

among the early boomers, versus 9%-14% above the baseline year in the late boomers. 

Turning to income, we find no material evidence of a strong pre-trend in income growth 

by timing of the boom.  However, the income jump relative to price jump was much greater 

among early boomers at the breakpoint.  Among this group, the magnitudes of the income and 

price changes are almost identical, and even the lower end of the income elasticity of demand 

estimates would allow their income growth to account for virtually all of their price growth at the 

breakpoint.  In stark contrast, the late booming markets experienced much smaller relative 

growth in income at the start of their booms.  The change in income is about half that of prices, 

and it is not statistically different from zero for MSAs.  We see much the same pattern by timing 

in the second year after the break.  The results are even more striking at the neighborhood level: 

income tracks price movements in early booms during the first three years after the start of a 

housing boom; the price-income gap increases only in the fourth and fifth years. 

Panel (b) of Table 4 documents that heterogeneity is not limited to early versus late 

boomers.  It also differs by local supply conditions.40  Once again, we see no material pre-trend 

for inelastically or elastically supplied markets.  However, we find a much bigger jump in prices 

at the breakpoint among the most inelastically supplied markets:  3.8% versus a statistically 

insignificant 2.3% for the most elastically supplied markets.  Among the one-third most 

inelastically supplied markets, the income jumps at the breakpoint are 65% of the magnitudes of 

the price jumps.   

In sum, the material change in income we observe on average around the beginning of 

housing booms is not consistent across all types of markets.  Income looks to be able to account 

for much of the start of the booms in early booming and inelastically supplied markets, but for 

little or none of the initial jump in price growth in late booming and elastically supplied markets. 

 

V.C. Other Potential Demand Shifters 

                                                 
40 We only have supply elasticity data for 76 MSAs.  Using Saiz’s (2010) measure, the one-third most inelastically 
supplied markets have elasticities below 1.1, while the one-third most elastically supplied markets have values 
greater than 1.7. 
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We also investigated whether a host of other factors that could affect the demand for 

housing also changed (and by how much) around the time the different local housing booms 

started.  These include a variety of demographic and credit market variables, the results for 

which are reported in the top two panels of Table 5. 

 

V.C.i. Demographics:  The Pool of Buyers 

Changes in the pool of buyers might be considered an amenity (or disamenity), as well as 

reflect a direct change in the demand for housing.  Consequently, we analyzed how the share of 

minority and white purchasers changed around the start of the local housing booms, along with 

how the share of speculators changed.  The “% minority” variable reflects the fraction of 

African-Americans and Hispanics as coded in the HMDA files.  The “% white” variable is 

obtained from the same source.  Our measure of speculators is comprised of all those who 

bought more than one home in the same metropolitan area between 1993 and 2009 and all those 

who sold a house no more than one year after the date of purchase.41   

While there are statistically significant changes in many cases reported in this panel, none 

is economically important as a comparison of the changes with the variable means (reported in 

the first column) show.  Thus, none of these variables appears to be related to the timing or 

magnitude of the beginning of the boom in house prices in an economically important way.  In 

fact, the share of minority homebuyers was decreasing slightly prior to and at the breakpoint, 

while the fraction White was increasing.  Given the high correlation between race and income in 

the U.S., this is not particularly surprising after the income results shown above.  The same holds 

for our measures of speculators.  There are only small and imprecise increases in the fraction of 

speculators, before, during, and after the breakpoint. 

 

V.C.ii. Credit Markets 

The next panel shows results for a number of credit market variables:  the fraction of 

subprime loans, the fraction of FHA-insured loans, the average loan-to-value ratio (LTV) among 

homebuyers, and the mortgage interest rate.  The decline of underwriting standards has been 

widely discussed as a key factor in the boom, and perhaps no other facet of those standards has 

been studied more than subprime mortgages.  There is no one formal or legal definition of what 

                                                 
41 See Bayer, Geissler and Roberts (2011) for another measure of speculation. 
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constitutes a subprime loan, and many papers use FICO scores to define what constitutes a 

subprime loan.  Because we do not have credit bureau information, we cannot measure subprime 

shares in that way.  Hence, we use information on the underlying lenders from the DataQuick 

files.  More specifically, we obtained lists of the top twenty subprime lenders from 1990-onward 

in a publication now called Inside Mortgage Finance.  This publication claims to capture up to 

85% of all subprime originations in most years.42  Our subprime measure is the share of 

mortgages issued by these top twenty lenders. 

Note that no jump in subprime shares is observed the year before or during the twelve 

month period after the price appreciation breakpoint.  Hence, it is hard to imagine how this 

variable could possibly help account for the start of the different local housing booms.  However, 

subprime share does increase two years after the breakpoint, although not by a huge amount (it is 

0.9% higher than in the baseline year, on a mean of 15%).  It does keep increasing beyond this 

time (see the figure in on-line Appendix #6), achieving a total increase that is 20% of the 

baseline share prior to the breakpoint.  Thus, the rise in subprime share lags the beginning of 

booms by a significant amount of time, suggesting that this factor could have played a 

meaningful role in the future development of the extent of the boom, but not in initiating it.43 

The fraction of FHA loans (which are separately identified in DataQuick) describes the 

time pattern of a governmental insurance program that targets low income borrowers.  It shows 

small declines before, during, and after the breakpoint.  FHA loans and subprime lenders 

constitute around a quarter of the lending market.  The remainder consists of traditional 

conforming loans that generally are guaranteed by Freddie Mac and Fannie Mae and private 

jumbo lenders.  Given the results for subprime and FHA shares, it is unlikely that both 

government and jumbo loans had major changes around the breakpoint.44   

Average loan-to-value (LTV) ratio, also based on DataQuick, is another potentially 

important underwriting standard that could have changed in a manner that might explain the 

initial boom in house price appreciation rates.  This measure reflects the total amount of 

mortgage debt on up to three loans recorded by DataQuick.  LTV shows small, insignificant, and 

                                                 
42 Previously, this was called B&C Mortgage Finance.  See Chomsisengphet & Pennington-Cross (2006) for more 
detail on these lenders and lists. 
43 Using a different modeling strategy, Brueckner, Calem, and Nakamura (2011) argue that subprime lending is a 
consequence rather than a cause of bubble conditions. 
44 It is conceivable that jumbo loans increased market shares a few years after the break, given the gigantic increase 
in home values, but that is an issue for future research. 
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negative point estimates before and during the start of the boom.  The slight increase in LTVs 

two years after the boom began is miniscule in economic terms.  Thus, this credit market factor 

does not lead the boom, does not jump coincidently with the start of the boom, and unlike the 

subprime share, does not increase much after the boom begins. 

Finally, the last credit market variable is the quarterly national 30-year fixed-rate 

mortgage interest rate collected from the Freddie Mac Primary Mortgage Market Survey.  It does 

not vary across MSAs, so we modify equation (5) to drop quarter and MSA fixed effects.  

Overall, mortgage rates fell by about 34 basis points in the year prior to the baseline year.  Rates 

were lower in the breakpoint year than in the baseline year, but they were higher than before the 

baseline (by about 20 basis points, or 34-14).  They fell slightly by about another four basis 

points on average by the second year after the breakpoint.  There is nothing in this pattern to 

indicate that rates were likely to have caused the boom, as no reasonable elasticity of housing 

demand with respect to interest rates would generate anything approaching the 4.1 point rise in 

prices at the breakpoint.45  However, the lack of variation across locations for this variable makes 

it hard to interpret in our context.   

 

V.D. Robustness Checks:  Other Price and Income Measures 

The results for annual rents are based on surveys from REIS and are only available for a 

small subset of 29 MSAs.  Tthere is no evidence of any pre-trend in rents.  Rents are 1.4% higher 

in the breakpoint year relative to the baseline, but this average is not statistically different from 

zero, as indicated by the standard deviation of 1.1%.  Rents do continue growing after the start of 

the housing boom, as indicated by the fact that they are 2.5% above baseline levels in the second 

year after the boom (final column).  Given the survey-based nature of this series, relatively little 

volatility is to be expected.  We interpret the fact that the time pattern is quite similar to that of 

house prices as supporting the internal validity of our findings on house prices, since it would be 

unlikely to have a housing boom without spillovers to the rental market, even given the caveats 

                                                 
45 As noted above, there is a debate in the literature on the magnitude of this elasticity (see Himmelberg, Mayer and 
Sinai (2005) and Glaeser, Gottlieb and Gyourko (2011), respectively, for upper and lower bound estimates), but 
given the small change in rates at the breakpoint, not even the figures from the high end of the range would lead one 
to believe that lower rates caused much of the start of the boom.  There was a much larger decline in rates in the five 
years preceding the start of the boom – see Appendix #6 - but given the lack of a pre-trend in house price growth, 
that too provides no evidence for a strong interest rate effect on prices leading up to or at the start of the boom.   
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noted earlier about these markets not being very well integrated in many regions of the country 

and the survey-based nature of this series. 

As suggested above, the two alternative measures of household income reported on in 

this table are likely to generate biased results.  The estimated impact of homebuyer income on 

price changes is upward biased if there is reverse causality, i.e., if incomes are higher only 

because high income families are the only ones that can afford the more expensive homes.  Per 

capita income, on the other side, is downward biased if it includes a large fraction of families 

with stable incomes that do not demand owned homes (such as students, low income families, 

etc.).  The downward bias in per capita income is aggravated by the lack of neighborhood and 

quarterly variation in that data.  Our estimates confirm both intuitions.  Each alternative income 

measure shows large jumps at the breakpoint and two years later, but the homebuyer income 

jump is higher and the per capita income jump is lower than our preferred measure of local 

income. 

 

V.E. Quantities:  Transactions Volume and Net Migration 

Table 5 also reports on two sets of transactions measures.  One is the total number of 

home sales, as recorded in the DataQuick files.  The other is the annual net inflow of population 

based on IRS county migration data.46  Housing booms appear to be preceded by increases in 

demand for MSAs and neighborhoods, as both of these variables show a positive pre-trend, 

although the estimates for net inflows of population are economically small.47  Both variables are 

lower in the breakpoint year, although they still remain above baseline year levels.  Two years 

after the boom, the total number of transactions has fallen further to only 1.2% more than in the 

baseline year, and net migration has fallen below that in the baseline year prior to the start of the 

boom.  In sum, these results show a general pattern of trading volumes increasing prior to the 

start of the boom, but there is no evidence of discrete jumps in the year the price boom begins.  

And, these volume measures continue to fall, not rise, in the years immediately following the 

beginning of the boom. 

 

                                                 
46 We thank Todd Sinai for providing these data in easily usable form. 
47 For example, an MSA of 300,000 people would have seen a net inflow of only 669 people in a year.  This results 
from multiplying the migration coefficient of 0.223 by 300,000 and dividing by 100 (the units of the migration 
variable). 
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V.F. New Supply and Construction Costs 

Table 5 also reports two measures of new supply.  One is for new homes, which are 

counted in the DataQuick files.  The other is for total building permits as reported by the Bureau 

of Commerce.  This latter variable is only available at the metropolitan area level.  Both new 

supply measures are higher two years before the boom than they are in the baseline year, 

although neither is statistically significant.  A slightly greater number of new homes are being 

supplied in the breakpoint year relative to the pre-trend year (3.0 versus 2.4 per 100 people), so 

there is no large economically or statistically significant change in the breakpoint year.  New 

supply is slightly higher two years after the start of the boom (at 3.6 homes per 100 people), but 

once again there is no evidence of a huge change.  The permits data show much less variation 

over this time period. 

Next, annual construction costs, which are estimates for a typical new home in each 

market based on data from the R. S. Means Company, are quite stable in the years around the 

breakpoint.  As with the rent data, this series is based on underlying surveys and tends to be quite 

smooth over annual horizons. 

 

V.G. Housing Traits as Placebos 

Finally, the last two rows of Table 5 report the changes in the square footage and number 

of bathrooms in the homes in our sample before, during, and after the start of the boom.  Homes 

were becoming very slightly larger before the boom, but the changes are small and not 

statistically significant.  There is no jump in quality at the price breakpoint or afterwards.     

 

  
VI. Conclusions & Implications for Future Research 

The national aggregate price data indicate that the dominant feature of the recent housing 

cycle was a truly great boom from 2003-2005.  This very short period stands out even more in 

Shiller’s (2005) longer-run aggregate price series.  However the national data mask substantial 

heterogeneity across and within markets.  Using the global breakpoint in the relevant house price 

appreciation rate series, we show that housing booms began in different markets (both at the 

metropolitan area and neighborhood level) as early as 1996/7 and as late as 2005/6.  Thus, the 

recent boom was not a homogenous event that started everywhere at roughly the same time.   
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There also is much heterogeneity in the magnitudes of the initial jumps in price growth.  

On average, the MSA and neighborhood data show that the rate of price appreciation increased 

by about 4 percentage points, or more than 50% from the baseline nominal rate of growth just 

before the global breakpoint.  However, early booming markets tended to jump by lower 

amounts, versus late booming markets which jumped up to 25 percentage points.  Precise 

estimates of the price jump magnitude by MSAs are only achieved with neighborhood data, as 

some MSAs show great dispersion in breakpoints across their neighborhoods. 

 When we look at various potential causes of the boom, only income increases materially 

at the same time that the rate of price appreciation initially jumps.  However, there is important 

heterogeneity in this effect, and a back-of-the-envelope calculation suggests that this 

fundamental can account for the majority of the magnitude in price jumps in early booming and 

in inelastically supplied markets, but for little or none of the jump in late booming and elastically 

supplied markets.  A host of other factors, including much discussed underwriting standards as 

reflected in LTVs and subprime mortgage share do not increase prior to the start of the boom or 

coincidentally with the breakpoint in price appreciation.  There is a substantial increase in 

subprime share after the boom starts, which suggests that this credit market factor more 

responded to the price increases than caused them.   

 Finally, these results establish the foundation for a host of future work exploring how the 

boom developed over time.  The geography of the timing of the beginning of booms across 

markets raises the possibility of spillover effects and contagion based on proximity.  Fully 

developing the time line of the cycle should help us better investigate the role of various factors 

in how the boom evolved and the bust ensued.   
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Figure 1:  National House Price Cycles—Case/Shiller and FHFA Real Price Indexes 

  
 
 

Figure 2:  Hedonic and Repeat Sales Price Index Comparisons for Las Vegas 

 
Notes: Hedonic price indexes were estimated as described in equation (3).  The repeat sales index is based on a 
version of equation (3) that replaces house characteristics with a fixed effect for each house.  That index uses a 
subsample of houses that had at least two transactions in DataQuick.  The Case-Shiller index is publicly available. 
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Figure 3: Individual Metropolitan Area Hedonic House Price Indexes by Quarter 

  
Notes: Each line represents a hedonic price index that was separately estimated for each MSA according to equation 
(3).  The index for 2000Q1 is normalized to 100 for each MSA. 

 
 

Figure 4:  Neighborhood Hedonic Price Indexes, Selected MSAs 

 
Notes: Each line represents a hedonic price index that was separately estimated according to equation (3) for each 
tract group within the relevant MSA.  The index for 2000Q1 is normalized to 100 for each tract group. 
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Figure 5. Estimated Breakpoint Histogram, MSAs 

 
Notes: The histogram plots the fraction of estimated break points in each quarter using the sample of MSAs with 
statistically significant break points. 

 
Figure 6. Estimated Breakpoint Histogram, Neighborhoods 

 
Notes: The histogram plots the fraction of estimated break points in each six month period using the sample of tract 
groups with statistically significant break points.  
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Figure 7. Estimated Breakpoints Histogram, Neighborhoods in Selected MSAs 

 
Notes: The histogram plots the fraction of estimated break points in each quarter using the sample of tract groups 
with statistically significant break points in each of the listed MSAs. 

 
Figure 8: Estimated Price Appreciation Rates by Year Relative to Breakpoint, MSAs 

 
Notes: Each dot represents estimates of the magnitude of the price appreciation rates on an annual basis, relative to 
the estimated break point – see equation (5).  Dashed lines are 95% confidence intervals.  The sample includes the 
79 MSAs that had statistically significant breakpoints.  A random half-sample was used to estimate break points, 
with the other half used to estimate and plot the magnitudes.  
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Figure 9: Estimated Appreciation Rates Relative to Breakpoint, Selected MSAs 

 
Notes: The point estimates in this figure come from separate regressions for each MSA.  We first regress price 
growth data for all MSAs on quarter and MSA fixed effects, and then regress the residuals for each MSA on year 
dummies relative to the breakpoint year.  Dashed lines are 95% confidence intervals.  A random half-sample was 
used to estimate break points, with the other half used to estimate and plot the magnitudes. 
 
Figure 10:  Estimated Price Appreciation Rates by Year Relative to Breakpoint, Neighborhoods 

 
Notes: Each dot represents estimates of the magnitude of the price appreciation rates on an annual basis, relative to 
the estimated break point – see equation (5).  Dashed lines are 95% confidence intervals.  The sample includes 5,137 
neighborhoods with statistically significant breakpoints.  A random half-sample was used to estimate break points, 
with the other half used to estimate and plot the magnitudes.  
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Figure 11: Estimated Price Appreciation Rates Relative to Breakpoint, Neighborhood Data, 
Selected MSAs 

 
Notes: The point estimates in this figure come from separate regressions for each MSA.  We first regress price 
growth data for all neighborhoods in the country on half-year and neighborhood fixed effects, and then regress the 
residuals for each neighborhood on year dummies relative to the breakpoint.  Dashed lines are 95% confidence 
intervals.  A random half-sample was used to estimate break points, with the other half used to estimate and plot the 
magnitudes. 
 

Figure 12: Price and income comparisons relative to breakpoint, MSAs and Neighborhoods 

 
Notes: The point estimates for price and income correspond to the specification and results provided in Table 4.  See 
the notes to that table for more detail. 
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Table 1:  Summary Statistics on the Representativeness of our Final Sample 

All U.S.  DataQuick Final

(1) (2) (3)

Number of MSAs 362 269 94

Population of MSAs 642,486 809,386 1,322,485

(1,485,668) (1,691,640) (2,520,843)

% East 0.21 0.22 0.24

(.34) (.35) (.37)

% Midwest 0.22 0.20 0.17

(.44) (.41) (.31)

% South 0.33 0.32 0.19

(.49) (.49) (.44)

% West 0.24 0.26 0.40

(.41) (.44) (.51)

% White 0.73 0.72 0.69

(.14) (.14) (.15)

% Black 0.13 0.13 0.12

(.11) (.11) (.09)

% College Degree 0.24 0.24 0.26

(.07) (.07) (.07)

Median Family Income $53,574 $54,017 $56,252

(9,497) (9,564) (10,382)

Median House Value $149,545 $153,381 $186,629

(60,794) (62,683) (75,842)  
Notes: All sociodemographic data based on Census 2000.  First column presents averages and standard deviations 
(in parenthesis) for all MSAs in the country.  Column 2 shows data only for MSAs covered by Dataquick.  Column 
3 presents descriptives for our final sample of 94 MSAs. 

 
 

Table 2:  Magnitude of the Breakpoint, MSAs and Neighborhoods 

(1) (2) (3) (4) (5)

MSA breakpoint 0.074 0.054 0.056 0.065 0.061

(0.006) (0.005) (0.006) (0.007) (0.007)

Neighborhood breakpoint 0.075 0.062 0.061 0.085 0.077

(0.010) (0.009) (0.009) (0.012) (0.011)

time effects N Y Y Y Y

area effects N N Y Y Y

dropping quarter of breakpoint N N N Y N

areas with stat. sign. breaks N N N N Y

dependent variable: price growth rate

Notes: This table presents the magnitude of the breakpoints for MSAs and Neighborhoods according to equation (5).  
Column 1 is not conditional on covariates, while column 2 adds time effects, and column 3 adds MSA fixed effects.  
Column 4 uses same specification as column 3, but drops the quarter of break point.  Column 5 restricts the sample 
to MSAs with statistically significant breakpoints.  Bold coefficients are significant at 5% level.  MSA estimates use 
4,956 observations, while neighborhood estimates use 94,833 observations. 
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Table 3:  Prices and income around breakpoint 

MSA averages

Dependent variable, (std dev) MSA neighborhood MSA neighborhood MSA neighborhood

estimates in logs (1) (2) (3) (4) (5) (6) (7)

prices 118 ‐0.014 ‐0.022 0.041 0.044 0.093 0.093

(24.63) (0.009) (0.004) (0.009) (0.009) (0.014) (0.012)

income 76881 0.007 ‐0.006 0.025 0.033 0.043 0.044

(18423) (0.008) (0.005) (0.008) (0.006) (0.012) (0.009)

breakpoint jumppre‐trend 2 years after break

Notes: This table presents estimates of changes in the relevant variables around the breakpoint for both MSAs and 
neighborhoods using equation (5).  Column 1 shows MSAs averages and standard deviations.  All other estimates 
are in logs.  Pre-trend columns show estimates for the 12-month period prior to the baseline, which is the 12-month 
period prior to the breakpoint.  “breakpoint jump” columns correspond to the 12-month period starting with the 
quarter of  the break, while the last two columns correspond to 2 years after the breakpoint. Bold coefficients are 
significant at 5% level. 
 
 
 

Table 4:  Heterogeneity in magnitude of price and income changes 

bottom 1/3 top 1/3 bottom 1/3 top 1/3 bottom 1/3 top 1/3

(1) (2) (3) (4) (5) (6)

a) Timing

MSA log prices 0.004 ‐0.034 0.030 0.038 0.069 0.092

(0.013) (0.010) (0.013) (0.015) (0.017) (0.021)

MSA log income 0.008 0.010 0.027 0.014 0.033 0.025

(0.014) (0.011) (0.011) (0.011) (0.014) (0.016)

neighborhood log prices ‐0.019 ‐0.029 0.021 0.066 0.050 0.143

(0.005) (0.011) (0.006) (0.017) (0.011) (0.023)

neighborhood log income ‐0.015 ‐0.003 0.022 0.038 0.039 0.047

(0.008) (0.008) (0.005) (0.009) (0.009) (0.013)

b) Supply elasticity

MSA log prices ‐0.015 ‐0.020 0.038 0.023 0.082 0.053

(0.012) (0.016) (0.014) (0.017) (0.015) (0.016)

MSA log income ‐0.018 0.009 0.025 0.007 0.038 0.009

(0.014) (0.014) (0.010) (0.014) (0.011) (0.014)

pre‐trend breakpoint jump 2 years after break

 
Notes: This table presents heterogeneity in estimates in the relevant variables around the breakpoint for MSAs using 
a version of equation (5).  It interacts all relative year dummies with dummies for bottom, middle, and top one-third 
parts of the distribution of breakpoint timing and supply elasticity (in separate models). All estimates are in logs.  
Pre-trend columns show estimates for the 12-month period prior to the baseline, which is the 12-month period prior 
to the breakpoint.  “Breakpoint jump” columns correspond to the 12-month period starting with the quarter of the 
break, while the last two columns correspond to 2 years after the breakpoint. Bold coefficients are significant at 5% 
level. 
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Table 5:  Other demand shifters and robustness tests around breakpoint 

MSA averages

(std dev) MSA neighborhood MSA neighborhood MSA neighborhood

(1) (2) (3) (4) (5) (6) (7)

Buyer Characteristics

% minority 0.13 ‐0.003 ‐0.003 ‐0.003 ‐0.008 0.000 ‐0.006

(0.10) (0.002) (0.001) (0.002) (0.002) (0.004) (0.003)

% white 0.72 0.003 0.004 0.001 0.004 ‐0.007 ‐0.003

(0.13) (0.003) (0.001) (0.003) (0.002) (0.005) (0.003)

% speculation 0.12 0.002 0.006 0.003 0.007 0.006 0.006

(0.03) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Credit Markets

% subprime 0.15 ‐0.001 ‐0.003 0.002 0.000 0.009 0.008

(0.06) (0.004) (0.002) (0.004) (0.001) (0.006) (0.003)

% FHA loans 0.12 ‐0.006 ‐0.007 ‐0.010 ‐0.011 ‐0.018 ‐0.018

(0.10) (0.005) (0.002) (0.005) (0.002) (0.008) (0.004)

mean LTV 0.72 ‐0.005 ‐0.006 ‐0.001 ‐0.005 0.001 ‐0.005

(0.12) (0.004) (0.002) (0.004) (0.002) (0.006) (0.004)

mortgage rate 6.58 ‐0.338 ‐0.237 ‐0.141 ‐0.129 ‐0.109 ‐0.135

(0.82) (0.042) (0.028) (0.043) (0.031) (0.043) (0.068)

Prices and income

rents 805 ‐0.003 0.014 0.025

(333) (0.010) (0.011) (0.016)

homebuyer income 78439 0.010 ‐0.003 0.030 0.032 0.051 0.046

(18263) (0.008) (0.005) (0.008) (0.006) (0.012) (0.008)

per capita income 30028 0.005 0.009 0.012

(5673) (0.002) (0.003) (0.004)

Quantitites and supply

transactions 2320 0.039 0.064 0.026 0.051 0.012 0.048

(3044) (0.019) (0.022) (0.020) (0.011) (0.030) (0.017)

net migration 0.65 0.233 0.044 ‐0.185

(1.21) (0.057) (0.060) (0.088)

new supply 0.82 0.024 0.016 0.030 ‐0.008 0.036 0.072

(0.62) (0.022) (0.020) (0.025) (0.026) (0.039) (0.039)

building permits 0.34 0.013 ‐0.001 ‐0.002

(0.25) (0.011) (0.014) (0.021)

construction costs 56608 0.001 0.002 ‐0.002

(6991) (0.003) (0.004) (0.005)

square footage 1770 6.160 3.097 ‐5.971 ‐3.682 ‐14.270 ‐9.397

(172) (5.460) (2.430) (5.088) (3.800) (7.842) (5.515)

bathrooms 2.13 0.005 0.005 ‐0.005 ‐0.005 ‐0.011 ‐0.012

(0.24) (0.006) (0.003) (0.006) (0.005) (0.010) (0.007)

pre‐trend breakpoint jump 2 years after break

Notes:  This table presents estimates of changes in the relevant variables around the breakpoint for both MSAs and 
neighborhoods using equation (5).  Column 1 shows MSAs averages and standard deviations.  All other estimates 
are in logs.  Pre-trend columns show estimates for the 12-month period prior to the baseline, which is the 12-month 
period prior to the breakpoint.  “Breakpoint jump” columns correspond to the 12-month period starting with the 
quarter of the break, while the last two columns correspond to 2 years after the breakpoint. Bold coefficients are 
significant at 5% level. 


