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THE BOHNENBLUST-SPITZER ALGORITHM
AND ITS APPLICATIONS

J. MICHAEL STEELE

Abstract. The familiar bijections between the representations of permuta-
tions as words and as products of cycles have a natural class of “data driven”
extensions that permit us to use purely combinatorial means to obtain precise
probabilistic information about the geometry of random walks. In particular,
we show that the algorithmic bijection of Bohnenblust and Spitzer can be used
to obtain means, variances, and concentration inequalities for several random
variables associated with a random walk including the number of vertices and
length of the convex minorant, concave majorant, and convex hull.

1. Introduction

The most direct way to represent a permutation σ of {1, 2, . . . , n} is by the per-
mutation word (σ1, σ2, ..., σn) were σk is simply the image of k under the mapping
σ : [n] → [n]. Nevertheless, there are many other ways to represent a permutation,
and there are also many different bijections between the structures that provide
these representations. The purpose of this article is to show how the geometry of a
random walk can be made more tractable by exploiting a special bijection between
the set of word representations and the set of representations as products of cycles.
The most novel feature of this bijection is that it is “data driven” in a sense that
will soon be made explicit. The benefit of this class of bijections is that it permits
us to establish identities that tell us about more than just the structure of the set
of permutations. In particular, we will see how these data driven bijections can
be used to obtain geometrical information about the convex minorant and concave
majorant that make up the bottom and top of the convex hull of the graph of a
random walk.

At the heart of our analysis is an algorithm that appears implicitly in the proof
due to H.F. Bohnenblust of a combinatorial lemma due to F. Spitzer. Spitzer’s
combinatorial lemma has been widely used by probablilists, but probabilists seem
to have ignored the fact that the algorithm actually gives us considerably more
information than the particular lemma that it was designed to prove.

Before developing the Bohnenblust-Spitzer algorithm, we need to collect a few
facts about the cycle structure of a random permutation. The required facts are
well-known to experts, but the approach to these facts via record times is so sim-
ple and so powerful that it deserves to be known by everyone. We take up the
Bohnenblust-Spitzer algorithm and suggest that one simple picture goes a long way
toward making “everything obvious.”
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2 J. MICHAEL STEELE

Next, we turn our attention to the applications of the Bohnenblust-Spitzer algo-
rithm, and, in short order, we will collect a harvest of concrete results on the ge-
ometry of random walk. Finally, we point out some limitations of the Bohnenblust-
Spitzer algorithm and mention several attractive open problems.

2. Standard Cyclical Representations and Random Permutations

Any permutation τ has a representation as a product of cyclic permutations

τ = (a1a2 . . . ai1)(ai1+1ai1+2 . . . ai2) · · · (aiν−1+1aiν−1+2 . . . aiν ),

but this representation is far from unique unless we impose some further restric-
tions. First, a cyclical permutation of any block does not change the represented
permutation, so we can always take the first element of each block to be the largest
element of the block. Also, the order in which the blocks are written does not
change the permutation, so we can also take the blocks in that order that puts
the leading elements into an increasing sequence. Cyclic representation that satisfy
these two conditions are said to be standard, and the notion of a standard repre-
sentation as a product of cyclical permutation leads us very quickly to a detailed
understanding of the number ν = ν(τ) of cycles in a random permutation τ .

The key combinatorial observation is that if we are given the word representation
of a random permutation σ, then there is a simple way to associate σ with the
standard product cycle representation of another permutation τ (which typically
differs from σ). Here is how the recipe goes. If σ = (σ1, σ2, ..., σn), we say that
σk is a record provided that σk > max{σj : j < k}, and, if we break the word
(σ1, σ2, ..., σn) into blocks so that each new record starts a new block, then it is
immediate that the resulting set of ordered blocks fulfills all of the requirements of
a standard cyclical representation.

Next, there is a useful probabilistic observation. If we let ξk equal one or zero
accordingly as σk is or is not a record of the random permutation word σ, then by
direct calculation, one can show that the random variables {ξk : 1 ≤ k ≤ n} are
independent and P (ξk = 1) = 1/k. To see why the last equation holds, one just
needs to note that of the k! possible orderings of {σ1, σ2, . . . , σk} in the permutation
words that begin with such elements, there are exactly (k−1)! for which the largest
element occurs at the kth place. An analogous (but slightly longer) argument also
establishes the independence of the set of random variables {ξk : 1 ≤ k ≤ n}.

We therefore find that the number of νn = νn(τ) of cycles in a random per-
mutation τ of [n] has the same distribution as the sum of n independent random
variables ξ1 + ξ2 + · · ·+ ξn, and such sums are very well understood. In particu-
lar, the mean and variance of νn have simple expressions in terms of the harmonic
numbers Hn,

(1) E[νn] =
n∑

k=1

1
k

def= Hn, and Var[νn] =
n∑

k=1

1
k

(
1− 1

k

)
= Hn + O(1),

and the Feller-Lindeberg Central Limit Theorem can be applied to obtain the as-
ymptotic distribution of νn,

(2) lim
n→∞

P

(
(νn −Hn)/

√
Hn ≤ t

)
=

1√
2π

∫ t

−∞
e−x2/2 dx.
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Finally, the characterization of νn as a sum of independent random variables can be
used to obtain concentration results (or large deviation inequalities) for νn. These
will be given a bit later when they are needed.

3. Bohnenblust-Spitzer Algorithm

Now we are ready to develop the Bohnenblust-Spitzer algorithm and to see
how it compares with the basic record-time bijection. The data that drives the
algorithm is simply a sequence of n real numbers x1, x2, ..., xn that we assume
to be linearly independent over Z; that is, we assume that whenever we have
a1x1 + a2x2 + · · ·+ anxn = 0 for some a = (a1, a2, . . . , an) ∈ Zn then we must
have a = 0.

Here is the algorithm. We take any permutation σ with word representation
(σ1, σ2, . . . , σn), and we first form the partial sums sk(σ) given by

sk(σ) = xσ1 + xσ2 + · · ·+ xσk
for 1 ≤ k ≤ n.

Next, we consider the set of n points pk = ( k, sk(σ) ) ∈ R2, and we compute the
least concave majorant M(σ) of these points. Since these points are automatically
given to us in order of increasing x-coordinate, the convex hull algorithm of Graham
and Yao (1983) tells us that one can compute M(σ) in linear time. At this point
one should consider Figure 1 which gives a simple example of such a majorant.

2 4 6 8 10

1

2

3

4

5

6

7

Figure 1. The Concave Majorant Guides Us to the Cycle Cuts

The last step of the algorithm is to break the word representation for σ into
blocks that correspond to the faces of M(σ). Specifically, we let i1, i2, . . . , iν−1

denote the set of indices at which M(σ) makes a turn, and, to close out the list, we
set iν = n. Finally, we define the permutation τ to be the product of cycles given
by

(σ1, σ2, . . . , σi1)(σi1+1, σi1+2, . . . , σi2) · · · (σiν−1+1, σiν−1+2, . . . , σiν ).
This representation for τ completes the algorithm for the mapping σ 7→ τ , but there
are two important geometric features of this representation that one should note.

First, by the concavity of the majorant, the slopes of the successive faces form a
decreasing sequence, and in terms of the sequence {xk} this tells us that

1
i1

i1∑

j=1

xσj >
1

i2 − i1

i2∑

j=i1+1

xσj > · · · > 1
iν − iν−1

iν∑

j=iν−1+1

xσj .
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Second, from the definition of the concave majorant, we see that if we set i0 = 1,
then for all 0 ≤ k < ν and all ik < j < ik+1 the points

(j, sj(σ)) = (j, xσ1 + xσ2 + · · ·+ xσj
)

all lie below the line from the point (ik, sik
(σ)) to the point (ik+1, sik+1(σ)). We

now just need to check that these two properties are enough to guarantee that the
mapping σ 7→ τ is an honest bijection.

4. Why Does It Work?

We need to show that given any permutation τ and any representation of τ as a
product of cycles, there is a unique σ whose word representation is mapped to τ by
the Bohnenblust-Spitzer algorithm. An important element of this inversion process
is an elementary “cycle lemma.” The surveys of Dershowitz and Zaks (1990) and
Snevily and West (1998) show that such lemmas come in many flavors and have
many different combinatorial consequences. Here we only need a simple geometric
version.

Lemma 1 (Cycle Lemma). If {x1, x2, ..., xn} is a sequence of n real numbers that
are linearly independent over Z, then there is a unique k such that the sequence
y1, y2, ..., yn given by

y1 = xk, y2 = xk+1, ..., yn−k = xn, yn−k+1 = x1, ..., yn = xk−1

has the property that for each 1 ≤ j ≤ n the point (j, y1 + y2 + · · · + yj) ∈ R2 lies
above the line from (0, 0) to (n, y1 + y2 + · · ·+ yn).

The proof of this lemma is almost immediate if we make the right normalization
and if we draw the right picture. For the normalization, we simply let s denote
the sum of the {xk} and set zk = xk − s/n for 1 ≤ k ≤ n. The sum of the zk is
then equal to zero, and a typical graph of the partial sums z1 + z2 + · · · + zk for
0 ≤ k ≤ n is given in Figure 2.

1 2 3 4 5 6 7 8 9 10

Figure 2. The Minimum Partial Sum of the {zj} Tells Us Where
to Start Our Cycle to Get a Path that Stays Positive.

Now, by the linear independence of the {xj}, there is a unique minimum in
the set of partial sums of the {zj}. Also, from the figure it is evident that if we
take k to be the x-coordinate of that minimum, then the incremental partial sums
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zk+1, zk+1 + zk+2, . . . on up to zk+1 + zk+2 + · · ·+ zn + z1 + z2 + · · ·+ zk−1 are all
strictly positive. Finally, if we undo our normalization, we see that the positivity
of these partial sums and the uniqueness of k are precisely the assertions of the
lemma.

Now suppose we have a permutation τ , and a representation of τ as a product
of cyclic permutations,

τ = (a1a2 . . . ai1)(ai1+1ai1+2 . . . ai2) · · · (aiν−1+1aiν−1+2 . . . aiν
).

Without changing the permutation τ we can rearrange the blocks of the represen-
tation so that the average value of the {xi} over the blocks is in decreasing order;
in other words, we can assume without loss of generality that we have

(3)
1
i1

i1∑

j=1

xaj
>

1
i2 − i1

i2∑

j=i1+1

xaj
> · · · > 1

iν − iν−1

iν∑

j=iν−1+1

xaj
.

Next, by the cycle lemma (or rather its ”below the line” version), we note that by
a rotation within each of the blocks of τ , we can assume that for all 0 ≤ k < ν and
all ik + 1 ≤ s < ik+1 then we have that

(4) (s− ik,

s∑

j=ik+1

xaj ) lies below the line from (0, 0) to (ik+1 − ik,

ik+1∑

j=ik+1

xaj ).

The linear independence of the {xi} and the uniqueness assertion of the cycle lemma
are all that one needs in order to check that the product cycle representation for τ
is uniquely specified when the block sums decrease according to the inequalities (3)
and when the majorization property (4) holds for each of the blocks. Finally, the
uniqueness of this representation for τ makes it immediate that the permutation σ
with word representation (a1a2...an) is the unique permutation that is mapped to
τ by the Bohnenblust-Spitzer algorithm.

These observations tell us that Bohnenblust-Spitzer algorithm does indeed pro-
vide a bijection of the set of permutations, but this just begins the story. The real
task is to see how this bijection fits together with data set {xi} that drives it.

5. Interpreting the Picture

The power of the Bohnenblust-Spitzer bijection comes from the fact that many
of the geometrical features of Figure 1 have two interpretations. Such features can
be expressed equally well in terms of the word representation for σ, or in terms of
the product cycle representation of τ . For example, if we write C ∈ τ to indicate
that C is a cycle of τ , then the length of the concave majorant of the point set
Bσ = { (0, 0), (1, s1(σ)), . . . , (n, sn(σ)) } can be written as

(5)
∑

C∈τ

(
|C|2+

( ∑

i∈C

xi

)2) 1
2

,

and, in fact, almost all of the geometric quantities in Figure 1 can be written in the
general form

(6) Zf (τ) =
∑

C∈τ

f

(
|C|,

∑

i∈C

xi

)
.
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Specifically, if we take f(k, y) ≡ 1, then Zf (τ) is equal to the number of faces in
the concave majorant of Bσ, and if we take f(k, y) = y/k then Zf (τ) is equal to
the sum of their slopes.

One of the most interesting choices of f — and the only one considered by
Spitzer (1956) — is simply f(k, y) = max(0, y). For this choice, the concavity of
the majorant implies that Zf (τ) simply equals the sum of the rises in the majorant
until it reaches its maximum. In other words, we have

(7) max(0, s1(σ), . . . , sn(σ)) =
∑

C∈τ

( ∑

i∈C

xi

)+

,

where y+ is used as shorthand for max(0, y). This marvellous identity of Spitzer
(1956) has many important consequences, and it has inspired much subsequent
work. Nevertheless, the preceding discussion should make clear that this iden-
tity contains just part of the geometric information that one can draw from the
Bohnenblust-Spitzer bijection.

6. Computing Expectations

To see how one can exploit formulas like (7) and its geometric cousin (5), it is a
good exercise to show that for any sequence of independent identically distributed
random variables {Xi : 1 ≤ i ≤ n}, the partial sums Sk = X1 + X2 + · · · + Xk

satisfy the identity,

(8) E[max(0, S1, S2, ..., Sn)] =
n∑

k=1

1
k

E[S+
k ].

The critical trick that brings the Bohnenblust-Spitzer bijection into play is simply
prerandomization of the order of the summands, an idea that is familiar in the
theory of algorithms as a way to guarantee the expected running time of QuickSort.

There is also one small technical issue needed in the proof of the expectation
identity (8). Since the Bohnenblust-Spitzer bijection requires that the {xi} be
independent over Z, we will first prove the identity under the assumption that the
random variables {Xi} have a density. This assumption is more than enough to
guarantee that with probability one the set of real numbers {Xi(ω)} will form an
independent set over Z.

Now, if we let Sn denote the set of all permutations of [n], then the fact that the
random vectors (Xσ1 , Xσ2 , ..., Xσn) have the same distribution for all σ ∈ Sn tells
us that we can write E[max(0, S1, S2, ..., Sn)] as

1
n!

E

[ ∑

σ∈Sn

max
(
0, Xσ1 , Xσ1 + Xσ2 , . . . , Xσ1 + Xσ2 + · · ·+ Xσn

)]
,

so the Bohnenblust-Spitzer bijection and the combinatorial identity (7) tell us that
the last expectation is also equal to

1
n!

E

[ ∑

τ∈Sn

n∑

k=1

∑

C∈τ,|C|=k

( ∑

i∈C

Xi

)+]
.
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Since there are exactly (n − k)!(k − 1)!
(
n
k

)
permutations that contain the cycle C

when |C| = k, the sum over the permutations may be further simplified to

1
n!

n∑

k=1

(n− k)!(k − 1)!
(

n

k

)
E

[( k∑

i=1

Xi

)+]
=

n∑

k=1

1
k

E[S+
k ].

This identity completes the proof of the target formula (8) in the case when the
{Xi} have a density. Its validity for independent random variables {Xi} with an
arbitrary distribution then follows by standard approximation arguments.

Variations on this theme can be created almost at will, yet we content ourselves
with just two further examples, the length Ln of the concave majorant and the
sum An of the slopes of its faces. Although the function f(k, y) =

√
k2 + y2

that represents the length functional in the form (6) depends on both y and k,
this function is no harder to handle than the univariate function f(y) = y+ that
corresponds to max(0, S1, S2, ..., Sn). The additional parameter does not interfere
with our earlier computation, and one finds without difficulty that

(9) E[Ln] =
n∑

k=1

1
k

E

[√
k2 + S2

k

]
.

Now, without some additional distributional assumptions, this expectation cannot
be significantly simplified, but, if we assume that the {Xi} satisfy E[|Xi|] < ∞ and
E[Xi] = µ, then we can get some useful asymptotic information. If we take k inside
the radical and use the strong law of large numbers and the uniform integrability
of {Sk/k}, we easily find

E[Ln] ∼ n
√

1 + µ2 as n →∞.

This interesting geometric formula tells us that the expected length of the con-
cave majorant grows exactly like the length of the line from (0, 0) to the point
(0, E[Sn]) = (n, nµ).

The slope functional also has an informative interpretation in the limit. Here we
need to assume that the {Xi} have a density as well as a first moment µ, but, under
these conditions, the general representation (6) and the now familiar expectation
calculation tell us that we also have

(10) E[An] =
n∑

k=1

1
k

E[Sk/k] = µHn ∼ µ log n.

In the next section we will find that the expected number of faces of the concave
majorant exactly equals the harmonic number Hn, so, in an average sense, the slope
formula (10) tells us that the average slope of the concave majorant is µ. One can
view this result as a very weak form of the law of large numbers for the slope sizes.

7. Looking Harder at the Faces

The methods of the last section can be used to calculate the expectation of the
number Fn of faces of the concave majorant, and the simple choice of f(k, y) ≡ 1
in the representation (6) quickly brings us to the nice distribution free formula

(11) E[Fn] =
n∑

k=1

1
k
≡ Hn ∼ log n.
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Nevertheless, in this case there is an alternative derivation of the formula (11) that
is much more informative. In particular, this alternative approach will give us the
exact variance and asymptotic distribution of Fn; results that are far out of reach
for Ln and An.

The key observation is that one can show that for independent random variables
{Xk} with a density, the number of faces Fn of the concave majorant of the random
walk will have exactly the same distribution as Rn, the number of record times of
the {Xk}. Since we saw in Section 2 that Rn is equal in distribution to a sum
of independent Bernoulli random variables, the link between Rn and Fn gives us
a powerful tool for the analysis of Fn, though we will find that there are some
instructive limitations to the inferences one can draw from this link.

If we let F (xσ1 , xσ2 , . . . , xσn) denote the number of faces of the concave majorant
of the set of points Bσ = { (0, 0), (1, s1(σ)), . . . , (n, sn(σ)) }, where sk(σ) denotes the
partial sum xσ1 + xσ2 + · · ·+ xσk

for 1 ≤ k ≤ n and where the real numbers {xk}
are independent over Z, then the Bohnenblust-Spitzer bijection tells us that for all
σ ∈ Sn we have

(12) F (xσ1 , xσ2 , . . . , xσn
) =

∑

C∈τ

1.

This formula and the one-to-one correspondence between the σs and the τs combine
to tell us that if σ is chosen at random then F (xσ1 , xσ2 , . . . , xσn) is equal to the
number of cycles in the random permutation τ , and we already know from Section 2
that the number of cycles in a random permutation is equal in distribution to Tn

where

(13) Tn =
n∑

k=1

ξk, P (ξk = 1) =
1
k

, P (ξk = 0) = 1− 1
k

,

and the {ξk : 1 ≤ k ≤ n} are independent. We would like to deduce from these facts
that Fn = F (X1, X2, ..., Xn) is equal in distribution to Tn, and an honest derivation
of this intuitive fact seems easiest with the use of characteristic functions.

From formula (12) and the known distribution of the number of cycles in a
random permutation, we have for all θ ∈ R that

1
n!

∑

σ∈Sn

exp(iθF (xσ1 , xσ2 , . . . , xσn)) =
1
n!

∑

τ∈Sn

exp
(

iθ
∑

C∈τ

1
)

= E[exp(iθTn)]

and, in terms of the random variables {Xk : 1 ≤ k ≤ n}, this tells us that with
probability one we have

(14)
1
n!

∑

σ∈Sn

exp(iθF (Xσ1(ω), Xσ2(ω), . . . , Xσn(ω))) = E[exp(iθTn)].

When we take the expectation on both sides of the pointwise identity (14) we find
that E[exp(iθFn)] = E[exp(iθTn)], so Fn and Tn are indeed equal in distribution.

For each n, 1 ≤ n < ∞, the number of cycles νn, the number of records Rn,
the number of faces Fn, and the Bernoulli sum Tn all have the same distribution,
so the mean-variance formulas (1) and central limit theorem (2) for νn may seem
to provide quick answers for all of the natural questions one might ask about the
sequences {Fn} and {Rn}. Nevertheless, a curious gap emerges when we consider
the strong law of large numbers.
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8. Of Processes and Strong Laws

The relationship between the number of records Rn and the Bernoulli sums Tn

turns out to be much stronger than the relationship we have found between Fn and
Tn. In fact, when one looks hard at the argument of Section 2, or simply consults
the original article of Rényi (1962), then one finds that {Rn : 1 ≤ n < ∞} and
{Tn : 1 ≤ n < ∞} are equivalent as processes; that is, all of the joint distributions of
these random variables are equal. Among other things, this equivalence as processes
tells us that the strong law of large numbers for Rn,

P ( lim
n→∞

Rn/ log n = 1) = 1,

will follow from the corresponding law for the Bernoulli sum Tn. As Rényi (1962)
observes, the strong law for the process {Tn} is an immediate consequence of Kol-
mogorov’s Three Series Theorem, so we do indeed have a strong law for the process
{Rn}.

In the case of the number of faces Fn, we know that for each n the random
variable Fn has the same distribution as Tn, but the processes {Fn : 1 ≤ n < ∞}
and {Tn : 1 ≤ n < ∞} certainly are not equivalent. To see this, we just need
to note that T1 ≤ T2 ≤ · · · ≤ Tn with probability one, but no such monotonicity
relationship holds for the sequence {Fn}.

One consequence of the nonequivalence of {Tn} and {Fn} is that the strong
law for {Tn} does not imply a corresponding strong law for {Fn}. Neverthe-
less, one might hope to prove such a strong law by first obtaining good bounds
on the tail probabilities P (Tn ≥ t) and then exploiting the marginal equivalence
P (Tn ≥ t) = P (Fn ≥ t). We pursue this plan in the next section.

9. Tail Probabilities for the Number of Faces

The classic inequality of Bennett (1962), Equation (8b), tells us that if the
independent random variables {Yk : 1 ≤ k ≤ n} satisfy

E[Yk] = 0, sup
k
||Yk||∞ ≤ a, and

n∑

k=1

E[Y 2
k ] ≤ b2,

then we have the tail bound

(15) P

( n∑

k=1

Yk ≥ t

)
≤ exp

{
t

a
−

[
t

a
+

b2

a2

]
log

(
1 +

at

b2

)}
for all t ≥ 0.

If we let Yk = ξk − 1/k where the ξk are the summands of Tn, then both Yk and
−Yk satisfy the conditions of Bennett’s inequality with

a = 1 and b2 =
n∑

k=1

1
k
≡ Hn,

so, the elementary inequality log(1 + x) ≥ x − x/2 for 0 ≤ x ≤ 1 tells us we can
apply Bennett’s inequality to Tn and −Tn to deduce from Fn

d= Tn that Fn satisfies

(16) P (|Fn −Hn| ≥ εHn) ≤ 2 exp(−ε2Hn/4) for all 0 ≤ ε ≤ 1
2
.

This inequality offers a useful complement to the central limit theorem for {Fn},
and it provides us with a quantitative version of the weak law of large numbers for
{Fn}. Nevertheless, the estimate (16) still fall short of the type of tail bound that
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might be combined with the Borel-Cantelli lemma to get a strong law for the ratios
{Fn/ log n}.

To be sure, if we set N(s) = bs8/ε2c for s = 1, 2, ..., then the inequality (16) and
the Borel-Cantelli lemma imply that

(17) lim
s→∞

1
HN(s)

FN(s) = 1 a.s.,

and, if the sequence {Fn} were monotone like {Tn}, then the limit (17) would imply

(18) lim
n→∞

1
Hn

Fn = 1 a.s..

Unfortunately, as we noted earlier, the sequence {Fn} is not monotone increasing,
and the issue of a strong law for the ratios {Fn/ log n} remains open.

In fact, there is even room to doubt if such a law is true, despite the validity of
the law for the close cousins {Tn} and {Rn}. When the increments have zero mean,
so E[Xk] = 0 for = 1, 2, ..., one source of doubt comes the almost sure recurrence
of the random walk {Sn}, the infinite expected time between the recurrence times,
and the curious behavior explained by the arcsin laws. Also, we will find in the
next section that even when E[Xk] 6= 0 the process {Fn} is likely to have recurring
instances of large percentagewise decrease. Therefore, for the moment at least, the
heuristic arguments for and against the strong law for {Fn/ log n} are well balanced.

10. Face Strides and the Cycle Structure

The last several sections provide answers to the most direct geometrical questions
concerning the geometry of the concave majorant, but there is a further geometric
quantity introduced by Suidan (2000) where the Bohnenblust-Spitzer bijection can
prove very useful. For each face of the concave majorant, we consider the length
of the projection of that face on the x-axis, and we then consider these lengths in
decreasing order

λ1(n) ≥ λ2(n) ≥ · · · ≥ λk(n) ≥ · · · .

To avoid conflicts with our standing terms, we will call the {λk(n)} the strides of
the concave majorant, and, in particular, λ1(n) is the length of the longest stride.
For a random walk for with increments {Xk : 1 ≤ k ≤ n} that have a density, the
Bohnenblust-Spitzer algorithm then tells us that set of strides {λk(n)} is exactly
equal in distribution of the set of cycle lengths of a random permutation.

From the work of Lloyd and Shepp (1966), Arratia and Tavaré (1992), and others,
the probability theory of such cycle lengths is extremely well understood. To give
one inference from among many that can be read off from known results, we just
note that equation (14) of Lloyd and Shepp (1966) gives us

lim
n→∞

1
n

E[λ1(n)] =
∫ ∞

0

exp
[
− x−

∫ ∞

x

e−y

y
dy

]
dx = 0.6243...,

so, in the typical case, one single stride covers more than half of the observations.
One consequence of the existence of such dominating strides is that the periodic
emergence of a new one seems likely to cause a major decrease in Fn. In turn, this
fact offers room for doubting the validity of a strong law for {Fn/ log n}.
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11. The Convex Hull

We are now ready to consider what is surely one of the most natural geometric
features of the graph of a random walk — the convex hull. If {Xk : 1 ≤ k < ∞}
is any sequence of independent absolutely continuous random variables, we now
let F hull

n denote the number of faces of the convex hull of the random point set
B = { (0, 0), (1, S1)), . . . , (n, Sn) } determined by the random walk Sk = X1 +X2 +
· · ·+Xk. To complement this notation we can also let F top

n and F bottom
n respectively

denote the number of faces of the concave majorant and convex minorant of B.
Since F top

n is just the variable that we denoted earlier simply by Fn and since the
distribution of Fn did not depend on the distribution of the {Xk}, we now see that
F top

n and F bottom
n are equal in distribution. Oddly enough, it seems hard to judge

if this fact should be regarded as surprising or as obvious; there is support for each
perspective.

In any case, we have the trivial identity

(19) F hull
n = F top

n + F bottom
n ,

and, as a consequence, we find the nice expectation formula

(20) E[F hull
n ] = 2

n∑

k=1

1
k

.

As it happens, this formula is a special case of a more general result of Baxter
(1961), and Baxter’s proof even turns out to be simpler than the derivation we
have given here for the distribution of Fn. Nevertheless, we will shortly see that
the present methods yield many results that seem to escape Baxter’s method.

Baxter’s key observation was that Lemma 1 (the cycle lemma) may be gener-
alized to genuinely two dimensional random walks without any real change in the
proof. Again, the trick is to start one’s cycle at the lowest point of the path. By
building on this observation, Baxter was able to prove that if {Zk : 1 ≤ k ≤ n} is
an independent sequence of random vectors with values in R2, then the expected
value of the number of faces of the convex hull of the partial sums Z1 +Z2 + ...+Zk,
1 ≤ k ≤ n is exactly equal to 2

∑n
k=1

1
k provided that with probability one the set

{Zk(ω) : 1 ≤ k ≤ n} is linearly independent over Z.
The reason for our somewhat labored statement of this result is that we want to

stress that Baxter’s theorem applies to the vectors Zk = (1, Xk) where the {Xk}
are independent random variables with a density. It is for this choice that Baxter’s
expectation gives us the formula (20) for the convex hull of the graph of a one-
dimensional random walk. In this important case, the {Zk} are not absolutely
continuous, but they are still almost surely linearly independent over Z.

Baxter’s method is well-focussed for the computation of expectations, and it
can also be used to get information on the expected length of the convex hull, a
problem first studied Spitzer and Widom (1961). These authors based their proof
on a geometric formula going back to Cauchy and on a formula given by Kac (1954)
whose proof Kac attributes to F. Dyson. Strangely enough, neither the method of
Baxter nor the method of Spitzer and Widom seems to be able to get information
about the number of faces or length of the concave majorant. The ability to look
at the convex hull problem “one half at a time” seems to one of the ways that the
Bohnenblust-Spitzer bijection gains power over the more direct applications of the
cycle lemma.
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A second draw back of Baxter’s method is that it does not offer any information
about the variances or any other measures of concentration, although such informa-
tion sometimes can be obtained by more direct probabilistic means. For example,
Snyder and Steele (1993) used the representation of Spitzer and Widom (1961)
together with martingale methods to obtain variance estimates and concentration
inequalities for the length of the hull of the two-dimensional random walk.

One of the interesting features of the face count functional F hull
n is that it resists

any such attack by the martingale bounded difference method. The problem is that
if one changes one of the {Xi} there is no control over the change that is made in
F hull

n = F hull
n (X1, X2, ...Xn). Nevertheless, our understanding of F top

n and F bottom
n

can be used to get variance bounds and concentration inequalities.
Since we have no information at present about the correlation between F top

n and
F bottom

n , the best that one can deduce from the representation (19) is simply

Var[F hull
n ] ≤ 4

∑

k=1

1
k

(1− 1
k

) ≤ 4Hn.

We might have hoped to obtain an exact formula for Var[F hull
n ], but there are still

reasons to be grateful. First, this bound is likely to be of the right order, and, in any
case, it provides the first non-trivial bound for the variance of the number of faces of
the convex hull of the graph of a one-dimensional random walk. It remains a chal-
lenge to see if one can obtain an analogous estimate for the number of faces of the
convex hull of the two-dimensional random walk {Z1 + Z2 + ... + Zk : 1 ≤ k ≤ n}
in the case where Baxter’s method provides the expected value.

One should also note that the concentration inequality (16) also provides infor-
mation about the concentration of F hull

n about its mean, and just for the record we
note that it implies

(21) P ( |F hull
n − E[F hull

n ] | ≥ εE[F hull
n ]) ≤ 4 exp(−ε2/4) for all 0 ≤ ε ≤ 1

2
.

Finally, since we have a central limit theorem (2) for F top
n and F bottom

n , we might
expect to have a corresponding theorem for their sum. Such a result would be
immediate if we had an asymptotic understanding of the correlation of F top

n and
F bottom

n , but, at present, no such understanding of the joint distribution is available.
Finally, we should note that the article by Barndorff-Nielsen and Baxter (1963)

provides interesting information about one of the most natural functionals of the
convex hull of the two-dimensional random walk, the area. Regrettably, the bijec-
tion provided by the Bohnenblust-Spitzer algorithm does not seem to be able to
contribute to the understanding of the area functional, even when we restrict our
attention to the convex hull of the graph of a one-dimensional random walk.

12. Concluding Remarks

The only way that Spitzer used the bijection given by the Bohnenblust-Spitzer
algorithm was in his study of the maximal process Mn = max(0, S1, S2, ..., Sn)
for the random walk {Sk}, but the aim of this article has been to show that the
bijection can be used to obtain useful information about many other geometrical
features. Specifically, we have seen that the Bohnenblust-Spitzer bijection can be
used to obtain information on the length of the concave majorant and the number
of faces of this majorant. For the latter, we also found the sequence of distributional
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identities
Fn

d= Rn
d= νn

d= Tn

that relates Fn to the number of records in a random permutation, number of
cycles in a random permutation, and the random variable Tn given by the simple
Bernoulli sum (13). Almost all of the information one might want about Fn is
easily read from these identities, except for the crucial information about the joint
distributions of the process {Fn} that might help us resolve the interesting question
of a strong law for {Fn/ log n}.

Traditionally, the result from Spitzer (1956) that most people have regarded
as key has not been the Bohnenblust-Spitzer bijection but rather the analytical
formula

(22) 1 +
∞∑

n=1

φn(θ) tn = exp
[ ∞∑

n=1

ψn(θ)
n

tn
]

that relates the pair of characteristic functions

ψn(θ) = E[exp(iθS+
n )] and φn(θ) = E[exp(iθMn)].

This formula has many important consequences, and, as the essay of Kesten (1993)
makes clear, almost all of the investigators to follow Spitzer (1956) have taken this
formula as their starting point. One example in this tradition that prompted much
further work is the instructive article of Wendel (1958) which first gives a direct
proof of Spitzer’s Formula by analytic methods and subsequently shows how one
may reverse Spitzer’s argument to prove Spitzer’s combinatorial lemma from the
exponential formula (22).

Here we have focused entirely on the combinatorial, algorithmic, and geometric
aspects of the Bohnenblust-Spitzer bijection without any attention to the analytic
approach, but we should also note that there are also interesting geometric results
that can be cast in an analytic form analogous to Spitzer’s identity. In particular,
one can show that the exponential relation (22) also holds for the more geometric
pair

(23) ψ̃n(θ) = E

[
exp

(
iθ

√
k2 + S2

k

)]
and φ̃n(θ) = E

[
exp(iθLn)

]
,

where, as before, Ln denotes the Euclidean length of the concave majorant.
To be sure, some of the results that we have found by other means can also

be obtained via the exponential relations for (ψn, φn) and (ψ̃n, φ̃n). For example,
Spitzer obtained the expectation

(24) E[max(0, S1, S2, ..., Sn)] =
n∑

k=1

1
k

E[S+
k ].

by differentiating the identity (22) and setting θ = 0, while we obtained this ex-
pectation (24) in Section 6 by summing over cycles. Also, in parallel to Spitzer’s
derivation of (24), one can differentiate the exponential formula for the pair (ψ̃n, φ̃n)
to obtain an alternative derivation of our formula

(25) E[Ln] =
n∑

k=1

1
k

E

[√
k2 + S2

k

]
.

Nevertheless, the exponential formulas do not give up their secretes willingly, and
progress was slow even in the case considered by Spitzer where special features
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of S+
n bring powerful, well-studied, Wiener-Hopf techniques smoothly into play.

Thus, despite its attractive prospects, the analytical investigation of the exponential
formula for the geometric pair (ψ̃n, φ̃n) is best left for another time and place.

This exposition of the Spitzer-Bohnenblust algorithm and its applications has
touched on the theory of record values at several points, but there is much more
that could be said. In particular, the early survey of Glick (1978) and the up-to-
date survey of Bunge and Goldie (2000) give many beautiful properties of record
times that suggests cognate questions for the geometry of the concave majorant.
On the other hand, there have been no combinatorial extensions of Spitzer’s lemma
except for Brunk (1962), which provides circumstances where generalized means
may replace the simple averages used by Spitzer. Moreover, Goldie (1989, p.172)
has observed that Brunk’s theorem can be used to give an alternative approach to
equality of the distributions of Fn and Rn, and this naturally suggests that Brunk’s
results may help with the investigation of other features of the convex majorant.
Nevertheless, Brunk’s theorem is rather complicated, and such investigations do not
look easy. Finally, it may be useful to note that Groeneboom (1983) and Pitman
(1983) have discovered a number of delicate connections between the convex mino-
rant (or concave majorant) and the geometry of Brownian motion paths, although,
for the moment, one cannot say what these interesting continuous-time results may
tell us about the Bohnenblust-Spitzer algorithm, or vice-versa.
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