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A MARTINGALE APPROACH TO SCAN STATISTICS

VLADIMIR POZDNYAKOV, JOSEPH GLAZ,

MARTIN KULLDORFF, AND J. MICHAEL STEELE

Abstract. Scan statistics are commonly used in biology, medicine, engineer-

ing and other fields where interest is in the probability of observing clusters of

events in a window at an unknown location. Due to the dependent nature of

the number of events in a large number of overlapping window locations, even

approximate solutions for the simplest scan statistics may require elaborate

calculations. We propose a new martingale method which allows one to ap-

proximate the distribution for a wide variety of scan statistics, including some

for which analytical results are computationally infeasible.

Keywords: Scan, run, pattern, martingale, stopping time.

2000 Mathematics Subject Classification: Primary: 60C05, 60G42; Sec-

ondary: 60G40, 62E17

1. Introduction

Scan statistics are used in a wide range of fields including brain imaging (Yoshida

et al. (2003)), psychology (Margai and Henry (2003)), veterinary medicine (Ene-

mark et al. (2002)), forestry (Coulston and Riitters (2003)), crime hot-spot analysis
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(Kaminski et al. (2000)), industrial quality control (Shmueli (2003a,b)), and es-

pecially molecular biology (Durand and Sankoff (2003), Goldstein and Waterman

(1992), Karlin and Brendel (1992), Naus and Sheng (1997), and Sheng and Naus

(1994)). Four recent books summarize the current status of the field: Glaz and

Balakrishnan (1999), Glaz et al. (2001), Balakrishnan and Koutras (2002) and Fu

and Lou (2003).

Different applications use scan statistics of different kinds. In the simple form

considered by Naus (1965), there is a temporal Poisson point process which is

considered over a fixed time length T and there is a fixed size window of much

shorter length. We then move (or scan) the window continuously from the start to

end, counting at each location the number of events within the window. The scan

statistic is then defined as the maximum number of events as the window moves over

all possible locations. In most applications, the main question of interest is whether

the cluster of events defined by the maximum is a likely chance occurrence or not,

so the most common null-hypothesis is that the point process is a homogeneous

Poisson process. That is, we are interested in the probability of observing at least

the observed number of events as the maximum, given that the null-hypothesis is

true. More generally, we are interested in the distribution of the test statistic.

The most commonly used variants of the scan statistic are (i) temporal and other

one-dimensional scan statistics versus spatial, spatio-temporal and higher dimen-

sional scan statistics; (ii) continuous scan statistics where events can occur anywhere

versus discrete scan statistics with a sequence of trials at which the event either

occurs or does not occur, (iii) a homogeneous versus known inhomogeneous back-

ground intensity defining the null-hypotheses, (iv) a conditional or unconditional



A MARTINGALE APPROACH TO SCAN STATISTICS 3

scan statistic where the conditioning is on the total number of events observed (v) a

fixed versus variable size scanning window, (vi) single scan statistics with only one

type of events versus double scan statistics with two or more types of events, and

(vii) univariate versus multivariate scan statistics, with the latter simultaneously

scanning multiple data streams.

While simple to formulate, the probabilistic nature of the scan statistics is very

complex due to the dependencies of the overlapping window locations considered.

Exact derivations of the distribution function is only available for the simplest

scenarios such as temporal scan statistics with fixed window size and a homogeneous

null-hypothesis. Good approximations as well as lower and upper bounds are known

for additional scan statistics, but for most practically important applications the

scan statistic must be evaluated using simulations (Glaz et al. (2001)).

Martingales have been used successfully for many practical statistical and proba-

bility problems, and their introduction has major impacts on fields such as survival

analysis (Aalen (1978), Andersen et al. (1993)). In this article we present a mar-

tingale approach to scan statistics with which it is possible to obtain good approx-

imations for the distribution of several scan statistics for which analytical results

are not readily available. Using martingales, Li (1980) derived the first moment

and we derive the second moment of the waiting time until we observe a specified

number of events within one or several windows of specified lengths. Using these

two moments we obtain approximations for the distribution of this waiting time.

The martingale approach to derive the generating function and moments is an

alternative approach to the Markov chain embedding method where the waiting

time until reaching a pattern is represented as a hitting time at a state of a relevant
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Markov chain. Elaborations on the Markov chain embedding methods and its

applications to the theory of runs and patterns are given, among others, in Fu (1986,

1996 and 2001), Chao and Fu (1991), Fu and Koutras (1994), Uchida (1998), Aki

and Hirano (1999), Antzoulakos (2001), Robin and Daudin (2001), Balakrishnan

and Koutras (2002), Fu and Chang (2002), Fu and Lou (2003) and Han and Hirano

(2003). Related methods on the occurrence of patterns include the method of

Markov renewal embedding (Blom and Thornburn (1982) and Biggins and Cannings

(1987)) and Markov chain embedding which uses analysis of exponential Markov

chains (Stefanov and Pakes (1997) and Stefanov (2000)). Recently, Stefanov (2003)

introduced a new approach to evaluate the generating function of the waiting time

for a pattern generated by both discrete and continuous processes.

The article is organized as follows. In Section 2, we present the martingale

approach for deriving the first two moments and generating function of the distri-

bution of the shortest waiting time until the occurrence of one of several predefined

patterns in a sequence of iid discrete observations. In Section 3 we use the first two

moments to approximate the waiting time distribution. In Section 4, we use these

results to evaluate approximations for the distribution of fixed window scan statis-

tics. The accuracy of these approximations is evaluated with the help of available

lower and upper bounds. In Sections 5 through 7 new approximations are derived

for the variable window scan statistics, the double scan statistics and the multivari-

ate scan statistics. Finally, some concluding remarks and open issues are reviewed

in Section 8.
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2. Moments and Generating Functions

Here we will derive the first and second moments and the generating function

of the waiting time until we observe one element from a set of several predefined

patterns. We will then show how these moments yields a computationally feasible

approximation for the distribution of the waiting time.

2.1. Expected Time. Let Z be an arbitrary discrete random variable which takes

values in the set Σ, and let {Z,Zk}k≥1 be a sequence of independent, identically

distributed random variables.

Consider a collection of finite sequences {Aj}1≤j≤K over Σ, and without loss of

generality assume that no sequence contains another as a subsequence. Next, we

denote by τAj the waiting time until Aj occurs as a run in the series Z1, Z2, .... We

are interested in both expected time of

(1) τ = min{τA1 , ..., τAK
}

and probabilities πj = P
(
τ = τAj

)
.

The martingale approach to this problem was introduced in an elegant paper

of Li(1980), and it has been further developed by Gerber and Li (1981), Williams

(1991), Blom et al. (1994), and Pozdnyakov and Kulldorff (2003). For clarity of

presentation, we will briefly review some of these results.

Following Li (1980), we introduce a measure of the amount of overlap between

two sequences. Let A = (a1, ..., am) and B = (b1, ..., bk) be two sequences over the

alphabet Σ, and for each pair (i, j) we write

δi j =





1/P(Z = bj) if 1 ≤ i ≤ m, 1 ≤ j ≤ k, and ai = bj

0 otherwise.
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Next, we define A ∗B by setting

(2) A ∗B = δ1 1δ2 2 · · · δm m + δ2 1δ3 2 · · · δm m−1 + ... + δm 1,

and we set Π = (π1, ..., πK)⊥, Y = (y1, ..., yK)⊥. Finally, we consider the matrix

(3) M =




A1 ∗A1 A1 ∗A2 ... A1 ∗AK

A2 ∗A1 A2 ∗A2 ... A2 ∗AK

... ... ... ...

AK ∗A1 AK ∗A2 ... AK ∗AK




,

which Gerber and Li (1981) proved to be nonsingular. One has two notable results

of Li (1980):

Theorem 1. (Li, 1980) The expected value of τ is given by

E(τ) =
1

y∗1 + · · ·+ y∗K
,

where Y ∗ = (y∗1 , ..., y∗K)⊥ is the unique solution to the linear system MY = 1, and

1 = (1, ..., 1)⊥.

Theorem 2. (Li, 1980) The vector of probabilities Π = (π1, ..., πK)⊥ satisfy equa-

tion M⊥Π = E(τ)1.

2.2. Generating function. Martingale arguments for finding the generating func-

tion of the waiting time in the case of one pattern were originally developed by

Gerber and Li (1981). In their method, the transition from one pattern to many is

based on some results on hitting times in a Markov chain, but our approach is based

on matching expressions of the stopped martingale for different terminal patterns.

This alternate method is intuitive and simple; moreover, it can be employed to get

higher order moments.
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To see how this works, we first consider a simple example first, and then we will

show how it can be generalized.

Example 1. We flip a fair coin and we wait for one of two sequences: A1 = HH

and A2 = HTH. We are interested in the generating function of τ = min{τA1 , τA2}.

Assume that we have two teams of gamblers. Before nth round a new gambler

from the first team joins the game and starts betting y1α
n dollars on the sequence

A1; here 0 < α < 1 and y1 is a number that we will choose later. If Zn 6= H, then

he leaves the game with nothing. If Zn = H, he doubles his money, and bets the

whole fortune on the event that Zn+1 = H. If he win, he leaves the game with

4y1α
n dollars. If he loses, then again he leaves with nothing. The second team bets

in the similar fashion on the sequence A2 but the initial bet of the gambler who

joins game at nth round is y2α
n. Let Xn be the net casino gain at moment n. Since

the amount of each bet at nth round is always determined by the history up to the

moment n− 1, and in each case the odds are fair, therefore, the net casino gain is

a martingale. It is easy to see that

Xτ =





(y1 + y2)αατ−1
α−1 − [y1 × (4ατ−1 + 2ατ ) + y2 × 2ατ ], if τ = τA1 ,

(y1 + y2)αατ−1
α−1 − [y1 × 2ατ + y2 × (8ατ−2 + 2ατ )], if τ = τA2 .

which simplifies to

Xτ =





(y1 + y2)αατ−1
α−1 − [(4/α + 2)y1 + 2y2]ατ , if τ = τA1 ,

(y1 + y2)αατ−1
α−1 − [2y1 + (8/α2 + 2)y2]ατ , if τ = τA2 .

Now let us assume that we can choose the initial bets (y∗1 , y∗2) in such way that

(4/α + 2)y∗1 + 2y∗2 = 1

2y∗1 + (8/α2 + 2)y∗2 = 1.



8 POZDNYAKOV, V., GLAZ, J., KULLDORFF, M., AND STEELE, J. M.

Then regardless which sequence occurs first the stopped martingale is given by

Xτ = (y∗1 + y∗2)α
ατ − 1
α− 1

− ατ .

Since the expected value of τ is finite, and the increments of the martingale Xn is

almost sure bounded, we find by the Optional-Stopping Theorem that

0 = EXτ = (y∗1 + y∗2)
α

α− 1
Eατ − (y∗1 + y∗2)

α

α− 1
−Eατ ,

and we may solve for Eατ to obtain

Eατ = 1− 1
α

1−α (y∗1 + y∗2) + 1
.

This method also works in the general situation of K stopping sequences, pro-

vided that one makes the natural alterations. First we introduce a slightly modified

measure of the amount of overlap between two sequences. If A = (a1, ..., am) and

B = (b1, ..., bk) are two sequences over Σ then we define

(4) A ∗B(α) = δ1 1δ2 2 · · · δm m/αm−1 + δ2 1δ3 2 · · · δm m−1/αm−2 + ... + δm 1/1.

Assume that we have K teams that bet on the K sequences in the correspondence

with the rules of fair odds as they are described in the above example and the nth

player from jth team start his betting on the sequence Aj with an initial bet of

yjα
n dollars. The net casino gain at time τ is given by

Xτ =





(y1 + ... + yK)αατ−1
α−1 −∑K

i=1 A1 ∗Ai(α)yiα
τ , if τ = τA1 ,

(y1 + ... + yK)αατ−1
α−1 −∑K

i=1 A2 ∗Ai(α)yiα
τ , if τ = τA2 ,

... ...

(y1 + ... + yK)αατ−1
α−1 −∑K

i=1 AK ∗Ai(α)yiα
τ , if τ = τAK .
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Let

(5) M(α) =




A1 ∗A1(α) A1 ∗A2(α) ... A1 ∗AK(α)

A2 ∗A1(α) A2 ∗A2(α) ... A2 ∗AK(α)

... ... ... ...

AK ∗A1(α) AK ∗A2(α) ... AK ∗AK(α)




.

Note that M(1) = M and as it was shown in Gerber and Li (1981) the matrices

M(α) are non-singular for all 0 < α ≤ 1.

The method of Example 1 then yields a general result.

Theorem 3. The generating function of τ is given by

Eατ = 1− 1
α

1−α (y∗1 + ... + y∗K) + 1
,

where Y ∗ = (y∗1 , ..., y∗K)⊥ is the unique solution to the linear system M(α)Y = 1.

2.3. Second Moment. It is perhaps surprising that a more elaborate scheme is

needed to apply this general idea of matching the stopped martingale to compute

of the second moment of τ . The crucial idea is to introduce two teams for each

sequence (i.e. in total we have 2K teams), and to illustrate the idea, we again

consider a sequence of Bernoulli trials.

Example 2. We flip a fair coin and we wait until we observe one of two sequences:

A1 = HH and A2 = HTH. Our goal is to find the second moment of waiting time

τ = min{τA1 , τA2}. The gambling is organized now in the following way. When a

gambler from the first team of those two that bet on Aj joins the game at the nth

round he starts his betting with yjn dollars, a gambler from the second team bets

zj dollars.
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The net casino gain at the moment τ is given by

Xτ =





(y1 + y2)
τ(τ+1)

2 + (z1 + z2)τ

−[y1(4(τ − 1) + 2τ) + y2τ + 6z1 + 2z2], if τ = τA1 ,

(y1 + y2)
τ(τ+1)

2 + (z1 + z2)τ

−[y12τ + y2(8(τ − 2) + 2τ) + 2z1 + 10z2], if τ = τA2 .

Rearranging terms we get

Xτ =





(y1 + y2)
τ(τ+1)

2 + (z1 + z2)τ

−[(6y1 + 2y2)τ + 4(−1)y1 + 6z1 + 2z2], if τ = τA1 ,

(y1 + y2)
τ(τ+1)

2 + (z1 + z2)τ

−[(2y1 + 10y22)τ + 8(−2)y2 + 2z1 + 10z2], if τ = τA2 .

Now, let us assume that we can choose the initial bets (y∗1 , y∗2) and (z∗1 , z∗2) in such

way that we have the relation

6y∗1 + 2y∗2 = 1

2y∗1 + 10y∗2 = 1

and the relation

4(−1)y∗1 + 6z∗1 + 2z∗2 = 1

8(−2)y∗2 + 2z∗1 + 10z∗2 = 1.

For such a choice of initial bets the stopped martingale is given by

Xτ = (y∗1 + y∗2)
τ(τ + 1)

2
+ (z∗1 + z∗2)τ − τ − 1.

After taking the expected value of both sides of the last equation and solving it

with respect to Eτ2 we get a formula for the second moment. Naturally one needs

to employ the Optional Stopping Theorem here, and, a bit later, we will show that

this is indeed justified.
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Now, to write the value of the net casino gain at the moment τ we first need to

introduce the following notation. If A = (a1, ..., am) and B = (b1, ..., bk) are two

sequences over Σ, then we define

(6) A ? B = −δ1 1δ2 2 · · · δm m(m− 1)− δ2 1δ3 2 · · · δm m−1(m− 2)− ...− δm 10.

The stopped martingale Xτ is given by

Xτ =





∑K
i=1 yi

τ(τ+1)
2 +

∑K
i=1 ziτ

−∑K
i=1 A1 ∗Aiyiτ −

∑K
i=1 A1 ? Aiyi −

∑K
i=1 A1 ∗Aizi, if τ = τA1 ,

∑K
i=1 yi

τ(τ+1)
2 +

∑K
i=1 ziτ

−∑K
i=1 A2 ∗Aiyiτ −

∑K
i=1 A2 ? Aiyi −

∑K
i=1 A2 ∗Aizi, if τ = τA2 ,

... ...

∑K
i=1 yi

τ(τ+1)
2 +

∑K
i=1 ziτ

−∑K
i=1 AK ∗Aiyiτ −

∑K
i=1 AK ? Aiyi −

∑K
i=1 AK ∗Aizi, if τ = τAK .

Let us define

(7) N =




A1 ? A1 A1 ? A2 ... A1 ? AK

A2 ? A1 A2 ? A2 ... A2 ? AK

... ... ... ...

AK ? A1 AK ? A2 ... AK ? AK




.

Suppose that we can find such Y ∗ = (y∗1 , ..., y∗K)⊥ and Z∗ = (z∗1 , ..., z∗K)⊥ that

MY ∗ = 1

NY ∗ + MZ∗ = 1
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then the stopped martingale Xτ is given by

Xτ =
K∑

i=1

y∗i
τ(τ + 1)

2
+

K∑

i=1

z∗i τ − τ − 1.

Now it is time to apply the Optional Stopping Theorem. However, the increments

of the net casino gain Xn are no longer bounded almost sure, so we need a stronger

version. The classical Doob’s Optional-Stopping Theorem (e.g., Shiryaev (1995,

p. 485)) will do the trick; one just needs to note that Xn is at most O(n2), but

P(τ > n) goes to zero at exponential rate. After some algebra we get a general

formula for Eτ2.

Theorem 4. Let Y ∗ = (y∗1 , ..., y∗K)⊥ and Z∗ = (z∗1 , ..., z∗K)⊥ be the unique solution

to the linear system

MY ∗ = 1

NY ∗ + MZ∗ = 1

then

Eτ2 =
1 + (1−∑K

i=1 z∗i −
∑K

i=1 y∗i /2)Eτ∑K
i=1 y∗i /2

.

3. Approximating the Distribution of the Waiting Time

With the first two moments in hand, we can approximate the distribution of

the waiting time τ with the help from several possible benchmark distributions.

This choice is critical, and the most natural choices may not be the best.In some

circumstances one can do better than to use exponential, gamma or Weibull.

When selecting the best approximation, it is important to realize that for our

purposes the accuracy in the tail of the distribution is important because we are

interested in the probability of the waiting time being larger than T , where T is



A MARTINGALE APPROACH TO SCAN STATISTICS 13

relatively far away from 0. Moreover, as time goes on without observing the desired

event, the process is more and more independent of the starting conditions, and

hence, P (τ = T |τ > T − s) is approximately equal to P (τ = T − 1|τ > T − s− 1)

for large T . This is the property of a homogeneous Poisson process, and hence

we would expect that the tail of the waiting time distribution is approximately

exponential. This leads us to suggest using the distribution of random variable

c + X to approximate the distribution of τ , where c = µ − σ is a constant, X is

exponentially distributed with parameter σ, µ = E(τ), and σ2 = Var(τ). This

ensures that the approximate distribution has the same first two moments as the

true distribution. We call this the shifted exponential distribution, and it suggests

that

P(τ ≤ n) ≈ 1− exp(−(n + 0.5 + σ − µ))/σ),

where the 0.5 term is a continuity correction.

To show that this is indeed a good approximation of the distribution, we will

compare it with two other candidates:

1) exponential

P(τ ≤ n) ≈ 1− exp(−(n− l)/µ),

where l is the length of the shortest sequence

2) gamma

P(τ ≤ n) ≈ 1
Γ(a)

∫ (n−l)/b

0

xae−xdx,

where l is again the length of the shortest sequence, b = σ2/µ, and a = µ/b.

Here the factor l has been introduced to improve the performance of these two

approximations, but we will see that even with the best choice of l the shifted

exponential distribution does better than each of these. We also investigated the
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Weibull distribution based approximation. But the Weibull approximations are

significantly worse than those of the exponential and the gamma, so we omit them.

4. Fixed Window Scan Statistics

Example 3. Assume that we observe a sequence of Bernoulli trials where the

probability of failure is known and relatively small – 5%. We have an alert if we

observe too many failures during a short period of time. Specifically, we stop the

process if we observe three or more failures in any 5 sequential trials.

The first question is how long we have to wait for an alert which is caused purely

by randomness, and this problem can be easily addressed by Theorem 1. Indeed,

we have an alert when the following runs occur first time: (1) 3-out-of-3 – FFF ,

(2) 3-out-of-4 – FFSF, FSFF , (3) 3-out-of-5 – FFSSF, FSFSF, FSSFF .

By Theorem 1 and easy numerical calculations one finds the expected time is

1608.4. Moreover, Theorem 4 tells us that the standard deviation of the waiting

time is 1604.8, a value that is notably close to the mean. Still, this is not surprising;

an alert is a rare event and dependence between two consecutive alerts is weak, so

one expects the distribution of the waiting time to be approximately exponential.

For the fixed window scan statistic, Glaz and Naus (1991) developed tight lower

and upper bounds which are presented in Tables 1 and 2 along with the approxi-

mations based on the exponential, shifted exponential, and gamma distributions.

As can be seen, the shifted exponential approximation performs consistently well,

and it has the reassuring feature of staying between the lower and upper bounds.

When µ is large and σ is close to µ, the differences between the various approxima-

tions are marginal and all of the estimates are close to the true probability, but one

should note if µ is relatively small and σ differs from µ, the approximations based
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on the exponential and gamma distributions do not perform as well as the shifted

exponential approximations.

In conclusion, we see that the first two moments are sufficient to obtain a very

good approximation for the fixed window scan statistic. We will see shortly that the

martingale approach can be successfully used for other scan statistics, even those

for which no good bounds or approximations were known earlier.

5. Scan Statistics with a Variable Window Size

When searching for clusters, the cluster size is often unknown. That means that

we do not know the proper window size to use. For example, if we use a window size

of 3 days we may be unable to detect a 3 week cluster, or vice versa. To solve this

problem, Loader (1991) and Kulldorff (1997) used the likelihood function instead

of the event count to rank the potential clusters. This means, for example, that a

cluster with 5 events during 10 days may be ranked higher than both a cluster with

6 events during 20 days and a cluster with 2 events during 4 days.

Example 4. Suppose that in a sequence of 30 Bernoulli trials with probability of

failure p = .25 we observe a window of size 7 with 5 events, and we want to know

the probability of observing a cluster of this or higher likelihood during 30 random

trails. The first step is then to find other cluster with higher likelihood, which turn

out to be a window of 5 with four events and a window of 3 with 3 events. This is,

we should monitor for the following three types of alerts: (1) when we observe an

F run of length 3, (2) at least 4 F out of 5 consecutive trials, (3) at least 5 F out

of 7 consecutive trials.
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It is easy to see then that the alerts of all kinds are produced by only three

sequences: FFF, FFSFF, FFSFSFF. Therefore, by Theorems 1 and 4 we find

that the expected time for an alert is 72.345, and standard deviation is 69.828.

By Theorem 3 and the help of Mathematica, one can show also that for an

arbitrary p one has

E(ατ ) =
P (α)
Q(α)

,

where

P (α) = p3α3 + p4qα5 + p5q2α7

and where

Q(α) = 1 + (−1 + p)α + (−p + p2)α2

+ (−p2 + p3 + p2q)α3 + (−p2q + p3q)α4 + (−p3q + p4q + p3q2)α5

+ (−p3q2 + p4q2)α6 + (−p4q2 + p5q2)α7.

Since

E(τ) =
∂E(ατ )

∂α

∣∣∣
α=1

,

one can get the expected time via differentiation.

Now, going back to the original problem, we can see that observing a cluster

5-out-of-7 failures in the sequence of 30 trials is not a rare event since the expected

time till having this cluster (or a more extreme one) is about 70. The shifted

exponential approximation gives a p-value which is approximately equal to .33.

The simulated (10000 simulations) p-value is also ≈ .33.
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Example 5. Assume that we observe iid Bernoulli trials with p = .01 and we scan

for (1) at least 2 failures in 10 consecutive trials, (2) or at least 3 in 50 consecutive

trials.

We are interested in the approximation for the distribution of the waiting time

till one of these two situations occur. The total number of stopping patterns that

trigger these two alerts is 224. In this case, the exponential and gamma approxima-

tions are especially interesting, because it is difficult to get the exact distribution

of τ , to the best knowledge the most efficient method is the computationally heavy

Markov chain embedding method given by Antzoulakos (2001). The introduced

approximations could be useful provided they are accurate, and as we will see they

are.

The numerical results are given in Table 3, and compared with estimated prob-

abilities based on 100000 replications. We see that the two moment approximation

based on the shifted exponential distribution performs quite well, and these ap-

proximations are the first approximations that anyone has given for this variable

window scan statistic.

6. Double Scan Statistics

Naus and Wartenberg (1997) and Naus and Stefanov (2002) considered double

scan statistic where one is interested in the probability of observing a cluster where

the window contains at least k1 events of type 1 and at least k2 of events of type

2. The martingale approach works for these types of scan statistics as well.

Example 6. Assume that we have two types of failures F1 and F2 and suppose

that we stop if we have three failures of the first type in a row or at least two F2

out of three consecutive trials. The waiting time for an alert caused by randomness
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is determined by the first occurrence of any of the following four runs: (1) F1F1F1,

(2) F2F2, (3) F2F1F2, and (4) F2SF2.

If we let P(F1) = p1, P(F2) = p2, and P(S) = q = 1− p1 − p2, then the matrix

M(α) is given by

M(α) =




1
p3
1α2 + 1

p2
1α

+ 1
p1

0 0 0

0 1
p2
2α

+ 1
p2

1
p2

1
p2

0 1
p2

1
p2
2qα2 + 1

p2

1
p2

0 1
p2

1
p2

1
p2
2qα2 + 1

p2




,

and by solving the system M(α)Y = 1 we get generating function for τ

E(ατ ) = 1−

1 +

α

1− α


 1

1
p1

+ 1
p2
1

+ 1
α2p3

1

+
1
p1

+ 1
q + 1

p1q

1
p2

(
1
q + 1

p1

(
1 + 1

q + 1
αp2q

))





−1

.

Here for a natural numerical example, we note that if p1 = .04, p2 = .01, and

q = .95, then we get

E(τ) =
∂E(ατ )

∂α

∣∣∣
α=1

= 3897.7.

To find the standard deviation of the waiting time, we now only need to take the

second derivative of the generating function, the standard deviation can also be

calculated via Theorem 4. In particular, when p1 = .04, p2 = .01, and q = .95, the

standard deviation is equal to 3895.6. The closeness of µ and σ suggests that again

the exponential approximation to the distribution of τ may be appropriate.

Example 7. Assume we have a scanning window of length 10 and we stop the

scanning process if we have one of the following two situations: (1) at least two

failures of type two, F2, (2) at least three failures of any kind.
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The total number of stopping sequences is 153. We have

1) 9 sequences with exactly two F2

F2F2, F2SF2, ..., F2SSSSSSSF2,

2) 108 sequences with exactly two F1 and one F2

F2F1F1, F2SF1F1, F2F1SF1, ..., F2SSSSSSSF1F1, ..., F2F1SSSSSSSF1,

F1F2F1, F1SF2F1, F1F2SF1, ..., F1SSSSSSSF2F1, ..., F1F2SSSSSSSF1,

F1F1F2, F1SF1F2, F1F1SF2, ..., F1SSSSSSSF1F2, ..., F1F1SSSSSSSF2,

3) and 36 with exactly three F1

F1F1F1, F1SF1F1, F1F1SF1, ..., F1SSSSSSSF1F1, ..., F1F1SSSSSSSF1.

As we can see from Tables 4 and 5 all the approximations do well if µ is large,

and the shifted exponential does better if µ is relatively small.

7. Multivariate Scan Statistics

For a multivariate scan statistic, we have multiple data streams and we have

common scanning window. We are interested in the probability of simultaneously

observing a specified number of events in each data stream. For example, we may

be interested in the probability of seeing at least 3 events in data stream A and 5

events in data stream B during any 10 day period. The probability may be different

for the events in the different data streams.

Example 8. Let {Zi}i≥1 will be iid sequence of bivariate random variables, i.e.

Zi = [Z(1)
i , Z

(2)
i ]⊥. Assume that

Z
(j)
i ∈ {1, 2, 3}, j = 1, 2
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and

pkm = P(Z(1)
i = k, Z

(2)
i = m), k, m = 1, 2, 3.

We stop at time τ if (1) Z
(1)
τ−1 + Z

(1)
τ ≥ 5 or (2) Z

(2)
τ−1 + Z

(2)
τ = 6.

This stopping rule is determined by 33 stopping sequences:




33

11







33

21







33

12







33

31







33

13


 ...

Now the question is how to compute E(τ). At first glance this “two-dimensional”

situation seems significantly different from the considered earlier examples, but it

is not. To see how easy it is, we first introduce the following 9-letter alphabet of

2-tuples:




1

1







1

2







1

3







2

1







2

2







2

3







3

1







3

2







3

3




In this alphabet each of the 33 sequences is identified with a two-letter word, so we

can again apply our earlier results without any changes. For example, if probabili-

ties pkm are given by

.7 .05 .02

.1 .04 .01

.05 .02 .01

then the expected waiting time is 37.007 and the standard deviation is 35.633.

Finally, let us provide numerical results in the case of more realistic multivariate

iid sequences. Specifically, let us consider a sequence with a different distribution
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over the 9-letter alphabet:

.9 .03 .02

.02 .01 .005

.005 .005 .005

Table 6 contains the numerical results for this example.

Example 9. Assume {Zi}i≥1 is an iid sequence of bivariate random variables, i.e.

Zi = [Z(1)
i , Z

(2)
i ]⊥, where each component is a Bernoulli random variable with the

following joint distribution:

P(Z(1)
i = 0, Z

(2)
i = 0) = .98, P(Z(1)

i = 1, Z
(2)
i = 0) = .005,

P(Z(1)
i = 0, Z

(2)
i = 1) = .005, P(Z(1)

i = 1, Z
(2)
i = 1) = .01.

In each row we have a scanning window of length 5, and we stop if in one of the

two windows we have at least 2 ones. As before first let us introduce the following

4-letter alphabet: 


0

0







1

0







0

1







1

1




In this new alphabet we have 40 stopping sequences that correspond to the stopping

rule described above. Numerical results are presented in Table 7.

8. Discussion

The martingale approach yields a formula like that of Theorem 4 for any mo-

ment of τ , and, in theory, higher moments should provide better scan statistics

approximations. Nevertheless, for the scan statistics of importance in practice, it

is evident two moments are all one needs to get very good estimates.
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We used the martingale approach for a number of different scan statistics, but

we view it as a general tool of wide applicability. We believe that the martin-

gale methods can also be applied for continuous, inhomogeneous, or spatial scan

statistics – all of which are of practical importance. We are less optimistic about

the utility of the martingale approach for conditional scan statistics, except to the

extent that the unconditional scan statistic is sometimes a good approximation of

the conditional scan statistic.

When one compares the martingale approach to the Markov chain embedding

method recently developed by Antzoulakos (2001), Fu (2001) and Fu and Chang

(2002), one finds that neither method dominates the other – each has its own

advantages and disadvantages. The martingale approach always results in a smaller

set of linear equations to be solved, sometimes significantly reducing computational

complexity. Also the martingale method can be used to obtain higher moments. On

the other hand, the Markov chain embedding method works for Markov dependent

trials, but the martingale approach does not seem to be able to cover this case.

References

[1] Aalen, O.O. (1978). Nonparametric inference for a family of counting processes. Ann. Statist..

6, 701-726.

[2] Aki, S. and Hirano, K. (1999) Sooner and later waiting time problems for runs in Markov

dependent bivariate trials, Ann. Inst. Statist. Math., 51, 17-29.

[3] Andersen, P.K., Borgan, 0., Gill, R.D., and Keiding, N. (1993) Statistical methods based on

counting processes, Springer Series in Statistics, Springer-Verlag, New York

[4] Antzoulakos, D. (2001) Waiting times for patterns in a sequence of multistate trials, J. Appl.

Probab. 38, 508-518.



A MARTINGALE APPROACH TO SCAN STATISTICS 23

[5] Balakrishnan, N. and Koutras, M.V. (2002) Runs and Scans with Applications, John Wiley

& Sons, Inc., New York.

[6] Biggins, J. D. and Cannings, C. (1987). Markov renewal processes, counters and repeated

sequences in Markov chains, Adv. Appl. Prob., 19, 521-545.

[7] Blom, G. and Thorburn, D. (1982). How many random digits are required until given se-

quences are obtained?, J. Appl. Prob., 19, 518-531.

[8] Blom, G., Holst, L., and Sandell, D. (1994) Problem and snapshots from the world of proba-

bility, Springer-Verlag, New York.

[9] Breen, S., Waterman, M., and Zhang, N. (1985) Renewal theory for several patterns, J. Appl.

Prob., 22, 228-234.

[10] Chao, M. T. and Fu, J. C. (1991) The reliability of large series systems under Markov struc-

ture, Adv. Appl. Probab. 23, 894-908.

[11] Chrysaphinou, O. and Papastavridis, S. (1990) The occurrence of a sequence of patterns in

repeated dependent experiments, Theory of Probability and Applications, 35, 145-152.

[12] Coulston J., and Riitters K. (2003) Geographic Analysis of Forest Health Indicators Using

Spatial Scan Statistics. Environmental Management, 31, 764-773.

[13] Durand, D. and Sankoff, D. (2003) Tests for gene clustering. J. Comput. Biology, (in press).

[14] Enemark, L., Ahrens, P., Juel, D., Petersen, E., Petersen, R., Andersen, J., Lind, P., Thams-

borg, S. (2002) Molecular characterization of Danish Cryptosporidium parvum isolates. Par-

asitology, 125, 331-341.

[15] Feller, W (1968) An introduction to probability theory and its applications, Vol 1, 3rd ed.

Wiley, New York

[16] Fu, J. C. (1986) Reliability of consecutive-k-out-of-n: F systems with (k − 1)-step Markov

dependence, IEEE Trans. Reliability, R35, 602-606.

[17] Fu, J. C. (1996) Distribution theory of runs and patterns associated with a sequence of

multi-state trials, Statistics Sinica, 6, 957-974.

[18] Fu, J. (2001) Distribution of the scan statistics for a sequence of bistate trials, J. Appl. Prob.,

38, 908-916.



24 POZDNYAKOV, V., GLAZ, J., KULLDORFF, M., AND STEELE, J. M.

[19] Fu, J. and Chang, Y. (2002) On probability generating functions for waiting time distribution

of compound patterns in a sequence of multistate trials, J. Appl. Prob., 39, 70-80.

[20] Fu, J. C. and Koutras, M. V. (1994) Distribution theory of runs: A Markov chain approach,

J. Amer. Statist. Assoc. 78, 168-175.

[21] Fu, J. C. and Lou, W. Y. W. (2003). Distribution Theory of Runs and Patterns, World

Scientific Publishing, Singapore.

[22] Gerber, H. and Li, S. (1981) The occurrence of sequence patterns in repeated experiments and

hitting times in a Markov chain, Stochastic Processes and their Applications, 11, 101-108.

[23] Glaz, J. and Balakrishnan, N. (Eds.) (1999) Recent Advances on Scan Statistics, Birkhauser

Publishers, Boston.

[24] Glaz, J. and Naus, J. (1991) Tight bounds for scan statistics probabilities for discrete data,

Ann. Appl. Probab., 1, 306-318.

[25] Glaz, J., Naus, J. and Wallenstein, S. (2001) Scan Statistics, Springer, New-York.

[26] Goldstein, L. and Waterman, M. S. (1992) Poisson, compound Poisson and process approxi-

mations for testing statistical significance in sequence comparisons. Bull. Math. Biology, 54,

785-812.

[27] Han, Q. and Hirano, K. (2003) Sooner and later waiting time problems for patterns in Markov

dependent trials, J. Appl. Probab., 40, 73-86.

[28] Kaminski, R., Jefferis, E., and Chanhatasilpa, C. (2003) A spatial analysis of American police

killed in the line of duty. In Turnbull et al. (eds.), Atlas of crime: Mapping the criminal

landscape, Oryx Press, Phoenix, AZ.

[29] Karlin, S. and Brendel, V. (1992) Chance and statistical significance in protein and DNA

sequence analysis. Science 257, 39-49.

[30] Kulldorff, M. (1997) A spatial scan statistic. Comm. Statist. Theory and Methods, 26, 1481-

1496.

[31] Li, S. (1980) A martingale approach to the study of occurrence of sequence patterns in

repeated experiments, The Annals of Probability, 8, 1171-1176.

[32] Loader, C. (1991) Large deviation approximations to distribution of scan statistics. Adv.

Appl. Probab., 23, 751-771.



A MARTINGALE APPROACH TO SCAN STATISTICS 25

[33] Margai, F. and Henry, N. (2003) A community-based assessment of learning disabilities using

environmental and contextual risk factors. Social Science and Medicine, 56, 1073-1085.

[34] Naus, J. I. and Sheng, K. N. (1996) Screening for unusual matched segments in multiple

protein sequences, Comm. Statist., Sim. Comput., 25, 937-952.

[35] Naus, J. I. and Sheng, K. N. (1997) Matching among multiple random sequences. Bull. Math.

Biol., 59, 483-496.

[36] Naus, J.I., Stefanov, V.T. (2002) Double-scan statistics. Method. Comput. Appl. Probab., 4,

163-180.

[37] Naus, J. I. and Wartenberg, D. A. (1997) A double-scan statistic for clusters of two types of

events. J. Amer. Stat. Assoc. 92, 1105-1113.

[38] Pozdnyakov, V. and Kulldorff, M. (2003) On the occurrence of sequence patterns: an alter-

native proof and extended results, preprint.

[39] Robin, S. and Daudin, J.-J. (2001) Exact distribution of the distances between any occurence

of a set of words, Ann. Inst. Statist. Math., 53, 895-905.

[40] Shiryaev, A.N. (1995) Probability (Springer, New York, 2nd Edition).

[41] Sheng, K.-N. and Naus, J. (1994) Pattern matching between two non-aligned random se-

quences. Bull. Math. Biology, 56, 1143-1162.

[42] Shmueli, G. (2003a) Computing consecutive-type reliabilities non-recursively. IEEE Trans.

Reliab., 52, in press.

[43] Shmueli, G. (2003b) System-wide probabilities for systems with runs and scans rules. Method.

Comput. Appl. Probab. 4, 401-419.

[44] Stefanov, V. T. (2000). On some waiting time problems, J. Appl. Prob., 37, 756-764.

[45] Stefanov, V. T. (2003). The intersite distances between pattern occurrences in strings gen-

erated by general discrete- and continuous-time models: an algorithmic approach, J. Appl.

Prob., 40, 881-892.

[46] Stefanov, V. T. and Pakes, A. G. (1997). Explicit distributional results in pattern formation,

Ann. Appl. Prob., 7, 666-678.

[47] Uchida, M. (1998) On generating functions of waiting time problems for sequence patterns

of discrete random variables, Ann. Inst. Statist. Math., 50, 655-671.



26 POZDNYAKOV, V., GLAZ, J., KULLDORFF, M., AND STEELE, J. M.

[48] Williams, D. (1991) Probability with martingales, Cambridge University Press, Cambridge.

[49] Yoshida, M., Naya, Y., and Miyashita, Y. (2003) Anatomical organization of forward fiber

projections from area TE to perirhinal neurons representing visual long-term memory in

monkeys. Proceedings of the National Academy of Sciences of the United States of America,

100, 4257-4262.



A MARTINGALE APPROACH TO SCAN STATISTICS 27

shifted upper lower

n exponential exponential gamma bound bound

500 0.01600 0.01589 0.01597 0.01588 0.01589

1000 0.03183 0.03173 0.03179 0.03171 0.03174

1500 0.04741 0.04731 0.04736 0.04729 0.04733

2000 0.06274 0.06265 0.06267 0.06262 0.06267

2500 0.07782 0.07773 0.07775 0.07770 0.07776

3000 0.09266 0.09258 0.09258 0.09254 0.09261

4000 0.12162 0.12155 0.12154 0.12150 0.12169

5000 0.14966 0.14960 0.14957 0.14954 0.14965

Table 1. Fixed window scans: at least 3 out of 10, P(F ) = .01,

µ = 30822, σ = 30815

shifted upper lower

n exponential exponential gamma bound bound

50 0.09110 0.07827 0.08268 0.07713 0.07940

60 0.10977 0.09770 0.10059 0.09543 0.09989

70 0.12807 0.11672 0.11828 0.11337 0.11991

80 0.14599 0.13534 0.13573 0.13095 0.13949

90 0.16354 0.15357 0.15292 0.14819 0.15864

100 0.18073 0.17141 0.16985 0.16508 0.17736

Table 2. Fixed window scans: at least 4 out of 20, P(F ) = .05,

µ = 481.59, σ = 469.35
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shifted simulated

n exponential exponential gamma N=100000

50 0.05857 0.05085 0.05542 0.05029

60 0.07033 0.06285 0.06685 0.06187

70 0.08195 0.07470 0.07817 0.07404

80 0.09342 0.08640 0.08939 0.08623

90 0.10474 0.09796 0.10050 0.09718

100 0.11593 0.10936 0.11150 0.11058

Table 3. Variable window: at least 2 out of 10 or at least 3 out

of 50, P(F ) = .01, µ = 795.33, σ = 785.85

shifted simulated

n exponential exponential gamma N=100000

10 0.02438 0.01480 0.02175 0.01401

15 0.03932 0.03015 0.03568 0.03084

20 0.05403 0.04527 0.04959 0.04508

25 0.06851 0.06015 0.06342 0.06169

30 0.08277 0.07479 0.07714 0.07590

35 0.09681 0.08921 0.09074 0.09134

40 0.11064 0.10340 0.10419 0.10529

45 0.12425 0.11738 0.11749 0.11878

50 0.13766 0.13113 0.13063 0.13342

Table 4. Double scans: three F1 in a row or at least two F2 out

of 3, P(F1) = .04, P(F2) = .01, µ = 324.09, σ = 318.34
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shifted simulated

n exponential exponential gamma N=100000

100 0.02706 0.02625 0.02681 0.02713

200 0.05393 0.05318 0.05352 0.05489

300 0.08004 0.07936 0.07955 0.08052

400 0.10544 0.10481 0.10488 0.10639

500 0.13014 0.12957 0.12953 0.13299

Table 5. Double scans: at least two F2 out of 10 or at least three

of any kind out of 10, P(F1) = .01, P(F2) = .005 µ = 3571.8

σ = 3566.2

shifted simulated

n exponential exponential gamma N=100000

10 0.01603 0.01814 0.01570 0.01833

20 0.03572 0.03784 0.03513 0.03758

30 0.05500 0.05714 0.05425 0.05718

40 0.07391 0.07606 0.07301 0.07497

50 0.09243 0.09459 0.09143 0.09507

60 0.11058 0.11276 0.10950 0.11422

70 0.12838 0.13056 0.12723 0.13214

80 0.14581 0.14800 0.14461 0.14902

90 0.16290 0.16509 0.16166 0.16301

100 0.17964 0.18184 0.17838 0.17905

Table 6. Bivariate multinomial scans: µ = 494.92, σ = 493.45
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shifted simulated

n exponential exponential gamma N=100000

25 0.02883 0.02853 0.02822 0.02828

50 0.05922 0.05904 0.05826 0.05857

75 0.08866 0.08859 0.08747 0.08842

100 0.11718 0.11721 0.11584 0.11776

125 0.14481 0.14494 0.14336 0.14627

150 0.17157 0.17179 0.17005 0.17118

Table 7. Bivariate Bernoulli scans: µ = 786.31, σ = 783.49
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