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GAMBLING TEAMS AND WAITING TIMES FOR PATTERNS
IN TWO-STATE MARKOV CHAINS

JOSEPH GLAZ, MARTIN KULLDORFF,

VLADIMIR POZDNYAKOV, AND J. MICHAEL STEELE

Abstract. Methods using gambling teams and martingales are developed and

applied to find formulas for the expected value and the generating function of

the waiting time until one observes an element of a finite collection of patterns

in a sequence which is generated by a two-state first or higher order Markov

chain. (Keywords: Gambling, teams, waiting times, patterns, success runs,

failure runs, Markov chains, martingales, stopping times, generating functions.

Mathematics Subject Classification (2000): Primary 60J10, Secondary

60G42)

1. Introduction

How long must one observe a stochastic process with values from a finite alphabet

until one sees a realization of a pattern which belongs to a specified collection C of

possible patterns? For independent processes this is an old question; in some special

cases it is even considered by Feller (1968). Nevertheless, in the context of more
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general process, or even for Markov chains, there are many natural problems which

have not been fully addressed. The main goal here is to show how some progress can

be made by further developing the martingale methods which were introduced by

Li (1980) and Li and Gerber (1981) in their investigation of independent sequences.

Their key observation was that information on the occurrence times of patterns can

be obtained from the values assumed by a specially constructed auxiliary martingale

at a certain well-chosen time.

In the case of (first- or higher-order) Markov chains, this observation is still use-

ful, but to make it work requires a rather more elaborate plan for the construction

of the auxiliary martingale. This construction depends in turn on several general

devices which seem more broadly useful; these include “teams of gamblers,” “watch-

ing then betting,” “reward matching,” and a couple of other devices which will be

described shortly.

Before engaging that description, we should note that pattern matching has

been studied by many other techniques. The combinatorial methods of Guibas and

Odlyzko (1981a, 1981b) are particularly effective, and there are numerous treat-

ments of pattern matching problem by probabilistic techniques, such as Benevento

(1984), Biggins and Cannings (1987a, 1987b), Blom and Thorburn (1982), Breen et

al. (1985), Chrysaphinou and Papastavridis (1990), Han and Hirano (2003), Pozd-

nyakov et al. (2005), Pozdnyakov and Kulldorff (2006), Robin and Daudin (1999),

Stefanov (2003) and Uchida (1998). One of the more general techniques is the

Markov chain embedding method introduced by Fu (1986) which has been further

developed by Antzoulakos (2001), Fu (2001), Fu and Chang (2002), and Fu and

Koutras (1994). The approach of Stefanov (2000) and Stefanov and Pakes (1997)
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also use Markov chain embedding, though their method differs substantially from

Fu’s. Only a few investigations considered waiting time problems for higher order

Markov chains, and these have all focused on specific waiting times such as the

“sooner or later” problem studied by Aki et al. (1996).

2. Expected Waiting Time Until a Pattern is Observed

We take {Zn, n ≥ 1} to be a Markov chain with two states S and F , which may

model “success” and “failure.” We suppose the chain has the initial distribution

P(Z1 = S) = pS , P(Z1 = F ) = pF and the transition matrix




pSS pFS

pSF pFF


 ,

where pSF is shorthand for P(Zn+1 = F |Zn = S). We then consider a collection C of

finite sequences Ai, 1 ≤ i ≤ K, from the two-letter alphabet {S, F}. If τAi denotes

the first time until the pattern Ai has been observed as a completed run in the series

Z1, Z2, ..., then the random variable of main interest here is τC = min{τA1 , ..., τAK},

the first time when we observe a pattern from C. Throughout our discussion we

assume that no pattern of C contains another pattern from C as an initial segment.

Naturally, this assumption entails no loss of generality.

2.1. A Run of “Failures” Under a Markov Model. To illustrate the construc-

tion, we first consider the rather easy case where K = 1 and were the pattern A1

is a run of r consecutive F s. Thus, we will compute the expected value of τ = τA1 ,

the time of the first completion of a run of r “failures” under our two-state Markov

model. This example can be handled by several methods, and it offers a useful

benchmark for more challenging examples.
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We consider a casino where gamblers may bet in successive rounds on the output

of our given two-state Markov chain, and we assume that the casino is fair in a

sense which we will soon make precise. We then consider a sequence of gamblers,

one of whom arrives just before each new round of betting. Thus, gambler number

n + 1 arrives in time to observe the result of the nth trial, Zn, and we assume that

he bets a dollar on the event that next trial yields an F . If Zn+1 = S, he loses his

dollar and leaves the game. If he is lucky and Zn+1 = F , then he wins 1/pSF when

Zn = S and he wins 1/pFF when Zn = F . This is the sense in which the casino is

fair; the expected return on a one dollar bet is one dollar.

After this gambler gets his money, he then bets his entire capital on the event

that Zn+2 = F . Again, if Zn+2 = S, then the gambler leaves the game with

nothing. On the other hand, If Zn+2 = F , then the gambler wins this round, and

his capital is increased by the factor 1/pFF . Successive rounds proceed in the same

way, with a new gambler arriving at each new round and with the gamblers from

earlier periods either continuing to win or else going broke and leaving.

Now we need to be precise about the end of this process. If gambler n+1 begins

by observing Zn = S, then he bets until either he goes broke or until he observes r

successive F s, and, if gambler n + 1 begins by observing Zn = F , then bets until

he either goes broke or until he observes r − 1 successive F s. Once some gambler

stops without going broke, all of the gambling stops.

Finally, we let Xn denote the casino’s net gain at conclusion of round n. Since

each bet is fair and since the bet sizes depend only on the previous observations, the

sequence Xn is a martingale with respect to the σ-field generated by {Zn, n ≥ 1}.

Now we just need to consider the casino’s net gain Xτ when the gambling stops.
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By calculating E(Xτ ) in two ways we will then obtain the expected value of the

time τ .

At time τ many gamblers are likely to have lost all their money; only those who

entered the game after round number τ − r − 1 have any money. We now face two

different ending scenarios. First, it could happen that we have a block (denoted

by F (r)) of r instances of F which occur a the very beginning of the sequence

{Zn, n ≥ 1}. Second, it could happen that we end with SF (r), an S followed by a

block of r instances of F . Obviously we do not need to consider the possibility of

ending with FF (r) = F (r+1) since by definition F (r) cannot occur before time τ .

When we total up the wins and losses of all of the gamblers, we then find that

the value of the stopped martingale Xτ is given exactly by

Xτ =





τ − 1− 1
pr−1

FF

− 1
pr−2

FF

− ...− 1
pFF

, 1st scenario,

τ − 1− 1
pSF pr−1

FF

− 1
pr−1

FF

− 1
pr−2

FF

− ...− 1
pFF

, 2nd scenario,

which can be written more briefly as

Xτ =





τ − 1− 1− pr−1
FF

pr−1
FF (1− pFF )

, 1st scenario,

τ − 1− 1
pSF pr−1

FF

− 1− pr−1
FF

pr−1
FF (1− pFF )

, 2nd scenario.

Since E[τ ] < ∞ and the increments of Xn are bounded, the optional stopping

theorem for martingales (for instance, Williams (1991, p. 100)) tells us that 0 =

E[X1] = E[Xτ ]. From this identity and the formula for Xτ , algebraic simplification

gives us

(1) E[τ ] = 1 + pF
1− pr−1

FF

(1− pFF )
+

(
1− pF pr−1

FF

) (
1

pSF pr−1
FF

+
1− pr−1

FF

pFSpr−1
FF

)
.
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2.2. Second Step: A Single Pattern. We now consider the more subtle case of

a single (non-run) pattern A with length r, and for specificity we assume that the

pattern begins with F , so A = FB where we have B ∈ {S, F}r−1. As before we

consider a sequence of gamblers, but this time we need to consider three different

ending scenarios:

(1) A occurs at the beginning of the sequence {Zn, n ≥ 1}, or

(2) the pattern SA occurs, or

(3) the pattern FA occurs.

The probability p1 of the first scenario is trivial to compute, but one then runs

into trouble. We do not know the probability that the pattern SA will appear

earlier than FA, so the probabilities of the second and third ending scenarios are

not readily computed. To circumvent this problem we introduce two teams of

gamblers.

2.3. Rules for the Gambling Teams.

(1) A gambler from the first team who arrives before round n watches the result

of the nth trial, and then bets y1 dollars on the first letter in the sequence A.

If he wins he then bets all of his capital on the next letter in the sequence A,

and he continues in this way until he either loses his capital or he observes

all of the letters of A. Such players are called straightforward gamblers.

(2) The gamblers of the second team make use of the information that they

observe. If gambler n + 1 observes Zn = S just before he begins his play,

then he bets just like a straightforward gambler except that he begins by

wagering y2 dollars on the first letter of pattern A. On the other hand, if

he observes Zn = F when he first arrives, then wagers y2 dollars on the
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first letter of the pattern B. He then continues to wager on the successive

letters of B either until he loses or until he observes B. Such players are

called smart gamblers.

The two gambling teams continue their betting, until one team stops. At that

time, all gambling stops, and we consider the wins and losses. Only those gamblers

who enter the game after the time τ − r − 1 will have any money and the amount

they have will depend on the ending scenario. If we let Wijyj denote the amount

of money that team j ∈ {1, 2} wins in scenario i ∈ {1, 2, 3}, then the values Wij

are easy to compute, and in terms of these values of stopped martingale Xτ which

represents the casino’s net gain is given by

Xτ =





(y1 + y2)(τ − 1)− y1W11 − y2W12, 1st scenario,

(y1 + y2)(τ − 1)− y1W21 − y2W22, 2nd scenario,

(y1 + y2)(τ − 1)− y1W31 − y2W32, 3rd scenario.

Now, if we take (y∗1 , y∗2) to be a solution of the system

y∗1W21 + y∗2W22 = 1, y∗1W31 + y∗2W32 = 1,

we see that with these bet sizes we have a very simple formula for Xτ :

Xτ =





(y∗1 + y∗2)(τ − 1)− y∗1W11 − y∗2W12, 1st scenario,

(y∗1 + y∗2)(τ − 1)− 1, 2nd scenario,

(y∗1 + y∗2)(τ − 1)− 1, 3rd scenario.

The optional stopping theorem then gives us

0 = (y∗1 + y∗2)(E[τ ]− 1)− p1(y∗1W11 + y∗2W12)− (1− p1),
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where p1 is the probability of scenario one. We therefore find

(2) E[τ ] = 1 +
p1(y∗1W11 + y∗2W12) + (1− p1)

y∗1 + y∗2
.

Formula (2) is more explicit than it may seem at first. In the typical case, the

calculation of p1, {Wij : 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} and {y∗j : 1 ≤ j ≤ 2} is genuinely

routine, as one can see by the next example.

2.4. Example: Waiting Time Until FSF. Here our straightforward gamblers

bet y1 dollars on FSF without regard of the preceding observation. On the other

hand, the smart gamblers bet y2 dollars on FSF if they observed S before placing

their first bet, but they bet y2 dollars on SF if they observed F . The three ending

scenarios are now either FSF at the beginning (scenario one), or one ends with

SFSF (scenario two), or one ends with FFSF (scenario three). The 3× 2 “profit

matrix” {Wij} is then given by




1
pSF

1
pF SpSF

+ 1
pSF

1
pSF pF SpSF

+ 1
pSF

1
pSF pF SpSF

+ 1
pF SpSF

+ 1
pSF

1
pF F pF SpSF

+ 1
pSF

1
pF SpSF

+ 1
pSF




,

and bet sizes y∗1 and y∗2 are determined by the relations

y∗1
( 1

pSF pFSpSF
+

1
pSF

)
+ y∗2

( 1
pSF pFSpSF

+
1

pFSpSF
+

1
pSF

)
= 1,

y∗1
( 1

pFF pFSpSF
+

1
pSF

)
+ y∗2

( 1
pFSpSF

+
1

pSF

)
= 1,

which one can solve to obtain

y∗1 =
pFF pFSpSF

pFS + pSF + pFSpSF
and y∗2 =

pFSpSF (pSF − pFF )
pFS + pSF + pFSpSF

.
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The probability p1 of the first scenario is just pF pFSpSF , so after substitution and

simplification the general formula (2) provides

E[τFSF ] = 1 +
pS

pSF
+

1
p2

SF

+
1

pFSpSF
,

which is as explicit as one could wish.

3. Expected Time Until Observing One of Many Patterns

We now consider a collection C = {Ai : 1 ≤ i ≤ K} of K strings of possibly

varying lengths from the two-letter alphabet, and we take on the task of computing

the expected value of τC = min{τA1 , ..., τAK}, the first time that one observes one

of the patterns in C. The method we propose is analogous to the two-team method

we just used, although many teams are now needed. The real challenge is the

construction of the list of the appropriate ending scenarios which now requires

some algorithmic considerations.

3.1. Listing the Ending Scenarios. Given C = {Ai}1≤i≤K we first consider the

set sequence transformation

C = {Ai}1≤i≤K −→ {SAi, FAi}1≤i≤K = {Bi}1≤i≤2K = C′,

which doubles the cardinality of C. We then delete from C′ each pattern B which

can only occur after the stopping time τC . The resulting collection C′′ is called

the final list. We denote the elements of C′′ by Ci, 1 ≤ i ≤ K ′, and we note that

K ≤ K ′ ≤ 2K.

To illustrate the construction, suppose the initial collection is C = {FSF, FF}.

The doubling step gives us C′ = {SFSF, FFSF, SFF, FFF}. Since FFS and

FFF cannot occur before τ , these are eliminated from C′ and the final list is
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simply C′′ = {SFSF, SFF}. Similarly, if the initial collection is C = {FS, SSS},

then the final list is C′′ = {SFS, FFS}.

Now, before we describe the ending scenarios, we need one further notion. If

patterns C and C ′ in the final list C′′ satisfy C = SA and C ′ = FA for some

pattern A ∈ C, then we say that C and C ′ are matched. Also, if C and C ′ are

matched and C = SA and C ′ = FA, then we say that C and C ′ are generated by

A. Finally, even though there are many ending scenarios, they may be classified to

three basic kinds.

(1) There are K scenarios where one observes an element of C as an initial

segment of the Markov sequence {Zn, n ≥ 1}.

(2) There is a scenario for each unmatched pattern from C′′. We denote the

number of these by L.

(3) There is pair of scenarios for each matched pattern from C′′. We denote

the number of these by 2M .

3.2. From the Listing to the Teams. For each scenario associated with un-

matched pattern Cj we introduce one team of straightforward gamblers who bet yj

dollars on the pattern Ai which generated Cj . For each pair of scenarios associated

with matched patterns Cp and Cm which were generated by pattern Ak, we intro-

duce two teams. One team bets yp dollars on Ak in the straightforward way, another

bets ym dollars on Ak in the smart way. If Wijyj , i = 1, 2, ..., K + L + 2M, j =

1, 2, ..., L+2M denotes amount of money that the jth team wins in the ith scenario,

then the stopped martingale Xτ is given by the sum

Xτ =
L+2M∑

j=1

yj(τ − 1)− S(y1, ..., yL+2M ),
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where we set

S(y1, ..., yL+2M ) =
K+L+2M∑

i=1

1Ei

L+2M∑

j=1

yjWij ,

and where 1Ei is the indicator function for the event Ei that the ith scenario occurs.

If (y∗1 , ..y∗L+2M ) is a solution of the linear system

(3)

y∗1WK+1 1 + · · ·+ y∗L+2MWK+1 L+2M = 1,

...
...

y∗1WK+L+2M 1 + · · ·+ y∗L+2MWK+L+2M L+2M = 1,

then we have

S(y∗1 , ..., y∗L+2M ) =





L+2M∑

j=1

y∗j Wij , in scenario i ∈ {1, 2, ...,K}

1, in scenario i > K

By the optional stopping theorem we have

0 = E[X1] = E[XτC ] =
L+2M∑

j=1

y∗j (E[τC ]− 1)−
K∑

i=1

pi

L+2M∑

j=1

y∗j Wij − (1−
K∑

i=1

pi),

where pi is the probability that Ai is an initial segment of {Zn, n ≥ 1}. We can now

solve this equation to obtain a formula for E[τC ] which we summarize as a theorem.

Theorem 1. If (y∗1 , y∗2 , ..., y∗L+2M ) solves the linear system (3), then

(4) E[τC ] = 1 +

∑K
i=1 pi

∑L+2M
j=1 y∗j Wij + (1−∑K

i=1 pi)∑L+2M
j=1 y∗j

.

As before, this formula is more explicit than it may seem at first. In particular

example, all of the required terms can be computed straightforwardly in problems

of reasonable size.
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3.3. Computation of the Profit Matrix. Formula (4) requires one to compute

the profit matrix {Wij}, and we will first show how this can be done in general.

The method will then be applied to a specific example to confirm that formula (4)

may be rewritten in terms of the basic model parameters.

Consider a scenario that ends with pattern C = c1c2...cm ∈ C′′. The team

of straightforward gamblers who begin by betting one dollar and who bet on the

successive terms of the pattern A = a1a2...ap will by time τC have won

min(m−1,p)∑

i=1

δst
i (A,C),

where

δst
i (A,C) =





1
pcm−ia1pa1a2 ...pai−1ai

, if a1 = cm−i+1, a2 = cm−i+2, ..., ai = cm

0, otherwise.

Similarly, the team of smart gamblers will have won

min(m−1,p)∑

i=1

δsm1
i (A,C) +

min(m−1,p−1)∑

i=1

δsm2
i (A, C),

where we set

δsm1
i (A,C) =





1
pcm−ia1pa1a2 ...pai−1ai

, if a1 = cm−i+1, a2 = cm−i+2, ...,

ai = cm and cm−i 6= a1

0, otherwise,

and

δsm2
i (A,C) =





1
pa1a2pa2a3 ...paiai+1

, if a1 = cm−i, a2 = cm−i+1, ..., ai+1 = cm

0, otherwise.
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3.4. Explicit Determination of E[τC ]. To illustrate the use of formula (4), we

consider C = {SS, FSF}. After doubling and elimination we get the final list

{FSS, SFSF, FFSF}, and we then need to work out the set of scenarios. We

have two scenarios where C1 = SS or C2 = FSF occur as an initial segment of

{Zn, n ≥ 1}. We also have the unmatched scenario C3 = FSS associated with the

pattern SS, and we have a pair of matched scenarios C4 = SFSF or C5 = FFSF

which are associated with the pattern FSF . The profit matrix {Wij} is then given

by




1
pSS

0 0

0 1
pSF

1
pF SpSF

+ 1
pSF

1
pF SpSS

+ 1
pSS

0 0

0 1
pSF pF SpSF

+ 1
pSF

1
pSF pF SpSF

+ 1
pF SpSF

+ 1
pSF

0 1
pF F pF SpSF

+ 1
pSF

1
pF SpSF

+ 1
pSF




,

and, after solving the corresponding linear system, we find that the appropriate

initial team bets are given by

y∗1 =
pFSpSS

1 + pFS
, y∗2 =

pFF pFSpSF

pFS + pSF + pFSpSF
, y∗3 =

pFSpSF (pSF − pFF )
pFS + pSF + pFSpSF

.

The probabilities p1 and p2 that SS and FSF are initial segments of the process

{Zn, n ≥ 1} are given by pSpSS and pF pFSpSF respectively, so the formula (4)

leads one to the pleasantly succinct result

E[τC ] = 2 + pSpSF +
1− pSpSS

pFS
.
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4. Generating Functions for Pattern Waiting Times

To find the generating function of the waiting time τC we need to introduce the

same scenarios and the same betting teams, but we need to make some changes in

the design of the initial bets. A gambler from the jth team who arrives at moment

k− 1 and who begins his betting on round k will now begin with a bet of size yjα
k

where 0 < α < 1. If ατCWij(α)yj denotes total winnings of the jth team when the

game ends with ith scenario, then we call Wij(α) the α-profit matrix. As before,

the α-profit matrix does not depend on τC , and it can be computed if we know the

ending scenario.

If Xn again denotes the casino’s net gain at moment n, then

XτC =
α2 − αατ

1− α

L+2M∑

j=1

yj − S(α, y1, ..., yL+2M ),

and we set

S(α, y1, ..., yL+2M ) =
K+L+2M∑

i=1

1Ei

K+2M∑

j=1

ατCyjWij(α),

where, as before, 1Ei is the indicator function for the even Ei that the ith scenario

occurs.

If (y∗1 , ..y∗L+2M ) is a solution of the linear system

(5)

y∗1WK+1 1(α) + · · ·+ y∗L+2MWK+1 L+2M (α) = 1,

...
...

y∗1WK+L+2M 1(α) + · · ·+ y∗L+2MWK+L+2M L+2M (α) = 1,

then we might hope to mimic our earlier calculation of E[XτC ], but unfortunately

we run into trouble since E(ατC1E1) may not equal p1EατC .

Nevertheless, if the ith with i ≤ K scenario occurs, then we know exactly the

value of τC . It is equal to |Ai| — the length of ith sequence. Therefore, we have a
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formula for the stopped martingale,

XτC =
α2 − αατ

1− α

L+2M∑

j=1

y∗j − ατ − I(α, y∗1 , ..., y∗L+2M ),

where I(α, y∗1 , ..., y∗L+2M ) is defined by setting

I(α, y∗1 , ..., y∗L+2M ) =





α|Ai|
[ L+2M∑

j=1

y∗j Wij(α)− 1
]
, in scenario i ∈ {1, 2, ..., K}

0, in scenario i > K.

From this formula, the optional stopping theorem, we then find an the anticipated

formula for the moment generating function of τC .

Theorem 2. If (y∗1 , ..., y∗L+2M ) is a solution of linear system (5), then one has

(6) E[ατC ] =
α2

1−α

∑L+2M
j=1 y∗j −

∑K
i=1 piα

|Ai|
[ ∑L+2M

j=1 y∗j Wij − 1
]

1 + α
1−α

∑L+2M
j=i y∗j

.

4.1. Computation of the α-Profit Matrix. As before, one needs to know how

to compute the profit matrix, before formula (6) may be properly regarded as an

explicit formula. This is only a little more difficult than before. First, assume

that a scenario ends with the pattern C = c1c2...cm. The team of straightforward

gamblers who bet a dollar on pattern A = a1a2...ap by the time τ will win

min(m−1,p)∑

i=1

δst
i (A,C)/αi−1,

while the team of smart gamblers will win

min(m−1,p)∑

i=1

δsm1
i (A,C)/αi−1 +

min(m−1,p−1)∑

i=1

δsm2
i (A, C)/αi−1.

These formulas provide almost everything we need, but before we can be completely

explicit, we need to focus on a concrete example.
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4.2. A Generating Function Example. Consider the waiting time until one

observes the 3-letter pattern FSF in the random sequence {Zn, n ≥ 1} produced

by the Markov model. In this case, the α-profit matrix {Wij} is given by




1
pSF

α−1

pF SpSF
+ 1

pSF

α−2

pSF pF SpSF
+ 1

pSF

α−2

pSF pF SpSF
+ α−1

pF SpSF
+ 1

pSF

α−2

pF F pF SpSF
+ 1

pSF

α−1

pF SpSF
+ 1

pSF




,

and by solving the associated linear system one finds

y∗1 =
α2pFF pFSpSF

1− αpFF + αpSF + α2pFSpSF
, y∗2 =

α2pFSpSF (pSF − pFF )
1− αpFF + αpSF + α2pFSpSF

.

The general moment generating representation (6) then gives us the simple formula

E[ατC ] =
α3pFSpSF (pF + α(pS − pSS))

1− α(pSS + pFF − α(pFF − pSF (1− pFS(1− αpSS))))
.

Naturally, such a formula provides one with complete information on the distribu-

tion of τC , and to obtain an explicit formula for P (τC = k) one can use symbolic

calculation to rewrite the rational function (6) in its partial fraction expansion.

5. Higher Order Markov Chains

Here we have applied the gambling team method only to two-state chains, and,

for reasons which will be explained later, this limitation is not easily lifted. Nev-

ertheless, there are more complex chains where the team method applies, and it

is instructive to consider one of these. Specifically, we briefly consider how the

gambling team method may be applied with second order two-state chains. Here

we obviously need to avoid the naive representation of such chains as first order

chains with four states.
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In the team approach for a second order model the gamblers need to observe two

rounds of betting before they place their first bets, and consequently we need to

consider a larger number of final scenarios. Moreover, for each pattern A = a1a2...ap

we will need to consider up to seven termination cases, including three “initial” cases

which are associated with the patterns (1) A, (2) SA, or (3) FA and four “later”

cases which are associated with the patterns (4) SSA (5) SFA, (6) FSA, and (7)

FFA.

As before our main objective is to count accurately all the ending scenarios and

create a matched number of gambling teams. However, in the second order chain

case there is an additional difficulty that one needs to address. More specifically,

one needs to consider separately two cases: (1) there are no runs in the initial list

C and (2) there are runs in C.

5.1. The First Case: There are no Runs in C. First we need to replace the

earlier doubling step with an analogous quadrupling step. Now given the collection

C = {Ai}1≤i≤K of patterns, we consider the set sequence transformation

C = {Ai}1≤i≤K −→ {SSAi, SFAi, FSAi, FFAi}1≤i≤K = {Bi}1≤i≤4K = C′.

We then delete from C′ each scenario which can happen only after the stopping

time τC , and we take the collection C′′ that remains to be our “final list” of ending

scenarios.

Each pattern from the collection C leads us to four — or perhaps fewer — ending

scenarios. Now for each pattern from C we consider a sequence of gamblers who

belong to teams of different types. As before, these gamblers arrive sequentially,

and they observe the game before placing any bets.
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(1) A new gambler from the type I team arrives two rounds before he begins

to bet. He watches these rounds and then bets on the successive letters

pattern A, with complete indifference to what he may have seen on the

first two rounds.

(2) A new gambler from the type II team also arrives two rounds before he

can begins to gamble, but he is influenced by what he sees. If this gam-

bler observes Sa1 on these two rounds, then he bets on the sequence on

a2a3...ap, but, if he observes anything other than Sa1, then he places his

bets according to the sequence A.

(3) Similarly, a new gambler from the type III team watches two rounds, and if

he observes Fa1 then he bets according to the sequence on a2a3...ap, but,

if he observes anything other than Fa1, then he places his bets according

to A.

(4) Finally, a gambler from the type IV team watches two rounds, and if he

observes a1a2 then be bets according to the sequence a3a4...ap; otherwise

he bets according to the sequence A.

Each pattern A from initial list C leads to zero, one, two, three or four scenarios in

the final list C′′, so now instead of just having to consider matched and unmatched

patterns the patterns in final list C′′ are of four kinds: unmatched, double-matched,

triple-matched, and quadruple-matched.

To see how this works, consider the initial collection C = {FSFF, FFSF}.

First, note that we have five initial cases, (1) FSFF , (2) FFSF , (3) SFSFF , (4)

SFFSF , (5) FFFSF . Pattern FFSFF cannot occur before τC , therefore, the sce-

nario associated with this pattern is eliminated from the list of initial cases. Second,
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in the final list C′′ we have five patterns: double-matched patterns SSFSFF and

FSFSFF generated by FSFF and triple-matched patterns SSFFSF , SFFFSF

and FFFFSF generated by FFSF . Thus, we need to introduce five teams: type

I and II teams that bet on FSFF , and type I, II and III teams that bet on FFSF .

5.2. The Second Case: Special Treatment of Runs. If the initial list C con-

tains a run then one may have a problem with straightforward application of the

method described above. The difficulty is that if we observe the game only till

moment τC then there is no difference in behavior between teams of different types

that place their bets on the run.

To illustrate the problem let us consider the initial list C = {F (r)}. The straight-

forward usage of the above algorithm tells us that one has to introduce two initial

cases, (1) F (r) and (2) SF (r). The final list C′′ contains two double-matched pat-

terns SSF (r) and FSF (r). Therefore, according to the algorithm one needs two

(type I and II) teams that bet y1 and y2 dollars on F (r). However, since before

time τC there is no difference in gambling between these two teams, one, in fact,

has just one team that bets y1 + y2 dollars on the run. Thus, the number of free

parameters is not matching the number of ending scenarios.

But a simple modification of the gambling method easily solves the problem.

Before time τC the run F (r) can only occur as an initial segment of the sequence

{Zn, n ≥ 1} or as pattern SF (r) later. So, if the initial list C contains runs (obviously

we can have one or two runs in C only – F (r) or S(p) or both), then we need first

to substitute runs F (r) and S(p) in C by SF (r) and FS(p), respectively, to get a

different collection C̃. The collection C̃ contains no runs, therefore, we can proceed

as before. After application of quadrupling and elimination processes to the list C̃
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we will get the final list of ending scenarios C̃′′, and for this list we will be able to

create a matched number of gambling teams. Since we are interested in τC not τC̃ ,

the elimination process has to be based on τC , and the runs must be included in

the list of initial cases.

For instance, if C = {F (r)} one needs to consider four initial cases (1) F (r), (2)

SF (r), (3) SSF (r) and (4) FSF (r), and four later cases where the game ends by (5)

SSSF (r), (6) SFSF (r), (7) FSSF (r), or (8) FFSF (r). In this case one can show

that all four teams (type I, II, III and IV) that bet on SF (r) bet in its own way.

5.3. Final Step. After attending to this bookkeeping, we can now calculate the

expected observation times in a way that parallels our earlier calculation. Since

we have matched the number of (non-initial) ending scenarios and the number of

teams, we can choose the size of initial bet for each team in a way that makes all

the expressions for the stopped martingale equal to 1 — however the game may

end.

Let us summarize this as a theorem. Assume that in the end we have P initial

cases and Q later cases. Let Wijyj , i = 1, 2, ..., P +Q, j = 1, 2, ..., Q denotes amount

of money that the jth team that bets yj dollars wins in the ith scenario. Finally,

let pi, i = 1, 2, ..., P be the probability that the ith initial case takes place.

Theorem 3. If (y∗1 , y∗2 , ..., y∗Q) solves the linear system

y∗1WP+1 1 + · · ·+ y∗QWP+1 Q = 1,

...
...

y∗1WP+Q 1 + · · ·+ y∗QWP+Q Q = 1,
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then

E[τC ] = 2 +

∑P
i=1 pi

∑Q
j=1 y∗j Wij + (1−∑P

i=1 pi)∑Q
j=1 y∗j

.

6. Concluding Remark

The method of gambling teams deals quite effectively with the waiting time

problems of two-state chains, but for N -state chains, it is much less effective. The

problem is that typically one finds that the number of ending scenarios is higher

than the number of teams one has, so there are too few free parameters to achieve

the requested matching.

One might think of reducing the waiting time problems for an N -state chains

by encoding the states {1, 2, ..., N} as sequences of zeros and ones, but this idea

typically fails since the natural encodings do not lead one to a waiting time problem

for a homogeneous two-state Markov chain on {0, 1}. Ironically, for many of the

pattern problems associated with N -state Markov chains, the method of gambling

team is ineffective when N ≥ 3, even though for the corresponding problems in a

two-state chain, it is typically the method of choice.

A possible computational advantage of the martingale method over the Markov

chain embedding method (e.g., Antzoulakos (2001), Fu (2001), Fu and Chang

(2002)) is the size of matrices involved in the calculation. The size of the profit

matrix depends only on the number of patterns K, while the size of the transition

matrix of embedded Markov chain also depends on the length of patterns from C.

For example, if C contains K patterns each of which has a length that is about N ,

and K is much smaller than N , then the dimension of the transition matrix in the

Markov chain embedding method is about K ×N by K ×N . For large N this size

can cause technical problems. The size of profit matrix is at most 2K by 2K.
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