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Accelerating the Process of Engineering Change Orders: Capacity and
Congestion Effects

Abstract

Engineering change orders (ECOs) are important drivers of development costs and lead time. This article
analyzes the process of administering engineering change orders in the case of the climate control system
development within a large vehicle development project. This administrative process encompasses the
emergence of a change (e.g., a problem or a market-driven feature change), its management approval, and final
implementation. Despite strong time pressure, this process can take several weeks, several months, and, in
extreme cases, even over 1 year. Such a long lead time is especially remarkable as the actual processing time for
the change typically does not exceed 2 weeks. Based on our case study, we develop an analytical framework
that explains how such an extreme ratio between theoretical processing time and actual lead time is possible.
The framework identifies congestion, stemming from scarce capacity coupled with processing variability, as a
major lead time contributor. We outline five improvement strategies that an organization can use in order to
reduce ECO lead time, namely, flexible capacity, balanced workloads, merged tasks, pooling, and reduced
setups and batching,
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Abstract

Engineering change orders (ECOs) are important drivers of development costs and
lead time. This article analyzes the process of administering engineering change
orders in the case of the climate control system development within a large vehicle
development project. This administrative process encompasses the emergence of a
change (e.g., a problem or a market-driven feature change), its management approval
and final implementation. Despite strong time pressure, this process can take several
weeks, several months, and, in extreme cases, even over a year. Such a long lead time
is especially remarkable as the actual processing time for the change typically does
not exceed two weeks. Based on our case study, we develop an analytical framework
that explains how such an extreme ratio between theoretical processing time and
actual lead time is possible. The framework identifies congestion, stemming from
scarce capacity coupled with processing variability, as a major lead time contributor.
We outline five improvement strategies which an organization can use in order to
reduce ECO lead time, namely flexible capacity, balanced workloads, merged tasks,
pooling, and reduced set-ups and batching.



Introduction

Engineering change orders (ECOs) — changes to parts, drawings or software that have
already been released — are important drivers of development costs and lead time.
Given this importance of ECOs, most large organizations use a formal support process
administering these changes. This ECO process is present at the back end of almost
all complex new product development (NPD) projects. It has been identified as one of
the root causes of high ECO costs [5], which in many projects can account for one
third to one half of engineering capacity [21] and 20-50% of tool costs [17].

In an in-depth field study of the climate control system (CCS) development in a new
vehicle (reported in [22]), we have identified congestion, stemming from scarce
engineering capacity, as one of the main drivers of long ECO lead times. Specifically,
we have observed numerous cases where the overall lead time exceeded the pure
problem-solving time by a factor 10 and more. This observation is consistent with
Blackburn [4] who reports that the value-added time for ECOs in airframe
manufacturing is as low as 8.5%. Thus, for each day of actual processing time, there
are two weeks of non-value-added time. Most of this non-value-added time is waiting
time. But how is it possible that a process that has a net task time (value-added time)
of less than a week, takes a full month? What happens in the residual time? And
finally, how can we improve the ratio between value-added time and non-value-added
time?

The present article provides a detailed analysis of the ECO support process of
complex NPD projects. The analysis is based on the theory of queueing and
congestion applied to the ECO process. Queueing theory has found successful
applications in manufacturing [15] and services [11]. We use queueing models to
describe the detailed flows of documents and information in the ECO process. This
approach allows us to explain the disproportionately long waiting times and to
identify five improvement strategies, namely flexible capacity, balanced workloads,
merged tasks, pooling, and reduced set-ups and batching, and apply them to the
example of the ECO process.

Background

The effects of congestion on throughput times are well-known in manufacturing and
service contexts (e.g. [11,15]), but have rarely been identified in the context of NPD
in general and not at all in the ECO process. Among the few exceptions are
Wheelwright and Clark [27], who observe that there are a number of manufacturing-
like activities and even true manufacturing activities (such as prototype-building)
within product development. This suggests that some process analysis approaches
from manufacturing may be applied.

Blackburn [4,5] points concretely to the problem of long lead times in NPD processes.
He observes that batching and delayed information transfer contribute to this problem.
Adler et al. [1,2] go one step further and quantitatively demonstrate congestion effects
based on projects competing for engineering capacity. The authors use simulation



analysis to understand the reasons for long lead times and recommend four
improvement strategies: cross-training technicians to offload engineers (who were
process bottlenecks), limiting the total number of projects under way at any point in
time (that is, limit the backlog), avoiding expedited projects (projects that get high
priority at the expense of others), and tracking project throughput times.

In Terwiesch and Loch 1998 [22], we present an in-depth case study of the CCS
development in a vehicle. In this case study, we find that the time it took the
organization to move an ECO from its creation to its successful implementation was
surprisingly long. Despite the tremendous time pressure in development projects in
general and in the ECO process in particular, process lead times were in the order of
several weeks, several months, and, in extreme cases, even over a year. Looking at the
causes for these long lead times in more detail, we were surprised by the low
proportion of value-added time in the ECO support process. An ECO spent most of
its lifetime “sitting on someone’s desk”, waiting for further processing. This
observation is consistent with Blackburn [4] who reports similarly low proportion of
value-added times for ECOs in airframe manufacturing.

The long lead times and the disproportionate amount of non-value-added time
motivated us to take a more detailed look at the dynamics of the ECO process. In
particular, we were interested in answering the following research questions:

e What causes the low ratio of value-added to total ECO lead time? What happens
in the residual time?

e How can one improve the ratio between value-added time and non-value-added
time?

The remainder of this article is organized according to the established logic of process
analysis and redesign [12,18]. We first describe the existing ECO support process in
the form of a process map. We then calculate capacity utilization profiles encountered
at each step in the process, which allows the identification of process bottlenecks.
Based on the utilization profiles, we outline our theoretical framework for
understanding how high utilization coupled with process variability causes
congestion, that is, competition for scarce resources and long non-value-added times.
This leads to improvement strategies presented at the end of the article.

Description Of The Process

The first step in understanding why it takes so long from the detection of a problem to
the implementation of the ECO consists of mapping the process (Figure 1). A
problem in a component, or in interactions between components, of the CCS is
usually detected while testing prototypes. Prototypes may be virtual (existing in a
CAD model), clay models, or physical models of varying completeness. When the
problem is clearly identified and reproduced, and when a candidate solution strategy
has been identified, an official ECO is created. At this point, the ECO approval
process, depicted in Figure 1, begins (it is a subset of the activities considered in [21]).
A detailed design is proposed by CCS engineers to resolve the problem. This solution
must be simulated for effectiveness by the computer simulation group and then
approved by the project manager (who also seeks input from the functional



engineering departments), and by accounting, who examine the cost implications of
the change. If approval is not granted, an alternative design must be developed.

Arrival of an
officially
recognized
ECO

Generation Simulation I Engineering Administrative Approval and
. of Alternatives of new approval (incl. approval (incl. Implementatio
. by CCS designs at Functional Eng. Project Manag. through
: Engineers CAD level & Project Eng.) & Finance) Purchasing

Feedback on Arrival of
R LR effectiveness |wff—q Modified
generation of new ECO if not effective of the ECO Parts for
prototypes
resolved

Figure 1: An Illustration of the ECO Process

Once implementation is authorized, the purchasing department asks the supplier to
include the change in the next batch of prototype parts. When new parts with the
ECO implemented arrive for prototype construction, an evaluation of the new design
solution can be made. In some cases, the changed part proves ineffective (for
example, when the design of the CCS system has changed during the time the ECO
was resolved), in which case a new ECO must be generated.

Figure 1 contains two possible iteration loops. The first iteration occurs if approval is
not granted, for example, when the change increases manufacturing cost unacceptably.
In the analysis below, we do not consider this iteration in order to simplify exposition.
The loop can be incorporated in our analysis, and as one would expect, it makes lead
times worse. The second loop occurs if, against expectation, the redesigned parts still
contain problems. This loop is incorporated in the frequency of ECOs arriving, i.e.
some proportion of the arriving ECOs are re-issued ECOs.

Each of the activities in the ECO process takes between a few minutes (e.g., decision
by project management) and a few hours (e.g., design proposal). Even with loops in
the process, the total time required to perform the activities does not exceed one day.

In our host organization, most engineers (excluding the small project management
organization) remained in their functional units and thus worked simultaneously on
multiple projects. Several of them reported in interviews that this not only caused
problems conceming their management of priorities, but also required them to
frequently switch their attention from one project to another, causing a significant
time-loss from “diving into the project again”. Available engineering capacity
(typically about 40 hours per week) was consumed by the development project that we
focused on (about 50%). The other half of capacity was spent on other ongoing
projects.



The mere structure of the process already reveals that resolving an ECO consists of a
long sequence of steps involving numerous people. In the terminology of Business
Process Reengineering [13], the process contains several ‘“bureaucratic” activities
(such as accounting approval) and handoffs between groups. However, an elimination
of accounting approval was not under discussion in the host organization, as they felt
the cost control of changes to be of high importance.

Process Utilization Profiles and Bottlenecks

After having drawn a process map, the next step in process analysis is understanding
the capacity and utilization profiles of the resources involved.

Figure 2 illustrates the necessary quantitative data for the ECO process that we
introduced in Figure 1 (with some simplifications for expositional purposes). A
critical new concept not visible in Figure 1 is that the process must handle a stream of
ECOs over time: 20 ECOs arrive, on average, per week at random points in time
(including the “re-issued” ECOs mentioned in Figure 1).

Each ECO must be processed by several resources, comprising the engineers, project
manager, accounting analyst, and purchaser. Each resource must perform fasks,
which require a processing time. An ECO takes an average of two hours to develop a
solution proposal. Simulation requires a set-up of 30 minutes to perform data
preparation of the files each time a new type of problem is tackled. Simulation itself
takes 90 minutes. The simulation group processes ECOs in batches of two (they pick
out of their in-basket two problems, similar in structure), in order to economize on the
set-ups. Subsequently, an ECO needs, on average, 45 minutes to be checked for its
cost impact, 45 minutes for new parts to be ordered, and ten minutes of the project
manager’s attention for approval. The project manager (who is extremely busy)
discusses ECOs only once a week, during the weekly project team meeting, when
approval or rejection decisions are made on the spot.

20 arrivals
per week Finance / Accounting

| ARy
CCS Engineers Simulation Group - m=0.75 hotrs - Purchasing
O—m0= -« IO

m =1.6ho Manag T
. “m=Zhours s= osho;: Projet 2 o m==075hom-s
(@ engincers) 20 -—'E—_] O__ | ;
weekly working time = 40 hours . m =10 minutes '

Figure 2: Capacity and Processing Time Data of the ECO Process

Two engineers devote their time to the first step; one person performs each of the
other steps. All employees work five times eight hours (40 hours) a week. CCS and
simulation engineers devote their entire time to this ECO process. The accounting




and purchasing specialists have other responsibilities, but give priority to this process,
so their effective utilizations and throughput times can be calculated without regard to
other work. The project manager has many responsibilities and decides on ECOs
once a week, during the weekly project meeting. Consistent with our observations of
the process in the host company, the project manager in the example indeed decides
on all ECOs on the spot during the meeting; no ECO must remain another week
unaddressed.

With these data, we can now ask an important question: Do the resources have
enough capacity to satisfy the work demanded from them by the incoming ECO
stream? In other words, is total capacity consumption for each engineer and analyst
less than or equal to the capacity available?

For each resource, we can calculate the wtilization as the ratio of total capacity
consumed and capacity available. For example, at CCS engineering the utilization is:
CCS Utilization = 50% = 2 hours/task x 0.5 tasks/hour / (2 people).

The simulation engineer encounters a complication, namely ser-ups: every time
he/she prepares the simulation software for a different type of problem, files must be
loaded, parameters adjusted, etc. (for an overview of the set-ups encountered see
[21]). The engineer, therefore, tries to regroup the ECOs in batches of 2 similar
problems, in order to economize on the set-ups. Batching is a very old and frequently
encountered principle in processes of all kinds (the earliest reference is Harris 1913
[13]). Batching has, however, a downside stemming from the time a task has to wait
in order for its “cohorts” in the same batch to be processed. Thus, an individual ECO
is not implemented directly on occurrence, but rather batched with other changes, thus
lengthening the ECO lead time.

With batches, the resulting utilization of the simulation engineer becomes:
Simulation Utilization = 92.5% = (1.6 hrs/task + 0.25 hrs of set-up/task) x 0.5
tasks/hour

Note that the engineer must batch in order to manage the workload: with batches of 1,
the utilization would be (1.6 hrs/task + 0.5 hrs of set-up/task) x 0.5 tasks/hour =
105%. That is, he/she would not be able to accomplish all work without overtime.

In general, we can describe the utilization for a resource as follows. We call R the
overall throughput rate of the workgroup (the volume of the ECO stream to be
handled, 20 per week, corresponding to 0.5 per hour). As we discussed above, R is
externally given, determined by the number of ongoing projects. We call p the
average processing time for a task performed by the resource in question (for example,
2 hours at CCS engineering). The simulation engineer organizes his/her work in
batches of b tasks to be done together, and every time the engineer switches from one
batch to another, he/she must spend s time units in set-ups.

With these problem data, the utilization of the engineer becomes u = R (p + s/b). Itis
measured in %, and it consists of the fraction of time the engineer is busy with
processing (R p) and set-ups (R s/b). In other words, R represents the number of



“jobs” or problems that arrive, on average, per time unit, and p is the “workload” (in
time units) that each job carries with it, on average. The product of the two represents
the fraction of time the engineer is busy with processing this type of job.

The reader can see immediately in this expression that the average amount of time
spent on set-ups decreases when the batch size b increases, which is, of course, the
precise reason why people batch. That is, less total time is spent on set-ups if they are
spread over more units in a batch.

The utilization profiles are summarized in Table 1. It implies that in total (on average
in the long run), all engineers and analysts have enough capacity to accomplish their
workload: all utilizations are below 100%. Simulation is closest to a full load with a
utilization of 92.5%. The processing resource with the highest load in a process is
referred to as a bottleneck. A bottleneck limits the throughput volume of the process,
and close attention should be paid to it.

Station CCS Simulation Cost Project  Purchasing
(batch =2) analysis Manager
Utilization, 50% 92.5 375 8* 375
in % '

* The project manager decides on ECOs once per week. He spends 92% of his time on coordination
activities.

Table 1: Utilization Profiles in the ECO Process

An Explanatory Framework of Congestion

We have now determined that the process is capable of accomplishing its workload,
that is the observed long lead times do not stem from sheer overload. In order to
understand the long lead times, we must take a more detailed look at the dynamic
behavior of the process.

When regarding an individual task in the ECO process, such as a design proposal by
CCS engineering, we find that the total throughput time of this task comprises three
components':

e Processing time: the actual time it takes to process the task, e.g., the time it takes
the engineer to analyze the data.

e Waiting in the batch: the time the task has to wait in order for its “cohorts” in the
same batch to be processed. For example, the first ECO in the simulation
engineer’s batch waits for the second to arrive before the batch starts, and afier the
first ECO in the batch is simulated, it also waits for the second to be processed

! We ignore “travel time” from one engineer to the next, as we found it in our study to happen
relatively quickly, compared to the overall lead times reported above. Most of the information was
submitted electronically or via fast courier services. In organizations with a lower level of electronic
integration, the time an ECO spends “travelling” might be significant. Transfer times can easily be
included in our framework by just describing the transfer as an activity in itself.



before both proceed to the next process step. In other words, batching economizes
on set-ups, but it lengthens the de facto processing time.

e Waiting time: the time the task remains pending, e.g., the time the problem data
remain on the engineer’s desk before he/she takes action.

A familiar example of waiting time from our day-to-day life is the checkout in a
supermarket where customers queue up for their turn. Other familiar examples
include the check-in at an airport, telephone call centers, or restaurants. In such
situations, the time it takes to get service is substantially driven by the time before the
actual service starts. As waiting time is beneficial for neither the customer nor for the
service provider, we also refer to it as non-value-added time.

In many manufacturing facilities, non-value-added times (mainly waiting time)
account for 70 - 90% of throughput times (see, e.g., [14]). In product development
organizations, the situation is similar: projects often take much longer than the work
content alone suggests [1, 2]. Inthe ECO process in our host organization, a one-day
waiting time resulted for an operation of less than one hour.

Waiting is intimately connected to variability in processing and work arrival patterns.
To understand its effect, consider first a smoothly running assembly line where
variability is absent. Jobs (such as metal parts to be assembled) arrive like “soldiers
marching” in time with the line. Every operation is highly structured or automated,
and thus processing times at each step are the same for all workparts. In this situation,
the line can be loaded until the bottleneck (the slowest station) reaches a utilization of
100%, without any difference for the lead time (throughput time) of the line: it is
simply the sum of the processing times at all stations (of course, if the line is loaded
beyond the bottleneck’s limit, work will start piling up).

The above-described perfectly regularized assembly line is an exception, as far as
operating environments go. The situation faced in the ECO process (and in product
development processes and many manufacturing processes in general) is much more
difficult. First, ECOs do not arrive like “marching soldiers”. Product development is
a complex process that is much harder to predict than an assembly line, thus work
arrives in far more random patterns. Let us call the time between two subsequent
ECO arrivals the interarrival time’. Interarrival times vary considerably from one
time to the next: sometimes, several ECOs appear within an hour, whereas
occasionally it takes a day for the next one to be created.

Second, not all ECOs require the same processing time. Some are difficult and take
several hours in their detailed solution design, while others require minor
modifications that can be made within a few minutes. This is the case even within
classes of comparable complexity, which is what we consider in our process analysis.

Variability has an extremely detrimental effect on the processing engineer. Although
the engineer has enough capacity to manage the work in the long run, random

? From the perspective of the ECO process, ECOs do externally “arrive,” as their creation is prompted
by unforeseeable problems.



fluctuations may cause him/her to “fall behind” temporarily, when a few ECOs
happen to arrive in quick succession, or when an ECO proves difficult, and takes
much longer than the normal. During this time, a backlog of unprocessed ECOs
accumulates for this engineer. The fact that the engineer has enough capacity in the
long run implies that he/she will be able, eventually, to “work off” this backlog. Such
a backlog corresponds, of course, to waiting. But how long will this waiting be?

The time to work off the backlog strongly depends on the “slack capacity,” or, in other
words, 100% minus the capacity utilization, of the engineer. The higher the
utilization, the longer it will take him/her to work off the backlog (in addition to
handling the extra work arriving in the meantime). It turns out that when the
utilization is high (slack is low), surprisingly large backlogs may occur, and they may
stay for an unexpectedly long time before being worked off. This explains the long
waiting times we observed in the ECO process.

“Slack capacity” in this context does not mean that the engineer is sitting around idle.
As in all professional environments, there is always work, in the form of problem-
solving or the creating of new ideas or designs. Slack means that there is some
“background” work in the sense that it can be put aside at times of high pressure.
Such slack provides the engineer with the flexibility to respond to variability-related
backlogs. We now need to make this intuitive explanation precise.

We need to introduce measures for variability in addition to those of throughput rate
R, processing time p, batch size b and set-up time s as defined above. A natural and
widely-known candidate for this is the standard deviation. We can measure the
standard deviation of the interarrival time and of the processing time at each resource
(engineer or analyst). This measure is, however, not perfect because it is an absolute
measure: if the CCS engineer’s and the accounting analyst’s tasks both have a
standard deviation of 1 hour, are they equally variable? The answer is no, since the
CCS engineer’s standard deviation is only a fraction of the average task time, while
the analyst’s standard deviation is larger than the mean task time. Therefore, a better
measure of variability is the ratio of the standard deviation over the mean. 1t is
referred to as the coefficient of variation (CV), and we call it C¥, for the ECO arrivals
and CV), for the processing times.

ECOs arrive irregularly, and vary in their complexity, so the CVs of both arrivals and
processing are relatively high. A reasonable estimate is a value of 1 (the standard
deviation equals the mean®).

Our intuitive explanation above suggests that waiting times will increase both with the
variability (since the chance of “temporary falling behind” increases) and the
utilization (since the slack to work off the backlog decreases). The Pollaczek-

* A CV of 1 technically corresponds to exponentially distributed processing and interarrival times. This
is a standard distribution used for high-variability situations, and it has repeatedly proven a good
approximation [1,15,18]. In many well-controlled manufacturing environments, the CV is much lower
than 1.



Khintchine formula makes the above explained intuition precise®:
1
Wait ==(CV? + CV2)—— (s + bp). (1)
2 P 1-u

Note that u is the utilization as we explained it above, and (s + bp) is the time needed
to process one batch. The formula behaves as we expected from the above
explanation. When utilization goes from 90% to 95%, the ratio w/(1-u) goes from 9 to
19, which corresponds to a very steep increase at high utilizations. The waiting time
becomes more and more dominant as utilization increases. In addition, wait increases
quadratically with the two coefficients of variation.

The highest utilization encountered in our process is 92.5% at simulation. Due to the
very steep increase at high utilizations, waiting in Formula (1) is much higher at the
bottleneck station than at less loaded engineers. This explains some of the long
waiting time observed in the process.

The average fotal throughput time is the sum of the average waiting and processing
times of the batch, including set-up and the average time an individual task waits for
its batch cohorts to be done. We can summarize the throughput time in the following
formula (where u is now replaced by R (p + s/b)).” The CV for the batch (marked by
the upper bar) may differ from the CV of individual processing times® because some
averaging occurs over a batch. For example, it is unlikely that the first and the second
problem in a batch of 2 both have a very long or a very short processing time. Thus,
the processing time of the full batch tends more toward the average, exhibiting lower
variability than the individual problem to be solved.

R(p+s/b)
1-R(p+s/b)

1
Throughput time = E(CVZ +CV7,) (s+bp) +5+bp. @)

This formula characterizes the typical throughput time behavior at the individual
resource, which is graphically represented in Figure 3: On the left-hand side, we see
that as utilization approaches full load, or 100%, the throughput time dramatically
increases because the engineers no longer have the slack to deal with unexpected
events (expression u/(I-u) in the formula). Work spends more and more time in the
in-baskets.

The right-hand side of Figure 3 demonstrates how batching mitigates the congestion
problem by spreading the set-up over more tasks and thus reducing utilization: # = R
(p + s/b). This comes, however, at a cost: when the batch size becomes large, the
marginal congestion benefit decreases, but the waiting time for the batch cohorts
continues to grow linearly with the batch size. Thus, there exists a point with a “best”
batch size.

4 The Pollaczek-Khintchine formula can be looked up in many books on manufacturing or queueing,
e.g., Hopp and Spearman [15]. It holds as an approximation with good accuracy when utilization is
high, which is exactly when waiting times matter.

® This formula is based on work by Karmarkar et al. [16]. An intuitive derivation can be found in
Hopp and Spearman [15], p. 290 f. Again, this is an approximation that is accurate for high utilization
levels.

¢ This holds if the processing times are not strongly correlated.



Congestion and Batching: Analytical Background
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Figure 3: Congestion and Batching in the ECO Process

If one succeeds in reducing variability or set-up times, two positive effects result:
first, the whole throughput time curve shifts downward, and the optimal batch size
shrinks (shifts to the left) as well. When the set-up time s is very small, batching no
longer has a benefit. This can be seen in the formula: if s=0, the utilization becomes
independent of batch size, since no set-up work is saved by batching.

This analysis applies to a single engineer or workgroup. The strong non-linearity of
the congestion effect increases the importance of the bottlenecks: if one workgroup
alone is highly utilized, its throughput time will dominate that of the whole process.
In a process consisting of several operations, such as our ECO process, additional
interactions exacerbate congestion even further. For example, purchasing can only
start its work if al/l previous activities have been completed, which further contributes
to long waiting times: only after cost analysis is done and the project manager has
agreed to the proposed solution can parts be ordered.

Station CCS Simulation Cost Project Purchasing
(b=2) analysis Manager
TPT (average throughput 2% 25 1 20** 1
time), in hours, by
formula (2)
TPT, in hours, 3 25 1 20 8
simulated***
Total TPT, in hours 56

*  This TPT is calculated with an “average” processing time p = 1 hour in the utilization, since the
two engineers can work on two ECOs in parallel. Processing itself still takes 2 hours.

**  The project manager decides on ECOs once per week, so on average, an ECO is pending half a
week.

*** Discrete-event simulation with the software package SLAM; analysis runs over 40 000 jobs.

Table 2: Average Throughput Times in the ECO Process

With the help of the above formula, we can now find the average throughput time
(TPT) at each step, which is summarized in the first row of Table 2.” In addition, we
show the TPT as found by discrete-event simulation with a commercial software

7 The stations are analyzed as if they were isolated from one another. This is exact when the CVs are
equal to 1, and it provides a reasonable approximation for more general cases. In addition, the SCV
of a batch of two can be shown to be 0.5 (the d:: *ibution of processing two exponentially distributed
tasks in series becomes an Erlang-2 distributior
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package in row 2. The average throughput times at the stations of the process add up
to a total of 56 hours. It is the sum of all individual TPTs, except for the time for the
cost analysis, which runs in parallel to, and is dominated by, the TPT for the project
manager’s decision.

The results as calculated by Formula (2) and as simulated (rows 1 and 2 of the table)
largely agree, with one exception that is worth discussing: the formula predicts a fast
turnaround at purchasing, while the simulation shows an average delay of a whole
day. This is because we assumed in the formula, for lack of better information, a CV
of 1 for the incoming job flow at purchasing. It turns out, however, that as the project
manager releases a large number of ECOs (about 20) once a week, they arrive at
purchasing in large “packs,” and purchasing must “work off” this backlog over the
next two days. This leads to an average delay of one day. In the context of the
formula, such “lumpiness” of an ECO arrival stream corresponds to high variance,
and thus an SCV much higher than 1.

The important implication of Table 2 is that an ECO takes on average almost one and
a half weeks (and in some cases much longer) to go through one iteration of the ECO
process, although it has on average only 5 hours’ work invested in it. With 25 hours
on average, the bottleneck station (simulation) contributes almost half of the
throughput time. The project manager also slows down the process because he
authorizes ECOs only once a week, adding, on average, 20 hours to the TPT.

Percent of Observations
12%

mean: 57

10%

8%

6% |

4%

2%

0
10 20 30 40 50 60 70 80 90 100 110120 130140 150160 >165

Throughput Time (upper cell limit; cell width = 5)

Figure 4: ECO Throughput Time Distribution

Table 2 summarizes the average TPT of an ECO. However, the average i1s not
sufficient to describe the performance of this process: throughput times are
themselves variable, so they must be described in the form of a distribution. The tail
of this distribution determines the service level the process can offer. Figure 4
demonstrates that the project manager needs to allow as much as 2.5 weeks
beforehand, in order to be 90% confident that an ECO will indeed be resolved.® For

¥ The reader may recall that in the real process in our host organization, some ECOs had to go through
several problem-solving loops, which delayed them even further. However, this is beyond the scope
of this example.
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example, if the project manager wants to estimate whether a newly-arisen ECO will
be affected by another change in another component, he needs to be aware of the fact
that the ECO may remain open for three weeks, not only 1.5 as the average TPT
suggests.

This example shows how congestion can lead to TPTs that are many times the raw
processing time. Thus, the example contributes to explaining the throughput times
observed in the CCS case. In addition, Figure 4 explains the “self-fulfilling prophecy
syndrome”: the engineers know very well, of course, that the lead time for an
individual ECO follows a distribution (not only for the process as a whole, as shown
in Figure 4, but also at each engineer) and cannot be predicted beforechand. They
know this from experience, although they typically do not know the precise shape of
the distribution. Moreover, no one wants to be caught not living up to his/her
promises. So what does an engineer answer when asked when an ECO can be
resolved? He/she will give the 90™ or 95" percentile of the distribution. However, if
every step in the process indicates the 90™ percentile for the expected TPT, the
resulting estimate for the process as a whole will be ridiculously conservative and
make any planning very hard for the project manager. The project manager in our
host organization complained bitterly about this planning paradox, which occurs not
only in the ECO process but which seems to be a typical problem in project
management [12].

Discussion: Opportunities for Improvement

The interesting question for managers, of course, is what concrete improvement
possibilities exist. Congestion problems can be easily avoided by just adding extra
capacity, although, for obvious financial and political reasons, this approach is out of
the question. Similarly, variability can be controlled (for example, by rigorous quality
management) in many manufacturing environments, but it is inherent in the ECO
process, as each ECO problem is unpredictable. The objective of the improvement
methods presented below (summarized in Figure 5) is to improve ECO lead times
without adding extra capacity and without dreaming of a regularized process.

Opportunities for Improvement: Flexible Capacity

The first improvement strategy addresses the basic source of queueing problems, the
mismatch between when capacity is needed and when capacity is provided, by
increasing the flexibility of the server. Remember that in the discussion above, as
well as in the presented formula, the utilization (the relationship between capacity
available and capacity required) must be less than 100% on average, as otherwise one
would fall behind in the long run. Thus, if it were possible to provide the server
capacity at the moment it is required, queueing could be completely avoided. Now
consider the simulation engineer, who faces the highest utilization of all with 92.5%,
working up to two hours’ overtime per week (for example, during lunch or at night),
whenever an ECO backlog piles up on his/her desk. On the other hand, he/she may go
home earlier if the workload is light. Thus, in the long run, the engineer does not
work more than 40 hours a week, but the work is provided just at the time when it is
needed.
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With this flexibility, the effective utilization factor in our example goes down to 88%
(keeping the batch size constant at 2). Formula (2) and discrete-event simulation both
show that this reduces the average throughput time for simulation from 25 hours to 14
hours, a reduction of 44% at this station.

Making Capacity Flexible Merging Tasks

Finance / Accounting

Two hours’ overtime if needed

Project Manager
Balancing Workloads
40% 90% . 60% 70%
Sharing Resources Reducing Batching

*DO* ===
L oo BBt

Figure 5: Five Strategies for Reducing Congestion and Batching in the ECO Process

Opportunities for Improvement: Merging Tasks

The first improvement strategy is targeted at an individual server, whereas the second
strategy of merging tasks looks at multiple servers collectively. Consider the three
tasks of financial analysis, approval by the module project manager, and that of
ordering parts. The ECO in the current situation must queue at each of the three
servers, risking waiting times at each of them. In our example, we introduce a
manager whose time is devoted to performing cost analyses and ordering parts, and
who also has the authority to approve ECOs on the spot. This manager can approve
ECOs flexibly during the week (not only in the weekly meeting).

In our example, this corresponds to one server facing an average processing time per
ECO of (0.75 + 0.17 + 0.75) = 1.67 hours, or a utilization of 83%. As a result, the
total average throughput time of this part of the process is reduced from 28 to 10
hours, a reduction of 64%. In the company we studied, we indeed found a number of
“ECO managers” who combined the work that was previously done by separate
organizational entities. We also observed that some module project managers
approved ECOs on the spot while walking around the engineering cubicles (rather
than only once a week).

Opportunities for Improvement: Balancing the Workload

The third strategy of balancing workload is based on the observation that process lead
times are frequently dominated by one single activity, referred to as the “bottleneck”
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activity, the one with the highest utilization, and which determines the speed of the
whole system. In our CCS development case, the bottleneck is easily identified as the
aerodynamics simulation engineer with a utilization of 88%. Because of the high
expertise required for the simulation activity, the corresponding group is permanently
short of engineers. This makes the group almost incapable of responding quickly to
the requested ECO evaluations. To make matters worse, the group spends a
significant amount of its time reworking CAD models created by other CCS
engineers, in order to bring the models to an accuracy level required for the simulation
software. Thus, about one third of this group’s precious time is wasted on work that
could equally be performed by CCS engineers.

If this preparation work is shifted in our example from the simulation engineer to the
CCS engineers (who do not need to batch — they can perform the set-up for every
ECO), capacity utilizations become better balanced, at 62.5% for CCS engineering
and 80% for simulation engineering. As a result, average CCS TPT goes up from 3 to
4 hours, but simulation time shrinks from 25 to 8 hours. Thus, the total average TPT
for both stations is reduced from 28 to 12 hours, or by 57%. This example
demonstrates how non-linear the impact of utilization on TPT is: the gain from
reducing the utilization of simulation from 92 to 80% far outweighs the loss from
increasing CCS’s utilization from 50% to 63%.

Opportunities for Improvement: Pooling

The fourth strategy, that of pooling, or sharing workloads, among engineers, is based
on reducing specialization in the development organization, requiring the capability of
the engineers to assume a broader technical responsibility. Pooling is often efficient
from a queueing perspective for three reasons. First, utilizations are balanced within
the pooled group. Second, it cannot happen that one worker is starved of work while
another has tasks waiting in his/her in-basket. Third, if one individual ECO happens
to be very complicated and time-consuming, the subsequent ones are not “stuck”
behind it, but can (at least slowly) bypass it via the other pooled servers.

Pooling, however, may also have a downside. First, and most obviously, the
engineers may have to go through “mental set-ups” and become less productive if
spread across different tasks. Second, pooling may increase the processing variability
if different types of jobs, although homogeneous among themselves, but very different
across types, are pooled. If, for example, ECOs for the filter box (requiring air flow
analyses) and for electrical motors (requiring electrical design) were to be pooled, one
engineer would be responsible for total CCS ECOs and face a multitude of very
different tasks. This could increase the variability of the workload and thus queueing
effects, even if the engineer was perfectly cross-trained.’

Pooling may not be possible for pure research tasks, which require profound expertise
in one specific domain. However, we found it to be typically applicable for
engineering tasks such as ECOs, which entail relatively standard operations.

® The trade-off is too complicated to be meaningfully included in our simplified example, so we
provide no estimate of the potential benefit.
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Engineers can share work on similar components, such as air and water ducts for
different parts of the CCS, or on the analogous components for different car
development projects which progress in parallel.

We are not including the pooling improvements in our numerical example, because
the trade-offs involved are complex and would force us to complicate the example to
an extent which would hinder simple exposition. Of course, the trade-offs are
accessible to evaluation by simulation modeling.

Opportunities for Improvement: Managing Batching Problems

Before we discuss concrete actions aimed at reducing batching, we demonstrate the
potentially large effect using our numerical example. Keeping all processing times
unchanged for comparison, we first ask whether a batch size of two at the simulation
group is a good choice. Examining the utilization, it becomes evident that the
simulation group has no other choice but to batch, as they would become overloaded
(v = 100%) if they processed the problems as they come, incurring a set-up every
time. Furthermore, a larger batch size offers no further improvement, i.e., the waiting
within the batch more than offsets the reduced congestion.

However, a reduction in the set-up time makes a great difference. Suppose the data
preparation could be shortened from 30 minutes to 5 (e.g., via more compatible file
formats and more consistent preparation of the data by the problem-generating
engineers. These are two proposals under discussion at the company).

Holding the batch size constant at b =2, utilization falls to 82%, and the average TPT
of the simulation engineer is reduced from 25 hours to 10, a reduction of 60%.
Moreover, batching is no longer necessary: the simulation engineer can now process
the problems as they come, in spite of the set-ups. This increases utilization to 84%
(in comparison to maintaining the batch) and also variability (as there is no longer
averaging of processing times within a batch), while decreasing the batch processing
time. In our example, the trade-off comes out exactly even: reducing the batch to 1 is
equivalent to keeping the batch at 2, with an average TPT of 10 hours.

After having examined the importance of batching and set-ups in the example, we
now discuss possible actions to reduce the reasons which make batching necessary.

The only way of improving the trade-off from Figure 3 (between having to incur set-
ups and incurring long batch processing times) lies in addressing the sources of
batching, i.e. the set-ups, reducing batch sizes through a set-up cost reduction. In our
companion paper [22], we mention communication technologies and ‘“rapid” or
“virtual prototypes” as possible ways of reducing set-ups [8,19,24].

The improvement most relevant to the process example described in this paper
addresses mental set-ups. These refer to the fact that an engineer, returning to a
problem after having worked on something else, needs some time to understand and
master the problem again. Moreover, he/she needs to go through the physical action
of re-loading all the CAD files and data sources which are directly relevant to the
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problem. Our host company has already partially resolved this by allowing the
engineer to access all electronic drawings from his/her CAD workstation. Most of the
more senior engineers we talked to still remember vividly the time when an engineer
had to go to the drawing archives and physically take out the drawings for a vehicle
subsystem.

Despite the progress of CAD technology that we witnessed in our host organization,
substantial differences persist across companies as to how easily these systems can be
used and thus how large the set-ups for getting started are. While some companies
have achieved easy-to-use CAD [24], many others still wrestle with complicated CAD
systems and a lack of CAD-trained engineers. Engineers who schedule themselves
special “CAD-days”, as they are forced to reserve a CAD station in advance, are still
the rule in most industries.. A second opportunity of reducing mental set-ups lies in
the division of work between engineers. While it is advantageous to have engineers
devote their time to components requiring profound functional expertise (e.g., ASIC
technology in the control unit of the CCS system), in other cases more integrative in
nature (e.g., packaging of a cooling circuit), it may be better to have an engineer
assigned to a vehicle project. Aligning work assignments with the knowledge
requirements of the tasks saves the engineer substantial change-over costs between
technologies or projects.

Opportunities for Improvement: Incentives

The “self-fulfilling prophecy” paradox, which makes process lead time estimates
over-conservative, must be addressed by changing incentives. Whenever people in an
organization are held responsible for meeting the promised deadlines for each
individual task, they will react by giving very conservative estimates. Goldratt [12]
proposes that the project manager elicits estimates from the engineers which they fail
to meet half of the time, and actually enforces this “success rate”!™°

However, this requires, first, that engineers are also held accountable for the average
of the estimates, since they would otherwise still be free to under-promise and then to
procrastinate. Second, such a measure requires a strong will by the project manager to
let go of trying to control each individual ECO, and look only at the distribution,
which goes against all natural project management instincts. The project manager in
our host organization was not willing to make that step.

Opportunities for Improvement: Summary

The improvement approaches are summarized in Figure 5. Each of these strategies
can dramatically reduce ECO lead times without taking the brute force measure of
adding capacity. Above, we have discussed the improvements in isolation. In
combination, their effect is even more powerful, although they do not add linearly, but
with decreasing returns (as congestion decreases, improvements become less drastic).

1 This policy would get the median of the distribution, not the mean, which resolves the
conservativeness bias.
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In order to see the benefit of combining the above improvements, consider the
situation where simulation capacity is flexible, set-up times have been reduced, and
the accounting, purchasing and ECO authorization activities have been merged
(pooling and capacity offloading are less urgent now and thus not included). Figure 6
shows the resulting TPT of the ECO process: not only is the mean reduced almost by
a factor of three to 20 hours, but also the tail of the TPT distribution has shrunk to one
week. The project manager can now be reasonably certain that an ECO will be done
within a week, thus greatly reducing the risk of new ECOs interfering with it [10,17].

Thus, the resulting streamlined process will also be advantageous from a quality
perspective, as shorter lead times reduce the risk of rework being incurred by
interacting changes [21, 22, 23, 25]. Finally, engineers can obtain immediate
feedback on the effectiveness of their changes, which helps them to develop a better
understanding of problems and solutions (see [14, 21]).
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Figure 6: ECO Throughput Time Distributions before and After Improvements

The above-discussed improvement actions may require significant investments, for
example, when systems have to be developed, or when engineers have to be trained,
or in the case of the organization having to be changed when merging tasks. In order
to evaluate the attractiveness of such process improvements, the value of time must be
estimated: what is it worth to the organization to gain one week in time-to-market?
Models of the value of time exist (e.g., [3,9,26]), but not in sufficiently operational
form to be used for the evaluation of improvements in the ECO process. This is an
important area of future research.
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Summary

In this article, we have outlined a process-based view of ECO management. We have
shown that many of the problems related to ECOs have their roots in a complicated
and congested administrative process. Additional reasons for long process throughput
times are notably congestion and batching. While previous studies have hinted at
these causes for waiting time in the context of manufacturing and services [6,11,15] or
on a high aggregation level with complete development projects [1,2,4,5], we show in
this article how congestion and batching influence engineering processes at a more
detailed level.

Our analysis provides a theoretical explanation for the data that we collected in [22],
as well as for previous studies, especially the one by Blackburn [4, 5]. It also provides
a starting point in the search of improvement strategies, as we have shown in the cases
of flexible work times, the grouping of several tasks, workload balancing, the pooling
of resources, and the reduction of set-up times.

The objective of the processing network framework in this article is to provide a
conceptual explanation for some of the phenomena that we (and other researchers [5,
27]) have observed. Although previous studies have shown that it is possible to apply
queueing concepts such as arrival and service rates, variability and utilization to
engineering organizations, considerable effort is required to operationalize and
measure these concepts in an ongoing project. As the objective of the present article
is more qualitative than quantitative, we have not yet fully addressed the
corresponding methods of data collection (e.g. how to measure utilization) and
implementation (e.g. managing organizational change). Further research will be
required also along these lines.

The model presented here simplifies the complexity of engineering projects in order to
illuminate the structure of the problem. Future research will have to provide richer,
more detailed models that better describe the multitude of tasks flowing in the
processing network called “development organization”. In particular, the
methodology applied in this article can be used to estimate the benefits from using
CAx technologies in managing ECOs. Such technologies may in the future be
capable of automatically detecting problems in the current design (to some degree,
this capability already exists, e.g., for fit problems in packaging). Automatic problem
detection and ease of including changes in virtual prototypes will bring about a
fundamental reconsideration of the ECO process.

We hope that, based on the example of the ECO process, this article contributes to a
view of NPD as a process that can be managed in order to achieve fast turnaround
times, without having to compromise the creative elements of engineering problem-
solving.
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