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The Projection Median of a Set of Points in Rd⋆

Abstract
The projection median of a finite set of points in R2 was introduced by Durocher and Kirkpatrick
[Computational Geometry: Theory and Applications, Vol. 42 (5), 364–375, 2009]. They proved that the
projection median in R2 provides a better approximation of the 2-dimensional Euclidean median, than the
center of mass or the rectilinear median, while maintaining a fixed degree of stability. In this paper we study
the projection median of a set of points in Rd for d ≥ 2. Using results from the theory of integration over
topological groups, we show that the d-dimensional projection median provides a (d /π)B(d/2, 1/2)-
approximation to the d-dimensional Euclidean median, where B(α, β) denotes the Beta function. We also
show that the stability of the d-dimensional projection median is at least 1⁄(d/π)B(d/2,1/2), and its breakdown
point is 1/2. Based on the stability bound and the breakdown point, we compare the d-dimensional projection
median with the rectilinear median and the center of mass, as a candidate for approximating the d-
dimensional Euclidean median. For the special case of d = 3, our results imply that the 3-dimensional
projection median is a (3/2)-approximation of the 3-dimensional Euclidean median, which settles a
conjecture posed by Durocher.
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Abstract. The projection median of a finite set of points in R2 was introduced by Durocher
and Kirkpatrick [Computational Geometry: Theory and Applications, Vol. 42 (5), 364–375,
2009]. They proved that the projection median in R2 provides a better approximation of the
2-dimensional Euclidean median, than the center of mass or the rectilinear median, while
maintaining a fixed degree of stability. In this paper we study the projection median of a set of
points in Rd for d ≥ 2. Using results from the theory of integration over topological groups, we
show that the d-dimensional projection median provides a (d/π)B(d/2, 1/2)-approximation to
the d-dimensional Euclidean median, where B(α, β) denotes the Beta function. We also show
that the stability of the d-dimensional projection median is at least 1

(d/π)B(d/2,1/2)
, and its

breakdown point is 1/2. Based on the stability bound and the breakdown point, we compare
the d-dimensional projection median with the rectilinear median and the center of mass, as
a candidate for approximating the d-dimensional Euclidean median. For the special case of
d = 3, our results imply that the 3-dimensional projection median is a (3/2)-approximation of
the 3-dimensional Euclidean median, which settles a conjecture posed by Durocher.

Keywords. Approximation, Euclidean median, Haar measure, Group actions, Multivariate
median, Projection, Stability.

1 Introduction

A median function on Rd is a function from the set of all finite non-empty sets contained
in Rd to Rd. The median of a set S of n real numbers is a point M(S) which partitions the
points in S such that there are at most n/2 points of S greater than M(S) and at most
n/2 points of S that are less than M(S). Let S = {p1, p2, . . . , pn} be a set of n distinct real
numbers arranged in increasing order. If n = 2m + 1 is odd, the median of S is the point
pm+1, and when n = 2m is even any point on the line segment joining pm and pm+1 is a
median of S. In such cases, the midpoint of the line segment joining pm and pm+1 is often
selected to represent M(S).

Several attempts have been made to generalize the notion of median to higher dimen-
sions. Hayford [13] suggested the vector-of-medians of orthogonal coordinates. This involves
selecting an orthogonal coordinate system and then computing the coordinate-wise univari-
ate median along these axes. However, this definition of multivariate median depends on the
choice of the orthogonal coordinate system. The vector-of-medians of a finite set of points
S in Rd is to be denoted by MR(S). It is easy to see that for a set S in Rd

∑
s∈S |s − x|

is minimized when x = MR(S), where |.| denotes the ℓ1 norm. For this reason, the vector-
of-medians is also referred to as the rectilinear median. The rectilinear median is invariant
under translation and uniform scaling, but not under rotation or reflection. If there are an
even number of points in S, then MR(S) may not be unique, and we select MR(S) to
be the midpoint of the d-dimensional rectangular region of points that define rectilinear
medians of S. Since the one-dimensional median defined above can be computed in O(n)

⋆ A preliminary version of this paper has appeared in the Proc. 22nd Canadian Conference on Computa-
tional Geometry (CCCG), 2010, 151–154.



time, the d-dimensional rectilinear MR(S) can be computed in O(dn) time by computing
d independent one dimensional medians.

Analogous to Hayford’s definition, the Euclidean median of a set S in Rd (to be denoted
by ME(S)) is defined as the point in Rd which minimizes

∑
s∈S ||s−x||, when x = ME(S)

and where ||.|| denotes the ℓ2 norm. The Euclidean median problem on three points in the
plane was first posed by Fermat and solved geometrically by Torricelli early in the 17-th
century [14]. The problem was later revived by Weber [22] in 1909 in the context of opti-
mal facility location. The Euclidean median is invariant under uniform scaling, reflection,
translation, and rotation. This makes it much more suitable candidate for a multivariate
median compared to the rectilinear median. However, solving for the exact location of the
Euclidean median in two or more dimensions is, in general, difficult. Bajaj [3] showed that
even for 5 points, the coordinates of the Euclidean median may not be representable even
if we allow radicals, and that it is impossible to construct an optimal solution by means
of ruler and compass. The most famous of all existing algorithms is the iterative algorithm
due to Weiszfeld [24]. For a comprehensive discussion about the Euclidean median and its
various properties refer to Kupitz and Martini [15].

A median function M is said to be a λ-approximation of the Euclidean median, if∑
p∈S ||p−M(S)|| ≤ λ

∑
p∈S ||p−ME(S)|| for all nonempty finite sets S in Rd. Recently,

motivated from several problems in mobile facility location, Durocher and Kirkpatrick [9]
introduced the notion of stability of a median function, which measures the behavior of the
median function to slight perturbations of the data. Given ε > 0 and a finite set S of Rd, a
function f : S → Rd is an ε-perturbation on S if for all p ∈ S, ||p − f(p)|| ≤ ε. Let Fε(S)
denote the set of all ε-perturbations on S. A median function M is said to be κ-stable if for
all ε > 0 and for all f ∈ Fε(S), κ||M(S)−M(f(S))|| ≤ ε, for all nonempty finite sets S in
Rd.

Using a 4-point example, Durocher and Kirkpatrick [9] showed that the Euclidean me-
dian is not continuous even for small point sets, thus proving that the Euclidean median
is not κ-stable for any κ > 0. They also showed that no median function can ensure any
fixed degree of stability while also guaranteeing an arbitrarily-close approximation of the
Euclidean median sum.

It is well known that the center of mass of a set S of n points in Rd is the point in Rd

given by 1
n

∑
p∈S p. The center of mass is invariant under affine transformations and it is

the unique point that minimizes the sum of the squares of the distances to the points of S
[23]. It follows from results of Bereg et al. [4] that the center of mass of a set of n points
in Rd is 1-stable and provides a (2 − 2/n)-approximation of the d-dimensional Euclidean
median, and both the bounds are tight.

Bereg et al. [4] also proved that the rectilinear median in R2 provides a
√
2-approximation

of the Euclidean median. Later, Durocher [8] showed that the d-dimensional rectilinear

median provides a
√
d-approximation of the Euclidean median, and proved a 1+

√
d−1√
d

lower

bound on the approximation factor, for d ≥ 1. Generalizing the results of Bereg et al. [4],
Durocher [8] also proved a tight stability bound of (1/

√
d) on the d-dimensional rectilinear

median for any d ≥ 1.
Another classical measure for comparing different median functions is the notion of

breakdown point [7], which is defined as the proportion of points which must be moved to
infinity so that the median function will do the same. It easy to see that in R1 for a set
S of n points, the standard 1-dimensional median has a breakdown point of 1/2 and the
1-dimensional mean has a breakdown point of 1/n. This immediately implies that for any
d ≥ 2, the d-dimensional rectilinear median and the d-dimensional center of mass also has



a breakdown point of 1/2 and 1/n, respectively. The breakdown point of the Euclidean
median is known to be 1/2 [17].

The main result of Durocher and Kirkpatrick [9] is the introduction of the notion of the
projection median. Given a fixed positive integer d ≥ 2 and a finite set of S points in in Rd,
the d-dimensional projection median of S is defined as

MP (S) = d

∫
Sd−1 med(Su)du∫

Sd−1 du
= d

∫
Sd−1

med(Su)dµ(u) (1)

where Sd−1 = {x ∈ Rd : ||x|| = 1} is the unit d-dimensional hypersphere, med(Su) is the
median of the projection of S onto the line through the origin parallel to vector u, and µ is
the normalized uniform measure over Sd−1.

They show that in R2, the projection median is (π/4)-stable and it provides a 4/π-
approximation to the Euclidean median. This implies that the projection median in R2 main-
tains a fixed degree of stability while providing a better approximation of the 2-dimensional
Euclidean median than the center of mass or the rectilinear median. They also showed that
the stability bound is tight and a lower bound on the approximation factor is

√
4/π2 + 1.

In this paper, we study the projection median of a set S of n points in Rd . Using results
from the theory of integration over topological groups, we show that the d-dimensional
projection median provides a J(d)-approximation to the d-dimensional Euclidean median,
where J(d) = (d/π)B(d/2, 1/2) and B(α, β) denotes the Beta function. We also show that
the d-dimensional projection median has a stability bound of 1/J(d), and that its breakdown
point is 1/2. Using these results, we compare the projection median, with the rectilinear
median and the center of mass, as a candidate for approximating of the Euclidean median in
Rd. For the special case d = 3, our results imply that the 3-dimensional projection median
is a (3/2)-approximation of the 3-dimensional Euclidean median, which settles a conjecture
posed by Durocher [8]. We also characterize the locus of med(Su) as u varies over Sd−1 and
show that its combinatorial complexity is same as the number of vertices in the median
level of the arrangement of (d − 1)-dimensional hyperplanes in the dual, corresponding to
the points in S.

2 Topological Preliminaries

In this section we present the relevant results from the theory of integration over topological
groups, which will give us the necessary mathematical machinery to deal with the projection
median of a finite set of points in Rd. A rotation ϑ is a isometry of Rd, which keeps the
origin and the orientation fixed. A rotation ϑ can be represented as a linear transformation
x 7→ Ax, whereA is a d×d orthogonal matrix with determinant 1. The group of all rotations
in Rd with the operation of composition is denoted by SO(d), which stands for the special
orthogonal group. Algebraically, the group SO(d) is the set of all orthogonal matrices of
order d with determinant 1, under matrix multiplication. With natural topology, obtained
by regarding the matrices in SO(d) as points in Rd2 , it is a compact group.

A Borel measure λ on a topological group H, that is, a measure defined on Borel sets
of H, is said to be left-invariant if λ(hH) = λ(H) for all h ∈ H and for all Borel subsets H
of H. Similarly, one can define a right invariant Borel measure on a toplogical group H. A
Borel measure on H is said to be invariant if it is both left and right invariant. Existence
of invariant Borel measures and its uniqueness upto scalar multiplication can be proved, in
general, for locally compact groups [18]. Now, since SO(d) is a compact group, it follows



from Royden [Theorem 14.6.20, [18]] that there exists an unique Borel measure ν on SO(d),
which is invariant under the action of the elements of SO(d), with ν(SO(d)) = 1. This
measure ν is called the normalized Haar measure of SO(d) [18].

As mentioned before, Sd−1 denotes the unit hypersphere in Rd, that is, Sd−1 = {x ∈
Rd : ||x|| = 1}. It is well-known that Sd−1 is a compact and separable metric space, being
a subspace of the separable metric space Rd. For a point x = (x1, x2, . . . , xd) ∈ Sd−1, the
d-dimensional spherical coordinates are given by

x1 = cos(ϕ1)

x2 = sin(ϕ1) cos(ϕ2)

x3 = sin(ϕ1) sin(ϕ2) cos(ϕ3)

...

xd−1 = sin(ϕ1) . . . sin(ϕd−2) cos(ϕd−1)

xd = sin(ϕ1) . . . sin(ϕd−2) sin(ϕd−1)

where each angle ϕ1, ϕ2, . . . ϕd−2 has a range of π and the angle ϕd−1 has a range of 2π.
Moreover, the volume element of the (d− 1)-sphere is

dSd−1V = sind−2(ϕ1) sin
d−3(ϕ2) . . . sin(ϕd−2)dϕ1dϕ2 . . .dϕd−1.

Induced by the volume element of Sd−1, the normalized uniform measure µ, over Sd−1

is given by

dµ =
dSd−1V∫ π

0

∫ π
0 . . .

∫ 2π
0 dSd−1V

=
sind−2(ϕ1) sin

d−3(ϕ2) . . . sin(ϕd−2)dϕ1dϕ2 . . .dϕd−1∫ π
0 sind−2(ϕ1)dϕ1

∫ π
0 sind−3(ϕ2)dϕ2 . . .

∫ π
0 sin(ϕd−2)dϕd−2

∫ 2π
0 dϕd−1

. (2)

The group SO(d) has a natural action on Sd−1 given by the map φ : SO(d) × Sd−1 →
Sd−1, such that φ(A,u) = Au, for A ∈ SO(d) and u ∈ Sd−1. For a fixed u ∈ Sd−1, let
us also define the map φu from SO(d) to Sd−1 as follows: φu(A) = Au. The action of a
fixed A ∈ SO(d) is just a rotation of Sd−1, with the rotation matrix A. It is clear that µ is
invariant under this action of SO(d), that is, for any A ∈ SO(d) and for any Borel subset
B of Sd−1 we have µ(B) = µ(AB).

A group action is transitive if it possesses only a single orbit. A group action of a
topological group H on a topological space X , (h, x) → hx is said to be a proper group
action if the map ψx : h → hx, where h ∈ H, is proper for every fixed x ∈ X , that is,
ψ−1
x [K] is a compact subset of H for all compact subsets K of X .
In the following two observations we prove that the action φ, defined above, is both

transitive and proper.

Observation 1 For d ≥ 2, given any x,y ∈ Sd−1, there exists A ∈ SO(d) such that
Ax = y, that is, the action φ is transitive.

Proof. Construct a set of orthonormal vectors a1, ...,ad with a1 = y. As d ≥ 2, it is possible
to change signs of a2, . . . ,ad, if necessary such that the matrix Ay = [a1 : . . . : ad] has
determinant 1. Then Ay ∈ SO(d) and Aye1 = y. Similarly, construct a set of orthonormal



vectors b1, . . . , bd with b1 = x, and assume that the matrix Ax = [b1 : . . . : bd] has
determinant 1. Then Ax ∈ SO(d) and Axe1 = x. This implies that AyA

−1
x ∈ SO(d) and

AyA
−1
x x = y, thus proving that the action φ is transitive. 2

Observation 2 For all u ∈ Sd−1, φ−1
u [K] is a compact subset of SO(d) for all compact

subsets K of Sd−1, that is, the action φ is proper.

Proof. It is clear that, for all u ∈ Sd−1, the map φu is continuous and hence inverse images
of closed sets are closed. The result now follows from noting that both SO(d) and Sd−1 are
compact, and a subset of either space is closed if and only if it is compact. 2

From the above two observations it follows that SO(d), which is a compact group, acts
naturally on the separable metric space Sd−1, and the natural action is both proper and
transitive. Equipped with these facts, we now recall the following theorem from Royden
(Proposition 14.6.25 [18]):

Theorem 1 (Royden [18]). Let H be a compact group acting transitively and properly on
a compact separable metric space X . Then there exists an unique Borel measure µ′ on X ,
with µ′(X ) = 1, which is invariant under the action of H. 2

The following corollary is now immediate from above theorem and from Observations 1
and 2.

Corollary 1. The normalized uniform measure µ over Sd−1 (defined in Equation (2)) is
the unique Borel probability measure on Sd−1 which is invariant under the action of the
elements of SO(d). 2

Before we proceed to prove the main topological result which will be used in the proofs
of our subsequent results, we shall a few definitions and results from measure theory. Recall
that if F and F0 are two sigma fields on Ω and Ω0, respectively then a map T : (Ω,F) →
(Ω0,F0) is called measurable if T−1(B0) ∈ F for all B0 ∈ F0. With this definition we now
state the following change of variable theorem from Ash and Doléans-Dade [Theorem 1.6.12,
[2]]:

Theorem 2 (Ash and Doléans-Dade [2]). Let T : (Ω,F) → (Ω0,F0) be a measurable
map, and let λ be a measure defined on (Ω,F). Define a measure λ0 on (Ω0,F0) by λ0(X) =
λ(T−1(X)), where X ∈ F0. If f : Ω0 → R and X ∈ F0, then∫

T−1(X)
f(T (ω))dλ(ω) =

∫
X
f(ω)dλ0(ω),

in the sense that if one of the integral exists, so does the other, and the two integrals are
equal. 2

With the help of the results stated above, we now prove a crucial result which will be
used to obtain the bounds on the approximation factor of the d-dimensional projection
median.

Result 1 Consider the function ψ : SO(d) → Sd−1 given by ψ(A) = Au1, for A ∈ SO(d)
and for a fixed u1 ∈ Sd−1. If f : Sd−1 → R is a continuous function, then

∫
SO(d) f(ψ(A))dν(A) =∫

Sd−1 f(x)dµ(x).



Proof. For any Borel subset B of Sd−1, let us define a measure ν∗ as follows: ν∗(B) =
ν(ψ−1(B)). Clearly, ν∗(Sd−1) = ν(SO(d)) = 1, that is, ν∗ is normalized. As the function f
is continuous and Sd−1 is compact, the function f is bounded and

∫
Sd−1 f(x)dν

∗(x) exists.
Moreover, the continuity of f guarantees the measurability of f , and from Theorem 2 it
follows that, ∫

SO(d)
f(ψ(A))dν(A) =

∫
Sd−1

f(x)dν∗(x) (3)

It is easy to check that ν∗ is also invariant under action of SO(d), as ν∗(AB) = ν(ψ−1(AB)) =
ν(A(ψ−1(B))) = ν(ψ−1(B)) = ν∗(B). By Corollary 1, it follows that ν∗ and µ must agree
on all the Borel sets of Sd−1, and the result follows. 2

3 The Projection Median in Rd

In this section we study the properties of the projection median of a set of points in
Rd. For a set of S of n points in Rd, the projection median is defined as MP (S) =
d
∫
Sd−1 med(Su)dµ(u) where med(Su) is the median of the projection of S onto the line

through the origin in the direction of the vector u, and µ is the normalized uniform mea-
sure over Sd−1. It is easy to see that MP (S) is invariant under both rotation and translation
of the underlying coordinate system.

Durocher [8] showed that in R2 the projection median and the rectilinear median satisfy

the following identity: MP (S) = 2
π

∫ π/2
0 Mα(S)dα, where Mα(S) denotes the rectilinear

median of S relative to a rotation of the reference axis by an angle α. In this section,
using Result 1, we obtain the generalization of this result to higher dimensions, which
also provides a reinterpretation of the d-dimensional projection median in terms of the
d-dimensional rectilinear median.

3.1 Reinterpretation in Terms of the Rectilinear Median

Given a vector x or a matrix M, we denote its transpose as x′ or M′, respectively. For
two vectors x1,x2 ∈ Rd, denote by ⟨x1,x2⟩ = x′1x2 = x′2x1 the standard Euclidean inner
product between the vectors x1 and x2. Let e1, e2, . . . , ed be the canonical basis of Rd,
which also corresponds to the direction vectors along the d orthogonal coordinate axes of
C. Let CA denote the coordinate system obtained by rotating C by an orthogonal matrix
A ∈ SO(d). The coordinate axes of CA are then given by Ae1,Ae2, . . . ,Aed. Let SA =
{A′p1,A

′p2, . . . ,A
′pd} be the points of S in CA. Consider the rectilinear median of the set

of points SA in CA. The coordinates of this point in C is to be denoted by MR(SA).
Now, we have the following simple observation:

Observation 3 In the coordinate system C, MR(SA) =
∑d

i=1med(SAei).

Proof. Let Z = {⟨pj ,Aei⟩|pj ∈ S} = {p′
jAei|pj ∈ S}. As ||Aei|| = 1, med(SAei) de-

notes the projection of S onto the line through the origin parallel to Aei. By definition,
med(SAei) = M(Z)Aei. Now, observe thatMR(SA) =

∑d
i=1M(Z)Aei =

∑d
i=1med(SAei).

2

In the following lemma, using Result 1, we show that the d-dimensional projection me-
dian is equal to the d-dimensional rectilinear median integrated over the set of all rotations
(SO(d)) with respect to the Haar measure over SO(d).



Lemma 1. For a finite set S of points in Rd, MP (S) =
∫
SO(d)MR(SA)dν(A).

Proof. Observation 3 implies that
∫
SO(d)MR(SA)dν(A) =

∑d
i=1

∫
SO(d)med(SAei)dν(A).

Consider the map ψi : SO(d) → Sd−1 given by ψ(A) = Aei and the function f : Sd−1 → Rd

given by f(x) = med(Sx), where ||x|| = 1. Therefore, by Result 1, we have
∫
SO(d)med(SAei)dν(A) =∫

SO(d) f(ψi(A))dν(A) =
∫
Sd−1 f(x)dµ(x) =

∫
Sd−1 med(Sx)dµ(x), where µ is the normalized

uniform measure over Sd−1. Therefore,∫
SO(d)

MR(SA)dν(A) =
d∑

i=1

∫
SO(d)

med(SAei)dν(A) = d

∫
Sd−1

med(Sx)dµ(x),

and the result now follows from Equation (1). 2

The above lemma establishes that the projection median of a point set S is same integral
of the rectilinear median of S over the set of all rotations with respect to the normalized
Haar measure over SO(d). This representation helps us to extend the results of Durocher
and Kirkpatrick [9] to higher dimensions.

However, before we proceed to extend these results to higher dimensions, the following
remarks are in order:

Remark 1: For the special case d = 2, the unit sphere Sd−1 = S1 is itself a topological group
with the group operation being complex multiplication. As a result, S1 can be identified
with the rotation group SO(2) via the following bijective correspondence: (cos θ, sin θ) ↔
Aθ, where Aθ denotes the rotation matrix corresponding to a counterclockwise rotation
of angle θ. It is easy to see that this correspondence is a group isomorphism as well as a
homeomorphism of topological spaces. Also note that the normalized Haar measure on
S1 is given by dµ(θ) = 1

2πdθ. Hence, it follows from Lemma 1 that

MP (S) =

∫
SO(2)

MR(SAθ
)dν(Aθ) =

1

2π

∫ 2π

0
Mθ(S)dθ =

2

π

∫ π/2

0
Mθ(S)dθ. (4)

Note that the last equality follows from the observation that for any angle θ, Mθ(S) =
med(Sθ) +med(Sθ+π/2), where med(Sθ) is the median of the projection of S on the line
y = tan θx. This implies that for any angle θ, Mθ(S) = M−θ(S), and Mθ−π/2(S) =
Mθ(S) and the last step of Equation (4) follows. Equation (4) was used by Durocher
and Kirkpatrick [9] to obtain their results on approximation factor of projection median
of a set of points in R2. Lemma 1 is a natural generalization of that result.

Remark 2: Observe that for any fixed u ∈ Sd−1, med(Su) has breakdown point greater
than or equal to 1/2. This means that if less than 1/2 fraction of the points of a set
S are moved to infinity, med(Su) is finite, for every u ∈ Sd−1. Moreover, it can be
shown that when α (< 1/2) fraction of the points are moved to infinity, med(Su) is
continuous in u almost everywhere, and it is uniformly bounded. This implies that
MP (S) =

∫
Sd−1 med(Su)du is finite, when α (< 1/2) fraction of the points are moved to

infinity. Hence, the breakdown point of the projection median of a set of points n points
in Rd is at least 1/2. To show that it is indeed 1/2, we consider a set S of n points in Rd

along the vector e1. If more than half of the points of S are moved to infinity along e1,
then med(Su) = ∞ on the set u ∈ Z = Sd−1\{e⊥1 }, where e⊥1 is the (d− 1)-dimensional
hyperplane passing through the origin orthogonal to the unit vector e1. As the set Z
has positive measure, MP (S) =

∫
Sd−1 med(Su)du is infinite.



4 Approximation Factor

Equipped with the results of the previous section, we now proceed to determine an upper
bound on the approximation factor of the projection median with respect to the Euclidean
median in Rd. The approximation factor is given by the ratio:

λ(d) =

∑n
i=1 ||MP (S)− pi||∑n
i=1 ||ME(S)− pi||

(5)

Using Lemma 1, we now write the above ratio as:

λ(d) =

∑n
i=1 ||

∫
SO(d)MR(SA)dν(A)− pi||∑n
i=1 ||ME(S)− pi||

=

∑n
i=1 ||

∫
SO(d)(MR(SA)− pi)dν(A)||∑n

i=1 ||ME(S)− pi||

≤
∑n

i=1

∫
SO(d) ||MR(SA)− pi||dν(A)∑n

i=1 ||ME(S)− pi||
(6)

where the last step follows fromMinkowski’s Integral Inequality [11]. Now, let ui =
ME(S)−pi

||ME(S)−pi||
and observe that for allA and x, ||x|| ≤ |x|A, where |x|A is the ℓ1 norm of x in the coordinate
system CA. This implies that

λ(d) ≤
∑n

i=1

∫
SO(d) |MR(SA)− pi|Adν(A)∑n

i=1 ||ME(S)− pi||

≤
∑n

i=1

∫
SO(d) |ME(S)− pi|Adν(A)∑n

i=1 ||ME(S)− pi||

=

∑n
i=1 ||ME(S)− pi||

∫
SO(d) |ui|Adν(A)∑n

i=1 ||ME(S)− pi||

=

∑n
i=1 ||ME(S)− pi||

∫
SO(d)

∑d
j=1 |⟨ui,Aej⟩|dν(A)∑n

i=1 ||ME(S)− pi||

=

∑n
i=1 ||ME(S)− pi||

∑d
j=1

∫
SO(d) |(A

′ui)
′ej |dν(A)∑n

i=1 ||ME(S)− pi||
. (7)

We can simplify Equation (7) using Result 1 as follows:

Observation 4 λ(d) ≤ d
∫
Sd−1 |x′e1|dµ(x).

Proof. Consider the function ψi : SO(d) → Sd−1 given by ψi(A) = A′ui, for i ∈ {1, 2, . . . , n}.
Let for j ∈ {1, 2, . . . , d}, fj : Sd−1 → R be defined as fj(x) = |x′ej |, where ||x|| = 1.
Then from Result 1,

∫
SO(d) |(A

′ui)
′ej |dν(A) =

∫
SO(d) fj(ψi(A))dν(A) =

∫
Sd−1 fj(x)dµ(x) =∫

Sd−1 |x′ej |dµ(x). Since the integral are taken over all the units vectors in Sd−1, it is easy to
see that for all j, k ∈ {1, 2, . . . , d} we have,

∫
Sd−1 |x′ej |dµ(x) =

∫
Sd−1 |x′ek|dµ(x). The proof

now follows from Equation (7). 2

We shall now prove the main result of this paper, where we determine a upper bound
on λ(d).



Theorem 3. For any d ≥ 2, the d-dimensional projection median provides a J(d)-approximation
of the d-dimensional Euclidean median, where J(d) = (d/π)B(d/2, 1/2).

Proof. It follows from Observation 4 that λ(d) ≤ d
∫
Sd−1 |x′e1|dµ(x). For a point x =

(x1, x2, . . . , xd)
′ ∈ Sd−1, let ϕ1, ϕ2, . . . , ϕd−1 denote the angles, corresponding to the d-

dimensional spherical coordinates of x. Then from Equation (2) it follows that x′e1 = x1 =
cosϕ1. Using the definition of the normalized uniform measure µ over Sd−1, as given in
Equation (2), we obtain

λ(d) ≤ d

∫ π
0

∫ π
0 . . .

∫ 2π
0 | cos(ϕ1)|dSd−1V∫ π

0

∫ π
0 . . .

∫ 2π
0 dSd−1V

= d

∫ π
0 | cos(ϕ1)| sind−2(ϕ1)dϕ1

∫ π
0 sind−3(ϕ2)dϕ2 . . .

∫ π
0 sin(ϕd−2)dϕd−2

∫ 2π
0 dϕd−1∫ π

0 sind−2(ϕ1)dϕ1
∫ π
0 sind−3(ϕ2)dϕ2 . . .

∫ π
0 sin(ϕd−2)dϕd−2

∫ 2π
0 dϕd−1

= d

∫ π
0 | cos(ϕ1)| sind−2(ϕ1)dϕ1∫ π

0 sind−2(ϕ1)dϕ1
.

= d

∫ π/2
0 cos(ϕ1) sin

d−2(ϕ1)dϕ1 −
∫ π
π/2 cos(ϕ1) sin

d−2(ϕ1)dϕ1

2
∫ π/2
0 sind−2(ϕ1)dϕ1

. (8)

Substituting ϕ1 = φ1−π/2 in the second integral in the numerator of Equation (8), and

using the fact that for any two reals a, b > −1,
∫ π/2
0 sina z cosb zdz = 1

2 · B(a+1
2 , b+1

2 ) [12],
we get

λ(d) ≤ d

∫ π/2
0 cos(ϕ1) sin

d−2(ϕ1)dϕ1 +
∫ π/2
0 sin(φ1) cos

d−2(φ1)dφ1

2
∫ π/2
0 sind−2(ϕ1)dϕ1

= d
B(1, d−1

2 )

B(12 ,
d−1
2 )

=
d

π
B(d/2, 1/2) = J(d). (9)

The last equality follows from the fact that B(a, b) = Γ(a)Γ(b)
Γ(a+b) and Γ(1/2) =

√
π, where Γ(α)

denotes the Gamma function. 2

Now, we make a series of remarks where some of the immediate consequences of the
above theorem are discussed.

Remark 3: Since d is an integer, using standard formulae of Beta functions [12], it is possible
to express J(d) explicitly as follows

J(d) =

{
d(d−2)(d−4)...4.2
(d−1)(d−3)...5.3 · 2

π , if d is even;
d(d−2)(d−4)...3.1
(d−1)(d−3)...4.2 , if d is odd.

(10)

Remark 4: For the special case d = 3, J(d) = 3/2, which implies that in R3 the projection
median gives a (3/2)-approximation of the Euclidean median. This proves a conjecture
posed by Durocher [8].



Remark 5: It is known that the rectilinear median is a
√
d-approximation of the Euclidean

median. In Remark 6 it will shown that λ(d) ≤ J(d) <
√
d. Now, if

√
d was a tight bound

on the approximation factor of the d-dimensional rectilinear median, then this would
imply that the worst-case approximation factor of the projection median is better than
the worst-case approximation factor of the rectilinear median. Unfortunately, since the
tight bound on the approximation factor of the d-dimensional rectilinear median is not
known for d ≥ 3, such a conclusion cannot be drawn. However, it follows from Equation
(6) that

λ(d) ≤
∑n

i=1

∫
SO(d) ||MR(SA)− pi||dν(A)∑n

i=1 ||ME(S)− pi||

=

∫
SO(d)

∑n
i=1 ||MR(SA)− pi||dν(A)∑n

i=1 ||ME(S)− pi||

=

∫
SO(d)

λR(SA)dν(A) (11)

where λR(SA) is the approximation factor of the rectilinear median of S in the co-
ordinate system CA. Note that

∫
SO(d) λR(SA)dν(A) can be interpreted as the average

approximation factor of the rectilinear median of a set S in Rd, with the average be-
ing taken over all rotations of the coordinate system C. Since the approximation factor
λ(d) is invariant under rotation, Equation (11) implies that for every point set S, the
average approximation factor of the projection median is not worse than the average
approximation factor of the rectilinear median.

5 Stability

In 2D, Durocher and Kirkpatrick [9] showed the tight bound on the stability of the projection
median is the reciprocal of the upper bound on the approximating factor. In this section
we generalize this result to Rd, d ≥ 3. The proof follows by generalizing the techniques of
Durocher [8] to higher dimensions, which finally involves integration of functions over the
volume element of the (d− 1)-dimensional sphere.

Theorem 4. For any d ≥ 2, the d-dimensional projection median is 1/J(d)-stable. 2

Proof. Choose any nonempty and finite set U in Rd. Let f : U → Rd be any ε-perturbation
of U , and let the set V = f(U). Since the projection median is invariant under rotation
and translation, without loss of generality assume that MP (U) and MP (V ) have identical
first (d− 1) coordinates. Let Ux and Vx be the projection of U and V onto the line through
the origin parallel to the unit vector x, respectively. Now, for any function f which is an
ε-perturbation of S, and for any x such that ||x|| = 1, we have,

|med(Ux)
′ed −med(Vx)

′ed| =
∣∣∣∣ med(Ux)

′ −med(Vx)
′

||med(Ux)−med(Vx)||
ed

∣∣∣∣ ||med(Ux)−med(Vx)||

= |s′ed| · ||med(Ux)−med(Vx)|| (12)

where s = med(Ux)−med(Vx)
||med(Ux)−med(Vx)|| . Observe that both med(Ux) and med(Vx) are in the direction

of the unit vector x. This implies that the normalized vector s is either the vector x, or the



vector −x. Therefore, |s′ed| = |x′ed|. Now, since the one-dimensional median is 1-stable,
Equation (12) can be written as follows:

|med(Ux)
′ed −med(Vx)

′ed| ≤ |x′ed|
(
max
p∈S

||p− f(p)||
)

≤ ε|x′ed|. (13)

Therefore, we have

||MP (U)−MP (V )|| = |MP (U)′ed −MP (V )′ed|

=

∣∣∣∣d∫
Sd−1

(
med(Ux)

′ −med(Vx)
′) eddµ(x)∣∣∣∣

≤ d

∫
Sd−1

|med(Ux)
′ed −med(Vx)

′ed|dµ(x)

≤ ε ·
(
d

∫
Sd−1

|x′ed|dµ(x)
)

= ε · d
π
B(d/2, 1/2) = ε · J(d). (14)

Therefore, for all non-empty finite subsets S of Rd and for all f ∈ Fε(S), with ε > 0,
we have 1

J(d) · ||MP (S) − MP (f(S))|| ≤ ε. This proves that the d-dimensional projection

median is 1/J(d)-stable. 2

Remark 6: Observe that for every fixed d ≥ 2,

J(d) = d

∫
Sd−1

|x′e1|dµ(x) =
d∑

i=1

∫
Sd−1

|x′ei|dµ(x) =
∫
Sd−1

d∑
i=1

|x′ei|dµ(x).

Now, by the Cauchy-Schwartz inequality and the fact that x = (x1, x2, . . . , xd)
′ ∈ Sd−1

it follows that
d∑

i=1

|x′ei| ≤

√√√√d
d∑

i=1

|x′ei|2 =

√√√√d
d∑

i=1

|xi|2 =
√
d.

Equality holds in the above equation if and only if x′ei = x′ej for all i, j, that is, if and
only if x = 1√

d
· 1 = 1√

d
· (1, 1, . . . , 1)′. Therefore, for all x ∈ Sd−1\{ 1√

d
· 1}, J(d) <

√
d.

This implies that for all d ≥ 2, we have J(d) =
∫
Sd−1

∑d
i=1 |x′ei|dµ(x) <

√
d. Since the

stability bounds on the rectilinear median is tight in all the dimensions, the worst-case
stability of the projection median is better than the worst-case stability of the rectilinear
median.

6 Comparing the Different Median Functions

In this section, we compare the approximation factor, stability, and breakdown point of the
d-dimensional Euclidean median (ME), with those of the d-dimensional rectilinear median
(MR) and center of mass (MC). The bounds on these three quantities for the different
median functions are summarized in Table 1.

As mentioned earlier, the Euclidean median ME , is arbitrarily unstable, that is, it has
0 stability. Ensuring any degree of stability in a median function implies an increase in the
Euclidean median sum and thus necessitates approximation by some other median function.



This requirement leads to the concept of the projection median, which was introduced by
Durocher and Kirkpatrick [9]. In R2, it provides a better approximation of the 2-dimensional
Euclidean median than the center of mass or the rectilinear median, while maintaining a
fixed degree of stability.

In this paper we obtain new bounds on the approximation factor and the stability of
the d-dimensional projection median and generalize earlier results to higher dimensions. We
have shown that for every d ≥ 2, the projection median MP (S) provides an approximation
of the Euclidean median ME(S), which is on the average no worse than the approximation
of ME(S) by the rectilinear median MR(S), where the average is taken over the set of all
the rotations of Rd (Remark 5). We also show that the worst-case stability of the projection
median is better than the worst-case stability of the rectilinear median (Remark 6). More-
over, the projection median, unlike the rectilinear median, is invariant under rotation of the
coordinate system. Therefore, for approximating the Euclidean median, MP (S) is clearly a
better candidate than MR(S) not only in 2D, but in higher dimensions as well.

The center of mass is a 2-approximation of the Euclidean median and it has stability
1 for all dimensions. It is easy to see that for a dimension less than 6, the approximation
factor of the projection median J(d) = d

πB(d/2, 1/2) is less than 2. This implies that the
worst-case approximation factor of the projection median is better than that of the center of
mass for dimensions less than 6. Moreover, the projection median has a constant breakdown
point of 1/2. Thus, the projection median is a more suitable candidate for approximating
the Euclidean median, than the center of mass, for dimensions d ≤ 5.

For dimensions greater than 5, we have J(d) > 2. Moreover, both the approximation
factor and the stability of the projection median worsen with increase in the dimension. On
the other hand, the center of mass admits a fixed approximation factor and stability of 2 and
1 across all dimensions, respectively. However, the center of mass is highly non-robust as
its breakdown point approaches 0, when the size of the given point set increases. Therefore,
there is a clear trade-off between approximation factor and the value of the breakdown
point for these two median functions. Note that stability of an estimator determines the
change in the location of a median function subject to slight perturbation of the data, and
has relevance in problems of mobile facility location. On the other hand, breakdown point
determines whether the location of the median function changes dramatically by a significant
change of some of the data points, that is, the breakdown point determines the sensitivity of
a median function towards outliers. Therefore, for a point set with few outliers, the center of
mass may be preferred over the projection median, for approximating the Euclidean median
and maintaining a fixed degree of stability. On the other hand, for a point set with many
outliers, the projection median is the preferred choice of the median function.

7 Geometric Interpretation of the Projection Median

So far we have studied the various properties of the projection median in Rd and compared
them with those of other standard median functions. In this section, we try to provide a
geometric interpretation of the projection median in Rd by characterizing the locus of the
median of the projections on a unit vector, as it rotates over the unit sphere. More formally,
given a set S = {p1,p2, . . . ,pn} of n points in Rd in a d-dimensional orthogonal coordinate
system C, we characterize the set λ(S) = {med(Su) : u ∈ Sd−1}.

Let o be the origin of the coordinate system C. For the sake of simplicity, assume that
n = 2m + 1 is odd and the points in S are in general position, that is, no (d + 1) points
of S lie on a d-dimensional hyperplane. For any point q ∈ Rd, let u(q) be projection of the



Table 1. Comparing median functions in Rd

Median Function Notation Approximation Stability Breakdown Point

Euclidean Median ME 1 0 1/2

Rectilinear Median MR

[
1+

√
d−1√
d

,
√
d
]

1/
√
d 1/2

Center of Mass MC 2− 2
n

1 1/n

Projection Median MP

[√
4/π2 + 1, d

π
B(d/2, 1/2)

] [
1

(d/π)B(d/2,1/2)
, 1
]

1/2

vector q on the unit vector u ∈ Sd−1. This implies that u(q) = ⟨q,u⟩u = (q′u)u. It is easy
to see that the locus of u(q), as u varies over Sd−1, is the (d− 1)-sphere S(q) with the line
segment [o, q] as the diameter. We call the (d−1)-sphere S(q) the projection sphere of point
q. The projection circle (1-sphere) for a point q ∈ R2 is shown in Figure 1(a).

Corresponding to the n points in S, consider the arrangement A(S) of the projec-
tion spheres {S(p1), S(p2) . . . , S(pn)} in Rd. Clearly, for every u ∈ Sd−1, med(Su) =
MR({u(pi) : pi ∈ S}). For a fixed u ∈ Sd−1, suppose the extended half-line emanating from
the origin o in the direction of u intersects the projection spheres in A(S) in the following or-
der: S(pπu(1)), S(pπu(2)), . . . , S(pπu(n)), where πu is some permutation of {1, 2, . . . , n} which
depends on the vector u. This implies that med(Su) = MR({u(pi) : pi ∈ S}) = u(pπu(m+1)).

Then for the vector u ∈ Sd−1, the point pπu(m+1) will be called the parent of med(Su), and
the projection sphere S(pπu(m+1)) will be called the parent sphere of med(Su). This means

that for every fixed u ∈ Sd−1, the point med(Su) lies on the boundary of some projection
sphere, and is in the interior m projection spheres and the exterior of the remaining m pro-
jection spheres. Therefore, for all u ∈ Sd−1, the point med(Su) lies on the median level in
the arrangement A(S) = {S(p1), S(p2), . . . , S(pn)} of the n projection spheres. Moreover,
any point q0 on the median level of A(S), med(Su0) = q0 for the unit vector u0 in the
direction of q0. Therefore, the locus of med(Su) as u varies over Sd−1 is the median level
of the arrangement A(S) of the n projection spheres. The locus of med(Su) for a set of 7
points in the plane, as the median level in the arrangement of the 7 projection circles, is
shown in Figure 1(b). The locus is indicated in Figure 1(b) using thick black lines.

For a fixed u ∈ Sd−1, denote by u⊥ the (d− 1)-dimensional hyperplane orthogonal to u
and passing through the parent of med(Su) at u. A vertex in λ(S) is a point in λ(S) formed
by the intersection of the d projection spheres. At a vertex of λ(S), the point med(Su) lies
on d projection spheres, which implies that the hyperplane u⊥ passes through d points of
S. The point in the dual corresponding to the hyperplane u⊥ is a vertex of the median
level in the arrangement of the n hyperplanes in the dual corresponding to the set of points
{p1,p2, . . . ,pn}. Therefore, the combinatorial complexity λ(S) is the number of vertices in
the median level of the arrangement of these n hyperplanes in the dual.

Proposition 1. For a set S = {p1,p2, . . . ,pn} of n points in Rd the locus of med(Su) as u
varies over Sd−1 is the median level in the arrangement A(S) = {S(p1), S(p2), . . . , S(pn)} of
the n projection spheres, and its combinatorial complexity is same as the number of vertices
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Fig. 1. (a) Projection circle for a point q ∈ R2, and (b) Locus of med(Su) as u varies over S1 for a set of 7
points in the plane.

in the median level of the arrangement of the n hyperplanes in the dual, corresponding to
the points in S. 2

It follows from the above proposition that in any fixed dimension d, an upper bound on
the number of vertices in the median level of a set of n hyperplanes in Rd is an upper bound
on the combinatorial complexity of λ(S). The best known upper bounds on the number
of vertices in the median level of a set of n hyperplanes in R2, R3, and R4 are O(n4/3)
[6], O(n5/2) [20], and O(n4−1/18) [19], respectively. In Rd, for d ≥ 5, the upper bounds
are of the form O(nd−δd), where δd = 1/(4d − 3)d. The best known lower bound in Rd is
Ω(nd−1 · 2c

√
logn) [16, 21], which implies that there exist a set S of n points in Rd such that

the number of vertices in λ(S) is Ω(nd−1 · 2c
√
logn).

The connection between the projection median and the median level of the hyperplane
arrangement in the dual, can be used to obtain an algorithm for computing the projection
median of a set of points in Rd. We shall denote the median level of these n hyperplanes in
the dual by D(S). Define g : Sd−1 → D(S), as follows: For u ∈ Sd−1, let g(u) be the point in
D(S) corresponding to the hyperplane u⊥ in the primal. This is a bijective correspondence
between Sd−1 and D(S), and we denote the inverse by h : D(S) → Sd−1. Note that for any
two points x,y in some (d − 1)-cell C of D(S), the parents of med(Sh(x)) and med(Sh(y))
are identical. Therefore, med(Su) lies on the same projection sphere for all u ∈ h(C) and∫
h(C)med(Su)du can be computed easily. Therefore, if the median level D(S) is known, then
the problem of computing the projection median of S can be done by computing the integral∫
h(C)med(Su)du for all (d − 1)-cells C of D(S). As the number of (d − 1)-cells in D(S) is

at most the number vertices in the median level of D(S), the time required to compute the
projection median in Rd is bounded by the time required to compute the median level of n
hyperplanes in Rd.

Efficient output-sensitive algorithms for level construction are known in R2 and R3.
Edelsbrunner and Welzl [10] showed that in R2 a level of complexity b can be constructed in
time O(n log n+ b log2 n) time. This was later improved to O(n log n+ b log1+ϵ n) amortized
time by Chan [5] using the dynamic convex hull data-structure. Durocher and Kirkpatrick



[9] used this to compute the projection median of a set of points in R2 in O(n4/3 log1+ϵ n)
time. Agarwal and Matoušek [1] showed that a level of complexity b can be computed in
time O(n1+ϵ + bnϵ) in R3, where ϵ is an arbitrarily small positive constant. Therefore, the
projection median of a set of points in R3 can be computed in O(n5/2+ϵ) time. In Rd, with

d > 3, the projection median can be obtained in O(nd(1−
δd
d+1

)+ϵ) time [1].

8 Conclusions

In this paper we have studied the projection median of a set of points in Rd for d ≥
2. Using results from the theory of integration over topological groups, we show that
the d-dimensional projection median provides a (d/π)B(d/2, 1/2)-approximation to the d-
dimensional Euclidean median. We also show that the d-dimensional projection median has
a stability bound of 1

(d/π)B(d/2,1/2) , and its breakdown point is 1/2. For the special case of

d = 3, our results imply that the 3-dimensional projection median is a (3/2)-approximation
of the 3-dimensional Euclidean median, which settles a conjecture posed by Durocher [8].

Based on these bounds on the approximation factor, stability and the breakdown point,
we compare the d-dimensional projection median as a candidate for approximating the
d-dimensional Euclidean median with the rectilinear median and the center of mass. It is
shown that in all dimensions, the projection median is a better candidate for approximating
the Euclidean median compared to the rectilinear median. For dimensions less than six, the
projection median provides a better approximation of the Euclidean median than the center
of mass, and maintains a fixed degree of stability, has a fixed breakdown point 1/2. As the
dimension increases, the approximation factor and stability of the projection median worsen,
while the center of mass maintains a fixed approximation factor of 2 and a fixed stability
of 1. The projection median, however, has a constant breakdown point of 1/2, compared to
the center of mass, which has a breakdown point of 1/n.

As mentioned by Durocher and Kirkpatrick [9], the importance of the projection median
also extends to several problems of mobile facility location [4, 8, 9]. Given a set of mobile
clients moving continuously and with bounded velocity in Rd, the suitability of a mobile
facility is determined both by its approximation factor and also by its maximum velocity
and continuity of its motion. Since, the stability of a median function is inversely related
to the maximum velocity of a mobile facility [8], our results imply that the d-dimensional
projection median defines the position of a mobile facility that approximates the mobile
Euclidean median with a factor of (d/π)B(d/2, 1/2) while maintaining a maximum velocity
of at most (d/π)B(d/2, 1/2) relative to the velocity of the clients.

Durocher and Kirkpatrick [9] proved the lower bound of
√

4/π2 + 1 on the approxima-
tion factor of the projection median in R2. Note that the same quantity provides a lower
bound on the approximation factor in Rd as well. However, the problem of obtaining the
tight bound on the approximation factor in Rd, for d ≥ 2, remains open. Finding the tight
bound on the approximation factor the d-dimensional rectilinear median, for d ≥ 3, is
another interesting problem.

In R2, Durocher and Kirkpatrick [9] proved that 1/J(2) = 4/π is a tight stability bound
on the projection median. Proving a tight lower bound on the stability of the projection
median for d ≥ 3, remains to be solved.

Acknowledgement: The authors wish to thank an anonymous referee for valuable com-
ments that helped improve the presentation of the paper.



References
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