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The Noisy Secretary Problem and Some Results on Extreme

Concomitant Variables

Abba M. Krieger ⇤and Ester Samuel-Cahn†

February 1, 2012

Abstract

The classical secretary problem for selecting the best item is studied when the actual values

of the items are observed with noise. One of the main appeals of the secretary problem is

that the optimal strategy is able to find the best observation with the nontrivial probability of

about 0.37, even when the number of observations is arbitrarily large. The results are strikingly

di↵erent when the quality of the secretaries are observed with noise. If there is no noise, then

the only information that is needed is whether an observation is the best among those already

observed. Since observations are assumed to be i.i.d. this is distribution free. In the case of

noisy data, the results are no longer distrubtion free. Furthermore, one needs to know the rank

of the noisy observation among those already seen. Finally, the probability of finding the best

secretary often goes to 0 as the number of obsevations, n, goes to infinity. The results depend
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heavily on the behavior of pn, the probability that the observation that is best among the noisy

observations is also best among the noiseless observations. Results involving optimal strategies

if all that is available is noisy data are described and examples are given to elucidate the results.

Keywords: Optimal stopping rule, best choice secretary problem, noisy data
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1 Introduction

The “Best Choice Secretary Problem” is classical because it is surprising that there is a rule which

enables finding the best secretary with non-zero probability even if the number of secretaries that

are considered is arbitrarily large. But what happens if the qualities of the secretaries at the time

of decision are only known subject to noise? This paper considers various aspects of this problem.

First, the optimal rule when there is no noise is no longer optimal when measurements are made

with noise. Second, in many cases the probability of finding the best secretary now goes to zero,

albeit slowly, in the number of secretaries, n, that are considered. Third, the results are sensitive

to distributional assumptions, unlike the classical secretary problem, and there are distributions

for which the probability of finding the best goes to the same limit as in the noiseless case, and

other distributions where the probability goes to 0, as n goes to infinity.

In the classical “Best Choice Secretary Problem” the underlying assumption is that ranks are

sequentially obtained from n i.i.d. continuous random variables, Xi, i = 1, . . . , n. This total

number, n, is called the horizon and is assumed known. Only the relative ranks,

RR (Xi) :=
i

X

j=1

1
[XiXj ]

are observed. The goal is to maximize the probability of picking the Xi which is maximal, i.e. the

i for which the absolute rank

AR (Xi) :=
n
X

j=1

1
[XiXj ]

,

equals 1. The well-known optimal solution is to let a certain number, N(n), go by, and pick the

first item thereafter, i > N(n), for which RR (Xi) = 1. If no such i exists stop at n, anyway. It

is well-known that N(n)/n tends to e�1 as n ! 1, and the optimal probability, Wn, of picking
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the best tends to e�1 as n ! 1. See e.g. Gilbert and Mosteller (1966) or S. Samuels (1991) with

generalizations in Bruss (2000) and Gnedin (2007). When applying this rule it su�ces to know

whether the present item is relatively best, i.e., if RB(Xi) = 1, where RB(Xi) = 1 if RR(Xi) = 1

and RB(Xi) = 0 otherwise. Clearly the solution to this classical problem is distribution free.

In the present paper we consider the case where the relative ranks are not those of the Xi’s

themselves, but of i.i.d. Yi’s, where Yi = Xi + ✏i, and the ✏i are i.i.d. noise (or error) variables,

independent of theX’s. The goal is the same as before, viz., to maximize the probability of selecting

the i for which the X-value is maximal. The optimal rule, and the optimal probability of picking

the best Xi are no longer distribution free. Denote the optimal probability when RR(Yi) are known

by Wn(X, ✏), where n is the known horizon, and the optimal probability of selecting the best when

only the RB(Yi) are known, by W ⇤
n(X, ✏).

If one uses the classical rule on the noisy data then clearly there is a probability that goes to

e�1 of finding the best Yi, as n ! 1. But if one finds the best Y has one found the best X which

is what is desired? The di↵erence between the classical secretary problem (i.e., without noise) and

the noisy secretary problem depends heavily on the value of pn, where

pn = pn(X, ✏) = P
✓

argmax
in

Xi = argmax
in

Yi

◆

, (1.1)

i.e., pn is the probability that the location of the maximal X is the same as the location of the

maximal Y . The behavior of pn, as mentioned above, is crucial to the values of Wn(X, ✏) and

W ⇤
n(X, ✏).

The main results in the present paper about finding the best X from noisy data are:

S1. For any X and ✏, if the observed values are the RB(Yi) only, W ⇤
n(X, ✏) � Wnpn.

S2. If only the RB’s are observed, the optimal value N(n,X, ✏) after which one should pick the
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first item for which RB(Yi) = 1, satisfies N(n,X, ✏)  N(n), i.e., one should stop earlier than

in the classical case.

S3. If the RR(Yi) are sequentially available, it is no longer optimal to base the stopping rule on

the RB(Yi)’s only.

Some of the results depend on the probability that the best X in n items is the mth best Y .

To this end, for any i let

pnm = P (AR(Yi) = m | AR(Xi) = 1) = P (AR(Xi) = 1 | AR(Yi) = m)

=
n
X

i=1

P ([AR(Xi) = 1] \ [AR(Yi) = m]) . (1.2)

S4. The optimal rule, which can in principle be found by backward induction once pnm is de-

termined is of the form: There exist integer values 1  k
1

 · · ·  kn = n, not necessarily

distinct, such that one should stop with the smallest i such that i < kj and RR(Yi) < j.

S5. limn!1Wn(X, ✏) = 0 if and only if limn!1 pn(X, ✏) = 0.

Results S1 through S5 are proved in Section 4.

In the next section, we consider the important example where X and ✏ are Normally distributed.

This example elucidates points S1, S2, S3, and S4 above and point P1 below. As is apparent from

the above list of results and will be even more apparent from the example, the pn(X, ✏) values play

an important role in the above statements. These values are also of intrinsic interest. Hence we

discuss pn(X, ✏) in Section 3. Denote the distribution of X by F with density f and the distribution

of ✏ by G with density g. We show

P1. Suppose that sup{x : F (x) < 1} = 1, and that the limx!1
f(x+d)
f(x) exists for all d > 0. Then

a necessary and su�cient condition for limn!1 pn(X, ✏) = 0 for all distributions G is that

limx!1
f(x+d)
f(x) = 0 for every fixed d.
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P2. If sup{x : F (x) < 1} = c < 1 then limn!1 pn = 0 for all G.

P3. For any given F there exists a distribution G such that limn!1 pn(X, ✏) = 0.

P4. There exist distributions F and G such that limn!1 pn(X, ✏) = 1.

P5. The pn(X, ✏) values are not necessarily monotone in n.

Additional examples are given in Section 5. Because noise (errors) are often assumed to be

normal, special attention is given to the case where G is normal. The examples include cases, such

as the exponential, Pareto with parameter 1, and the case where both F and G are normal.

2 Normal-Normal Example

In order to illustrate the results, we consider the case where Xi ⇠ N
�

0, ⇢2
�

and Yi = Xi+ ✏i where

✏i ⇠ N
�

0, 1� ⇢2
�

and all Xi and ✏i are independent. Hence, the concomitant variable, Yi (c.f.,

David and Nagaraja (2003)) is N (0, 1) with correlation of ⇢ with Xi.

There are two kinds of results mentioned in the introduction. One result considers the behavior

of pn, the probability that the index for which Yi is maximum agrees with the index for which Xi

is maximum. Since a normal distribution satisfies the condition that limx!1
f(x+d)
f(x) = 0 for all d,

pn goes to zero (see P1). Table 1 shows how pn varies as a function of n and ⇢. The values in Table

1 are found by simulation with 10, 000 replications.

It is interesting to note how sensitive pn is to ⇢. In fact, in Ledford and Tawn (1998) it is shown

that

lim
n!1

Dnpn =

✓

�

✓

1

1 + ⇢

◆◆

2

(2.1)

where Dn = (1� ⇢2)1/2{(4⇡ log n)⇢n1�⇢}
1

1+⇢ .
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Table 1: Probability that the Observation with Largest X also yields the Largest Y

n

⇢ 10 50 100 1000 10000

0.5 0.291 0.138 0.107 0.044 0.018

0.6 0.353 0.191 0.155 0.076 0.039

0.7 0.423 0.261 0.222 0.125 0.073

0.8 0.519 0.360 0.324 0.210 0.151

0.9 0.647 0.512 0.481 0.370 0.303

We next illustrate by simulation with 10, 000 replications what occurs with a secretary-like

decision rule. This depends on pnm in (1.2), the probability that the mth largest Y corresponds to

the observation that has the largestX value. We estimated (see Table 2) this quantity by simulation

with 10, 000 replications. If one employed the secretary rule, with N(n) = n/e, with n = 10, 000

Table 2: Probability that index for which the best X value is attained yields a Y value that is mth

absolute best: n = 10, 000; ⇢ = 0.9

m 1 2 3 4 5 6 7 8 9 10

pnm 0.303 0.137 0.083 0.065 0.050 0.036 0.032 0.028 0.022 0.018

and ⇢ = 0.9, one would find the largest X, observing only RB(Yi), with probability of 0.138, as

compared to Wn of approximately e�1 = 0.368, the value if there was no noise (or equivalently

⇢ = 1). The probability of 0.138 is greater than Wnpn = 0.303e�1 = 0.112. The reason is that the

secretary rule, when it stops at the relative best Y , might be stopping at an observation that is,

say, the second best Y in absolute rank. The second best absolute rank of Y has a probability of
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0.137 of being the observation with best X. This would add to the probability that the rule chooses

a Y with best X; in fact, the probability of 0.138� 0.112 = 0.026 is attributable to stopping at a

Y which ultimately is not the best Y , but corresponds to the X which is the best.

As mentioned in S2 of the Introduction, choosing N(n) = n/e in the secretary-like rule might

not be the best choice. In fact, it is stated that the value of N(n,X, ✏)  N(n). In the present

example, it is found that N(10, 000, X, ✏) = 2, 740 < 3, 678 = 10, 000/e. When n = 10, 000 and

⇢ = 0.9, the optimal secretary-like rule has probability equal to 0.141 of finding the best X.

In order to show that the secretary rule is not necessarily optimal when there is noise, as

mentioned in S4 above, we consider n = 5 items. The optimal classical secretary rule on the Y

values has N(5) = 2 (i.e., two items are allowed to pass before selection). This results in stopping

at the ith best Y with respective probabilities of 13

30

, 7

30

, 4

30

, 3

30

, 3

30

. On the other hand, if we apply

the same rule, but also stop at the next to last item if it is either the relative best or second best

then this results in stopping at the ith best Y with respective probabilities of 12

30

, 9

30

, 5

30

, 2

30

, 2

30

.

These probabilities are derived by simple calculation.

The five probabilities for each of the cases need to be weighted by the probability that the

ith best Y corresponds to the best X. We find the respective probabilities when ⇢ = 0.5 to be

0.4110, 0.2490, 0.1675, 0.1104, and 0.0621. These probabilities are found by simulation with ten

million replications to ensure accuracy. Finally, the optimal secretary rule finds the best X with

probability 0.2758 as compared to 0.2785 if we stop with relative rank of two on the next to the

last observation, conditional on not having stopped earlier.
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3 Probability That The Best Concomitant Observation is the Best

Observation

In the present section we prove P1 through P5 of the Introduction.

Let X
1

, . . . , Xn and ✏
1

, . . . , ✏n be independent random variables, where the Xi’s are i.i.d. with

distribution F , and ✏i are i.i.d with distribution G. Let Yi = Xi+✏i. Our interest is in the behavior

of pn given in (1.1).

Let Xn
(1)

� Xn
(2)

� . . . � Xn
(n) be the order statistics of X

1

, . . . , Xn. Let Y n
[j] = Xn

(j) + ✏⇤j ,

where the ✏⇤j are i.i.d. and a random permuation of ✏
1

, . . . , ✏n. The variables Y n
[j] are called the

concomitant random variables, i.e. the random variable Yi that 00belongs to00 Xn
(j).

For any (cumulative) distribution H, let xH = sup{x : H(x) < 1}.

Theorem 3.1. If F is such that for every fixed c > 0 and fixed integer k

lim
n!1

P
⇣

Xn
(1)

�Xn
(k) < c

⌘

= 1, (3.1)

then limn!1 pn = 0, for all G.

Proof. Let n > k, and fix c of (3.1).

pn = P
✓

Y n
[1]

= max
i=1,...,n

Yi

◆

< P
✓

Y n
[1]

> max
j=2,...,k

Y n
[j]

◆

= P
✓

Xn
(1)

+ ✏⇤
1

> max
j=2,...,k

(Xn
(j) + ✏⇤j )

◆

. (3.2)

We shall show that for any � > 0 and n su�ciently large, pn < �. Let x
0

be such that G(x
0

) =

1� �/4.

P
✓

max
j=2,...,k

✏⇤j < ✏⇤
1

+ c

◆


Z x0

�1

h

G(x+ c)
ik�1

g(x)dx+ �/4 <
h

G(x
0

+ c)
ik�1

+ �/4 < �/2, (3.3)

provided one chooses k large enough for
h

G(x
0

+ c)
ik�1

< �/4. If xG = 1 this is always possible,

but if xG < 1 one may have to repalce the original c by a smaller value, c
0

, such that G(x
0

+c
0

) < 1.

Now using (3.1) with c and k satisfying (3.3), pick n su�ciently large for

P
⇣

Xn
(1)

�Xn
(k) < c

⌘

> 1� �/2 for all n > N(�).
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Let An denote the event {Xn
(1)

�Xn
(k) < c} and An its complement. Then, for that c and k we can

continue (3.2)

P
✓

Xn
(1)

+ ✏⇤
1

> max
j=2,...,k

(Xn
(j) + ✏⇤j )

◆

 P
✓

Xn
(1)

+ ✏⇤
1

> max
j=2,...,k

(Xn
(j) + ✏⇤j | An)

◆

P (An) + P
�

An

�

< P
✓

Xn
(1)

+ ✏⇤
1

> Xn
(1)

� c+ max
j=2,...,k

✏⇤j

◆

+ �/2

= P
✓

✏⇤
1

+ c > max
j=2,...,k

✏⇤j

◆

+ �/2 < �/2 + �/2 = �, (3.4)

where the last inequality in (3.4) uses (3.3).

Corollary 3.1. P2 holds.

Proof. If xF < 1 then clearly (3.1) holds.

Theorem 3.2. A su�cient condition for limn!1 pn(X, ✏) = 0 for all G is that xF = 1 and that

for any fixed d > 0

lim
x!1

P (X � x+ d | X > x) = 0 (3.5)

or, equivalently

lim
x!1

f(x+ d)/f(x) = 0. (3.6)

Proof. We shall show that (3.5) implies (3.1). For a given c and k let d = c/(k � 1). Suppose that

(3.5) holds, and let x
0

be such that

P (X � x+ d | X > x) <
�

2(k � 1)
for all x > x

0

. (3.7)

Let N be su�ciently large, such that for all n � N

P
⇣

Xn
(k) > x

0

⌘

> 1� �/2. (3.8)

Let Bn be the event {Xn
(k) > x

0

}. Then

P
⇣

Xn
(1)

�Xn
(k) < c

⌘

= P
 

k�1

X

i=1

(Xn
(i) �Xn

(i+1)

) < c

!
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> P
⇣

\k�1

i=1

{Xn
(i) �Xn

(i+1)

< d}
⌘

> P
⇣

\k�1

i=1

{Xn
(i) �Xn

(i+1)

< d} | Bn

⌘

P (Bn)

>
h

1�
k�1

X

i=1

P
⇣

{Xn
(i) �Xn

(i+1)

� d} | Bn

⌘ i

(1� �/2) by (3.8)

>
⇣

1� (k � 1)
�

2(k � 1)

⌘

(1� �/2) > 1� � by (3.7).

Since � > 0 was arbitrarily small, (3.1) holds, and the result follows.

Since (3.5) can be written as

lim
x!1

(1� F (x+ d))/(1� F (x)),

we can, by L’Hopital’s rule, take the limit of derivatives, which yields (3.6).

Theorem 3.3. Let xF = 1 and d > 0, and assume that limx!1 P (X � x+ d | X > x) exists and

is equal to a, where a > 0. Then there exists a G, and ✏ ⇠ G such that lim infn!1 pn(X, ✏) > a��

for any � > 0.

This theorem establishes the necessary statement of P1.

Proof. Fix � > 0 and let � = �/(1+a). There exists an x
0

such that P (X � x+d | X > x) � a� �

for all x > x
0

. Since Xn
(2)

goes to infinity with probability one as n ! 1 (and it is stochastically

increasing in n), there exists an N and x
1

> x
0

such that P (Xn
(2)

> x
1

) � 1� � for all n > N . Let

✏ have a uniform distribution on [0, d]. We make use the following result which is straightforward

to verify. Let X
1

, ..., Xn be i.i.d. continuous random variables with distribution F . Then

P
⇣

Xn
(1)

� x+ d | Xn
(2)

= x
⌘

= P (X � x+ d | X > x) ,

where X ⇠ F . Hence,

pn(X, ✏) = P
✓

Xn
(1)

+ ✏⇤
1

> max
j=2,...,n

(Xn
(j) + ✏⇤j )

◆

� P
⇣

Xn
(1)

� Xn
(2)

+ d
⌘

11



=

Z 1

w=�1
P
⇣

Xn
(1)

� w + d | Xn
(2)

= w
⌘

fXn
(2)
(w)dw

�
Z 1

w=x1

P
⇣

Xn
(1)

� w + d | Xn
(2)

= w
⌘

fXn
(2)
(w)dw

� (a� �)P
⇣

Xn
(2)

> x
1

⌘

� (a� �)(1� �) > a� �. (3.9)

In Section 5 we consider two examples, Example 5.1 and 5.2, where F has an Exponential

distribution. Depending on G, limn!1 pn = 0 or lim infn!1 pn > 0. The Exponential distribution

is of special interest, since for it

P (X > x+ d | X > x) = e�d,

i.e., independent of x, and thus can be considered as a borderline case. For many well known

distributions, if (3.5) fails, the limit in the left hand side of (3.5) will be one.

To show P3 we need the following lemma.

Lemma 3.1. For any continuous distribution F and Xi i.i.d. distributed F , there exists a distri-

bution H and i.i.d. Zi, independent of the Xi’s, distributed H, such that

lim
n!1

P
⇣

Xn
(1)

> Zn
(1)

⌘

= 0. (3.10)

Proof. We shall first prove the statement where F is the uniform distribition on [0, 1]. Then for

any continuous H

P
⇣

Xn
(1)

> Zn
(1)

⌘

= n

Z

1

0

[H(x)]nxn�1dx.

Now let H(x) = 1� (1� x)1/2 for 0  x  1. We shall show that (3.10) holds.

P
⇣

Xn
(1)

> Zn
(1)

⌘

= n

Z

1

0

[1� (1� x)1/2]nxn�1dx

= 2n

Z

1

0

(1� y)n(1� y2)n�1ydy (3.11)
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where we have made the change of variable, y = (1�x)1/2. Now the last expression in (3.11) equals

2n

Z n�2/3

0

(1� yn)(1� y2)n�1ydy + 2n

Z

1

n�2/3
(1� y)n(1� y2)n�1ydy

< 2n

Z n�2/3

0

ydy + 2n

Z

1

n�2/3
(1� y)ndy = n�1/3 +

2n

n+ 1

�

1� n�2/3
�n+1

. (3.12)

The first term in the right hand side of (3.12) clearly tends to 0. The last term is less than

2(1 � n�2/3)n = 2
⇥

(1 � 1/m)m
⇤

p
m
, where m = n2/3, which also goes to 0, since the value in the

bracket is arbitrarily close to e�1. This proves (3.10) for F uniformily distributed on [0, 1].

To generalize, add * to all of the previous variables, i.e., X⇤
1

, X⇤
2

, . . . , Z⇤
1

, Z⇤
2

, . . . and H⇤, and

note that H⇤ has all of its mass on [0, 1]. Now consider any continuous F , and its inverse F�1. Let

Xi = F�1(X⇤
i ) and Zi = F�1(Z⇤

i ). Then the Xi’s are i.i.d. with distribution F and Zi are i.i.d.

with distribution H(x) = H⇤(F (x)). But since F�1(x) is monotone increasing, clearly

P
⇣

Xn
(1)

> Zn
(1)

⌘

= P
⇣

X⇤n
(1)

> Z⇤n
(1)

⌘

and (3.10) follows.

Theorem 3.4. For any F there exists G such that limn!1 pn(X, ✏) = 0.

Proof. If xF < 1 the result follows from Corollary 3.1. Thus assume xF = 1.

We consider first P (Xi � 0) = 1. Note that ✏⇤i is the ✏ that is associated with the ith largest

Xi. Then Y n
[1]

= Xn
(1)

+ ✏⇤
1

. We choose G so that ✏⇤ > 0. We want to show pn := P (Y n
[1]

=

maxj=1,...,nYj) ! 0. Now

P
⇣

Y n
[1]

> maxj=2,...,nY
[j]

⌘

= P
⇣

Xn
(1)

+ ✏⇤
1

> maxj=2,...,n,(X
(j) + ✏⇤j )

⌘

 P
⇣

Xn
(1)

+ ✏⇤
1

> maxj=2,...,n✏
⇤
j

⌘

= P
⇣

Xn
(1)

> ✏n�1

(1)

� ✏⇤
1

⌘

 P
⇣

Xn
(1)

> ✏n
(1)

� 2✏⇤
1

⌘

, (3.13)

where the first inequality uses Xj � 0, and the second inequality uses ✏⇤
1

� 0 and ✏n
(1)

 ✏n�1

(1)

+ ✏⇤
1

.

Consider Zi of Lemma 3.1. Since Xn
(1)

! 1 a.s. as n ! 1 it follows that Zn
(1)

! 1, and we may

13



take Zi � 0. Let � > 0. For proper choice of G we shall show that pn < � for all n su�ciently

large. Let ✏i = 2Zi, where Zi satsfies (3.10), and let z
0

be a constant such that P (4Zi > z
0

) < �/4,

and let n be so large that P (Zn
(1)

< z
0

) < �/4. With this choice we can continue the inequality in

(3.13), obtaining

P
⇣

Xn
(1)

> 2Zn
(1)

� 4Zin

⌘

< �/4 + P
⇣

Xn
(1)

> 2Zn
(1)

� z
0

⌘

< �/4 + P
⇣

Zn
(1)

 z
0

⌘

+ P
⇣

Xn
(1)

> Zn
(1)

⌘

<
2�

4
+ P

⇣

Xn
(1)

> Zn
(1)

⌘

.

Now, by (3.10) one can take n su�ciently large for the last term to be less than �/4, thus pn < 3

4

�

for all n su�ciently large.

If Xi can take on negative values, but is bounded from below by some c < 0, shift Xi by c to

obtain X̂i = Xi � c � 0. Let Ŷj = X̂j + ✏j . Then

p̂n := P
⇣

Ŷ n
[1]

> maxj=2,...,nŶ
[j]

⌘

= P
⇣

X̂n
(1)

+ ✏⇤
1

> maxj=2,...n(X̂
(j) + ✏⇤j )

⌘

= P
⇣

Xn
(1)

� c+ ✏⇤
1

> maxj=2,...,n(X
(j) + ✏⇤j )� c

⌘

= P
⇣

(Xn
(1)

+ ✏⇤
1

> maxj=2,...,n(X
(j) + ✏⇤j )

⌘

= pn.

But X̂i � 0, so if ✏i are chosen so that p̂n ! 0, the same ✏i will do for the original Xi, and pn < 3

4

�

for all n su�ciently large.

Now consider Xi which are not bounded below. Take n su�ciently large so that

P (Xn
(1)

< c) < �/4. On {Xn
(1)

� c} we may replace Xi by X̃i = max(Xi, c) which are bounded, and

obtain pn < �/4 + 3

4

� = �.

Note that Theorem 3.4 establishes P3. P4 is established through Example 5.4 where

F (x) = (1� x�1)1
[x>1]

and G is N(0, 1). P5 also follows from that example.
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4 Results for the Noisy Secretary Problem

In this section, we prove or illustrate the five results in the Introduction, labeled S1 through S5.

There are two versions of the secretary problem in the presence of noise. In one problem, we only

observe whether a noisy observation is the relative best Y . In another problem, we observe RR(Yi),

that is the relative rank of the noisy observation amongst observations we observed so far. It is

important to note that if we observed Xi, or equivalently there was no noise, then there would not

be a distinction between these two problems. If there is no noise, then it is obvious that one should

not stop if an observation is not the relative best.

The first result, S1, relates the probability of finding the best X in two versions, that is knowing

RB(Xi) as compared to knowing RB(Yi). S2 considers the rule that only uses RB(Yi). Specifically,

let a certain number of observations go by and then stop at the first i such that RB(Yi) = 1. The

main finding is that it is optimal to let fewer observations go by when the data are noisy than in

the classical secretary problem (where it is optimal to let approximately n/e observations go by).

S3 indicates that the two versions of the problem do not necessarily have the same solution. This

is shown by example.

In the last two results we consider the problem where the relative ranks of the noisy data are

available. An algortihm that produces the optimal solution for this problem, based on dynamic

programming, is described in the discussion to S4 in a similar treatment as in Ferguson (2008).

Finally, it is shown that the probability of finding the best X goes to zero, when and only when

limn!1 pn(X, ✏) = 0. This is in contrast to the classical secretary problem where the probability

of choosing the best X goes to e�1. The results that follow depend on

qnijk = P (AR(Yi) = k | RR(Yi) = j) , (4.1)

for 1  j  i and j  k  n + j � i. This probability, which is negative hypergeometric requires

that the first i items include j� 1 of the observations that have absolute rank of at most k� 1 and
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the remaining i� j items from among those with absolute rank exceeding k. Hence,

qnijk =

�

k�1

j�1

��

n�k
i�j

�

�

n
i

� . (4.2)

This is given in Ferguson (2008, Chapter 2 page 2.4).

In order to show that S1 holds, suppose one uses the simple classical rule which maximizes

the probability of finding the maximal Y . The probability of finding the maximal Y is Wn. The

probability that this is also the maximal X is pn. In addition, this rule may pick a Y -value which

turns out not to be the maximal Y , but still could be the Y -value that corresponds to the maximal

X, i.e., Y n
[1]

. Thus, with this rule, one achieves a value which is at least Wnpn. As this rule may

not be optimal, (see S2), an optimal rule may achieve an even higher value.

To show S2, we consider optimal rules assuming we only know whether an observation is the

relative best. These rules can be characterized by an integer S(n) which implies that the stopping

time is the first time that RB(Yi) = 1 for i > S(n). This is akin to the elegant result in Bruss

(2000) where it is shown how to obtain the secretary rule by summing odds. The di↵erence is that

now we do not observe the variables Ii that indicate whether we have a relative record among the

X values at the ith observation. Rather we observe the noisy data, which indicates whether we

have a relative record among the Y values. We prove the following theorem that relates the best

secretary rule in the classical problem to that in the noisy problem:

Theorem 4.1. Let N(n) be the number of observations in the classical secretary rule such that we

stop the first time, i, for which i > N(n) and RB(Xi) = 1. The optimal value N(n,X, ✏) after which

one should pick the first item for which RB(Yi) = 1 in the noisy case satisfies N(n,X, ✏)  N(n).

Let S⇤(n) = N(n,X, ✏), denote the optimal stopping rule in the noisy case, which depends

on the horizon, n, and the distributions of X and ✏. Let N(n) ⇡ n/e, be the analog to S⇤(n)

in the classical secretary rule, which is based on RB(Xi). Then the above theorem shows that

S⇤(n)  N(n) and hence one should stop no later when there is noise, than when there is no noise.
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Proof. Consider the rule in the noisy case where S (for 1  S  n� 1) items are allowed to go by

and we stop at the first i > S for which RB(Yi) = 1 (otherwise stop at n, anyway). Let

rin = P (AR(Xi) = 1 | RB(Yi) = 1) =
n�i+1

X

k=1

qni1kpnk, (4.3)

where qni1k is given in (4.1) and pnk is given in (1.2). Hence, the probability that this rule chooses

the best X is

P (S) :=
n
X

i=S+1

1

i

S

i� 1
rin,

where the 1/i term is the probability that Yi has relative rank of 1 and S/(i� 1) is the probability

that the best in the first i � 1 observations is among the first S items (so that one does not stop

before the ith observation).

Let r⇤in = rin
i/n . This implies that

P (S) =
S

n

n
X

i=S+1

r⇤in
i� 1

.

Consider

P (S + 1)� P (S) =
S + 1

n

n
X

i=S+2

r⇤in
i� 1

� S

n

n
X

i=S+1

r⇤in
i� 1

=
S + 1

n

n
X

i=S+2

r⇤in
i� 1

� S

n

h

n
X

i=S+2

r⇤in
i� 1

+
r⇤S+1,n

S

i

=
1

n

n

n
X

i=S+2

r⇤in
i� 1

� r⇤S+1,n

o

. (4.4)

The above expression is nonnegative if and only if

n
X

i=S+2

1

i� 1

r⇤in
r⇤S+1,n

� 1. (4.5)

Note that for the classical secretary problem r⇤in = 1.

If we can show that r⇤in decreases as i increases, then the optimal S must necessarily be smaller

than the corresponding value for the classical secretary problem, as desired. Note that pnk does

not depend on i and as i increases, the number of terms in (4.3) decreases. Hence it is su�cient
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to show that qni1k
i/n decreases in i for any n and k. But qni11 = i

n since we need the best Y to be

among the first i items. In general, for k > 1,

qni1k =

�

n�k
i�1

�

�

n
i

�

Hence,

qni1k
i/n

=
(n� k)!

(n� 1)!

(n� i)!

(n+ 1� i� k)!

The above expression clearly decreases in i for any k > 1 and n.

We provide an example that shows that S3 holds, that is, it is better to stop in some cases with

RR(Yi) > 1. The smallest such example for which this can occur is n = 4, where it might be better

to take the third observation if it is second best among the first three Y -values. What follows is

such an example involving exponential random variables.

Example 4.1: The solution based on RR is better than the solution based on RB.

Let Xi be i.i.d. Exponential with µ = 1 and ✏i be i.i.d. Exponential with µ = c, where µ is the

mean. Let Y 3

[i] = X3

(i) + ✏⇤i . We want to show that it is better to stop at n = 3 if RR(Y
3

) = 2. To

this end, we need to consider

�ci = P
⇣

Y 3

[1]

= Y 3

(i)

⌘

for i = 1, 2, 3.

Specifically, since there is a 3

4

chance that the best X in four observations is among the first three

observations, we need to show that 3�c2/4 > 1

4

or �c2 >
1

3

.

Lemma 4.1. Let c be the mean in the Exponential distribution of the epsilons. Then,

�c1 = 1 +
2c2

3(2c+ 1)(c+ 2)
� c(4c+ 1)

2(2c+ 1)(c+ 1)
,

�c2 =
c(4c+ 1)

2(2c+ 1)(c+ 1)
� 4c2

3(2c+ 1)(c+ 2)
.
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�c3 =
2c2

3(2c+ 1)(c+ 2)
.

Before we prove the lemma we observe that if c = 3, then �c1 = 133

280

, �c2 = 99

280

and �c3 = 48

280

.

Since �c2 is approximately 0.35357 > 1

3

this is an example where it is better to stop at n = 3 if we

observe the second largest Y -value, from among the first three Y -values. The largest value that

�c2 can achieve is 0.36275. This occurs when c = 5.535.

Proof. We begin with �c3 as it is the easiest and highlights the argument. The probability of

interest is

P
⇣

[X3

(1)

+ ✏⇤
1

< X3

(2)

+ ✏⇤
2

] \ [X3

(1)

+ ✏⇤
1

< X3

(3)

+ ✏⇤
3

]
⌘

.

First note that since the Xi are i.i.d. standard exponential random variables, we can express the

resulting order statistics as: X3

(3)

= E
3

, X3

(2)

= E
3

+ E
2

and X3

(1)

= E
3

+ E
2

+ E
1

, where Ei

are independent exponential random variables with mean of 1/i. In order to evaluate the above

probability, consider two events: A(x, y) = {X3

(2)

+ ✏⇤
2

> X3

(1)

+ ✏⇤
1

| (
⇥

✏⇤
1

= x
⇤

\
⇥

E
1

= y
⇤

)} and

similarly B(x, y) = {X3

(3)

+ ✏⇤
3

> X3

(1)

+ ✏⇤
1

| (
⇥

✏⇤
1

= x
⇤

\
⇥

E
1

= y
⇤

)}. First, A(x, y) and B(x, y) are

independent conditional on E
1

. This follows since X3

(1)

� X3

(2)

= E
1

, hence A(x, y) only depends

on ✏⇤
2

, x, and y and X3

(1)

�X3

(3)

= E
1

+E
2

, hence B(x, y) only depends on E
2

, ✏⇤
3

, x and y. Second,

P [A(x, y)] = e�(y+x)/c and

P [B(x, y)] =

Z 1

v=0

e�(y+x+v)/c2e�2vdv =
2ce�(y+x)/c

2c+ 1
.

Therefore,

�c3 =
2c

2c+ 1

Z 1

x=0

Z 1

y=0

e�2(y+x)/ce�x 1

c
e�y/cdydx =

2c2

3(2c+ 1)(c+ 2)
.

To obtain �c1 we use a similar argument. Hence,

�c1 =

Z 1

x=0

Z 1

y=0

P [A(x, y)]P [B(x, y)]e�x 1

c
e�y/cdydx.

Finally, �c2 = 1� (�c1 + �c3).
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In S4, the method for finding the optimal rule when relative ranks are observed is described.

The optimal rule, which can in principle be found by backward induction, is of the form: There

exist integer values 0  k
1

 · · ·  kn = n not necessarily distinct, such that one should stop with

the smallest i such that RR(Yi)  ki. The obvious way to proceed, which we programmed, is by

backward induction. Once we determine pnm by simulation, the backward induction, which we

outline below, is distribution free.

At observation i, we need to decide whether we should stop or not if RR(Yi) = j, for 1  j  i.

If we were to stop when RR(Yi) = j, then the probability that AR(Xi) = 1 is

fnij =
n�i+j
X

v=j

qnijvpnv.

i.e. fnij is the probability that Xi is the best among all of the n X-observations, conditional on Yi

being the jth best from among the first i Y -observations.

We need to keep track of Rni, which is the probability of getting the best X if the optimal rule

is followed from observation i and thereafter. To complete the discussion we need to show how Rni

is determined recursively, beginning with the last observation, n, and going backwards.

Note that Rnn = 1

n . For any i, let ki be the largest j such that fnij > Rn,i+1

. Then,

Rni =
1

i

ki
X

j=1

fnij +Rn,i+1

(i� ki)

i
.

The form of the solution, as claimed above, that the maximum RR(Yi) at which we would

stop at observation i is non-decreasing in i, is intuitive. It also follows from the solution described

above since Rni is non-increasing in i, pnj is clearly non-increasing in j, and there exists a k
0

which

depends on i such that qnijk  qn,i+1,j,k only when k  k
0

. The last two statements imply that fnij

increases as i increases.

S5 is straightforward. No rule can be better than the rule that finds the observation that is

best amongst the Y values with certainty. But if limn!1 pn(X, ✏) = 0, even this rule satisfies
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limn!1Wn(X, ✏) = 0. The converse follows from S1.

5 Examples

In this section, we consider four examples to illustrate interesting findings concerning the behavior

of pn. It follows from (2.1) that when X is Normal and ✏ is Normal the probability that the best

concomitant observation is the best observation goes to 0, if ⇢ < 1. In Example 5.1, we show that

the probability does not go to zero if the X distribution is exponential.

Example 5.1: F =Exponential, G =Normal, and lim infn!1 pn > 0.

We want to know how likely it is that the largest among Yi has the same index as the largest among

Xi.

Hence we need to consider

P
⇣

Xn
(1)

+ ✏⇤
1

> Xn
(j) + ✏⇤j , j = 2, . . . , n

⌘

where ✏⇤j are i.i.d. standard normal. Let Aj = {Xn
(1)

�Xn
(j) > ✏⇤j � ✏⇤

1

}. Note that Aj depends on n,

but for ease of notation, we do not include n as a superscript, because the value of n remains fixed

in this argument. We want to show that P (A
2

\A
3

\ ...\An) goes to a constant greater than zero.

It su�ces to show that P (A
2

\ A
3

\ ... \ An | ✏⇤
1

= z) goes to a constant greater than zero as

n ! 1 for any z. This is the case since P (A
2

\A
3

\...\An) =
R

z P (A
2

\A
3

\...\An | ✏⇤
1

= z)�(z)dz

where � is the density of the standard normal. Since the conditional probability in the integral

increases in z, P (A
2

\A
3

\ ...\An) � P (A
2

\A
3

\ ...\An | ✏⇤
1

= z)P (Z > z) where Z is a standard

normal random variable independent of the Eis.

But P (A
2

\ A
3

\ ... \ An | ✏⇤
1

= z) = 1 � P (B
1

[ . . . [ Bn�1

) � 1 �
Pn�1

j=1

P (Bj) where

Bj = {X
(1)

�X
(j+1)

 ✏⇤j+1

� z}.
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To evaluate P (Bj) note that for i.i.d. exponential, Ei = Xn
(i) � Xn

(i+1)

are independent expo-

nential with mean of 1/i. Hence P (Bj) = P (E
1

+ . . .+ Ej + Z  �z).

It su�ces to show that
Pn�1

i=1

P (Bi) < 1 as n ! 1. We use the following Cherno↵ bound:

P (H  a)  e�taM(t) for all t < 0 where M is the moment generating function of H. The moment

generating function of the random variable E
1

+ . . .+ Ej + Z is

Mj(t) = et
2/2

j
Y

i=1

i

i� t
.

We now choose z = �a to be 2 and t to be -2. This implies that

P (Bj)  e�4e2
j
Y

i=1

i

i+ 2
=

2e�2

(j + 1)(j + 2)
.

Hence
n�1

X

j=1

P (Bj)  2e�2

n�1

X

j=1

1

(j + 1)(j + 2)
= e�2[1� 2/(n+ 1)] < 1.

We showed that when X and ✏ have normal distributions pn goes to zero. This is intuitive

because the di↵erence between the largest relatively few X values are arbitrarily close to each other

in probability as n gets large. In the exponential case, however, the expected di↵erence between

the largest and second largest observation is one and hence the largest X values do not become

indistiguishable as in the normal case. Nevertheless, Example 5.2 shows that when the distributions

of X and ✏ are both exponential, and hence the error term is su�ciently large, limn!1 pn(X, ✏) = 0.

Example 5.2: F =Exponential, G =Exponential and limn!1 pn = 0.

Assume we observe X
1

, . . . , and ✏
1

, . . . , as i.i.d. exponential with equal mean, without loss of

generality taken to be one. Let Yi = Xi + ✏i. Let xN = XN
(1)

and yN = Y N
(1)

. Let n > N be an

observation after N . The probability that we have a record at n in at least one of the X sequence

or Y sequence is

P
�⇥

Xn > xN
⇤

[
⇥

Yn > yN
⇤�

.
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We want to determine

P
�⇥

Xn > xN
⇤

\
⇥

Yn > yN
⇤

|
⇥

Xn > xN
⇤

[
⇥

Yn > yN
⇤�

=
P (

⇥

Xn > xN
⇤

\
⇥

Yn > yN
⇤

)

P (
⇥

Xn > xN
⇤

[
⇥

Yn > yN
⇤

)


P (
⇥

Xn > xN
⇤

\
⇥

Yn > yN
⇤

)

max [P (Xn > xN ), P (Yn > yN )]
. (5.1)

Since Xn is exponential with mean one and Yn is Gamma (2,1) it follows that

P (Xn > xN ) = e�xN

and

P (Yn > yN ) = (1 + yN )e�yN .

Furthermore,

P
�⇥

Xn > xN
⇤

\
⇥

Yn > yN
⇤�

=

Z u=yN

u=xN

(e�u)(eu�yN )du+

Z 1

u=yN

e�udu

= e�yN (yN � xN ) + e�yN

= e�yN (yN � xN + 1). (5.2)

For any � > 0, let

y(�) = min

⇢

y
�

�

�

log(1 + y) + 1

y + 1
< �/2

�

.

Let N be su�ciently large so that P (Y m
(1)

> y(�)) > 1 � �/2 for all m > N . We need to consider

two cases:

1. If e�xN > (1 + yN )e�yN , or equivalently eyN�xN > (1 + yN ) then the right hand side of (5.1) is

e�yN+xN (yN �xN +1) < log(1+yN )+1

1+yN
< �/2. The next to last inequality follows becuase e�u(u+1)

is a decreasing function.

2. If e�xN  (1 + yN )e�yN or equivalently eyN�xN  (1 + yN ) then the right hand side of (5.1) is

yN�xN+1

yN+1

 log(1+yN )+1

1+yN
< �/2.
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Finally, if N is su�ciently large then

P
�⇥

Xn > xN
⇤

\
⇥

Yn > yN
⇤

| (
⇥

Xn > xN
⇤

[
⇥

Yn > yN
⇤

)
�

 P
⇣

⇥

Xn > xN
⇤

\
⇥

[Yn > yN
⇤

|
�⇥

Xn > xN
⇤

[
⇥

Yn > yN
⇤ 

\
⇥

Y n
(1)

> y(�)
⇤

⌘

(1� �/2) + �/2

< (�/2)(1� �/2) + �/2 < �.

One might conjecture that if X and ✏ have the same distributions then pn goes to zero as in the

normal and exponential cases. But if the tail of X is su�cently fat then pn need not go to zero.

The intuition is that the largest X is likely to be a lot larger than the second largest X. This is in

essence, what is shown in the following example.

Example 5.3: F =Pareto, G = Pareto and lim infn!1 pn > 0.

Let F (x) = G(x) = 1� 1/x↵ for x � 1. (Note that for ↵ = 1, the tail behavior of this distribution

is the same as that of a Cauchy distribution.)

We want to show that lim infn!1 pn > 0.

Claim: If we can show that

P
⇣

Xn
(1)

> Xn
(2)

+ ✏n
(2)

⌘

> � (5.3)

for some � > 0, as n ! 1, we are done. The reason for this is that if the second largest ✏ is with

the second largest X then the only other possible observation that has higher Y than the Y with

index corresponding to the largest X is the one with the highest ✏. But it is just as likely that the

index with the highest X and the index with the highest ✏ has the highest Y value.

Note that X↵
i = 1/Ui where the Ui are i.i.d. uniform (0,1) and similarly let ✏↵i = 1/Vi where Vi

are i.i.d. uniform (0,1).

We will show that limP (Xn
(1)

� Xn
(2)

> (n + 1)/2) > 0 and that limP (✏n
(2)

< (n + 1)/2) > 0
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from which (5.3) follows. But

P
⇣

[Xn
(1)

> (n+ 1)1/↵] \ [Xn
(2)

< ((n+ 1)/2)1/↵]
⌘

= P
⇣

[Un
(n) < 1/(n+ 1)] \ [Un

(n�1)

> 2/(n+ 1)]
⌘

= n
h 1

n+ 1

⇣

1� 2

n+ 1

⌘n�1

i

! e�2

where Un
(i) is the i

th largest uniform that generates X
(n+1�i). Note that (n+1)1/↵�((n+1)/2)1/↵ =

((n + 1))1/↵/c where c = 2

1/↵

2

1/↵�1

. Finally, since P (✏n
(2)

< ((n + 1)/c)1/↵) is P (V n
(n�1)

> c/(n + 1))

goes to (c+ 1)e�c, where V n
(i) is the ith largest uniform that generates ✏n

(n+1�i), we are done.

It is somewhat intuitive that as n increases, the probability that the observation that is the

largest X is also the largest Y , decreases. But that is not necessarily the case. In fact, the next

example says more. The above probability in this example goes to one as n goes to infinity.

Example 5.4: F =Pareto, G = Normal, and limn!1 pn = 1.

Let X
1

, . . . , Xn as i.i.d. with f(x) as in Example 5.3 with ↵ = 1, that is, F (x) = 1� 1/x for x � 1.

Assume we observe Yi = Xi + ✏i where ✏
1

, . . . , ✏n are i.i.d. and normally distributed.

Claim: P (Xn
(1)

�Xn
(2)

� zn) ! 1 as n ! 1 where zn = n1�� for any � > 0.

Since the maximum of n Normally distributed random variables is of order (log n)1/2 for large

n the above claim shows that the largest from among the X distribution must also be the largest

from among the Y distribution with probability tending to 1.

Proof of claim: Let Xn
(i) =

1

Un
(n+1�i)

.

P
⇣

Xn
(1)

�Xn
(2)

� zn
⌘

= P
⇣ 1

Un
(n)

� 1

Un
(n�1)

� zn
⌘

= P
⇣ 1

Un
(n)

� zn +
1

Un
(n�1)

⌘

= P
⇣

Un
(n) 

Un
(n�1)

1 + znUn
(n�1)

⌘

=

Z

1

t=0

P
⇣

U
(n) 

Un
(n�1)

1 + znUn
(n�1)

| Un
(n�1)

= t
⌘

fn�1

(t)dt

=

Z

1

t=0

1

1 + znt
fn�1

(t)dt
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where fi is the density for the ith largest order statistics from a uniform (0,1) distribution which is

Beta(↵ = n + 1 � i ,� = i). But U
(n�1)

⇠ Beta(↵ = 2 , � = n � 1). Hence E(Un
(n�1)

) = 2

n+1

and

V ar(Un
(n�1)

) = 2(n�1)

(n+1)

2
(n+2)

= O
�

1

n2

�

. So P (Un
(n�1)

< 1

n1��/2 ) ! 1 as n ! 1. This implies that

P (Xn
(1)

�Xn
(2)

� n1��) � 1

1 + n1��n�(1��/2)
P
⇣

Un
(n�1)

<
1

n1��/2

⌘

=
1

1 + n��/2
P
�

Un
(n�1)

<
1

n1��/2

⌘

! 1 as n ! 1.

Remark 5.1: The assumption that G has a normal distribution in Example 5.4 is easily relaxed.

All that is needed in the proof is that maximum of n random variables be o(n1��) for any � > 0.

Remark 5.2: Note that Example 5.4 establishes P5. Clearly, for small n the value of pn here is

not equal to 1. But if limn!1 pn = 1, the pn sequence cannot be monotone.
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