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Some Counterclaims Undermine Themselves in Observational Studies

Abstract
Claims based on observational studies that a treatment has certain e§ects are often met with counterclaims
asserting that the treatment is entirely without e§ect, that all associations with treatment are produced by
biased treatment assignment. Some counterclaims undermine themselves in the following speciÖc sense:
presuming the counterclaim to be true may strengthen the support that the original data provide for the
original claim, so that the counterclaim fails in its role as a critique of the original claim. In mathematics, a
proof by contradiction supposes a proposition to be true en route to proving that the proposition is false.
Analogously, the supposition that a particular counterclaim is true may justify an otherwise unjustiÖed
statistical analysis, and this added analysis may interpret the original data as providing even stronger support
for the original claim. More precisely, the original study is sensitive to unmeasured biases of a particular
magnitude, , but an analysis that supposes the counterclaim to be true may be insensitive to much larger
unmeasured biases, 0 > . Illustrated using data from the US Fatal Accident Reporting System.
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SOME COUNTERCLAIMS UNDERMINE THEMSELVES
IN OBSERVATIONAL STUDIES

PAUL R. ROSENBAUM

Abstract. Claims based on observational studies that a treatment has certain effects are often
met with counterclaims asserting that the treatment is entirely without effect, that all associations
with treatment are produced by biased treatment assignment. Some counterclaims undermine
themselves in the following specific sense: presuming the counterclaim to be true may strengthen
the support that the original data provide for the original claim, so that the counterclaim fails
in its role as a critique of the original claim. In mathematics, a proof by contradiction supposes
a proposition to be true en route to proving that the proposition is false. Analogously, the
supposition that a particular counterclaim is true may justify an otherwise unjustified statistical
analysis, and this added analysis may interpret the original data as providing even stronger
support for the original claim. More precisely, the original study is sensitive to unmeasured
biases of a particular magnitude, Γ, but an analysis that supposes the counterclaim to be true
may be insensitive to much larger unmeasured biases, Γ′ > Γ. Illustrated using data from the
US Fatal Accident Reporting System.

1. Notation

There are I matched sets, i ∈ {1, . . . , I} = I, where set i ∈ I contains subjects Ji = {1, . . . , Ji},
one treated with Zij = 1, the rest untreated controls with Zij = 0, so 1 =

∑
j∈Ji Zij for each

i. Write n =
∑

i∈I Ji and Z = (Z11, Z12, . . . ZIJI )
T , and let Z be the set containing the

∏
i∈I Ji

possible values of Z. Denote by |A| the number of elements in a finite set A so |Z| =
∏
i∈I Ji.

For a matched pair, Ji = {1, 2} and Ji = 2. The example uses this notation 4 times for 4 parallel
studies, for instance, with treatments belted driver versus unbelted passenger. Conditioning on
Z ∈ Z is abbreviated as conditioning on Z. Subject ij has measured covariate xij and unmeasured
covariate uij . Matching has controlled the measured covariate, so that xij = xik = xi, ∀i, j, k,
but quite possibly uij 6= uik. Subject ij has two potential responses for the outcome of primary
interest, rTij if assigned to treatment or rCij if assigned to control, so the observed response of
ij is Rij = Zij rTij + (1− Zij) rCij and the effect of the treatment on ij, namely rTij − rCij is
not observed; see Neyman (1923) and Rubin (1974). Fisher’s (1935) sharp null hypothesis of
no treatment effect asserts H0 : rTij = rCij for all ij. In the example, (rTij , rCij) records the
injury scores that subject ij would suffer under treatment and control, Rij is the injury ij actually
suffered, and Fisher’s H0 says that swapping the treatments in pair i would not alter the injury
suffered by individual ij. Write R, rC , rT , and u for the n dimensional vectors. Each subject
may have a K-dimensional row vector of secondary outcomes, sTij or sCij , with observed value
Sij = Zij sTij + (1− Zij) sCij , and associated n × K matrices S, sC and sT whose rows are in
the lexical order. In one FARS example, the secondary outcome S indicates whether exactly one of
the two people was ejected. Write F = {(rTij , rCij , sTij , sCij ,xij , uij) , i = 1, . . . , I, j = 1, . . . , Ji}.
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2 PAUL R. ROSENBAUM

The subscripts ij are unique but noninformative identifiers, perhaps randomly assigned, and all
information about individual ij is in observed or unobserved variables that describe ij. A matched
pair, Ji = 2, yields a single treated-minus-control pair difference Yi = (Zi1 − Zi2) (Ri1 −Ri2) in
outcomes, as plotted in various Figures, and if H0 is true, Yi = (Zi1 − Zi2) (rCi1 − rCi2).

2. Inference: Testing the Hypothesis of No Effect

2.1. Randomization inference in randomized experiments. In a randomized experiment,
one individual in each set is picked at random for treatment with independent selections in distinct
matched sets, so that

(2.1) Pr (Z = z | F , Z) =
∏

i∈I
J−1i = |Z|−1 for each z ∈ Z.

If t (Z,R) is a test statistic, then in a randomized experiment (2.1), the distribution of t (Z,R) under
Fisher’s null hypothesisH0 of no effect equals its permutation distribution Pr {t (Z, rC) ≥ k | F , Z} =
|{z ∈ Z : t (z, rC) ≥ k}| / |Z|, because R = rC when H0 is true, rC is fixed by conditioning on F ,
and Z is uniform on Z in a randomized experiment. In an observational study, the counterclaim
of selection bias says that the treatment is entirely without effect and t (Z,R) is large because (2.1)
is false.

2.2. Sensitivity analysis in observational studies. One model for studying the sensitivity
of conclusions to violations of (2.1) says that, in the population prior to matching, treatment
assignments are independent and two subjects with the same observed covariates may differ in their
odds of treatment, Zij = 1, by at most a factor of Γ ≥ 1; then, the distribution of Z is returned to
Z by conditioning on Z ∈ Z. This is equivalent to assuming that there is an unobserved covariate
uij with 0 ≤ uij ≤ 1 such that

(2.2) Pr (Z = z | F , Z) =
∏
i∈I

exp
(
γ
∑

j∈Ji zij uij

)
∑

j∈Ji exp (γ uij)
=

exp
(
γzTu

)∑
b∈Z exp (γbTu)

, u ∈ [0, 1]
n ,

for each z ∈ Z, where γ = log (Γ) ≥ 0; see Rosenbaum (2002, §4.2). For each u ∈ [0, 1]
n, the null

distribution of t (Z,R) under Fisher’sH0 is obtained by summing terms (2.2) over {z ∈ Z : t (z, rC) ≥ k}.
As u is allowed to range over [0, 1]

n, the sensitivity analysis determines bounds on this null distri-
bution, yielding for instance the upper and lower bounds on P -values testing Fisher’s hypothesis
H0 of no effect. This method with point estimates and confidence intervals is implemented for
M -statistics, including the permutational t-test, in the sensitivitymv and sensitivitymw pack-
ages in R; see Rosenbaum (2007, 2013, 2014). For aspects of sensitivity analyses, see Cornfield et
al. (1959), Hosman et al. (2010), Hsu et al. (2013), Liu et al. (2013), Pimentel et al. (2015),
Zubizarreta et al. (2013).

3. Segments of Data

3.1. Segments of the data determined by a matrix W. A segment of the data {Ji, i ∈ I}
is defined to be

{
J ′

i , i ∈ I
}
where J ′

i ⊆ Ji for each i ∈ I. Let S be the set whose 2n elements

are the 2n possible segments. For a segment
{
J ′

i , i ∈ I
}
, write mi for the random variable that

counts the number of treated subjects in J ′

i , so mi = 0 if J ′

i = ∅ and otherwise mi =
∑

j∈J ′
i
Zij , so

mi = 0 or mi = 1. Write m = (m1, . . . ,mI). The contribution from J ′

i in segment
{
J ′

i , i ∈ I
}
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will be degenerate and uninteresting unless mi = 1 <
∣∣∣J ′

i

∣∣∣. For matched pairs, |Ji| = Ji = 2 for

all i as in the example, the interesting (or nondegenerate) part of a segment
{
J ′

i , i ∈ I
}
is simply

a subset of the matched pairs. For matched sets with |Ji| = Ji > 2, a segment
{
J ′

i , i ∈ I
}
may

have nondegenerate parts J ′

i with mi = 1 <
∣∣∣J ′

i

∣∣∣ < |Ji| containing the treated subject from Ji and
some but not all of the controls from Ji. For a segment

{
J ′

i , i ∈ I
}
, add a prime ′ to a quantity

to denote the value of a quantity confined to the segment, eg Z′ for the vector of Zij with i ∈ I
and j ∈ J ′

i , or n
′ =

∑
i∈I

∣∣∣J ′

i

∣∣∣. Write Z ′m for the set of possible values of Z′, that is, the set of

vectors z′ of dimension n′ with 1 or 0 coordinates such that mi =
∑

j∈J ′
i
zij . In parallel, write r

′

C ,
S′, etc. Conditioning on the event Z′ ∈ Z ′m is abbreviated as conditioning on Z ′m, and generally
the conditioning will be on (Z, Z ′m, m) jointly.
There is an n×M matrixW with rows wij in the lexical order. Write W for the set of possible

values forW.

Definition 1. The phrase “W determines the segment” means that there is a known function
S (W) that receives W and returns a segment from S, that is, S :W → S.

This definition 1 needs to be guarded from a natural misinterpretation: Unless W determines
Z, a segment determined byW cannot make use of the identity of the treated subject.

3.2. Segments and sensitivity analysis. When can we select a segment
{
J ′

i , i ∈ I
}
usingW,

yet appropriately analyze this segment as if were an unselected data set? Proposition provides a

condition on the segment S (W) =
{
J ′

i , i ∈ I
}
such that the distribution of treatment assignments

in the segment is nothing more than a distribution with the same form as (2.2) confined to the
segment by conditioning on m.

Proposition 1. If a segment S (W) =
{
J ′

i , i ∈ I
}
is determined byW in the sense of Definition 1,

and ifW is fixed by conditioning on F , then (2.2) implies the distribution of treatment assignments
z′ ∈ Z ′m within the segment is given by

(3.1) Pr (Z′ = z′ | F , Z, Z ′m, m) =
∏

i∈I:|J ′
i |>0

exp
(
γ
∑

j∈J ′
i
z
′

ij uij

)
∑

j∈J ′
i

exp (γ uij)
, u′ ∈ [0, 1]

n′ .

Corollary 1. If a segment S (S) =
{
J ′

i , i ∈ I
}
is determined by the observed value of the supple-

mentary responses S, and if the supplementary responses are unaffected by the treatment, sTij = sCij
for all ij, then (2.2) implies the distribution of treatment assignments within the segment is given
by (3.1).

4. Huber-Maritz M-statistics

In testing H0, the Huber-Maritz M -statistic uses t (Z,R) =
∑I

i=1 ψ (Yi/s) where s is the 95%
quantile of |Yi|, and ψ (·) is an odd function, ψ (y) = −ψ (−y). Here, ψt (y) = y yields the permuta-
tional t-test, ψhu (y) = sign (y) min (|y| , 1) are Huber’s scores, and ψin (y) = sign (y) max

{
0, min (|y| , 1)− 1

4

}
performs inner trimming. Under H0, Yi = (Zi1 − Zi2) (rCi1 − rCi2) = ± (rCi1 − rCi2), |Yi| and
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hence s are fixed by conditioning on F , so ψ (Yi/s) = ±ψ (|rCi1 − rCi2| /s). The upper bound on
the distribution of

∑I
i=1 ψ (Yi/s) under (2.2) is the sum of I independent random variables taking

value ψ (|rCi1 − rCi2| /s) with probability Γ/ (1 + Γ) and value −ψ (|rCi1 − rCi2| /s) with probabil-
ity 1/ (1 + Γ), reducing to the randomization distribution for Γ = 1; see Rosenbaum (2007). For
the design sensitivity of M -statistics and ψin (y), see Rosenbaum (2013, 2014).
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