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Abstract
This paper studies inventory management in a two echelon supply chain with stochastic demand and lost
sales. The optimal policy is evaluated and compared with the competitive solution, the outcome of a game
between a supplier and a retailer in which each firm attempts to maximize its own profit. It is shown that
supply chain profit in the competitive solution is always less than the optimal profit. However, the magnitude
of the competition penalty is sometimes a trifle, sometimes enormous. Several contracts are considered to
align the firms’ incentives so that they choose supply chain optimal actions. These contracts contain one or
more of the following elements: a retailer holding cost subsidy (which acts like a buy-back/return policy), a
lost sales transfer payment (which acts like a revenue sharing contract) and inventory holding cost sharing.
With the latter each firm incurs a fixed fraction of the total supply chain holding cost. It is found that the
retailer holding cost subsidy is generally not sufficient to coordinate the supply chain. The most effective
contract combines a lost sales transfer payment with inventory holding cost sharing: it always coordinates the
supply chain, both players are always better o¤ and it is simple to evaluate.
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Competitive and Cooperative Inventory Management
in a Two-Echelon Supply Chain with Lost Sales¤

Gérard P. Cachon
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Abstract

This paper studies inventory management in a two echelon supply chain
with stochastic demand and lost sales. The optimal policy is evaluated and
compared with the competitive solution, the outcome of a game between a
supplier and a retailer in which each …rm attempts to maximize its own pro…t.
It is shown that supply chain pro…t in the competitive solution is always less
than the optimal pro…t. However, the magnitude of the competition penalty
is sometimes a tri‡e, sometimes enormous. Several contracts are considered
to align the …rms’ incentives so that they choose supply chain optimal actions.
These contracts contain one or more of the following elements: a retailer
holding cost subsidy (which acts like a buy-back/return policy), a lost sales
transfer payment (which acts like a revenue sharing contract) and inventory
holding cost sharing. With the latter each …rm incurs a …xed fraction of
the total supply chain holding cost. It is found that the retailer holding
cost subsidy is generally not su¢cient to coordinate the supply chain. The
most e¤ective contract combines a lost sales transfer payment with inventory
holding cost sharing: it always coordinates the supply chain, both players
are always better o¤ and it is simple to evaluate.

¤Thanks is extended to Martin Lariviere for his many helpful comments. Since I
will soon present this work at the Kenan-Flagler School, University of North Carolina
and the Kellogg School of Management, Northwestern University, I thank those seminar
participants in advance.



Essentially all supply chains operate as a collection of independent agents, each respon-

sible for managing a subset of the supply chain, each with its own objectives. While it is

unlikely that the agents’ objectives are entirely orthogonal, one should not expect harmo-

niously aligned incentives either. But, when do those di¤erence lead to sub-optimal supply

chain performance? As in a good marriage, some disagreement is natural, relatively harmless

and certainly does not justify costly intervention/counseling. Only when the supply chain

operates signi…cantly below its optimal performance should the …rms seek therapy, i.e., align

their incentives. But what kinds of agreements align the …rms’ incentives so that (1) each

…rm can be reasonably certain that the other …rm will choose a supply chain optimal action

(i.e., uphold its part of the deal) and (2) each …rm is better o¤ with the agreement than

without it, i.e., it is Pareto improving? This paper studies those questions with a two …rm

supply chain inventory model.

The two …rms, a supplier and a retailer, operate over an in…nite horizon. The supplier

produces a single product at a …nite production rate and at a …xed marginal production

cost. The retailer purchases the product at a …xed wholesale price and sells the product at a

…xed retail price. Both the supplier and the retailer incur holding costs on their inventory.

The inter-arrival times of customers are stochastic and each customer purchases exactly one

unit if a unit is available at the retailer. If a unit is not available, that potential sale is lost.

Each …rm attempts to maximize its expected pro…t per unit time knowing that the other

…rm has the same objective. The …rms could choose actions that lead to optimal supply chain

performance: the optimal policy belongs to their feasible set of actions and all information

is common knowledge (so the …rms are able to evaluate the optimal policy). Nevertheless,

the …rms may choose sub-optimal policies because their incentives are not aligned with the

supply chain’s incentives.

It is not obvious whether the …rms will carry too much or too little inventory relative to

the optimal amount. Increasing supply chain inventory bene…ts both …rms, so the supply

chain enjoys a larger bene…t from increasing inventory than either …rm, which suggests the

…rms will not stock enough. But neither …rm incurs the full cost of increasing supply chain

inventory (the increase may be divided between the …rms), which suggests the …rms will

stock too much. If those contradictory incentives balance each other, the …rms may in fact

choose policies that are reasonably close to optimal, if not optimal. If not, it is important
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to identify which incentive dominates so that a contract can be constructed that aligns

the …rms’ incentives: a contract that must increase inventory is obviously di¤erent than a

contract that must reduce inventory.

The next section reviews the related literature. §2 details the model. §3 provides the

supply chain optimal solution. §4 analyzes the competitive supply chain inventory game.

§5 presents a numerical study that investigates the magnitude of the competition penalty

(the decrease in supply chain performance due to decentralized decision making). §6 inves-

tigates how the …rms can better align their incentives. Several contracts are considered. §7

summarizes and discusses the results.

1. Literature Review

This work is similar to Cachon and Zipkin (1999), hereafter referred to as CZ. They study a

two echelon serial supply chain with stochastic consumer demand and complete backordering,

i.e., there are no lost sales. Both …rms incur holding costs and a backorder penalty per unit

of time for each unit that is backordered at the retailer; the supplier is not charged for its

own backorders, it is only charged when units are backordered at the retailer. That fee

re‡ects the supplier’s desire to maintain an adequate stock of its product at the retailer. This

model is also a two echelon serial supply chain with stochastic consumer demand. But when

a customer arrives at the retailer and the retailer has no stock, a lost sale occurs. Hence, as

in CZ, both …rms are concerned about the availability of inventory at the retailer, but in this

model stock outs create opportunity costs (each …rm’s margin on the product) rather than

backorder penalties. A second signi…cant di¤erence is that there is no replenishment delay

between the two echelons in this model, whereas there is a …xed replenishment delay between

the two echelons in CZ. (In both models the upper echelon experiences a replenishment

delay.) The implication of this di¤erence is discussed later.

This work also resembles Caldentey and Wein (1999), hereafter referred to as CW. They

study a two …rm serial supply chain in which the supplier controls the production rate of

his manufacturing facility and the retailer chooses an inventory stocking policy. Both the

production and demand inter-arrival times are exponentially distributed. All demands are

backordered, and, as in CZ, both …rms incur a backorder penalty cost for backorders at the

retail level. In this model production inter-arrival times are also exponentially distributed,
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but the rate is exogenous. Hence, as in CZ, both the supplier and the retailer manage

inventory, whereas only the retailer manages inventory in CW. As in this model, CW assume

units are transferred immediately between the supplier and the retailer once production is

completed.

Both CZ and CW consider linear transfer payment contracts to coordinate the supply

chain. This work considers similar contracts.

There is other research that studies competitive supply chain inventory management over

an in…nite horizon. Cachon (1997) extends the model in CZ to include multiple retailers and

batch ordering. Chen (1999), Lee and Whang (1999) and Porteus (1997) focus on contracts

to coordinate serial supply chains with complete backordering. Chen, Federgruen and Zheng

(1997) study competition and coordination in a multiple-retailer model with deterministic

demand, so there are no lost sales.

There are numerous papers that consider supply chain contracting over short horizons (see

Tayur, Ganeshan andMagazine, 1999). These papers are generally based on the newsvendor

model, and so lost sales are possible. Pasternack (1985) is a classic example. He investigates

a model with a single supplier and a single retailer and shows that the retailer purchases

too little inventory with a simple wholesale price contract. The supplier can increase the

retailer’s order quantity with the use of a buy-back contract. (A buy-back contract speci…es

a price that the supplier will purchase left over stock from the retailer.) Not only can a buy-

back contract induce the retailer to choose the supply chain optimal order quantity, it can

also arbitrarily divide supply chain pro…ts between the two …rms. With the similar models,

Lariviere and Porteus (1999) study the performance of a wholesale price only contract and

Tsay (1999) studies the performance of a quantity ‡exibility contract.

Plambeck and Zenios (1999) study a model in which a principal o¤ers a contract to an

agent that controls a Markov decision process, hence only one player in their game directly

controls the performance of the system. In this model system performance depends on the

actions of both players, and either player may o¤er a contract.

There are many papers that investigate inventory competition among a group of retailers:

e.g., Anupindi, Bassok and Zemel (1999a,b), Li (1992), Lippman and McCardle (1997),

Mahajan and van Ryzin (1999), Wang and Gerchak (1999). Those models are di¤erent

in that they include demand spillovers: if one …rm is out of stock then the demand at
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the other …rms increases. There are no demand spillovers in this model since there is

only one retailer. Furthermore, those model assume a perfectly reliable inventory source

for all retailers, whereas in this model the reliability of a retailer’s source depends on the

endogenous actions of the supplier.

2. The Model

This section describes a game between a supplier and a retailer. All information is common

knowledge: each …rm knows the rules of the game, their own costs, their opponent’s costs,

etc.

The supplier sells a single product to the retailer at a …xed wholesale price per unit, w.

Customer inter-arrival times at the retailer are exponentially distributed with rate ¸. Each

customer purchases exactly one unit, if a unit is available at the retailer when the customer

arrives. The purchase price is r per unit, r ¡ w ¸ 0. If the retailer is without inventory

when a customer arrives, then the customer departs immediately and never returns; that

potential sale is lost.

The supplier replenishes its inventory with a production process that has exponentially

distributed inter-production times with rate ¹. De…ne ½ = ¸=¹ and assume ½ < 1: (Allowing

½ > 1; while possible, generates few additional qualitative insights.) Once production of a

unit is completed, the unit is immediately part of the supplier’s inventory. The supplier is

the retailer’s only source of inventory. There is no time delay to transfer a unit of inventory

from the supplier to the retailer, i.e., the retailer receives any order instantly as long as the

supplier has inventory to satisfy the order. Hence, the supplier’s production process is the

only replenishment delay in this supply chain.

There are some settings in which the single replenishment delay is not onerous. In the

personal computer industry suppliers (PC assemblers) and retailers (distributors) often co-

locate in the same facility, in which case the lead time between the two …rms is just the

time to move a box between two rooms. Alternatively, the zero replenishment lead time is

a reasonable approximation when the shipping time between the supplier and the retailer

is relatively short so that the retailer generally does not stock out when there are units

in-transit, e.g., if shipping occurs over night but demand occurs only during the day. While

appropriate in a broader set of circumstances, a replenishment delay between the supplier
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and the retailer would introduce signi…cant analytical challenges: the supply chain optimal

policy would depend on how inventory is allocated within the system, rather than on just

the total amount of inventory in the system. Those challenges notwithstanding, introducing

a replenishment delay is an important extension for future research.

The supplier incurs a production cost c per unit produced, w¡ c ¸ 0; and a holding cost
h per unit in inventory per unit time. There are no holding costs for units in the production

process. The retailer also incurs a holding cost at rate h per unit. (If the retailer’s holding

cost were higher than the supplier’s holding cost, then the optimal solution has the supplier

holding all inventory. A model with di¤erent holding costs is only interesting if there is a

replenishment delay between the supplier and the retailer.)

A lost sale generates a (r¡w) opportunity cost for the retailer and a (w ¡ c) opportunity
cost for the supplier, but a lost sale might generate other, indirect, consequences for the …rms.

For example, the supplier might lose some good will with the customer or the customer might

switch to another product the retailer carries. To model those consequences, each lost sale

creates a bs charge to the supplier and a br charge to the retailer. To avoid trivial situations,

assume bs ¸ ¡(w ¡ c) and br ¸ ¡ (r ¡ w) : either …rm could experience an indirect bene…t

due to a lost sale (e.g., the retailer may sell another product to the customer), but that

bene…t would not compensate the …rm for its opportunity cost of a lost sale. In other words,

each …rm has some a priori incentive to avoid lost sales. Let b = bs + br.

To manage inventory each …rm uses a base stock policy: when the supplier’s inventory is

less than Ss the supplier maintains production, otherwise production is idle; and the retailer

orders a unit of inventory from the supplier whenever its inventory is less than Sr. Given

that the two …rms are using base stock policies, the supplier has inventory only when the

retailer’s inventory is Sr. The supplier produces when its inventory is less than Ss; i.e.,

when the supply chain’s inventory is less than S = Ss + Sr; and ceases production when its

inventory is Ss; i.e., when the supply chain’s inventory is S: So a centralized controller of the

supply chain generates the same replenishment decisions as the …rms when the controller

uses a base stock policy with base stock level S: In fact, a base stock policy is optimal for

the supply chain (i.e., it maximizes supply chain pro…t per unit time). This claim is made

without formal proof, since a brief verbal argument should su¢ce: if production is initiated

when there are x units in stock, then the expected pro…t from that unit in production is
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decreasing in x; so production should cease for all x greater than or equal to some S.

Let So be the supply chain’s optimal base stock level. So even with decentralized op-

erations the …rms can optimize the supply chain as long as they choose Ss + Sr = So.

Furthermore, it can be shown that a base stock policy is optimal for each …rm assuming the

other …rm is using a base stock policy. Hence, base stock policies are quite reasonable for

this setting.

The …rms simultaneously choose their base stock levels (i.e., they must choose their base

stock level before observing the other …rm’s base stock level) and then they are committed

to those base stock levels over an in…nite horizon (i.e., this is a one-shot game). A …rm’s only

choice variable is its base stock level, and each …rm must choose a base stock level: exiting

from the game is not an option. Each …rm chooses its base stock level with the objective

to maximize its expected pro…t per unit time. For technical reasons, and without loss of

generality, assume the …rms’ base stock levels are chosen from an interval: for i 2 fs; rg;
Si 2 [0; bS]; where bS is a very large constant. A …rm’s base stock level will also be referred to
as its strategy. A pair of base stock levels, fS¤s ; S¤rg; is a Nash equilibrium if neither …rm has
a pro…table unilateral deviation, i.e., each …rm chooses a best response to the other …rm’s

strategy.

It remains to evaluate pro…t functions for the supply chain, the supplier and the retailer.

Begin with the supply chain. With base stock level S 2 f0; 1; :::; bSg the supply chain’s
inventory belongs to the set f0; 1; :::; Sg: Say the supply chain is in state i when there are
i units of inventory in the supply chain. The supply chain’s inventory is a continuous time

Markov chain with S + 1 states, and, more speci…cally, it is a birth and death process. Let

pi be the probability the supply chain has i units of inventory in steady state. It is not

di¢cult to show that, for S 2 f0; 1; 2; :::g;

pi(S) =
¸S¡i¹iPS
j=0 ¸

S¡j¹j
=

1¡ ½
½i¡S ¡ ½i+1 :

(Note that pi(S) is the steady state probability that there are i customers in a M=M=1=K

queue with arrival rate ¹, demand rate ¸; and K = S; Kleinrock, 1975.) De…ne Pi(S) =Pi
j=0 pj(S), i.e., Pi(S) is the probability there are i or fewer units in the supply chain with

base stock policy S:

Pi(S) =
½S¡i ¡ ½S+1
1¡ ½S+1 ; S 2 f0; 1; 2; :::g:

Let D(S) be the supply chain’s average sales rate (in units). So, ¸¡D(S) is the lost sales
6



rate. Let I(S) be the supply chain’s average inventory. It follows, again for S 2 f0; 1; 2; :::g;
that

D(S) = ¸(1¡ P0) = ¸
µ
1¡ ½S
1¡ ½S+1

¶
; (1)

and

I(S) = S ¡
S¡1X
j=0

Pj =
S ¡

³
½
1¡½

´ ¡
1¡ ½S¢

1¡ ½S+1 : (2)

The retailer’s average inventory is

Ir(Ss; Sr) = Sr ¡
Sr¡1X
j=0

Pj =
Sr ¡

³
½
1¡½

´ ¡
½Ss ¡ ½S¢

1¡ ½S+1 (3)

and the supplier’s average inventory is

Is(Ss; Sr) = I(S)¡ Ir(Ss; Sr) =
Ss ¡

³
½
1¡½

´ ¡
1¡ ½Ss¢

1¡ ½S+1 (4)

Note that the right hand sides of (1), (3) and (4) are continuous and di¤erentiable in

Ss and Sr. Thus, while the analysis of this model could be done assuming Ss and Sr are

restricted to integer values (and therefore S is also integer), it is analytically more convenient

to assume that the above inventory and sales rate functions apply for all Ss 2 [0; bS] and
Sr 2 [0; bS]. (The actual sales and inventory rates for the supply chain are D(dSe); I(dSe);
Is(dSse ; dSre) and Ir(dSse ; dSre); where dxe is the smallest integer that is greater than or
equal to x.) The qualitative impact of this assumption is minimal: with the continuous

approximation it will be shown that there is a unique optimal base stock level for the supply

chain and each …rm has a unique base stock level given the base stock level chosen by the

other …rm, but those uniqueness results are lost if the base stock levels are restricted to the

set of non-negative integers.

Let ¼(S); ¼s(Ss; Sr) and ¼r(Ss; Sr) be the supply chain’s, the supplier’s and the retailer’s

average pro…t per unit time respectively:

¼(S) = (r ¡ c)D(S)¡ hI(S)¡ (br + bs) (¸¡D(S))
¼r(Ss; Sr) = (r ¡ w)D(Ss + Sr)¡ hIr(Ss; Sr)¡ br(¸¡D(Ss + Sr))
¼s(Ss; Sr) = (w ¡ c)D(Ss + Sr)¡ hIs(Ss; Sr)¡ bs(¸¡D(Ss + Sr))

Let mr = r¡w+ br; ms = w¡ c+ bs; and m = mr+ms: Those constants are referred to as

margins, since they represent the di¤erence in pro…t between making a sale and generating

a lost sale. Given the bounds on the lost sales penalties, each margin is non-negative. The
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pro…t functions can now be written as

¼(S) = mD(S)¡ hI(S)¡ (br + bs) ¸
¼r(Ss; Sr) = mrD(Ss + Sr)¡ hIr(Ss; Sr)¡ br¸
¼s(Ss; Sr) = msD(Ss + Sr)¡ hI(Ss + Sr) + hIr(Ss; Sr)¡ bs¸

3. The Centralized (Optimal) Supply Chain Solution

The section evaluates the centralized (optimal) supply chain solution.

Theorem 1 ¼(S) is strictly quasi-concave.

Proof. Di¤erentiate :

D0(S) = ¸
(1¡ ½)½S ln (1=½)
(1¡ ½S+1)2 ; I 0(S) =

1¡ ½S+1 ¡ (S + 1)½S+1 ln(1=½)
(1¡ ½S+1)2

and

¼0(S) = mD0(S)¡ hI 0(S)
=

h

(1¡ ½S+1)2
µµ

m(1¡ ½) ln (1=½)¸
h½

+ 1

¶
½S+1 ¡ 1 + (S + 1)½S+1 ln(1=½)

¶
Both ½S+1 and (S + 1)½S+1 are decreasing in S: So there is some eS such that ¼0(S) · 0 for
all S ¸ eS and ¼0(S) > 0 for all S < eS, i.e., ¼(S) is strictly quasi-concave.¤
Given Theorem 1, there is a unique optimal base stock level, So; which is the solution to

the …rst order condition:

mD0(So) = hI 0(So): (5)

So is easy to evaluate numerically. Let ¼o = ¼(So):

The following lemma indicates that the supply chain optimal inventory is positive only if

m¸ is su¢ciently large relative to h; holding ½ constant. It is rather uninteresting to study

a supply chain that cannot justify stocking at least some inventory, so assume (6) holds

throughout.

Lemma 2 So > 0 only if
m¸

h
>

1

ln (1=½)
¡ ½

1¡ ½ (6)

Proof. Since ¼(S) is strictly quasi-concave So > 0 only if ¼0(0) > 0, which yields the

above condition.¤
When b > 0 it is possible that ¼(So) < 0 even if So > 0. It is not clear why a …rm would

participate in that market, nevertheless, positive pro…t constraints are not imposed in this
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model. (Those constraints are also referred to as participation constraints.) CW do impose

those constraints in their model.

4. Decentralized Inventory Game Analysis

This section assumes that the supplier and the retailer choose their own inventory policies

with the objective of maximizing their own pro…t. The main question is whether the …rms

choose policies that maximize total supply chain pro…t?

The …rst step in the game analysis determines each …rm’s optimal strategy choice as-

suming the other …rm’s strategy choice is known and …xed. Then, the existence of Nash

equilibria is demonstrated. Finally, the Nash equilibria and the supply chain optimal solu-

tion are compared.

Let

S¤r (Ss) = argmax
x
¼r(Ss; x)

S¤s (Sr) = argmax
x
¼s(x;Sr)

Based on the following theorems, S¤r (Ss) and S
¤
s (Sr) are functions, i.e., each …rm always has

a unique best response to the other …rm’s strategy choice.

Theorem 3 ¼r(Ss; Sr) is strictly quasi-concave in Sr:

Proof. Di¤erentiate,

@¼r(Ss; Sr)

@Sr
= mr¸

(1¡ ½)½S ln(1=½)
(1¡ ½S+1)2 ¡ h

¡
1¡ ½S+1¢¡ ½S+1 ³Sr + 1¡½Ss+1

1¡½

´
ln(1=½)

(1¡ ½S+1)2 : (7)

The sign of (7) is the same as the sign of the following expression:

µ
mr¸

h

¶
(1¡ ½)½S ln(1=½)¡ ¡1¡ ½S+1¢+ ½S+1µSr + 1¡ ½Ss+1

1¡ ½
¶
ln(1=½) (8)

Hence ¼r(Ss; Sr) is strictly quasi-concave in Sr if there exists a eSr ¸ 0 such that (8) is

positive for all Sr < eSr and non-positive for all Sr ¸ eSr. When ½ < 1; the derivative of (8)
with respect to Sr is negative,

¡½S+1 ln(1=½)2
µµ

mr¸

h

¶µ
1¡ ½
½

¶
+
1¡ ½Ss+1
1¡ ½ + Sr

¶
;

and so the result is con…rmed.¤

Theorem 4 ¼s(Ss; Sr) is strictly quasi-concave in Ss:
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Proof. Di¤erentiate,
@¼s(Ss; Sr)

@Ss
= ms¸

(1¡ ½)½S ln(1=½)
(1¡ ½S+1)2 ¡ h1¡ ½

S+1 ¡ (S + 1)½S+1 ln(1=½)
(1¡ ½S+1)2

+h
½Ss+1

¡
1¡ (Sr + 1)½Sr + Sr½Sr+1

¢
ln(1=½)

(1¡ ½) (1¡ ½S+1)2

= h
z½S+1 ¡ 1 + (S + 1)½S+1 ln(1=½)

(1¡ ½S+1)2
where

z =

µ
ms¸

h

¶
(1¡ ½) ln(1=½)

½
+ 1 +

¡
1¡ (Sr + 1)½Sr + Sr½Sr+1

¢
ln(1=½)

(1¡ ½) > 0:

Since both ½S+1 and (S+1)½S+1 are decreasing in Ss; there exists an eSs such that ¼s(Ss; Sr)
is increasing for all Ss · eSs and decreasing otherwise, i.e., ¼s(Ss; Sr) is strictly quasi-concave
in Ss.¤
While the next Theorem con…rms the existence of at least one Nash equilibrium, in fact, it

is possible that multiple Nash equilibria exist. §5 provides data on the frequency of multiple

Nash equilibria.

Theorem 5 A Nash equilibrium fS¤s ; S¤rg exists in the decentralized inventory game.

Proof. From Theorem 2.4 in Friedman (1986), a Nash equilibrium exists if: (1) the

players have compact and convex strategies; (2) each player’s payo¤ function is de…ned,

continuous and bounded for all possible strategies; and (3) each player’s payo¤ function is

unimodal in its strategy. It is straightforward to con…rm the continuity of each player’s

payo¤ function. The payo¤ functions are bounded because there exists a maximum supply

chain pro…t. Theorems 3 and 4 con…rm the third condition. If the continuous approxi-

mations for the inventory and sales functions were not implemented, then a player would

not necessarily have a unique best response to the other player’s strategy. So this proof

of existence would not be valid. Nevertheless, even without the continuous approximation

assumption I suspect that a Nash equilibrium would exist for almost all scenarios.¤
A Nash equilibrium is a prediction for how the …rms will play the game, so it is natural to

compare the set of Nash equilibria with the optimal solution. According to the next lemma,

the retailer tends to carry less inventory than optimal.

Lemma 6 If m > mr and Ss < So; then S¤r (Ss) < S
o ¡ Ss:

Proof. If Ss ¸ So; then it is optimal for the retailer to hold zero inventory, and S¤r (Ss >
10



So) = 0 is possible, hence the condition Ss < So. Given Ss < So; suppose S¤r (Ss) ¸ So¡Ss:
Since the retailer’s pro…t function is strictly quasi-concave, that holds only if

mrD
0(So) ¸ h@Ir(Ss; S

o ¡ Ss)
@Sr

: (9)

Combine the above with (5),

I 0(So) ¸
µ
m

mr

¶
@Ir(S¤s ; S

o ¡ Ss)
@Sr

:

But

@Ir(Ss; Sr)

@Sr
= I 0(S) +

ln(1=½)½S+1
³
Ss + 1¡ 1¡½Ss+1

1¡½

´
(1¡ ½S+1)2 ¸ I 0(S);

which means
@Ir(Ss; So ¡ Ss)

@Sr
¸ I 0(So):

Since m > mr, it follows that (9) cannot hold. ¤
The comparable results does not exist for the supplier: the supplier carries too little

inventory because it does not receive the full marginal bene…t of a sale, ms < m; but

the supplier carries too much inventory because it does not incur the holding cost on the

additional inventory the retailer must carry when the supplier raises its base stock level,

@Ir(Ss; Sr)=@Ss > 0. Either of those e¤ects may dominate.

While the supplier may add too much inventory to the supply chain for a given Sr,

according to the next theorem (for all but two special cases) there does not exist a Nash

equilibrium in which the supplier’s incentive to carry too much inventory compensates for

the retailer’s incentive to carry too little inventory; the decentralized supply chain performs

suboptimally and the decentralized supply chain carries too little inventory relative to the

supply chain optimal amount.

Theorem 7 If m > mr and m > ms, there does not exist a Nash equilibrium, fS¤s ; S¤rg; such
that S¤s + S

¤
r ¸ So.

Proof. For S¤s < So, the result follows immediately from Lemma 6. Now consider

S¤s ¸ So. Clearly, in that case S¤r (S¤s ) = 0. Since m > ms; it is not possible that S¤s ¸ So
because

@¼s(S
o; 0)

@Ss
= msD

0(So)¡ hI 0(So) < mD0(So)¡ hI 0(So) = ¼0(So):
¤
The decentralized supply chain pro…t equals the optimal pro…t only in two uninteresting

cases: when one of the player’s margin is zero, i.e., when one of the players e¤ectively does

11



not exist.

Lemma 8 If mr = 0 or ms = 0 then there exists a unique Nash equilibrium, fS¤s ; S¤rg; such
that S¤s + S

¤
r = S

o.

Proof. If mr = 0; the supplier’s …rst order condition is the same as the supply chain’s

…rst order condition, so S¤s = So and S¤r = 0. The analogous argument applies for the

retailer when ms = 0.¤
These results for the decentralized supply chain are similar to the results found in CZ and

CW, but not exactly the same. In both the CZ model and the CW model there is a unique

Nash equilibrium, whereas in this model there may be multiple Nash equilibria. But, in all

three models, excluding some knife-edge cases (such as when one …rms’ margin is zero), the

optimal solution is not a Nash equilibrium. CZ found that the decentralized supply chain

generally carries too little inventory, but sometimes it carries too much inventory. CW also

found that the decentralized supply chain sometimes carries too little bu¤er stock (capacity

plus inventory) and sometimes carries too much. In this model the decentralized supply

chain always carries too little inventory.

5. Numerical Study

This section provides data from a numerical study that investigates two questions. First,

how prevalent are multiple equilibria? Second, what is the magnitude of the competition

penalty (the di¤erence in supply chain pro…t between a Nash equilibrium and the optimal

solution as a percentage of the optimal pro…t)?

All combinations from the following parameters are constructed to form 990 scenarios:

¸ = f0:5; 1; 2; 4; :::; 512g ms = f0:1; 0:2; :::; 0:9g bs = 0 h = 1
½ = f0:05; 0:15; :::; 0:95g mr = 1¡ms br = 0

The lost sales penalties are set to zero because for …xed margins they do not impact the

optimal base stock levels. The remaining parameters are motivated with the optimal base

stock condition, (5),
(mr +ms)¸

h
=
1¡ ½So+1 ¡ (So + 1)½So+1 ln(1=½)

(1¡ ½)½So ln (1=½) : (10)

The left hand side is m¸=h, so it is su¢cient to vary only one of the three parameters; set

m = 1; set h = 1, and let ¸ vary. However, in the decentralized solution it is important to

vary mr relative to ms: The supply chain optimal solution should also have some inventory,

12



So > 0: Since the right hand side of condition (6) approaches 0.5 as ½ ! 1; the left hand

side of (6), m¸=h; should be no less than 0.5, so ¸ ¸ 0:5. Finally, ½ adjusts the right hand
side of the above condition; so the set of ½ values roughly covers the feasible range.

Among the 990 scenarios there are 985 scenarios with a unique Nash equilibrium; scenarios

with multiple equilibria are possible, but appear to be rare. Figure 1 displays one of the

scenarios with multiple equilibria: fms = 0:4; ¸ = 128; ½ = 0:95g: In the …rst equilibrium the
retailer carries no inventory (S¤s = 8:43; S

¤
r = 0): The second equilibrium, (S

¤
s = 6:81; S

¤
r =

1:84); is not stable; a slight perturbation causes the …rms to deviate from the equilibrium,

just as a pencil standing on its point is an unstable equilibrium. The third equilibrium,

(S¤s = 5:14; S
¤
r = 4:21); is stable (like the …rst) and has both …rms carrying inventory. It

is reasonable to argue that the players will not choose the unstable second equilibrium, but

there is no compelling argument to suggest that either of the remaining two equilibria are

more likely (or focal) than the other. Thus, in the scenarios with multiple Nash equilibria

behavior is less predictable than in the scenarios with only one equilibrium. Fortunately,

most scenarios have a unique equilibrium. (If the strategies were restricted to positive

integers it is likely that multiple equilibria would be more frequent.)

Table 1 provides statistics on the competition penalty across all scenarios (for the 5

scenarios with multiple equilibria assume the …rms coordinate on the equilibrium with the

highest total pro…t, i.e., smallest competition penalty). It is apparent that there are many

scenarios in which the competition penalty is relatively small (median = 0:36%), but there

are also scenarios with large penalties (average = 10:8%; maximum = 100%). The table

clearly indicates that the competition penalty decreases in m¸=h: as inventory becomes

cheaper (h decreases) relative to the maximum pro…t rate (m¸) even the decentralized supply

chain avoids loss sales and so its pro…t approaches the supply chain’s maximum pro…t. This

is obvious in the extreme case that h! 0 : when inventory is free the decentralized supply

chain and the centralized supply chain choose su¢ciently large base stock levels such that

there are essentially no loss sales, and both systems earn m¸ per unit time.
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Table 1: Competition penalty (in percent)
m¸=h minimum median average maximum
0.5 2.98 100.00 85.75 100.00
1 0.49 13.02 21.46 97.54
2 0.16 3.81 5.78 23.96
4 0.06 1.54 2.51 10.17
8 0.03 0.70 1.29 5.92
16 0.01 0.34 0.72 5.52
32 0.01 0.19 0.40 3.45
64 0.00 0.11 0.23 2.23
128 0.00 0.05 0.13 0.88
256 0.00 0.03 0.07 0.56
512 0.00 0.02 0.04 0.37
All 0:0004 0:36 10:8 100

Although Table 1 indicates the strong in‡uence of m¸=h on the competition penalty,

there are other e¤ects at play: when m¸=h = 0:5 there remains considerable variation

in the competition penalty. Figures 2-4 display the competition penalty for di¤erent ¸;

mr and ½ values. The pattern is apparent: the competition penalty is increasing as the

…rm’s margins become more similar, i.e., as mr ! 0:5; and the competition penalty is

increasing as ½ ! 1. When mr = 0 or mr = m; one of the …rm’s margin is the same as

the supply chain’s margin, so a zero competition penalty results, as documented in Lemma

8. When mr = 0:5; each …rm’s margin is only 1/2 of the supply chain’s margin and so they

make poor choices. The pattern for ½ is also explained in terms of the relative impact of

holding costs to lost sales: as ½! 0 lost sales can be avoided with relatively little inventory,

whereas a considerable amount of inventory is needed to avoid lost sales as ½! 1.1 Overall,

an excellent proxy for the competition penalty is the ratio of decentralized supply chain

inventory to optimal supply chain inventory, as displayed in Figure 5.

CZ and CW also report that the competition penalty is context speci…c. They found

that the competition penalty is relatively small when the …rms incur the same cost of a

backorder, but high when the …rms have di¤erent backorder penalties (i.e., one …rm’s penalty

1 The competition penalty is not increasing in ½ when ½ > 1: For large values of ½ the

supply chain carries very little inventory no matter the base stock levels chosen by the

players because the production process is unable to keep up with demand. Hence, the base

stock levels chosen by the players do not signi…cantly impact system performance (as long

as they are not too low).

14



is substantially lower than the other). In this model the opportunity cost of a lost sale is

analogous to their backorder penalty.

In contrast to both CZ and CW, in this model the competition penalty is low when the

…rms’ lost sales costs are di¤erent (mr ! 0 or mr ! m) and high when the …rms’ lost

sales costs are similar (mr ! m=2). There is an explanation for this discrepancy. In the

backorder models (CZ and CW) the competition penalty is large not because competition

leads to an inappropriate amount of bu¤er resources (inventory or capacity). For example, in

CZ the di¤erence between the decentralized supply chain average inventory and the optimal

inventory, as a percentage of the optimal inventory level, is never less than ¡38%, never
more than 4%, and on average only ¡3:3% in the 2625 scenarios they tested. (In the 990

scenarios tested in this model the average di¤erence is ¡24%: See Figure 2.) Instead, the

competition penalty is large when the allocation of bu¤er resources is inappropriate: if

the retailer carries too little inventory, the supplier is unable to avoid backorders, whereas

if the supplier chooses too little of its bu¤er resource (inventory in CZ, capacity in CW),

the retailer must wait longer for its replenishments than it should. Those extreme cases

occur when one of the players has no incentive to prevent backorders. In other words, when

one player has no incentive to help manage the supply chain (because it does not incur a

substantial backorder penalty) the other player is unable to take actions that optimize the

supply chain. In this model the allocation of inventory is not important, all that matters

is the sum of the …rms’ base stock levels, S = Sr + Ss; even if one …rm chooses to hold zero

stock the other …rm is still able to manage the supply chain optimally by choosing So as

its base stock level. However, one of the player’s incentive to reduce lost sales (its margin,

either mr or ms) must be similar to the supply chain’s incentive to reduce lost sales (its

margin, m). When the players have similar margins, neither has the incentive to optimize

the supply chain, i.e., double marginalization, Spengler (1950); inventory is too low and the

competition penalty is high.

It is likely that there would be a di¤erent relationship between the …rms’ margins and the

competition penalty if there were a lead time between the supplier and the retailer in this

model. In that case, neither …rm could optimize the supply chain if the other …rm chose to

carry no inventory. That would occur if one of the …rms has a small margin; the competition

penalty should be signi…cant as mr ! 0 or mr ! m: However, it is still plausible that the

15



competition penalty would be signi…cant as mr ! m=2: Additional research is needed to

con…rm those conjectures.

There is other supply chain research that …nds a context speci…c competition penalty.

Lariviere and Porteus (1999) study a model in which a supplier chooses a wholesale price

and a retailer faces a newsvendor problem. They show that the retailer orders less than the

supply chain optimal order quantity whenever the supplier earns a positive pro…t on each

unit sold. However, they also show that the competition penalty associated with a simple

wholesale price contract decreases as the coe¢cient of variation of demand decreases. Inter-

estingly, the analogous result holds in this model: the coe¢cient of variation is decreasing

in ¸ (holding m and h constant), as is the competition penalty.

In Mahajan and van Ryzin (1999) there are competing e¤ects on the retailers’ incentive

to hold inventory. Since a retailer’s margin is less than the supply chain’s margin, a retailer

tends to carry too little inventory, i.e., double marginalization again. However, when

a retailer increases its inventory it lowers the other retailers’ demands. Since a retailer

ignores that e¤ect on the other retailers, that e¤ect leads the retailers to carry too much

inventory. They show that the …rst e¤ect dominates if there is only one retailer but the two

e¤ects become more balanced as the number of retailers increases; the competition penalty

decreases as the number of retailers increases.

6. Supply Chain Coordination

The numerical study indicates that the competition penalty is sometime large, sometimes

not. When the decentralized supply chain signi…cantly underperforms the centralized supply

chain there is an opportunity for the players to divide the spoils from better coordination

of their actions. This section studies the kinds of contracts the …rms could use to align

their incentives to increase the supply chain’s pro…t, where incentive alignment means that

the contract changes the …rms’ pro…t functions so that the Nash equilibrium in strategies

yields the optimal supply chain performance. While the …rms could write a contract that

directly speci…es their actions, i.e., picks base stock levels for each …rm, those contracts are

not considered for two reasons: …rst, since each …rm will likely prefer to deviate from the

contract’s speci…ed action, that contract would require a signi…cant amount of monitoring

and it would have to impose a substantial penalty for non-compliance; and second, the
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optimal actions are not independent of the demand rate, so a new contract would be required

as the demand rate changes. In short, that contract is too much stick and not enough carrot.

Instead, the contracts considered specify a set of payments based on observable and veri…able

supply chain metrics: the supplier’s average inventory, retailer’s average inventory and/or

expected lost sales.

The following list provides some of the desirable properties for a coordinating contract:

it can coordinate the supply chain in any scenario; both players are better o¤ with the

contract than with a wholesale price only contract; the contract allows the players to

arbitrarily allocate the gains from incentive alignment; the contract parameters are robust

to changes in the demand rate; it is easy to evaluate the optimal contract parameters; and

it easy to gather and verify the data required to implement the contract.

6.1 A Retailer Holding Cost Subsidy

From Theorem 7 a coordinating contract must induce the …rms to increase supply chain

inventory, and, in particular, from Lemma 6 the retailer must carry more inventory whenever

Ss < So. A holding cost subsidy will induce the retailer to carry more inventory and it

can temper the supplier’s incentive to carry too much inventory: if the supplier subsidizes

the retailer’s holding cost, the supplier will be less likely to raise its base stock level (which

increases the retailer’s inventory).

With the holding cost subsidy contract the supplier pays the retailer ®h per unit of time

per unit of retail inventory, where 0 · ® · 1 : the supplier would never have an incentive
to o¤er ® > 1; because then the retailer would choose an in…nite base stock level; and if

® < 0; the retailer would certainly choose to carry too little inventory. This contract is

analogous to a buy-back contract/return policy (Pasternack, 1985): in e¤ect, the retailer is

allowed to instantly return some portion of its unsold inventory to the supplier. Pasternack

(1985) demonstrates in a single period (newsvendor) model that a buy-back contract can

coordinate the channel (induce the retailer to purchase the optimal order quantity) and it

can arbitrarily divide supply chain pro…ts between the two …rms; at least in the single period

setting, buy-back contracts are quite desirable.

With a holding cost subsidy contract, or ®-contract for short, the …rms’ pro…ts are

¼®r (Ss; Sr) = mrD(Ss + Sr)¡ (1¡ ®)hIr(Ss; Sr)¡ br¸
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¼®s (Ss; Sr) = msD(Ss + Sr)¡ hI(Ss + Sr) + (1¡ ®)hIr(Ss; Sr)¡ bs¸
Let (S®s ; S

®
r ) be a Nash equilibrium given ®: It is not di¢cult to con…rm that each player’s

pro…t function is unimodal in its strategy and continuous in the other player’s strategy, so

there does exist a Nash equilibrium. There may even exist an ® such that an optimal

solution is a Nash equilibrium.

Theorem 9 If

1¡ ½So+1 ¡ (So + 1)½So+1 ln(1=½)
(1¡ (So + 1)½So + So½So+1) ln(1=½) ·

µ
ms

mr

¶µ
½

1¡ ½
¶
; (11)

then there exists a unique ® and a unique (S®s ; S
®
r ) pair such that (S

®
s ; S

®
r ) is a Nash equi-

librium and S®s + S
®
r = S

o:

Proof. As already mentioned, the …rms’ pro…t functions are unimodal, so …rst-order-

conditions are su¢cient to characterize their optimal responses, which, for the retailer is

mrD
0(So) = ®h

@Ir(S®s ; S
®
r )

@Sr

mrD
0(So) = ®h

µ
I 0(So) +D0(So)

½(1¡ ½)
¸

(1¡ ½So+1)Is(S®s ; S®r )
¶

® =
mr¸

m¸ + h½(1¡ ½)(1¡ ½So+1)Is(S®s ; S®r )
(12)

For the supplier the condition is

msD
0(So) = hI 0(So)¡ (1¡ ®)h@Ir(S

®
s ; S

®
r )

@Ss

msD
0(So) = mD0(So)¡ (1¡ ®)h

Ãµ
D0(So)
¸

¶
½
¡
1¡ (S®r + 1)½S®r + S®r ½S®r +1

¢
½S®r (1¡ ½)2

!

mr¸ = (1¡ ®)h
Ã
½
¡
1¡ (S®r + 1)½S®r + S®r ½S®r +1

¢
½S®r (1¡ ½)2

!
(13)

The issue is whether there exists an ® and a fS®s ; S®r g pair that satisfy (12), (13) and
So = S®s + S

®
r . Substitute (12) into (13) and rearrange terms,µ

mr¸

h

¶µ
m¸ + h½(1¡ ½)(1¡ ½So+1)Is(S®s ; S®r )
ms¸ + h½(1¡ ½)(1¡ ½So+1)Is(S®s ; S®r )

¶
=
½
¡
1¡ (S®r + 1)½S®r + S®r ½S®r +1

¢
½S®r (1¡ ½)2 : (14)

The right hand side is strictly convex and increasing in S®r : The left hand side is concave

and increasing in S®r ; given that S
®
s = S

o¡S®r . At S®r = 0; the left hand side is greater than
the right hand side (which is zero). Thus, if there exists a solution, it is unique. There

exists a solution if the right hand side is greater than the left hand side for S®r = S
o:µ

m¸

h

¶µ
mr

ms

¶
· ½

¡
1¡ (So + 1)½So + So½So+1¢

½So(1¡ ½)2 : (15)
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Combining (5) with (15) yields (11):¤
It is apparent from (11) that an ®-contract is more likely to coordinate the supply chain

as ms increases relative to mr (holding ms + mr …xed): if ms is large relative to mr then

the supplier is likely to be biased to carry too much inventory and so then the ®-contract

tempers that bias to the point that the supplier chooses S®s = S
o¡S®r . The numerical study

indicates that (11) is also more likely as ½ increases and as ¸ increases. Overall, there exists

a coordinating ®-contract in 282 of the 990 scenarios. Hence, the ®-contract is frequently

unable to coordinate the supply chain; clearly, a signi…cant limitation.

There are other limitations. Even if a coordinating ®-contract exists, it provides only

one division of the supply chain pro…t between the two …rms, and there is no guarantee that

the ®-contract is Pareto improving. Further, the coordinating ®-contract must be solved

numerically and it almost surely depends on ¸:

To summarize, while a holding cost subsidy/buy-back contract is e¤ective in a one period

setting, it is signi…cantly limited in a multi-period setting. It is not e¤ective because it is

not su¢ciently “parameter rich” to coordinate both …rms’ actions e¤ectively: in the single

period setting there is only one action to coordinate (the retailer’s order quantity) whereas

in the multi-period setting there are two actions to coordinate (the retailer’s base stock level

and the supplier’s base stock level).

6.2 A Lost Sales Transfer Payment

An extra charge for lost sales surely induces a …rm to carry more inventory. Consider a

lost sales transfer payment contract in which the …rms agree to transfer ¯ per expected lost

sale per unit time from the supplier to the retailer, where ¯ < 0 means the retailer pays the

supplier for lost sales. With a ¯-contract the …rms’ pro…t functions are

¼¯r (Ss; Sr) = mrD(Ss + Sr)¡ hIr(Ss; Sr) + ¯(¸¡D(Ss + Sr))¡ br¸
= (mr ¡ ¯)D(Ss + Sr)¡ hIr(Ss; Sr) + ¯¸¡ br¸

¼¯s (Ss; Sr) = msD(Ss + Sr)¡ hIs(Ss + Sr)¡ ¯(¸¡D(Ss + Sr)) ¡ bs¸
= (ms + ¯)D(Ss + Sr)¡ hIs(Ss + Sr)¡ ¯¸¡ bs¸

The ¯-contract adjusts the …rms’ pro…t functions in two ways: (1) it adjusts the …rms’

margins and (2) it adds a …xed component, ¯¸ or ¡¯¸. Note that the indirect lost sales

penalties, br and bs, also provide exactly those two adjustments. The …xed component
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has no impact on the …rms’ optimal base stock levels, but clearly the margin adjustments

in‡uence the …rms’ actions. Let fS¯s ; S¯r g be a Nash equilibrium with a ¯-contract. There
are two ¯-contracts such that an optimal solution is a Nash equilibrium.

Lemma 10 If ¯ = mr then the unique Nash Equilibrium is fS¯s = So; S¯r = 0g. If ¯ = ¡ms

then the unique Nash Equilibrium is fS¯s = 0; S¯r = Sog. There are no other coordinating
¯-contracts.

Proof. De…ne bmr = mr ¡ ¯ and bms = ms + ¯. From Lemma 8, the unique Nash

Equilibrium has S¯s + S
¯
r = S

o when bmr = 0 or bms = 0; which corresponds to ¯ = mr or

¯ = ¡ms. If ¡ms < ¯ < mr; then bmr < m and bms < m; so from Theorem 7, there is not

an optimal solution that is also a Nash equilibrium. If ¯ > mr (¯ < ¡ms) then S¯r = 0

(S¯s = 0)and the supplier’s (retailer’s) optimal base stock level is greater than S
o.¤

If one of those coordinating contracts is implemented, then one of the players earns more

than its maximum pro…t in the supply chain optimal solution without the transfer payment.

For example, with ¯ = mr the retailer’s pro…t is (r ¡w)¸ : the retailer carries no inventory
and is fully compensated for every lost sale. Clearly, that is more than the most the retailer

could earn in the supply chain optimal solution, mrD(S
o). If one …rm is earning more than

its maximum share of the supply chain optimal pro…t, the other …rm must be earning less

than its minimum share of the supply chain optimal pro…t. Given that feature, it will be

di¢cult to get both …rms to agree to one of those contracts.

Interestingly, the lost sales transfer contract behaves just like a revenue sharing contract.

In a revenue sharing contract the …rms agree to divide the supply chain’s revenue by some

…xed fraction. Adjusting the …rms’ margins with the ¯ parameter is analogous to adjusting

their share of supply chain revenues. Revenue sharing contracts have been successfully

implemented in the video rental industry, see Shapiro (1998) and Oestricher (1999). Fur-

thermore, in a single period setting it has many of the same bene…cial properties as buy-back

contracts (see Pasternack and Drezner, 1999, and Dana and Spier, 1999). However, like the

buy-back contract, the revenue sharing/¯-contract is not su¢ciently parameter rich to be

e¤ective in this setting with multiple periods and actions.

6.3 Retailer Holding Cost Subsidy with Lost Sales Transfer

The ®-contract’s main problem is that it may not be able to coordinate the supply chain.

Combining it with a ¯-contract removes that limitation. To explain, suppose (11) does not
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hold, so there is no coordinating ®-contract. There exists some fmr;msg pair such that
mr + ms = m and (11) holds with equality, so it must be that ms < ms. The supplier’s

adjusted margin with a ¯-contract isms+¯: Hence, there exists a coordinating ®=¯-contract

as long as ¯ ¸ (ms ¡ms):

Adding the ¯-contract also helps the supply chain with the division of pro…t, in particular,

it shifts pro…t from the supplier to the retailer. However, it does not always allow the …rms

to arbitrarily divide the gains from coordination and it may not even be Pareto improving.

(Both of those claims are easily veri…ed numerically.) It is true that the …rms could use …xed

transfer payments to circumvent those limitations: if one …rm is earning too little in the

contract, a …xed transfer payment clearly alleviates that problem. However, the appropriate

…xed transfer payment would depend on ¸. Furthermore, there is nothing elegant about

resorting to …xed transfer payments. A more re…ned solution is desirable.

6.4 Inventory and Lost Sales Sharing

With a ¯-contract the …rms adjust their margins, so they are adjusting their share of the lost

sales opportunity cost. A similar approach can also be applied to the supply chain’s holding

cost. Suppose the …rms agree to make transfer payments such that the retailer’s net holding

cost is Áh per unit of inventory in the supply chain per unit time and the supplier incurs

the remaining holding cost. In other words, Á is the fraction of the supply chain holding

cost assigned to the retailer and (1¡Á) is the fraction assigned to the supplier. To achieve
that outcome the …rms transfer from the supplier to the retailer h (Ir(Ss; Sr)¡ ÁI(Ss; Sr))
per unit time, where a negative transfer means a payment from the retailer to the supplier.

The key feature of this inventory sharing arrangement is that each …rm’s holding cost per

unit time depends only on the sum of the …rms’ base stock policies (i.e., only on total supply

chain inventory) rather than on each …rms’ own base stock policy (i.e., on how the inventory

is allocated between the …rms). To provide additional ‡exibility to this contract, let the

…rms transfer from the supplier to the retailer ¯ per expected lost sales per unit time, as in

the ¯-contract.

With an inventory and lost sales sharing contract, or Á-contract for short, the pro…t

functions are

¼Ár (Ss; Sr) = mrD(Ss + Sr)¡ ÁhI(Ss + Sr)¡ br¸ + ¯(¸¡D(Ss + Sr))
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= (mr ¡ ¯)D(Ss + Sr)¡ ÁhI(Ss + Sr)¡ (br ¡ ¯)¸
¼Ás (Ss; Sr) = msD(Ss + Sr)¡ (1¡ Á)hI(Ss + Sr)¡ bs¸¡ ¯(¸¡D(Ss + Sr))

= (ms + ¯)D(Ss + Sr)¡ (1¡ Á)hI(Ss + Sr)¡ (bs + ¯) ¸

Theorem 11 The Á-contract coordinates the supply chain when Á = (mr ¡ ¯) =m: In that
case there is a continuum of Nash equilibria, SÁr 2 [0; So] and SÁs = So ¡ SÁr .

Proof. Begin with the retailer. Express the retailer’s pro…t function as

¼Ár (Ss; Sr) = Á

·µ
mr ¡ ¯
Á

¶
D(Ss + Sr)¡ hI(Ss + Sr)¡

µ
br ¡ ¯
Á

¶
¸

¸
:

It is apparent that when m = (mr + ¯)=Á; which can be written as Á = (mr + ¯)=m; the

retailer’s pro…t function is

¼Ár (Ss; Sr) = Á¼(Ss + Sr)¡ (br + ¯ + Áb)¸:
Given the above pro…t function, the retailer clearly will choose SÁr = maxfSo ¡ SÁs ; 0g; so
the retailer’s action is optimal. The analogous argument demonstrates that the supplier also

chooses the optimal action if Á = (mr ¡ ¯)=m:¤
So why does this contract work? With the lost sales transfer the retailer’s share of the

supply chain’s margin is (mr ¡ ¯) =m. By choosing Á = (mr ¡ ¯) =m the retailer incurs

the same share of the supply chain’s holding cost; i.e., with these adjustments the retailer’s

and the supplier’s pro…t functions are proportional to the supply chain’s pro…t function.

Therefore, both …rms want to maximize the supply chain’s pro…t. (Proposition 4 in CW

generalizes this intuition.)

The coordinating Á-contract is easy to evaluate and independent of the demand rate, ¸.

However, due to the plethora of Nash equilibria the …rms must be sure to coordinate on how

they will allocate the inventory in the supply chain, i.e., the …rms must ensure that they

choose base stock levels that sum to So. This coordination should not be di¢cult, since

the …rms’ pro…ts are independent of the actual division. Nevertheless, the issue cannot be

ignored.

The Á-contract also provides the …rms with the ‡exibility to allocate the gains from

coordination. After some algebra,

¼Ár (S
Á
s ; S

Á
r ) = Á¼o + (Á(r ¡ c)¡ (r ¡w))¸

¼Ás (S
Á
s ; S

Á
r ) = (1¡ Á)¼o ¡ (Á(r ¡ c)¡ (r ¡w))¸

From the above it is apparent that the Á parameter allows the …rms to arbitrarily divide
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the supply chain’s pro…t. (If the constraint Á 2 [0; 1] is imposed, then it can be shown that
the gains from coordination, ¼o minus the wholesale price only Nash equilibrium pro…t, can

be arbitrarily divided, but supply chain pro…ts cannot be in all scenarios.)

While the Á-contract is e¤ective and simple, it does require a signi…cant amount of in-

formation exchange between the …rms: each …rm must be able to observe and verify total

supply chain inventory and the amount of time the retailer is out of stock. Furthermore,

inventory sharing contracts are more di¢cult to implement when there are multiple retailers:

what share of the supplier’s inventory is each retailer charged and can each retailer verify

that they are charged the correct amount?

7. Discussion

In this supply chain inventory game there exists at least one Nash equilibrium in base stock

policies, and, in fact, multiple equilibria may exist. Nevertheless, the numerical study found

only a few scenarios with multiple equilibria (5 out of 990 tested scenarios). No matter

the number of equilibria, the optimal solution is never a Nash equilibrium; decentralized

supply chain inventory management always leads to sub-optimal supply chain performance.

In particular, in all Nash equilibria the …rms carry less inventory than optimal. But the

competition penalty is context speci…c. (The competition penalty is the di¤erence between

the optimal supply chain pro…t and the Nash equilibrium pro…t measured as a fraction of

the optimal supply chain pro…t.) The competition penalty is substantial when the holding

cost rate is high relative to the potential pro…t rate (margin per unit times demand rate).

The penalty also increases as the …rms’ margins become more similar: the …rms’ incentives

deviate the most from the supply chain’s incentives and so the quality of their decisions

deteriorates. Finally, the competition penalty increases in the system’s utilization because

pro…t becomes more sensitive to the chosen inventory level as the utilization rate increases:

inventory has little impact on total sales when the production rate is high relative to the

demand rate, since then lost sales approach zero even if the …rms carry little to no inventory.

Several contracts are considered for aligning the …rms’ incentives. A contract that sub-

sidizes the retailer’s holding cost is analogous to a buy-back contract/return policy. While

Pasternack (1985) shows that a buy-back contact coordinates the supply chain in a single

period setting, in the multi-period setting considered here it is unable to coordinate the
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supply chain in all scenarios. A lost sales transfer contract, which is analogous to a revenue

sharing contract, could coordinate the channel but results in a lopsided allocation of supply

chain pro…t. The combination of the two contracts coordinates the supply chain but re-

stricts the …rms’ ability to divide the gains from coordination and may not even be Pareto

improving.

The most e¤ective contract combines inventory sharing with a lost sale transfer: the

retailer incurs a …xed fraction of the supply chain’s holding cost, the supplier incurs the

remaining fraction and the …rms agree to a transfer payment (either from the retailer to

the supplier, or vice-a-versa) per expected lost sale. It is shown that there always exists a

coordinating contract and the …rms are able to arbitrarily divide the gains from coordination.

The primary result from this work is that the decentralized supply chain never performs

optimally, but in many scenarios its performance is close to optimal. Since complex con-

tracts are costly to implement (legal fees, monitoring costs, etc.) it is essential that …rms

con…rm that there are signi…cant gains from coordination before embarking on incentive

alignment. This may explain why complex contracts are implemented only selectively (e.g.,

when inventory holding costs are substantial relative to the potential pro…t rate) and why

simple wholesale price only contracts are so prevalent. (Lariviere and Porteus, 1999, make

a similar argument based on their single period model.)

This model also identi…es why the decentralized supply chain fails to perform optimally;

it always stocks less than the optimal amount of inventory. This occurs because inventory

in this model is a pure public good: for a given amount of supply chain inventory each …rm

always prefers to carry less inventory (the sales rate depends only on the total supply chain

inventory, so once that is …xed, each …rm wants to minimize its own cost). While Cachon

and Zipkin (1999) and Caldentey and Wein (1999) study related models (a key distinction

is that they allow backorders) in their models bu¤er resources (inventory in the former,

inventory and capacity in the latter) are not purely public goods, i.e., for a …xed amount

of bu¤er resources in the supply chain the …rms do not always prefer that the other …rm

carry more of the resource. (In each model backorders depend on the allocation of bu¤er

resources in the supply chain in addition to the amount of bu¤er resources.)

Since inventory is a public good in this model, cooperation between the …rms increases

supply chain inventory. That result appears to contradict the substantial amount of anec-
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dotal evidence that cooperation between …rms reduces inventory: e.g., Barilla SpA (Harvard

case 9-694-046), Procter & Gamble (Harvard case 9-195-126) and H. E. Butt Grocery Com-

pany (Harvard case 9-196-061). However, it can be argued that in those cases cooperation

expands the set of feasible policies. For example, cooperation may lead to more information

sharing which in turn lets the …rms implement better policies. That bene…t of cooperation

is not present in this model because the optimal policy is feasible even if the …rms operate

independently.

So if …rms decide to align their incentives, this research …nds that they will probably

need a sophisticated contract. It generally is not possible to coordinate the supply chain

with a single parameter contract. But even when a single parameter contract can achieve

coordination, the contract generally divides supply chain pro…t in a manner than will not be

acceptable to both …rms. A parameter rich contract is necessary because there are multiple

actions that must be coordinated in the supply chain: the supplier’s base stock level and

the retailer’s base stock level. One suspects that as the complexity of the supply chain

model increases, the complexity of the coordinating contract increases as well. It is also

worthwhile to note that while a more complex contract may improve the quality of the …rms’

actions, it also increases the non-trivial costs of information sharing and data veri…cation.

Furthermore, while it may be possible to write an intricate contract to align the incentives

of two …rms, it is signi…cantly harder to write a contract that aligns the incentives of a …rm

with all of its relationships in a supply chain. Thus, in complex supply chain management

there simply does not exist a perfect contract.

Despite that caution on the practical feasibility of sophisticated contracts, there are two

reasons why it is nevertheless quite valuable to identify which contracts indeed lead to supply

chain coordination. First, identifying the form of a coordinating contact guides …rms as to

what data they need to collect and verify. In every supply chain there is certainly no lack

of data, so developing information systems to collect and track everything is simply silly.

Second, the coordination process is facilitated by knowing which contracts lead to overall

better performance. This is true because managers are naturally predisposed to assume that

the supply chain is a zero sum game: if one …rm wins, the other …rm must lose. Imagine

you are the supplier and the retailer proposes that you partially compensate the retailer

for lost sales, i.e., a lost sales transfer payment. You might respond with statements like
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“How can I be sure that sales will increase su¢ciently to compensate me for this additional

cost” or “I can’t give you an incentive to provide poor customer service.” When the …rms

know that they are not in an exclusively adversarial situation their psychological disposition

changes and progress towards supply chain improvement is more likely.
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Figure 1: Optimal base stock levels when m s  = 0.4, ! = 128 , " = 0.95
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Figure 2: Competition penalty with ! = 0.5
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Figure 3: Competition penalty with#! = 1
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Figure 4: Competition penalty with ! = 2
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Figure 5: Competition penalty and the ratio of decentralized supply chain inventory to optimal supply chain inventory 
across 990 scenarios
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