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The Jordan Canonical Form for a Class of Zero—One Matrices

Abstract

Let f:N>N be a function. Let A,=(a;j) be the nxn matrix defined by a;j=1 if i=f(j) for some i and j and a;;=0
otherwise. We describe the Jordan canonical form of the matrix A, in terms of the directed graph for which A,
is the adjacency matrix. We discuss several examples including a connection with the Collatz 3n+1 conjecture.
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The Jordan canonical form for a class of zero-one
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Abstract

Let f: N — N be a function. Let A, = (a;;) be the n x n matrix defined by
a;; = 1if i = f(j) for some ¢ and j and a;; = 0 otherwise. We describe the
Jordan canonical form of the matrix A, in terms of the directed graph for
which A, is the adjacency matrix. We discuss several examples including a
connection with the Collatz 3n 4+ 1 conjecture.

Keywords: Jordan canonical form, directed graph, adjacency matrix
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1. Introduction

Let f: N — N be any function. For each n € N, we define the n x n
matrix A, = (a;;) by

1 ifi= f(j) for some i,j € {1,...,n},
iy = .
0 otherwise.

The matrix A,, contains partial information about f. We may regard A,, as
the adjacency matrix for the directed graph I',, with vertices labeled 1,...,n
having a directed edge from vertex j to vertex i if and only if i = f(j). The
main purpose of this paper is to describe the Jordan canonical form of A,, in
terms of the graph I',,. This description is given in Theorem 6.

As a motivating example, let f be the function

2
% if n is even.

3ntlif n is odd,
-]
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The Collatz conjecture states that, for each k € N, the sequence

ko f(R), (Fo f)(R), (fofof)(k),. ..

contains the number 1. In §5, we will discuss this example in more detail
where we develop an explicit formula for the number of Jordan blocks for the
eigenvalue 0 in the Jordan decomposition of the matrix A,,.

The remainder of this paper is organized as follows: In §2, we describe
how to partition the directed graph I',, into chains and cycles. These chains
and cycles are related to the Jordan form of A,. In §3, we state and prove
our main theorem, Theorem 6, which describes the Jordan block structure
of A, in terms of the cycles and chains of the graph I',,. In §5, we apply
Theorem 6 to several examples.

2. The directed graph I',, associated with A,

We will form a partition of the directed graph I',,, which was defined in §1,
into chains and cycles. The Jordan decomposition of the adjacency matrix
A,, will be related to the lengths of these chains and cycles. Recall that for
the function f: N — N and natural number n € N, we define I, to be the
directed graph with vertices 1,...,n having a directed edge from j to 7 if and

only if f(j) =i.

Definition 1. A chain in I',, is an ordered list of distinct vertices C =
{c1,¢2,...,¢.} such that f(cj) = ¢j41 for 1 < j <rbut f(c) # 1. A cycle
in T, is an ordered list of distinct vertices Z = {z1, 29,..., 2.} such that
f(z;) = zj41 for 1 < j <rand f(z,) = 2. In either case, we call r the length
of the chain or cycle and write r =lenC or r = len Z.

Note that in Definition 1 a single vertex {i} is a chain or a cycle, but
since either f(i) # i or f(i) =i, it is not both a chain and a cycle. Although
an arbitrary directed graph may contain two unequal cycles that share a
common vertex, this is not possible for I',,. Since I'), results from a function
f: N — N, if Z; and Z, are cycles that share a common vertex, then Z; = Zs.
Thus, unequal cycles in I',, are disjoint.

Definition 2. If C' = {iy,...,is} is a chain of T, then ¢, is called the
terminal point of the chain. A vertex k of I', such that f(k) > n is a
terminal point of I',,. If k is a vertex of I, such that f(i) = f(j) = k for
some i and j with ¢ # j, then k is a merge point of [',.
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Definition 3. A partition of I';, is a collection of disjoint cycles and chains
whose union is I'),. A proper partition of I',, is a partition

P:{Zl,...,ZT,Cl,...,CS}

where 71, ..., Z,. are cycles and (', ..., C, are chains satisfying the following
properties:

1. Each cycle in I}, is equal to Z; for some 1.

2. If TV is the subgraph of I',, obtained by deleting the vertices in the
cycles Zy,...,Z, and in the chains C, ..., C;, then C;y; is a chain of

maximal length in .

Lemma 1. Proper partitions of I',, exist.

Proof. As noted above the cycles of I',, are mutually disjoint. Label them as
Ly Zyp. Let 'Y be the subgraph of I',, obtained by removing all vertices
belongmg to the cycles 71, .. Z The graph 'Y is an acyclic graph. Then
inductively define C and T for « > 1 by choosing C; to be a chain of
maximal length in T and letting T (1) 16 the subgraph of 'Y obtained by
deleting the vertices of C;. O]

If
P={%,...,2,,Cy,...,Cs} and P ={Z,....2Z,ClL, .. C.)

are any two proper partitions of I',,, then it is clear that » = r’ and the cycles
Z1, ..., Z, are the same as the cycles Z1, ..., Z!, up to reordering. It may be
less obvious that s = s’ and len C; = len C! for 1 <14 < s. This fact is stated
in Corollary 7 below.

Example 1. Suppose f: N — N takes the values

1—-1,2—-3,3—4,5—6,6—7, 7—5,8—10,9+— 500, 10— 4,...



The graph I'yy and adjacency matrix Ajq are:

=]
o

SO OO OO o oo
SO O OO oo oo
_ O OO OO oo o oo

S OO OO DO OO o
(= elelolololoel =N
S OO OO OO oo
SO DO DODO OO oo
SO DD DO OO oo
SO DD DO DO OO oo

SO DO OO o OO

The vertices 4 and 5 are merge points of I';,. The vertex 9 is a terminal point
of I'1g. T'wo proper partitions of I'q are:

Zy = {1} Z1 =1{5,6,7}
Zy = {5,6,7} Zy = {1}

C1 =1{2,3,4} C] ={8,10,4}
Cy = {8,10} Cy ={2,3}

Cy ={9} Cy = {9}

Example 2. Suppose f: N — N takes the values
1—2,2—3,3—44—55—100,6—7,7T—4,...

The graph I'; and adjacency matrix A; are:

0000000 0 -
1000000 o——d
0100000 \

A,=0 0 100 0 1 1 2 3 4 3
0001000
0000000
0000010

Vertex 4 is a merge point, and vertex 5 is a terminal point of I';. A proper
partition of I'7 is

Cy={1,2,3,4,5} Cy={6,7},

4



C1 Cm,

O——»0 +** O—»0——» e o o .. o

Figure 1: If the chain C' = {¢},...,c], } contains the merge point f(c,,) = f(c}), as in
Lemma 2, then k > m. There exists z on the chain C’ with f™(z) = f™(c1) = f(cm)-

while an improper partition of I'; is
C;={6,7,4,5} C,=1{1,2,3}.

Observe that in the proper partition, the chain containing the merge point 4
is longer than the other chain.

The terminal and merge points of I',, will play a crucial role in the Jor-
dan decomposition of A,. The next lemma makes precise the situation in
Example 2 as well as the case in which the merge point belongs to a cycle.

Lemma 2. Let C' = {cy,...,cn} be any chain in a proper partition of T,,.
Then exactly one of the following occurs:

1. The terminal point c,, of the chain is a terminal point of the graph T',,.
2. The point f(cy,) is a merge point of T'y,.

Furthermore, if f(cn) is a merge point and f(c,,) belongs to another chain
C'={d,....c,}, then f(cn) = f(c,) where k > m. (This is illustrated in
Figure 1.) Consequently, if f(c.) is a merge point belonging to either a cycle
or a chain, then there is a unique vertexr z in the cycle or chain containing
f(e) such that f™(z) = f™(c1) = f(cm), where f™ is the composition of f
with itself m times.

Proof. Suppose the terminal point c,, of the chain is not a terminal point
of the graph I',,. If f(c,,) belongs to one of the cycles of I',,, then f(c,,)
is a merge point since f(c,,) has both ¢, and some point of the cycle as
preimages. If f(c,,) belongs to another chain C’, then either f(c,,) is the
initial point of the chain C’ or it is not. If f(c,,) is not the initial point
of €', then ¢,, and a point of C' are preimages of f(c,,) making f(c,) a
merge point. If f(c,,) is the initial point of C’, then the partition is not



proper because C' and C” could be joined to form a longer chain, which is a
contradiction. This proves that either ¢, is a terminal point of I, or f(¢;,)
is a merge point of T',,.

Now, suppose f(c¢p) belongs to another chain €’ = {c|,...,c,,}. Then
f(em) = f(c),) for some k. Necessarily k < m/. If, by way of contradiction,
k < m, then the vertices in the two chains C' and C” could be repartitioned
to belong to the new chains

1 / / " / /
C"={ci,....cm:Cyry-- sy} and O ={c],...,q,}.

Since k < m/,
lenC”" =m' —k+m >m =lenC.

Since k < m,
lenC”" =m'—k+m >m' =lenC".

Thus, the original pair of chains C' and C”’ violate the maximality condition
of a proper partition in Definition 3, a contradiction. Therefore & > m. [

3. The Jordan Structure of A,,

In this section we will state the main result of this paper (Theorem 6)
which describes the Jordan canonical form of the adjacency matrix A,, of the
graph I';,. We will need several standard facts (Propositions 3 and 4 below)
about the Jordan canonical form. Good references for this material are [1,
Ch. 7], [2, Ch. 3], and [3, Ch. 6].

Definition 4. For a complex number A and natural number m, J,,(\) will
denote the m x m matrix

A1 0 - 0 0
0O X 1 - 0 0
Jn(A) =1+ 1+ Do
000 -+ X1
000 -+ 0 A

Definition 5. Let A be an n xn matrix with complex entries. A nonzero vec-
tor v is a generalized eigenvector of A corresponding to the complex number
A if (A — AI)Pv = 0 for some positive integer p.



Definition 6. Let v be a generalized eigenvector of A for the eigenvalue A
and let p be the smallest positive integer such that (A — AI)Pv = 0. Then
the ordered set

{(A=XDP~ o, (A= NP2, (A= X)v,v} (1)

is a chain of generalized eigenvectors of A corresponding to A\. Observe that
the first elements of the list, (A — AI)P~1v, is an ordinary eigenvector.

Note. In the literature, many authors refer to the list of generalized eigen-
vectors in Definition 6 as a cycle of generalized eigenvectors. In the context
of this paper, it is better to call it a chain.

Proposition 3 (Linear Independence of Generalized Eigenvectors). Let A be
an eigenvalue of A and let {v1,...,7s} be chains of generalized eigenvectors
of A corresponding to \. If the initial vectors of the v;’s form a linearly
independent set, then the ~;’s are disjoint (v; N~y; = O for i # j) and the
unton U;_,, 18 linearly independent.

Proposition 4 (Jordan Canonical Form). Let A be an nxn complex matriz.
Then there exists a basis 5 of C" consisting of disjoint chains By, ..., [, of
generalized eigenvectors of lengths ny,...,n, for the eigenvalues \q, ..., \,
with n = ny + -+ + n, such that if Q) is the matriz whose columns are the
members of the basis 5 then

QilAQ = Jm()‘l) DD JHT(AT)-

As a preliminary step to determining the Jordan decomposition of the
adjacency matrix A, of the graph I',, we begin with the following simple
observation:

Lemma 5. Fvery eigenvalue of A,, is either 0 or a root of unity.

Proof. The jth column of A, is a zero column if f(j) > n. The jth column
contains a single 1 if 1 < f(j) < n. Thus, for any k € N, the matrix product
AF also consists of either zero columns or columns containing a single 1.
Consequently, the infinite sequence

I, A, A2 A3, ...

must contain a repetition since there are only finitely many distinct n x n
matrices whose columns are zero columns or contain a single 1. Let 0 <17 < j

7



be exponents such that A’ = AJ. Then A, satisfies the polynomial 7 — 2’ =
27727 — 1). The eigenvalues of A, must be a subset of the roots of this
polynomial. Hence, all eigenvalues are either zero or roots of unity. O]

We are now ready to state the main result of this paper:

Theorem 6. Let f: N — N be a function. Let I',, be the directed graph
associated with f for the natural number n, and let A,, be its adjacency matrix
as defined in §1. Suppose

P:{Zl,...,Zr,Cl,...,OS}

is a proper partition of I',,, as in Definition 3, where Z1, ..., Z, are the cycles
and Cy,...,Cs are the chains. Write the lengths of the cycles and chains as

lenZ;=¢;, (1<j<r) and lenC;=m; (1<j<s).

Let w; = exp(2mi/l;) be a primitive £;th root of unity. The Jordan decom-
position of A, contains the following 1 x 1 Jordan blocks for the eigenvalues
which are roots of unity:

Jl(wf) for1<j<randl <k<{.

The Jordan decomposition contains the following blocks associated with the
eigenvalue 0:
Ty (0), Ty (0), .oy Tl (0).

Remark. The proof of Theorem 6 (given in §4) will construct an explicit
basis (Lemmas 8 and 10) for C™ consisting of generalized eigenvectors of A,,.
Letting @ be the matrix whose columns are these vectors gives J = Q71 A4,Q
where J is the Jordan decomposition of A,,.

Corollary 7. Suppose
P:{Zl,...,Zr,Cl,...,CS} (lnd P/:{Zi,...7Z7,,/, {/,...,O;/}

are any two proper partitions of I'y,. Then s = s and lenC; = lenCj for
1<j<s.

Proof. This is an immediate consequence of the uniqueness of the Jordan
decomposition of A,,. By Theorem 6, the block sizes associated with the
eigenvalue 0 are given by the two descending lists of numbers:

my>mg>--->my and  mj>mH > >ml,.

So,3:s’andmj:m;for1§j§s. O



4. Proof of Theorem 6

The proof of Theorem 6 will proceed as follows: From Lemma 5, each
eigenvalue of A, is either a root of unity or zero. In Lemma 8 below, we
attached an eigenvector of A,, associated with a root of unity to each vertex
of each cycle in I'),. In Lemma 9, this set of eigenvectors for the roots of
unity is shown to be linearly independent. In Lemma 10, we attach chains of
generalized eigenvectors of A,, for the eigenvalue 0 to chains of the graph T,.
In Lemma 11 we show that these generalized eigenvectors also form a linearly
independent set and that the set of all generalized eigenvectors attached to
the vertices of I',, via Lemmas 8 and 10 is a Jordan basis of C" for the matrix
A,

Throughout the section P = {Zy,...,Z,.,C4,...,Cs} will be a proper
partition of I',,. Write the lengths of the cycles and chains as

lenZ; =¢; (1<j<r) and lenCj=m; (1<j<s).
We have the relationship
O+ ls+my+ - +mg=n.
The ith standard basis vector of C™ will be denoted by e;.

Lemma 8. Let Z = {z,...,2} be any cycle in the partition P, and let
w = exp(2mi/l) be a primitive (th root of unity. Then the vector

¢
v = Zw’kjezj (2)
j=1

is an eigenvector of A, for the eigenvalue w*. Furthermore,
span{vy,..., v} =span{e,,,..., e} (3)
We will say that the eigenvector vy 1s attached to the vertex zj.

Proof. Since Ape,; = e, for 1 < j </ and Ae,, = e,, and since wt =1, we
have

y4 -1
—kj —kj —kl
Apvp = E w M Aye; = E w e, tw ey,
Jj=1

=1
¢ ¢
=e, + g w_k(]_l)ezj = ¥ E w"‘”ezj = Wy

=2 j=1



Because the eigenvectors vy, . . ., vy all belong to distinct eigenvalues they form

a linearly independent set whose span has dimension ¢. But span{vy,..., v}
is a subspace of span{e,,,...,e,;,} whose dimension is also ¢. So, the two
subspaces are equal. O

Lemma 9. In a proper partition P = {Zy,...,Z,,Cy,...,Cs} of Iy, the
set of all eigenvectors attached to the vertices in the cycles Zy,...,Z. is a
linearly independent set.

Proof. This follows immediately from equation (3) in Lemma 8 and the fact
that any two cycles in I',, are disjoint. O]

Next we determine generalized eigenvectors of A, associated with the
eigenvalue 0. Recall from Lemma 2, that if C' = {¢,...,¢s} is a chain in a
proper partition of I, then either ¢, is a terminal point of T', or f(cs) is a
merge point.

Lemma 10. Let C = {c1,...,¢n} be any chain in a proper partition of T,,.

1. If ¢, 1s a terminal point of the graph Ty, then

{ecm7 €cm71, R 6627 ecl}

is a chain of generalized eigenvectors of A, for the eigenvalue 0.

2. If f(cm) is a merge point of 'y, let z be the vertex in the cycle or chain
containing f(cy,) such that f™(z) = f(em). (z ewxists by Lemma 2.)
Then

{€Cm — Efm=1(z)s -3 €c5 T €f2(2), €y T €f(2), €c; T ez}
s a chain of generalized eigenvectors of A,, for the eigenvalue 0.

In the first case, we say that the vector e., is attached to the vertex c;. In the
second case, we say the vector e, — eygi-1(,) is attached to the vertex c;.

Note. By convention, the first element of a chain of generalized eigenvectors,
as in Equation (1) is the eigenvector, but the eigenvector corresponds to the
last element of the chain {ci,...,¢,} in Lemma 10. So, the order of indices
in the subscripts is reversed.

10



Proof. 1f the first case, ¢, is a terminal point of the graph I',,. This means
that f(c,,) > n which implies that the ¢, column of A, is zero. Then
Ape.,, = 0. So, e, is an eigenvector of A, for the eigenvalue 0. Because
C ={c1,...,cn} is achain in I', Ane,, = e, for 1 < i < m. Therefore
{€c,,s- -, €} is achain of generalized eigenvectors of A, for the eigenvalue 0.

In the second case, e.,, —epm-1(,) is not the zero vector since f™~'(z) does
not belong to the chain C. Then

An (e = €fm=1(2) = €f(em) — €pm(z) = 0.

SO, €, — €fm-1(;) is an eigenvector for the eigenvalue 0. Since C'is a chain,
An(eci — efzq(z)) = €, — iy for 1 <i <m. Thus,

{eCm = Erm=1(z)y -3 €c5 T €2(2), €y T €f(2), €c; T ez}
is a chain of generalized eigenvectors of A, for the eigenvalue 0. m

With Lemmas 8 and 10 we have attached a generalized eigenvector to each
of the n vertices of the graph I'),. The final step of the proof of Theorem 6 is to
show that this collection of generalized eigenvectors is linearly independent.
Then the chains of generalized eigenvectors that these lemmas attach to a
proper partition of I',, will form a Jordan basis of C™ for the matrix A,,.

Lemma 11. Let P = {Z,...,Z,,C,...,Cs} be a proper partition of T,,.
The set of all generalized vectors attached to vertices of the cycles Zy, . .., Z,
and to the vertices of the chains Cy,...,Cs is a linearly independent set of
n vectors. Consequently, this set forms a Jordan basis of C* for the matrix

A,

Proof. In Lemma 9 it was shown that the set of eigenvectors attached to
vertices belonging to cycles is linearly independent. All of these eigenvectors
are roots of unity which are, of course, nonzero. If len(Z;) = ¢;, then there
are

O+ -+ 1

such eigenvectors.
If len(C;) = m;, then there are

m1+...+ms

11



generalized vectors attached to the vertices of the chains C4, ..., ;. These
generalized eigenvectors all belong to the generalized eigenspace of the eigen-
value 0. If these vectors are linearly independent, then then we will have a
total of

n=»>0+-+Ls+mg+---+m,

linearly independent generalized eigenvectors since the union of linearly in-
dependent generalized eigenvectors from different generalized eigenspaces is
linearly independent.

Thus, it remains to be shown that the generalized eigenvectors attached

to the chains (1, ..., (s form a linearly independent set.
Write £ =1 + -+ £, and let o : {1,...,n} — {1,...,n} be a permu-
tation that maps the numbers 1, ..., ¢ to the vertices belonging to the cycles

Zi, ..., 2, and such that the chains (as ordered lists) are

Cr={c(l+1),...,0(l+m)}
Co={c(l+my+1),...,0(0+my +ma)}

Cs:{U<£+m1+"'+msfl+1>7"-70(€+ml+"'+m8>}‘

By Lemma 10, the eigenvector attached to the last element of the chain
Cj; is one of the following:

ea(€+m1+-~~+mj) or ea(€+m1+~--+m]-) - eU(Zj)? (4>

for some appropriate z;. In the second case, since f(o({+mi+---+m;)) is a
merge point, o(z;) belongs either to a longer chain than C; or o(z;) belongs
to a cycle. Either way, from the definition of o,

zj<€+m1+~~+mj,1+1.

Thus, the n x s matrix whose jth column is

€€+m1+-~+mj or 6E+m1+~~+mj — ezj,

for 1 < j < s, is upper triangular. Since no column is the zero vector,
this matrix has linearly independent columns. Permuting the rows of this
matrix does not alter the linear independence of the columns. Thus, the set
of eigenvectors from (4) for 1 < j < s in a linearly independent set. Since the
vectors in (4) were the initial vectors of chains of generalized eigenvectors,
Proposition 3 implies that the set of all generalized eigenvectors from those
chains is a linearly independent set. Thus, the lemma has been proved. [

12



The proof of Theorem 6 is now complete.

5. Examples and Applications
We will next illustrate Theorem 6 with several examples.

Example 3. We will apply Theorem 6 to find the Jordan canonical form of
the matrix Ajg from Example 1. In that example, f: N — N is defined by

1—-1,2—3,3—4,5—6,6—7, 7—5, 8—10,9+— 500, 10— 4,...
and we found a proper partition of I'jy to be
Zy=A{1}, Zy=1{5,6,7}, C;=1{2,3,4}, Cy=1{8,10}, C5={9}.

Let w = exp(2mi/3). Then w is a primitive cube root of unity and w?® = 1.
By the theorem, the Jordan blocks in the Jordan canonical form of Ay will
be

A1), (W), Ji(w?), Ji(w?), J5(0), J2(0), Ji(0).

Using Lemmas 8 and 10 we may find a basis 8 = {vy,...,v10} of gener-
alized eigenvectors (taking care to reverse the order of indices in the chains)
as follows:

vertex ‘ generalized eigenvector

1 v =€

5 |ve=w ey +w M eg + wlBe; = w?es 4+ weg + er

6 v3 = w les + w2 %e5 + w2Ber = wey + w?eg + e

7 ve =w 3 es Fw e Fw e = €5+ e6 + €7

4 |vs=es—e; (f(4) = f(4) =5 1is a merge point.)

3 |vs=e3—es (f%3)= f*3)=>5isamerge point.)

2 |vi=ey—es5 (f32) = f3(5)=5is a merge point.)

10 |wvg=-ep—e3 (f(10) = f(3) =4 is a merge point.)

8 |vy=es—e (f3(8) = f*2)=4isamerge point.)

9 v19g = €9 (The chain containing 9 has a terminal point.)

13



Thus setting

1 0 00 0 o 0 0 0 0
o o0 o0 o0 o0 o0 1 0 —-10
o o0 o0 o0 o0 1T 0 -1 0 O
oo oo 1 O O o0 0 O
Q= (0103 - v10) = 0w w 1 0 0 -1 0 0 0
I 0 o w w21 0 -1 0 0 0 0
o1 1.1 -1 0 0 0 0 O
o0 o0 o0 0 O O o0 1 O
o 0o 00 0o O 0 o0 0 1
o o0 o0 o0 0o o0 o0 1 0 O
gives the Jordan canonical form
_ 010
QlAloQ: 00 1
0 00
0 1
0 0

Example 4 (The Collatz Problem). Let f be the function

3ntl o if n is odd,
-

5 if n is even.
The well-known Collatz conjecture states that, for each k£ € N, the sequence

ky f(k), (f o [)(K), (f o fof)k),...

contains the number 1. For an extensive annotated bibliography of the liter-
ature on this problem see Lagarias [4, 5]. For any n € N, we may consider

14



the n x n matrix A, and graph I',, associated with the the Collatz function.
In this case, we will call A,, the Collatz matriz. For example,

0 0

_— O OO o o oo

S OO OO o+ O
SO OO O oo
SO DO DD O+ OO
S OO OO o oo
[l el e Nl oo Ne)

[Nl o o Na)
OO OO OO

We may apply Theorem 6 to the study of A, and the Collatz problem. In [6],
Dias et. al. also study the Collatz conjecture from the point of view of finite
dimensional matrices, and they establish certain determinantal identities for
these matrices.

Working several examples for small values of n (say n up to a few thou-
sand) quickly leads to the following conjecture:

Conjecture 12. Forn € N, letI',, and A,, be the graph and adjacency matriz
associated with the Collatz function. Then

1. The characteristic polynomial of A, is det(xl, — A,) = 2" *(2* — 1).

2. For n > 2, the only cycle in the graph T',, is the two-cycle {1,2}.

3. For any fizred k > 3, if n is sufficiently large, then k belongs to the same
component of graph as the cycle {1,2}.

We point out that, since this conjecture implies the Collatz conjecture,
its proof would likely be quite difficult. The paper of Dias et. al. [6] has some
discussion about the characteristic polynomial.

We ask the following questions:

Open Problem 13. Let P ={Z,,...,Z,,C1,...,Cs} be a proper partition
of I'y.

1. Isr=17
2. What is the length len(C) = my of the longest chain?
3. How many connected components does the graph I',, have?

As a consolation prize, we can precisely describe the number s of chains
in a proper partition:
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Theorem 14. Forn > 2, let A,, be the n x n Collatz matrix, let T',, be the
associated graph, and let P = {Zy,...,Z.,Cy,...,Cs} be a proper partition
of I'y. Then the number s of chains in the partition which, by Theorem 6, is
also equal to the number of Jordan blocks for the eigenvalue O of the matrix

A, is
2|n/6| ifn=0 ( )
2ln/6l+1 ifn=1 ( )

n n—2 n—4 2|n/6] ifn=2 (mod 6),

IR e R s R B (1mod 6

2| ( )

2 3 6 | )2ln/6]+1 ifn=3
n/6l+2 ifn=4
(2[n/6] +2 ifn=5 (mod6).

Proof. From the Jordan decomposition theorem, the number of Jordan blocks
associated with the eigenvalue \ of A, is n — rank(T,, — AI,). In the case
A =0, this is s = n —rank(4,). So, we need to compute rank(A4,,).

The even numbered columns of A,, consist of the standard basis vectors

€1,€2,...,€n/2|-

The odd numbered columns of A, which are also nonzero consist of the
standard basis vectors

€2,65,€8,€11, .. .,€3j42,

n—2

where j = [ "= is the largest integer such that 3j 4+ 2 < n. The elements of
the second list in common with the first list are

€2,€5,...,€3k42

where k = L”/i_QJ = | 2% ] is the largest integer such that 3k +2 < n/2. So,

the degree of the column space of A, is

rank(A,) = EJJr(j_k): gJ* VQQJ B V;;J’

which proves that the number of Jordan blocks for the eigenvalue 0 is

k() = |2 252 |2

We obtain the remaining portion of the formula by writing n = 6|n/6] + ¢
where ¢ € {0,1,2,3,4,5} and considering each case. O
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