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Complete Convergence of Short Paths and Karp's Algorithm for the TSP

Abstract

Let Xj, 1 < i < o0, be uniformly distributed in [0, 1]? and let T, be the length of the shortest closed path
connecting {X1, Xy, ..., Xp,}. It is proved that there is a constant 0 < § < oo such that forall € > 0
¥n=1oop(|Tn/n—f~v|>€)<co.nleopTnnPe co

This result is essential in justifying Karp's algorithm for the traveling salesman problem under the independent

model, and it settles a question posed by B. W. Weide.
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1. Introduction.

The main objective of the present note is to solve a problem proposed
by Weide (1978) concerning the complete convergence of certain random
variables associated with Karp's probabilistic analysis of the traveling
salesman problem (Karp (1976), (1977)).

To set the problem precisely let Xi, 1<i<w be independent
random variables uniformly distributed on the unit square [0,1]2, and
let T ~denote the length of the shortest path (in the usual Buclidean
distance) which connects each element of {Xi,Xé,...,Xh}.

It was proved by Beardwood, Halton, and Hammersley (1959) that

lim Tn/,/ﬁ =B

n-=+ow
with probability one for a finite constant PB. This fact was central to
the motivation behind Karp's algorithm, but as Weide (1978) points out
the Karp algorithm actually calls for the following stronger result to

be proved here:

Theorem 1. There is a constant B such that for all € >0, one has

L p(T Hap > ¢) <.

n=1

This type of convergence is usually called complete convergence, and

Theorem 1 stands in a similar relation to the Beardwood, Halton, Hammersley



Theorem as the Hsu-Robbins Theorem stands in relation to the strong law
of large numbers (Lukacs (1968), Hsu and Robbins (1947)). The "easy-half"
of the Borel-Cantelli lemma shows that Theorem 1 implies the Beardwood-
Halton-Hammersley Theorem and the "hardéhalf” of the Borel-Cantelli lemms
shows how Theorem 1 is necessary in modeling contexts where problems of
increased size are generated independently of previous problems. (For a

full discussion of independent versus incrementing models for random

problems one should consult Weide (1978)).

The proof of Theorem 1 is given in the next section and depends upon
shapening a subadditivity argument which has been useful in more general
contexts (Steele (1979)). The third section discusses a generalization

of Theorem 1.

2. Proof of Theorem 1.

Let N = N(t) denote a Poisson counting process with constant growth
rate 1. Also, for any Ac:[O,l]2 let Tt(A)‘ denote the length of the
shortest path through the points A N {Xl’Xz""’XN(t )}. The method of
proof rest upon developing recursions for the functions

1/2
Pt) = B T, ([0,10%), ¥(t) = (8 12(10,21%)) ", and v(t) = ¥(t)=o2(t).

First one notes the following:

Lemms 1. There is a constant ¢ such that for any set 2 c [0,1] with

n elements there is a path of length no greater than cyn through 3.
This lemma is easeily proved, but for a proof which yields a gocd

value of ¢ one can consult Few (1955).



Now let

5 =1, (10,8) +r, (15212 +1, (511 [0,51) + 7, ((3,11% [0,21)
and note by elementary geometry that Tt([O,l]g) < 8+k. By well-known
properties of the planar Poisson process one has that the four summands
of S are independent and identically distributed. By scaling one
aleo motes E T, (10,51%) = o(t/4) ana (2 12(00,212)%2 = L y (o).
Thus, taking expectations of (S+l+)2 one has

(2.1) V() <P (6/0) +3 oP(8/4) +16 p(s/h) + 16 .

To simplify (2.1) let v, (t) = v(t9), o, (6) = 9(t7), and v, (6) = V(%)

and note that (2.1) implies
@) <¥5(6) +35 6B () +16  (8) + 16
which entails
Vi (26) <V (6) + b cpi(t) - (p]2_(2t) +16 0, (t) + 16
and dividing by (2%)2,
(2:2) v @6)/(6)° - /)y (8)/67< 9F (/5% - o2 26)/ (26)P + (o (6)42)/42

Applying (2.2) successively to t,2t,22t,...,2M-lt and summing yields

W



] M-1
}: v, (@ Ke)/ @6 )F - H { v, (2 ey (@)

< o] (6)/6% - o 2/ (2 +u(q)l(t)+1)(k);o 2%y 2

and consequently
(2.3) Z v, (2 e)/ " t) < %(Vl(t)/tg+cp§_(t)/t2+8(cpl(t)+l)/t2) <.
=1

In terms of V(t), (2.3) becomes for u = t2

oo}

(2.4) Y v/ (Fu) < o .
k=0

Now by Beardwood-Halton-Hammersley and dominated convergence theorems we have

cp(lt u)/ (4 u)l/2 =B as k *x Hence by (2.4) and Chebychev's inequality,

(2.5) Z P(IT ([o 1] )/ L u)l/g-al >e)<o.

k
Now for all n > 4P there is a W™ > m > 4P such that 4% <n<b (m+l)

for some k > O. Hence by Boole's inequality and the monotonicity of

7,[0,1]
(.6) T BT ((0,21%)/xM28] > ¢)
n=0
w 4P
< LD R, @0 n)L/2)
1 P W (me1)”
o 4PHL
¥ 5: y R, < (B-) (5 (me1 )172)
k=1 —’-}p L%m



0 )-l-p 1 "l/ 2
<7 pr, /@) > ere)an®) )
=1 P 47 (m+1)

w 42T 1/2
+ Y ¥ e, /(ukm)l/2 < (B-e)(1+7P) / ) .
k=1l P 4m

-1/2
By choosing p, one can guarantee that (1+4°F) (B+€) > B and

(1+r P)(B-€) < B so (2.5) insures that the last two sums in (2.6)
converge, SO

(2.7) L 2z, ((0,11°)/n28] > €) <o .
n=0

To obtain Theorem 1 from (2.7) we note that

(2.8) P(ITn([o,l]Q)/nl/g- Bl > ¢) = E; P(‘Tm/nl/a'al > ¢) nngn
m=

0 m =-m
1/2 ne
> L p(n/et/% x pee) - T

m -m
ne

m!

+ ﬁo P(Tm/nl/2 < B-€) -
m=

> P(Tn/n.l/2 > B+e)(%) + P(Tn/nl/g < B-e)(%) .

In the last inequality above one uses the fact that P(Tn > A) is
monotone increasing, and the fact that Z nme-n/m! and
m Z n
Z nme-n/ml each exceed J,jo The bounds (2.7) and (2.8) complete
m S n
the proof of Theorem 1.



3. Further Results.

In the previous section the aim was to give the most direct proof
possible of the result conjectured by Weide (1978). The complete conver-
gence proved there can easily be extended to the broader context of
subadditive Euclidean functionals. Since the method of proving complete
convergence in this context is directly parallel to the preceeding
argument, it is sufficient fo state the more general result.

To introduce Euclidean functionals, let I denote a real value
function defined on the finite subsets md, d > 2. It will be assumed
ﬂth@y%pumﬁ is measurable whenever X;, 1 <i < m, are
measurable, and that the following four assumptions are satisfied:

Al. L(otxl,ocx2,...,axn) =ocL(xl,x2,...,xn) for @ >0 .

A2, L(xl+t,x2+t,...,xn+t) = L(xl,xz,...,xn) for t ¢ RS .

A3. L(xl,x2,...,xn,xn+l) > L(xl,x2,...,xn) .

Ak, Var(L(Xl,Xe,...,Xn)) < o vwhen X; are independent and

uniform on the unit cube [O,l]d .

There is one further assumption which is needed and it is .the only
one which is not trivial to verify in most applications.
Suppose that {Qi: 1<1i gmd] is the partition of [O,l]d‘ into

 sub-cubes of edge 1/m and let tQ; = {x: x=ty, y € Qi]. The subadditivity

assumption is the following:

A5. There is a constant C > O such that for all positive integers

m and positive reals t one has

d m a-1
L({xl,xz,...,xn) n [0,t]7) S-igiL({xl’XE""’xn} n tQi)-kCtm .



It is proved in Steele (1979) that if I satisfies the preceding
five assumptions and {Xi} are independent with a uniform distribution

in [O,l]d then

lim L(Xl,XQ,...,Xn)/n(d-l)/d =B
n - o
with probability one for some constant 0 < B < o .
One can easily check that the preceeding result implies the
Beardwood, Halton; Hammersley theorem. The main observation to be
made here is that this result also can be sharpened as in Section 2

to obtain the following:

Theorem 2. Suppose L 1is a functional which satisfies assumptions

Al -A5. If {Xi: 1<ik< »} are independent and uniformly distributed
d
17,

in [0,1 then there is a constant 0 < B < «» so that for all

e>0

§ IPHIAxi,X2,...,xn)/n(d-l)/d-ﬁ| >¢€) <o
n=1
There are many functionals which arise in the theory of algorithms
and which satisfy Al-A5. The easiest examples are those associated
with the Steiner tree problem and the rectilinear Steiner tree problem,
but in essentially any geometric problem which deals with minimized
lengths one can find natural functionals which meetbthe corditions of

Theorem 2.



As a final point one should note that both Beardwood, Halton, and
Hammersley (1959) as well as Steele (1979) contain results valid for
random variables with non-uniform distribution. The approximation
processes used in these papers to extend the uniform case can again be
applied here although to do so would require considerable space. Since
the algorithmic applieations and the program begun by B. W. Weide (1978)

are ably served by Theorems 1 and 2, these last extentions have been

omitted.
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