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Abstract

Multiresolution wavelet analysis is a natural way to decompose an economic time

series into trend, cycle, and noise. The method is illustrated with GDP data. The

business-cycle component of the wavelet-filtered series closely resembles the series fil-

tered by the approximate bandpass filter.
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1. Introduction

Multiresolution wavelet analysis is a useful tool for studying the time and frequency proper-

ties of an economic time series. Using a wavelet filter, a time series x(t) can be decomposed

as

x(t) = x0(t) +
3∑

j=0

yj(t), (1)
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where x0(t) denotes cycles with periodicity greater than 32 periods and yj(t) denotes cycles

with periodicity between 24−j and 25−j periods. If the sampling frequency is quarterly, x0(t)

is the long-run trend (periodicity greater than 32 quarters). y0(t), y1(t), and y2(t) are the

business-cycle components (periodicity of 16–32, 8–16, and 4–8 quarters, respectively). y3(t)

is high frequency noise (periodicity less than 4 quarters).

Applying wavelet analysis to the US real GDP in the postwar period (1947:1–2003:2),

the business-cycle component (i.e.
∑2

j=0 yj(t)) closely resembles the series filtered by the

approximate bandpass filter (Baxter and King, 1999). In that sense, wavelet filtering is an

alternative to bandpass filtering. However, wavelet analysis provides better resolution in

the time domain since wavelet basis functions are time-localized (in addition to being scale-

localized), which is useful for capturing the changing volatility of the business cycle. The

wavelet-filtered series reveal that most of the business-cycle volatility before the 1960’s was

due to cycles of 8–16 quarters. Most of the volatility in the 1970’s was due to lower frequency

cycles of 16–32 quarters. Since the early 1980’s, the volatility has been relatively small at

all frequencies, which is consistent with recent evidence (Kim and Nelson, 1999; McConnell

and Perez-Quiros, 2000).

Section 2 provides a brief overview of multiresolution wavelet analysis, highlighting prop-

erties that are relevant for the empirical application. The reader is referred to Strang and

Nguyen (1997) for details. Section 3 applies the methods to study the time and frequency

properties of real GDP. The MATLAB code used in the analysis is available from the author’s

webpage.

2. Multiresolution wavelet analysis

2.1. Overview

The design of wavelets begins with a two-channel perfect reconstruction filter bank. The

lowpass and highpass analysis filters are {h0(k)}Ñ
k=0 and {h1(k)}N

k=0. The lowpass and high-
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pass synthesis filters are {f0(k)}N
k=0 and {f1(k)}Ñ

k=0.
1 The analysis scaling function φ̃(t) is

defined by the analysis dilation equation,

φ̃(t) =

Ñ∑
k=0

2h0(k)φ̃(2t − k). (2)

The analysis wavelet w̃(t) is defined by the analysis wavelet equation,

w̃(t) =
N∑

k=0

2h1(k)φ̃(2t − k). (3)

The corresponding synthesis dilation and wavelet equations are

φ(t) =

N∑
k=0

2f0(k)φ(2t− k), (4)

w(t) =

Ñ∑
k=0

2f1(k)φ(2t− k). (5)

Let φ̃jk(t) = 2j/2φ̃(2jt − k) and w̃jk(t) = 2j/2w̃(2jt − k) be the analysis scaling function

and wavelet at scale j and location k. The corresponding synthesis scaling function and

wavelet are denoted by φjk(t) and wjk(t). The J-level wavelet decomposition of a continuous

time signal x(t) is

x(t) =
∑

k

ã0kφ0k(t) +

J−1∑
j=0

∑
k

b̃jkwjk(t), (6)

where

ã0k =

∫
x(t)φ̃0k(t)dt, (7)

b̃jk =

∫
x(t)w̃jk(t)dt. (8)

Let H0(ω) and H1(ω) be the frequency responses of the lowpass and highpass analysis

1See Strang and Nguyen (1997, Chapter 4.1) for the conditions that the filters must satisfy for perfect
reconstruction.
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filters. The filter relating the scaling coefficients ã0k to the original signal has a frequency

response

A0(ω) =
J−1∏
l=0

H0(2
lω). (9)

In other words, the filter is a lowpass filter with an approximate passband |ω| ∈ [0, π/2J ].

The filter relating the wavelet coefficients b̃jk at level j to the original signal has a frequency

response

Bj(ω) = H1(2
J−j−1ω)

J−j−2∏
l=0

H0(2
lω), (10)

which is a bandpass filter with an approximate passband |ω| ∈ [π/2J−j, π/2J−j−1] (Percival

and Walden, 2000, pp. 96–97).

Let F0(ω) be the frequency response of the lowpass synthesis filter. When F0(ω) has

p zeros at π, the analysis wavelet has p vanishing moments. Consequently, polynomials of

degree p − 1 can be expressed as a linear combination of the synthesis scaling functions

φ0k(t). In order to filter out the linear trend in nonstationary economic time series such as

real GDP, p ≥ 2 is a necessary criteria in choosing wavelet filters.

2.2. Biorthogonal 17/11 wavelet filter

In analyzing economic time series, the timing of events at various frequencies is important.

This motivates the use of biorthogonal, rather than orthogonal, wavelet filters, which have

linear phase (zero phase when centered). Within the family of biorthogonal filters, the

filter must be sufficiently long to avoid undesirable artifacts in the filtered series. Based on

experimentation, starting with shorter filters, I have found that the 17/11 filter works well

in practice. The rest of this section highlights the relevant facts about this filter.

Figure 1 shows the impulse response of the analysis and synthesis filters in the biorthog-

onal 17/11 filter bank. The filters are symmetric, resulting in zero phase. The highpass

analysis (synthesis) filter is the alternating flip of the lowpass synthesis (analysis) filter, as-

suring perfect reconstruction. The lowpass analysis filter H0(ω) has 8 zeros at π, and the
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lowpass synthesis filter F0(ω) has 6 zeros at π. The analysis wavelet therefore has 6 vanishing

moments, and the synthesis scaling function can replicate polynomials of degree 5.

Figure 2 shows the frequency response of the biorthogonal wavelet filter. Frequency is in

units of cycles per period, which is radian frequency normalized by 2π. Then periodicity is

simply the inverse of frequency. At level 0 approximation, the wavelet filter is a lowpass filter

with a stopband of approximately 32 periods (see equation (9)). The level 0, 1, and 2 details

correspond to bandpass filters of approximately 16–32, 8–16, and 4–8 periods, respectively

(see equation (10)). The level 3 detail corresponds to a highpass filter with a stopband of

approximately 4 periods. Thus, a 4-level wavelet decomposition is a natural way to filter an

economic time series into trend (periodicity greater than 32 quarters), cycle (periodicity of

4–32 quarters), and noise (periodicity less than 4 quarters), whose sum is the original series

by the perfect reconstruction property of the underlying filter bank (see equation 1).2

3. Measuring business cycles

I now apply multiresolution wavelet analysis, using the biorthogonal 17/11 filter, to study

the business-cycle component of real GDP. Figure 3 plots quarterly log real GDP and its

long-run trend since 1947. The shaded regions of the figure correspond to recessions, from

peak to trough, as determined by the National Bureau of Economic Research (NBER). The

long-run trend is the level 0 approximation of the wavelet decomposition, corresponding to

cycles with periodicity greater than 32 quarters. The plot shows that recessions are periods of

sustained zero or negative growth in real GDP. Since the mid-1980’s, GDP has not deviated

far from its long-run trend.

The top three panels of Figure 4 shows the first three levels of detail in the wavelet decom-

position. Levels 0 through 2 contain the business-cycle components of GDP, corresponding

to 16–32, 8–16, and 4–8 quarter cycles. (Level 3 detail, which corresponds to high frequency

2Baxter and King (1999) define the business cycle as cycles with periodicity of 6–32 quarters. Since the
scales in wavelet filters are dyadic, I use 4 instead of 6 quarters in the definition. The difference is obscured
in practice because these finite impulse response filters are only approximations to ideal brick wall filters.
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noise with cycles less than 4 quarters, is not reported.) The wavelet analysis reveals inter-

esting changes in the volatility of the business-cycle component at various scales. At the

scale corresponding to 16–32 quarter cycles, the largest business-cycle fluctuations occurred

in the 1970’s through the early 1980’s, with deviations exceeding 2.5% of the long-run trend.

At higher scales corresponding to 8–16 and 4–8 quarter cycles, the largest volatility occurred

before the 1960’s. Since the mid-1980’s, the business-cycle fluctuations of GDP have been

relatively small. The source of the recent decline in business-cycle volatility is a subject of

current debate (see Stock and Watson, 2003, and references therein).

The sum of the three business-cycle components is shown in the bottom panel of Figure 4.

As a comparison, the figure also shows real GDP filtered by the approximate bandpass filter.

The two filtered series are remarkably similar. The local minima of the filtered series generally

correspond to the NBER troughs. The peaks of the filtered series usually occur a few quarters

before the NBER peak, which is a consequence of the slowdown in GDP growth before the

onset of a recession. The only recession that both the wavelet filter and the bandpass filter

miss is the 1980 recession, which began in January and ended in July. First, the duration of

this recession is short. Second, Figure 3 shows that GDP was well above the long-run trend

before the slowdown, so GDP did not fall much below the trend during the recession.
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Figure 1: Impulse response of the analysis and synthesis filters in the biorthogonal 17/11
filter bank.
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Figure 4: Business-cycle component of log real GDP, measured as percent deviation from
the long-run trend. Shaded regions are NBER recessions.

11


	University of Pennsylvania
	ScholarlyCommons
	2008

	Measuring Business Cycles: A Wavelet Analysis of Economic Time Series
	Motohiro Yogo
	Recommended Citation

	Measuring Business Cycles: A Wavelet Analysis of Economic Time Series
	Abstract
	Disciplines


	wavelet.dvi

