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Abstract 
We identify gaps and propose several directions for future research in preference 

measurement. We structure our argument around a framework that views preference 

measurement as comprising three inter-related components: 1) the problem that the study is 

ultimately intended to address; 2) the design of the preference measurement task and the data 

collection approach; 3) the specification and estimation of a preference model, and the 

conversion into action. Conjoint analysis is only one special case within this framework. We 

summarize cutting edge research and identify fruitful directions for future investigations 

pertaining to the framework’s three components and to their integration.  

1. Introduction: Beyond Conjoint Analysis 
Researchers and practitioners often equate preference measurement with conjoint 

analysis. Indeed, since its introduction (Green and Rao 1971), conjoint analysis (and its variants) 

has become the method of choice for quantitative preference measurement, and is considered 

among the major contributions of marketing science to marketing practice. However, conjoint 

analysis is only a special case of the broader field of preference measurement (Gustafsson, 

Hermann, and Huber 2007). While academic research in conjoint analysis may be viewed by 

some as mature, the field of preference measurement remains very active, important, and 

growing.  

In this paper we review recent developments in preference measurement that go beyond 

the “traditional” set of tools that are familiar to many practitioners and academics, and offer 

directions for future research. We propose viewing preference measurement as comprising three 

main components (see Figure 1): 1) the problem that the study is ultimately intended to address; 

2) the design of the preference measurement task and the data collection approach; 3) the 

specification and estimation of a preference model, and the conversion into action. In the context 

of conjoint analysis, these three components typically take the following form: 1) the problem is 

to help (profit-maximizing) firms design products and/or predict market shares; 2) data collection 

involves consumers rating, ranking or choosing among hypothetical profiles designed according 
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to traditional statistical efficiency measures; and 3) the output consists of individual-level 

partworths estimated assuming additive and normative utility model specifications.  

Figure 1: The changing landscape of preference measurement 

 

 

 
 

 

 

 

 

 

 

 

 
In the past few decades, many of the advances in the area of preference measurement 

have revolved around proposing better methods for designing conjoint analysis questionnaires 

and estimating individual–level partworths using relatively sparse data. However, in recent years, 

preference measurement researchers have contributed to all three components of the proposed 

preference measurement framework. Users of preference measurement studies now include, in 

addition to firms, consumers (e.g., using recommendation agents), policy makers, and 

researchers from various fields. Accordingly, the problems being addressed extend well beyond 

opportunistic profit maximization to altruistic consumer and social welfare objectives. 

Researchers have developed novel data collection methods based on interactions between 

consumers and firms as well as among consumers, making the preference measurement task 

more engaging and appealing. In addition, incentive-compatible mechanisms have substantially 

improved the quality of preference measurement data. As a field, we are moving towards better, 
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faster, easier to collect and truer data. Finally, researchers have started incorporating behavioral 

context effects, non-compensatory processes, and dynamic effects into preference models.  

We hope to see more research in the future that will continue to investigate alternatives to 

traditional conjoint analysis along the three components of our proposed framework. Moreover, 

we believe that these three components are interrelated, and that the optimal decisions in each 

component are influenced by the other components. For example, the problem being addressed 

by the preference measurement study should be taken into account in all stages of the study, 

from the design of the task through model estimation, to the conversion of the estimated 

preferences into action.  

2. Problem 
The types of problems being addressed by preference measurement studies are evolving. 

Companies have started using preference measurement in new ways that go beyond partworth 

estimation, and users increasingly include consumers, policy makers and health care 

professionals, as well as academic researchers from fields where preference measurement is less 

ubiquitous. 

 Helping companies  

Conjoint analysis has helped a large number of companies make decisions in areas such 

as new product development, pricing, segmentation, positioning, and advertising (Cattin and 

Wittink 1982, Wittink and Cattin 1989). Such decisions have relied primarily on the estimation 

of partworths. Given the growing diversity and complexity of the shopping environment, 

companies are increasingly interested in modeling and understanding the actual process through 

which consumers choose products, in addition to consumers’ partworths. For example, Erdem, 

Keane, Oncu and Strebel (2005) estimated a choice model that captures the role of active 

information search and learning in consumer decision making in the context of high-involvement 

consumer durables. Iyengar, Jedidi and Kohli (2007) built a structural model of consumer 

preferences for non-linear contracts (e.g., two or three-part tariff cell phone plans). Gilbride and 

Allenby (2004) and Jedidi and Kohli (2005) went beyond partworth estimation and utilized 

preference measurement techniques to study the formation of consideration sets. Preference 
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measurement could also be used more extensively by companies to guide project selection and 

investment decisions.  

Helping consumers 

The last few years have seen a great increase in the number of preference measurement 

methods designed to help consumers make better choices. The most prevalent example is that of 

recommendation agents. Recommenders have been and continue to be a popular research topic in 

various fields, such as Information Systems, Computer Science and Machine Learning 

(Adomavicius and Tuzhilin 2005; Srebro, Rennie and Jaakkola 2005), Psychology (Häubl and 

Murray 2003) and Marketing (Ansari, Essegaier and Kohli 2000; Arora et al. 2008; Häubl and 

Trifts 2000; Liechty, Ramaswamy and Cohen 2001; Ying, Feinberg and Wedel 2006). A good 

example of the revived interest in this topic is the “Netflix Prize” (www.netflixprize.com). The 

use of preference measurement methods in recommendation systems requires researchers to 

modify current methodologies in ways that substantially shorten the preference measurement 

task, and, in some cases, allow practitioners to estimate and utilize partworths in real-time (De 

Bruyn, Liechty, Huizingh and Lilien 2007). 

Helping policy makers and health care professionals 

Policy makers and health care professionals (e.g., doctors, drug companies, hospitals) 

have become increasingly interested in preference measurement techniques. Their objective may 

be opportunistic (e.g., maximize profit, maximize chances of winning an election) or altruistic. 

For example, in Medical Decision Analysis, Bleichrodt and Pinto (2000) developed a non-

parametric method to elicit the probability weighting function in the context of choices between 

medical treatments. Saigal, Dahan and Cumberland (2007) used conjoint analysis to optimize 

treatment for prostate cancer based on each patient’s unique tradeoffs between various outcomes 

and side effects.  

Helping academic researchers 

 Preference measurement is inherently an interdisciplinary field. For example, some of its 

origins may be traced back to Mathematical Psychology and Transportation. While most of the 

active work on the topic is currently linked to Marketing, we expect the preference measurement 
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community to expand to new fields in the coming years. For example, behavioral economists are 

increasingly interested in individual-level estimates of the parameters of the value function and 

the probability weighting function (Kahneman and Tversky 1979; Prelec 1998; Gonzalez and 

Wu 1999), in the context of cumulative prospect theory (Tversky and Kahneman 1992). Such 

estimates allow studying the relationship among parameters that represent loss aversion or risk 

aversion and individual characteristics such as age, income, or education (Tanaka, Camerer and 

Nguyen 2007), or between such parameters and behavior (Fehr and Goette 2007; Jarnebrant, 

Toubia, Johnson 2007). We believe that advances in preference measurement, such as adaptive 

questionnaire design and Bayesian estimation, may be very useful to this community of 

researchers. Similarly, researchers in preference measurement may greatly benefit from 

collaborating with colleagues in fields such as Computer Science (e.g., Evgeniou, Boussios and 

Zacharia 2005), Education (Bradlow 2005), Engineering (Michalek, Feinberg and Papalambros 

2005), and Psychology (Otter, Allenby and van Zandt 2007). 

3. Design and Data Collection 

Optimal experimental design: beyond A-efficiency and D-efficiency 

The design of conjoint experiments has traditionally focused on maximizing design 

efficiency measures such as D-efficiency or A-efficiency (Addelman 1962; Kuhfeld, Tobias and 

Garratt 1994). These measures of efficiency are based on matrix norms defined on the 

covariance matrix of the estimates of the partworths. In other words, in the context of an 

individual-level regression, D-efficient or A-efficient designs (such as the well known 

orthogonal designs) produce partworth estimates that have minimal variance and intercorrelation.  

However, those traditional efficiency measures overlook the managerial objective of the 

preference measurement study. In particular, while traditional measures of efficiency focus on 

the covariance matrix of the partworths, managers typically take actions that are based on some 

functions of these partworths (e.g., willingness to pay for a specific feature), and put more 

weight on some decisions than others.  Toubia and Hauser (2007) proposed M-efficiency 

measures that account for such managerial considerations. Future research may incorporate other 

aspects of the environment, such as engineering constraints (Michalek, Feinberg and 

Papalambros 2005) or prior knowledge of consumers’ preferences, into the design stage of 
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preference measurement studies. For example, Gensler, Theysohn, Hinz and Skiera (2007), 

consider for each individual the acceptable range of willingness to pay for each feature in the 

design of an adaptive choice-based conjoint analysis. Along similar lines, the existence of 

unacceptable product features or combinations of features may have an impact on the criteria 

used to evaluate possible designs. Note, however, that one should be cautious in asking 

consumers directly which attribute levels are unacceptable (Green, Krieger and Bansal 1988). 

More generally, we believe that experimental design may be greatly enhanced via a 

systematic approach using Bayesian Decision Theory (Chaloner and Verdinelli 1995). Bayesian 

experimental designs minimize an expected loss function over the posterior distribution of the 

parameter estimates. For example, Sandor and Wedel (2001) proposed a method for eliciting 

managers’ prior beliefs about attribute preferences and used this prior information to design 

Bayesian D-efficient choice experiments. Sandor and Wedel (2005) showed how taking prior 

information about heterogeneity across consumer preferences into account affects design 

optimality. In particular, they show how the use of a small set of different conjoint designs 

improves efficiency over a single design administered to all participants. However, A-efficiency 

and D-efficiency are just special cases corresponding to two particular loss functions. The 

specific context of the study may give rise to alternative loss functions and/or prior distributions 

on the parameters that more accurately reflect the objectives and beliefs of the user. In sum, 

when designing a preference measurement task, we encourage researchers to incorporate aspects 

such as managerial objectives, prior beliefs, constraints and characteristics of the task, into the 

criteria used to evaluate the design. 

New Forms of Interactions 

Traditionally, preference measurement data have been collected using pencil and paper 

questionnaires or one-on-one or mail-telephone-mail interviews involving sorting or rating tasks. 

Since the early 90’s, many respondent interactions have been relegated to computer and web 

interfaces. The use of web-based questionnaires triggered the development of adaptive methods 

that allow collecting more information per question. Adaptive methods include the commercially 

available Adaptive Conjoint Analysis (ACA, Johnson 1987), the Fast Polyhedral approach 

(Toubia et al. 2003; Toubia, Hauser and Garcia, 2007; Toubia, Hauser and Simester 2004; Vadali, 

 6



Liechty and Rangaswamy 2007), the Adaptive Self-Explicated approach (Netzer and Srinivasan 

2007). 

However, the technological advances and easier accessibility to respondents afforded by 

the web come at the cost of decreased respondent patience and attentiveness. Thus, it is 

becoming more important than ever to keep respondents engaged with the task. Dahan and 

Hauser (2002) surveyed several virtual interactive web-based interfaces that have been proposed 

in the past few years to address that issue. For example, the user design approach collects 

preference data by allowing respondents to design their ideal virtual product (von Hippel and 

Katz 2002). The Information Pump (Prelec 2001) and the Securities Trading of Concepts 

(STOC; Dahan, Lo, Poggio, Chan and Kim 2007 and Dahan, Soukhoroukova and Spann 2007) 

collects preference data by allowing respondents to interact with one another in game-like 

mechanisms, making the task more engaging and fun. Note that, when designing data collection 

methods that are based on interactions among consumers, one needs to be aware of biases that 

such interactions may induce (Johnson, Tellis and MaCinnis 2005). Keeping respondents 

engaged may also be achieved by showing them physical prototypes to increase the realism of 

the task (Luo, Kannan and Ratchford 2007; Srinivasan, Lovejoy and Beach 1997). Dahan and 

Srinivasan (2000) took this approach even further and reduced its cost by developing a web 

interface to measure preferences using static or dynamic virtual prototypes.  

Another method to increase consumer involvement is to replace the commonly used 

hypothetical data collection exercises with incentive-aligned tasks, in which respondents have to 

“live with” their decisions (Ding 2007; Ding, Grewal and Liechty 2005; Park, Ding and Rao 

2007; Prelec 2001). A recent study by Ding (2007) suggested that incentive-aligned mechanisms 

may be used even when not all the product profiles exist in the market. Incentive-aligned 

mechanisms were empirically found to increase not only respondents’ engagement but also out-

of sample predictive validity. For example, the incentive-aligned mechanism proposed by Ding, 

Grewal and Liechty (2005) increased hit rates (correct prediction of the first choice out of 21 

options) by almost a factor of two (from 26% to 48%). Incentive-aligned mechanisms have been 

also shown to be very effective in economic experiments for market design such as matching and 

public goods problems (Amaldoss et al. 2008). 

In summary, when building a data collection mechanism, it is important to keep in mind 

the experience of the consumer completing the task. Specifically, since the ultimate goal is 
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usually to predict actual behavior, engaging and incentive-compatible mechanisms should be 

favored over hypothetical tasks. 

Dealing with Large Number of Attributes and Products 

As products become more complex, consumer preferences need to be measured over a 

larger number of product attributes and levels. Applications of conjoint analysis have been 

conducted on products involving as many as fifty product attributes (Wind et al. 1989). Several 

methods have been proposed to handle the demand for complex problems. The traditional self-

explicated approach (Srinivasan 1988) can deal with a large number of attributes and levels. 

However, this approach carries several limitations (Green and Srinivasan 1990), which have 

been partially overcome by hybrid estimation methods that combine self-explicated data with 

preference data from full or partial profile tasks (Green, Goldberg and Montemayor 1981; 

Johnson 1987; Marshall and Bradlow 2002; ter Hofstede, Kim and Wedel 2002). Utilizing the 

concept of complexity control from machine learning, Cui and Curry (2005) and Evgeniou, 

Boussios and Zacharia (2005) used a support vector machine approach to handle complex 

preference measurement problems.   

Recently, researchers have proposed to address the problem of large product 

dimensionality by developing innovative data collection mechanisms. For example, the Conjoint 

Adaptive Ranking Database System (CARDS) method proposed by Dahan (2007) simplifies the 

conjoint analysis task by asking respondents to choose only among the very limited number of 

sets that are perfectly mapped to specific utility functions proposed in advance by the researcher. 

Park, Ming and Rao (2007) proposed an auction-based approach in which respondents can 

auction a large number of product feature upgrades. Taking a different approach, Netzer and 

Srinivasan (2007) developed an adaptive self-explicated approach to solve the self-explicated 

constant sum question problem when the number of product attributes becomes large, 

demonstrating significant improvement in predictive validity. We expect that many of the 

advances in our ability to study complex problems will come from the development of such 

innovative data collection techniques and from the use of auxiliary information. 
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Combining Multiple Sources of Data 

Traditionally, preference measurement studies have relied on data provided explicitly and 

consciously by consumers during the preference measurement task. Recently, marketers have 

started identifying new sources of data and supplementing stated preference data with auxiliary 

revealed preference data, in order to 1) improve predictive ability; 2) ask fewer questions; 3) 

correct biases related to the preference measurement task.2 Such auxiliary data may be either 

internal or external to the preference measurement task.  

Internal sources of data 

Examples of data that are internal to the task include response latencies, eye movement 

and mouse movement. Haaijer, Kamakura and Wedel (2000) demonstrated that response time is 

related to preference by means of choice uncertainty, whereby shorter response times represent 

more certain choices. Otter, Allenby and van Zandt (2007) proposed a Poisson race model to 

capture response time in conjoint analysis. Netzer, Schrift and Toubia (2007) modeled and 

exploited the relation between response time and choice conflict. Liechty, Pieters and Wedel 

(2003) utilized eye movement data to identify the attention state of respondents when evaluating 

stimuli. In the future, we expect that more decision process data such as mouse movement, click-

stream data and brain images will be utilized in preference measurement.   

External sources of data 

Examples of auxiliary data that are external to the task include, but are not limited to, 

sales and market share data. Feit, Beltramo and Feinberg (2007) developed a method for melding 

experimental choice data and data on market purchases to leverage the best properties of both. 

Along the same lines, Horsky, Misra and Nelson (2006) demonstrated the benefits of combining 

scanner-based data with survey-based preference data. Gilbride, Lenk and Brazell (2006) 

proposed a loss function approach to incorporate market share information as constraints in the 

estimation of choice-based conjoint analysis partworths. De Bruyn, Liechty, Huizingh and Lilien 

(2007) combined preference measurement data with intended product use and customer 

characteristics data, in the context of recommendation agents. Some less traditional sources of 

auxiliary data have also been investigated recently. For example, Hui, Bradlow and Fader (2007) 

                                                 
2 We refer the reader to the previous Choice Symposium papers by Ben Akiva et al. (1994) and Louviere et 

al. (1999) for a summary of the benefits and difficulties of combining stated and revealed preference data. 
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and Hui, Fader and Bradlow (2007) measured consumer preferences by combining shopping 

path data (collected using RFID technology) with transaction data. Another promising external 

source of data includes readily available data posted on the internet, such as product reviews 

(Lee and Bradlow 2007).    

With the advantages offered by combining multiple sources of information comes the 

difficulty and complexity of combining data sets that are often not fully aligned with one another. 

Several approaches have been suggested including data fusion (Gilula, McCulloch and Rossi 

2006), common individual characteristics (Feit, Beltramo and Feinberg 2007) and common latent 

constructs underlying the multiple data sets (Hui, Bradlow and Fader 2007).   

We encourage researchers to identify unique sources of data that could improve our 

ability to measure consumers’ preferences and to develop methods to overcome the difficulties 

involved in combining multiple sources of data.  

4. Model Specification, Estimation, and Action 

Taking Social interactions into account 

Preference measurement models have almost exclusively assumed that consumers make 

choices independently of one another. Some noteworthy exceptions include Rao and Steckel 

(1991) who studied the polarizing effects of group decision making, Arora and Allenby (1999) 

who modeled decisions made jointly by husbands and wives, and Ding and Eliashberg (2007) 

who proposed formal models of multi-party decision-making and applied them to choices of 

pharmaceutical prescriptions by doctors and patients. Recent research in marketing has continued 

to highlight and illustrate the importance of social interactions in consumption and choices (e.g., 

Godes and Mayzlin 2004; Goldenberg, Libai and Muller 2002). We believe that capturing such 

interactions more systematically in preference measurement is an important area for future 

research. 

Meta-attributes 

Preferences are often modeled and estimated in the space defined by product attributes 

and levels. Working in this space makes the translation of consumer preferences into engineering 

terms easier. However, consumers often think in terms of “meta-attributes” such as needs, 

motivations and goals, which may correspond to bundles of physical product attributes. There 
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are several advantages to working in meta-attribute spaces. First, if consumers indeed evaluate 

products according to meta-attributes, the preference measurement task may become more 

natural. Second, using dimensions like goals and needs, which are the true drivers of decision 

making, is likely to lead to better preference measurement. Finally, needs, motivation and goals 

are likely to be more stable over time than preferences for specific product attributes (e.g., 

consumers may have stable preference for faster computers, but their preference for a specific 

processor may change over time as technology evolves). While working with meta-attributes 

may be beneficial, identifying and constructing meta-attributes can prove to be difficult. Methods 

such as Factor Analysis may give some insights, but lack the fundamental ability to create maps 

between physical attributes and meta-attributes. The challenge of finding these maps is 

confounded with issues of language that could be used to describe meta-attributes. Text mining 

of consumer-written product reviews (Lee and Bradlow 2007) is a potentially valuable tool for 

automating the process of identifying the language consumers use to describe products. 

Furthermore, the translation between meta-attributes defined in consumer language and 

engineering specifications used in product design may not be straightforward. 

Luo, Kannan and Ratchford (2007) incorporated “meta-attributes such as “comfort” and 

“power” along with more objective characteristics. In the context of recommendation agents, De 

Bruyn, Liechty, Huizingh and Lilien (2007) used tree-based methods combined with higher level 

“ask-once” questions to group consumers, suggesting that meta-attributes may be related to and 

identified with “ask-once” questions in online or offline recommendations. Ghose and Rao 

(2007) tackled directly the topic of how one could construct and utilize meta-attributes in the 

context of conjoint analysis. We hope to see more work along these lines in the future.  

More flexible utility functions 

Preference measurement has typically assumed linear and additive utility functions. An 

increasing number of papers have explored utility functions that deviate from these assumptions. 

For example, Kim, Menzefricke and Feinberg (2007) modeled preferences using Bayesian 

splines with endogenous knot configurations, finding hold-out choice prediction improvement in 

the 10-20% range. Ben-Akiva et al. (2002) proposed a hybrid choice model that integrates many 

types of discrete choice modeling methods, draws on different types of data, and allows the 

explicit modeling of latent psychological explanatory variables. Other researchers have explored 
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non-compensatory utility functions. Yee, Dahan, Hauser and Orlin (2007) and Kohli and Jedidi 

(2007) proposed dynamic programming methods to estimate lexicographic preference structures. 

Non-compensatory processes seem particularly relevant in the context of consideration sets. 

Gilbride and Allenby (2004) modeled a two stage process in which the first stage consists of a 

(potentially) non-compensatory screening of alternatives and the second stage of a compensatory 

choice among the remaining alternatives. They estimated their model using hierarchical Bayes 

methods, augmenting the latent consideration sets within their MCMC approach. Jedidi and 

Kohli (2005) introduced subset-conjunctive screening rules, which generalize disjunctive and 

conjunctive rules. Non-compensatory decision process may be viewed as the result of 

simplifying heuristics used by boundedly rational consumers during the preference measurement 

task. For example, Kim (2004) used a Bayesian hidden Markov model to describe changes in 

individual consumers’ latent choice heuristics over time.  

We hope that future work in this area will enhance the ecological rationality of 

preference measurement models, i.e., will improve the fit between the structural properties of the 

model and the structure of the environment to which it is applied.  

Incorporating behavioral effects 

The process of data collection in preference measurement often involves a sequence of 

choices, ranking, ratings, or tradeoffs between attributes and/or products. Much of the research in 

Behavioral Decision Theory has been focused on studying context and other behavioral effects 

that may be prevalent when consumers are making such decisions. Therefore, it is surprising that 

only a handful of studies have attempted to test and apply the battery of robust and significant 

behavioral effects documented in the consumer behavior literature to preference measurement.  

Some of the early work on incorporating behavioral effects into preference measurement 

explored the effect of the number of attribute levels on the perceived attribute importances 

(Wittink, Krishnamurthi and Reibstein 1989). The authors suggested that researchers should try 

to keep the number of attribute levels similar across attributes, in order to avoid biases. Bradlow, 

Hu and Ho (2004) investigated and modeled the behavioral effects caused by omitting product 

attributes in partial profile designs. A few studies have also attempted to model context effects in 

preference measurement. Kivetz, Netzer and Srinivasan (2004a) proposed several choice models 

that could capture the well-known compromise effects given a set of partworths collected using 
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alternative preference measurement tasks. In a follow-up paper, the authors suggested that their 

models could capture additional context effects such as asymmetric dominance, attraction and 

detraction (Kivetz, Netzer and Srinivasan 2004b). Haaijer, Wedel, Vriens and Wansbeek (1998) 

proposed a flexible covariance matrix that could potentially capture context effects in choice-

based conjoint analysis. The paper by Adamowicz et al. (2008), appearing in the current issue of 

the journal, provides a detailed overview of behavioral effects in choice modeling. 

One of the difficulties involved with studying behavioral issues in preference 

measurement is that one cannot claim that a model describes behavior better than another model 

based on superior fit or predictive ability only. In particular, more complex models naturally tend 

to fit better and can often predict worse (due to potential overfitting). Therefore, many factors 

may influence fit and predictive ability, beyond the accuracy of the behavioral assumptions made 

by the model. Claiming that a model is isomorphic to the true underlying decision process (i.e., it 

actually captures the underlying behavior) seems to require exogenous manipulations and/or a set 

of process measures. Otherwise, a model may only be shown to be paramorphic to the true 

underlying decision process (i.e., it gives rise to similar outcomes).  

Nevertheless, we believe that with the increase in the number of contact points between 

firms and consumers, and therefore in the number of ways in which practitioners may influence 

the choice process, consumer psychology is more relevant than ever to preference measurement 

from a managerial perspective. From an academic perspective, we hope to see a two-way 

exchange between the preference measurement and consumer psychology literatures. 

Psychologists can suggest behavioral effects that may improve the accuracy of preference 

measurement while preference researchers in turn can develop new methods for measuring and 

testing alternative behavioral effects. 

Modeling learning, dynamics and preference formation 

Most preference measurement models assume that consumers have well-defined and 

stable preferences. The above discussion suggests that preferences may not be well–formed and 

may be influenced by the task itself and by its context. Furthermore, if preferences are not well-

formed we are likely to observe dynamics throughout the preference measurement task as a 

result of preference formation, learning or fatigue. DeSarbo, Fong, Liechty and Coupland (2005) 

and Liechty, Fong and DeSarbo (2005) proposed models that allow the partworth estimates to 
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vary throughout the preference measurement task using a dynamic random effects model. Su and 

Rao (2007) studied the evolution of willingness to pay for different types of attributes and how 

such changes affect new product adoption. Many of the flexible models developed to capture 

dynamics in repeated choice (e.g., Kim, Menzefricke and Feinberg 2005; Lachaab, Ansari, Jedidi 

and Trabelsi 2006) could be applied to preference measurement. Bradlow, Hu and Ho (2004) 

take a first step in understanding the antecedents of dynamics by studying consumer learning 

about preferences for missing attribute levels in a partial profile design. We join Bradlow (2005) 

in the call for more work attempting to disentangle the different sources of dynamic effects in 

preference measurement.   

Recent tools for estimation 

The standard estimation method for conjoint analysis has become hierarchical Bayes 

(Lenk et al. 1996; Rossi and Allenby 2003). Although this estimation method has been 

researched extensively, it continues to be an exciting research area. For example, Sonnier, 

Ainslie and Otter (2007) showed that specifying a normal heterogeneity distribution on the 

parameters of the multinomial logit model implies a distribution on willingness-to-pay that has 

substantial mass in the tail, leading to extreme behavior for some individuals. This suggests that 

priors or heterogeneity distributions should be specified on meaningful quantities (e.g., 

willingness-to-pay) instead of on latent constructs, like partworths.  

An alternative approach to conjoint estimation is based on optimization. This approach 

has a long history, starting with the Linmap method of Srinivasan and Shocker (1973a, 1973b). 

More recently, Toubia et al. (2003) and Toubia, Hauser and Simester (2004) proposed polyhedral 

methods for conjoint estimation and questionnaire designs. These methods are based on 

interpreting the answer to each conjoint question as a constraint on the respondent’s partworths. 

Toubia, Hauser and Garcia (2007) and Vadali, Liechty and Rangaswamy (2007) generalized the 

polyhedral methods to capture response error and informative priors on the parameters. Evgeniou, 

Boussios and Zacharia (2005), Cui and Curry (2005) and Evgeniou, Pontil and Toubia (2007) 

proposed conjoint estimation methods based on machine learning and statistical learning theory. 

The method of Evgeniou, Pontil and Toubia (2007) has been shown to outperform, in some cases, 

hierarchical Bayes in estimation accuracy and predictive ability. The two methods are 

comparable conceptually, with the fundamental difference that all parameters are endogenous in 
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the machine learning method of Evgeniou, Pontil and Toubia (2007) while some parameters are 

typically set exogenously in hierarchical Bayes (e.g., the hyperparameters). Finally, Toubia, 

Evgeniou and Hauser (2007) showed that many optimization methods for conjoint estimation 

may be integrated within the framework of statistical learning theory.  

One of the current limitations of optimization-based methods is that they produce point 

estimates, whereas likelihood-based methods such as hierarchical Bayes provide full 

distributions on the parameter estimates. While Evgeniou, Pontil and Toubia (2007) illustrated a 

bootstrapping approach to obtaining confidence intervals for their method, we believe that future 

research may explore alternative approaches to allow statistical inference and hypothesis testing 

for optimization-based methods. More generally, a fundamental challenge that we hope will be 

addressed in future research is linking optimization-based methods with likelihood-based 

methods. For example, Toubia, Hauser and Garcia (2007) and Vadali, Liechty and Rangaswamy 

(2007) gave a likelihood interpretation of polyhedral methods. Bridging the likelihood-based and 

optimization-based approaches may benefit both approaches. For example, Evgeniou, Pontil and 

Toubia (2007) showed an example of how principles from statistical learning theory may be used 

to significantly improve the estimation accuracy and predictive ability of hierarchical Bayes 

estimation.  

From model to action 

Parameter estimation is often thought of as the final stage of a preference measurement 

study. However, at the conclusion of a study, it is imperative to come back to the original 

problem that motivated the study and ensure that a solution is provided to that problem. Some of 

the key decisions in marketing are those of optimal product design and product line optimization 

(Dobson and Kalish 1993; Green and Krieger 1985; Kohli and Sukumar 1990; McBride and 

Zufryden 1988). Recently, Luo, Kannan, Besharati and Azarm (2005) proposed an approach that 

takes into account variations in the conditions under which the product will be used, and 

introduced the concept of “robust product design,” which offers excellent performance under 

worst-case variations and low sensitivity to variations. Recent models in the area of product line 

optimization have also emerged from engineering, using detailed physical models to determine 

which products can be produced (Michalek, Feinberg and Papalambros 2005; Wassenaar et al. 

2005). These models combine innovate ways to define feasibility constraints with tailored 
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optimization algorithms. For example, Michalek et al. (2007) used Analytical Target Cascading 

(ATC) to formally coordinate models from marketing and engineering, and design “optimal” 

marketing-based products and product lines that are technically feasible.  

Beyond product line optimization, we believe that the managerial relevance and impact 

of preference measurement studies may be enhanced by systematically modeling the Bayesian 

decision theoretic loss function of the stakeholder (company, consumers, policy makers, etc.), 

and providing decision support tools for identifying the action that will minimize this loss 

function over the entire posterior distribution of the parameters being estimated. Currently, most 

preference measurement studies are used to produce point estimates of some parameters, such as 

partworths. However, basing decisions on point estimates is suboptimal, as decisions should be 

based on the expected loss across the entire posterior distribution of the estimates (Chaloner and 

Verdinelli 1995). For example, Blattberg and George (1992) showed that incorporating the 

manufacturer’s goal of profit-maximizing into the Bayesian loss function leads to smaller price-

sensitivity estimates and higher optimal prices. Note that in some of the new domains of 

application identified earlier in this paper, the loss function may take very different forms from 

that of a profit-maximizing firm. For example, the appropriate loss function for a 

recommendation agent may include both the utility derived by the consumer from the 

recommended product and the effort spent by the consumer throughout his or her interactions 

with the agent. Given the fact that Bayesian Decision Theory involves integrating over posterior 

distributions, we believe that there is an opportunity to construct decision support tools that will 

simplify the choice of actions, based on the output of the preference measurement study and all 

other relevant information.  

5. In Conclusion…“Every Generation Needs a New 
Revolution”3 

Preference measurement is a very exciting and active field that goes well beyond conjoint 

analysis. We proposed a framework, consisting of three inter-related components, for 

approaching this field. We have summarized some cutting edge research and identified fruitful 

directions for future research pertaining to the framework’s three components, and to their 

                                                 
3 Thomas Jefferson. 

 16



mutual integration. The past two decades have seen great advances in conjoint analysis through 

the use of computerized adaptive questionnaires and the development of new estimation methods 

that account for consumer heterogeneity. Moving forward, we encourage researchers to go 

beyond conjoint analysis and explore new problems and applications of preference measurement, 

develop new forms of data collection that engage and entice respondents, take advantage of the 

availability of new sources of data, model new phenomena such as behavioral effects and 

dynamics, and combine statistical and optimization methods to improve estimation. Moreover, 

we encourage researchers to take into account the objectives and context of the preference 

measurement study throughout each step of the process. 
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