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Abstract

What is the effect of non-tradeable idiosyncratic risk on asset-market risk premi-
ums? Constantinides and Duffie (1996) and Mankiw (1986) have shown that risk
premiums will increase if the idiosyncratic shocks become more volatile during
economic contractions. We add two important ingredients to this relationship:
(i) the life cycle, and (ii) capital accumulation. We show that in a realistically-
calibrated life-cycle economy with production these ingredients mitigate the abil-
ity of idiosyncratic risk to account for the observed Sharpe ratio on U.S. equity.
While the Constantinides-Duffie model can account for the U.S. value of 41%
with a risk-aversion coefficient of 8, our model generates a Sharpe ratio of 33%,
which is roughly half-way to the complete-markets value of 25%. Almost all of
this reduction is due to capital accumulation. Life-cycle effects are important
in our model — we demonstrate that idiosyncratic risk matters for asset pricing
because it inhibits the intergenerational sharing of aggregate risk — but their
net effect on the Sharpe ratio is small.
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1 Introduction

The essence of Mehra and Prescott’s (1985) equity premium puzzle is that investing
in equity looks like too good of a deal; the stock market seems to reward risk-taking
far more than than a representative agent would require. A large literature has asked
if the representative-agent assumption lies at the heart of the puzzle. The idea is
that individuals face idiosyncratic risks and are unable to insure against them, and
that this affects the way they value financial assets. The plausibility of this story
seems apparent. Non-financial wealth — human wealth in particular — is larger than
financial wealth and is subject to substantial risks. Upon closer inspection, however,
the story runs into difficulties. Idiosyncratic risks are, by definition, uncorrelated with
aggregate risks. In contrast, asset pricing relies on dependence between sources of risk
and asset returns in order to explain why some assets pay a higher expected return
than others. The challenge for a theory of asset pricing driven by idiosyncratic risk,
therefore, is to generate such dependence while still having the idiosyncratic shocks
wash-out at the aggregate level.

An innovative response to this challenge is Mankiw (1986). In his model aggre-
gate shocks and the volatility of idiosyncratic shocks are negatively related. He showed
that these kinds of idiosyncratic shocks represent a source of aggregate risk in that
they matter for the equity premium. We refer to this kind of aggregate risk as coun-
tercyclical cross-sectional variance, or CCV risk. Constantinides and Duffie (1996)
formalized the pricing of CCV risk in a multiperiod setting and went on to derive a
more general set of conditions under which it can resolve any aggregate-consumption-
based asset-pricing puzzle.

Our paper adds two potentially-important ingredients which are absent in the
Constantinides-Duffie model: (i) capital accumulation, and (ii) the life cycle. Why
might these ingredients be important? First, regarding capital accumulation, a num-
ber of papers have shown that the degree of risk-sharing is increasing in the level of
aggregate capital.1 The asset-pricing effects of idiosyncratic risk, therefore, are likely
to be exagerated by the Constantinides-Duffie model.2 Second, regarding the life
cycle, the essence of their story is that non-tradeable idiosyncratic shocks to human
wealth — the capitalized value of labor income — affect the valuation of financial
wealth. The distribution of human wealth necessarily has a life-cycle dimension: the

1See, for example, Krueger and Perri (2006), Krusell and Smith (1997) and Storesletten, Telmer,
and Yaron (2004a).

2To be specific, the Constantinides-Duffie model is an environment without physical capital accu-
mulation and where aggregate financial capital must equal zero. The former simply means that the
Constantinides-Duffie model is a Lucas tree economy. The latter is necessary for the construction of
an autarkic equilibrium. It means that non-traded endowment income represents 100% of aggregate
consumption, and that financial assets are zero-net supply claims on stochastic processes which are
not permitted to be measurable with respect to the individual-specific information structure. Thus,
there is no aggregate capital, in either a physical or a financial sense, which can serve as a buffer stock
against adverse fluctuations in the value of human capital.
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young have more than the old. The same is true, therefore, of idiosyncratic shocks.
Surely this must matter for asset pricing? Consider, for example, retired people.
They comprise roughly 20 percent of the adult population, they participate in equity
markets at a much higher rate, yet they face little if any labor-market risk. If the
solution to the equity-premium puzzle is that labor-market risk makes equity more
risky, then why don’t retirees hold all of the equity, thus resurrecting the puzzle?

We address these issues as follows. We begin with the life cycle. We construct
two OLG versions of the Constantinides-Duffie model, one without retirement and
one with retirement. We calibrate the models and confirm the above intuition: the
existence of retirees reduces the Sharpe ratio on equity from 41% — which matches
U.S. data — to 34%, which is roughly halfway to the complete-markets value of 25%.
The expressions we derive provide a clear economic intuition for this, one which sur-
vives in richer environments. Retirees do not face non-tradeable CCV risk in human
wealth. They, therefore, have a comparative advantage in bearing the aggregate risk
inherent in financial wealth. The Constantinides-Duffie model is autarkic, so this
cannot show up in portfolios. Where it shows up is consumption allocations. The
consumption of retirees is more exposed to aggregate risk than that of workers. We
interpret this as the intergenerational sharing of aggregate risk. This risk sharing is
imperfect in the sense that the associated complete-markets allocation features uni-
form aggregate risk exposure across generations. Yet there is aggregate risk sharing
in the sense that the young are endowed with more aggregate risk but, in equilibrium,
bear less of it. This is a central intuition of our paper. Idiosyncratic risk matters for
asset pricing because it inhibits the intergenerational sharing of aggregate risk. The
more it does this, the larger will be the Sharpe ratio.

The remainder of our paper focuses on OLG economies with capital. The inclusion
of capital makes the effect of retirement on the Sharpe ratio more complex. While
the intergenerational risk sharing effect remains — which tends to reduce the Sharpe
ratio — two additional effects arise which tend to offset each other. First, the level
of capital enhances ‘self-insurance:’ the behavior of accumulating and decumulating
buffer-stock savings in the face of good and bad idiosyncratic shocks. Self-insurance
behavior mitigates the extent to which income shocks are manifest in consumption
and tends to reduce the Sharpe ratio. Second, the distribution of capital can work in
the opposite direction. The more that the distribution is skewed toward the old the
more the young are exposed to CCV risk. This tends to increase the Sharpe ratio. In
our calibration the distributional effect turns out to be quite strong. The Sharpe ratio
in an economy without retirement is 31%, substantially less than the Constantinides-
Duffie, no-retirement counterpart of 41%. The difference is due to the self-insurance
characteristic of an economy with capital. When we introduce retirement, the Sharpe
ratio actually increases slightly, to 33%. We provide quantitative evidence that this
is driven by the distributional effect being slightly larger than the intergenerational
risk-sharing effect.
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Our model features non-degenerate trade in financial assets. Thus, we can say
something about what kinds of portfolio rules support the imperfect aggregate risk
sharing allocations described above. A useful benchmark is Bodie, Merton, and
Samuelson (1992) (BMS). In their model wages are riskless and labor income is like a
non-defaultable bond. This induces agents to reduce the fraction of financial wealth
held in stocks as they age. In our model the same force is at work, but with risky
wages. Wage variability has both an idiosyncratic and an aggregate component. The
latter is less variable than stock returns. Therefore, just as in BMS, wage income
can serve as a “hedge” for financial income, resulting in reduced stock holding with
age. However, this only happens beyond a certain age. The youngest workers hold
relatively little stock, resulting in hump-shaped portfolio rules.3 This is driven by
the fact that (i) wages are less variable than stock returns, (ii) wages are perfectly
correlated with stock returns, and (iii) wages exhibit CCV.4 Aggregate risk, therefore,
is concentrated on a subset of the population — mostly retirees — thereby tending to
increase the Sharpe ratio. Constantinides, Donaldson, and Mehra (2002) get big risk
premiums via a similar outcome. Our mechanism, however, is different than theirs.
In our model the young don’t hold equity because they choose not to. In their model
the young don’t hold equity because they are not allowed to.

The remainder of our paper is organized as follows. Section 2 discusses related
literature. Section 3 formulates a life-cycle version of the Constantinides and Duffie
(1996) model and shows that retirement, to some extent, mitigates the model’s ability
to account for the equity premium puzzle. Section 4 formulates a model with capital
and non-degenerate trade in financial assets and examines its quantitative properties.
Section 5 provides an in depth analysis of some important economic properties of the
model and Section 6 concludes.

2 Related Work

A number of papers examine the quantitative implications of the Constantinides and
Duffie (1996) model for asset pricing. To understand how our paper fits in, it’s im-
portant to understand the nature of Constantinides-Duffie’s main result. They show
that any given collection of asset price processes are consistent with a heterogeneous
agent economy in which agents have ‘standard’ preferences and face idiosyncratic
shocks with a particular volatility process. Their model’s testable restrictions can
be thought of in two ways. First, because the economy admits the construction of
a representative agent, it restricts the joint behavior of aggregate consumption, as-

3Hump-shaped portfolio rules are (arguably) consistent with average portfolio behavior in the U.S.
(e.g., Amerkis and Zeldes (2000), Heaton and Lucas (2000)).

4Feature (ii) is inconsistent with high frequency movements in wages and stock returns. But at
lower frequencies it is both natural (i.e., it is a feature of most RBC models, like ours) as well as
empirically valid (see, for instance, Benzoni, Collin-Dufresne, and Goldstein (2004)).
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set returns and the cross-sectional variation in consumption. That is, conditional
on knowledge of the cross-sectional variance, the model’s first-order conditions can
be tested without individual-level data. Papers by Balduzzi and Yao (2000), Brav,
Constantinides, and Geczy (2002), Cogley (2002) Ramchand (1999) and Sarkissian
(2003) investigate these restrictions and find mixed evidence. Second, if one asks
what gives rise to the first-order conditions, the model restricts the joint behavior of
individual labor income, asset returns, and individual consumption. Most critical is
the requirement that labor income be a unit-root process with innovations which be-
come more volatile during aggregate downturns. Our paper, and its companion paper
Storesletten, Telmer, and Yaron (2004b), focus on these restrictions. The advantages
to doing so are both related to data — income is certainly easier to measure than
consumption — and the ability to understand how idiosyncratic risk interacts with
asset pricing at a structural level.

Krusell and Smith (1997) laid much of the groundwork for our paper in study-
ing the asset-pricing effects of idiosyncratic labor-market risk in models with capital.
Our results on self-insurance with aggregate capital are basically life-cycle versions of
results in their paper. They also demonstrate the limitations of the Constantinides-
Duffie framework as it relates to the distribution of financial wealth, a result which
is quite similar to our findings in a life-cycle context. An important distinction, how-
ever, is borrowing constraints. Krusell-Smith require extreme borrowing constraints
(essentially zero) in order to generate risk premiums, whereas, due primarily to life
cycle considerations and unit root shocks, borrowing constraints play no role in our
study.

Finally, our paper builds on a large body of work on asset pricing with heteroge-
neous agent models, including Aiyagari (1994), Aiyagari and Gertler (1991), Alvarez
and Jermann (2001), den Haan (1994), Gomes and Michaelides (2004), Guvenen
(2005), Heaton and Lucas (1996), Huggett (1993), Lucas (1994), Mankiw (1986),
Marcet and Singleton (1999), Rı́os-Rull (1994), Telmer (1993), Weil (1992), and
Zhang (1997). The stationary OLG framework we develop owes much to previous
work by Rı́os-Rull (1994), Huggett (1996) and Storesletten (2000).

3 An OLG Version of the Constantinides-Duffie Model

We begin with a life-cycle version of the Constantinides and Duffie (1996) model.
There are two asset markets, a one-period riskless bond and an equity claim to a
dividend process, Dt. The bond and equity prices are denoted qt and pt, respectively.
Equilibrium will be autarkic, so limiting attention to two assets is without loss of
generality.

The economy is populated by H overlapping generations of agents, indexed by
h = 1, 2, . . . ,H, with a continuum of agents in each generation. Agents are born with

4



one unit of equity and zero units of bonds. Preferences are

U(c) = Et

H
∑

h=1

βh(ch
it+h)1−γ/(1 − γ) , (1)

where ch
it is the consumption of the ith agent of age h at time t and β and γ denote

the discount factor and risk aversion coefficients, respectively.

Each agent receives nontradeable endowment income of yh
it,

yh
it = Gt exp(zh

it) − Dt , h = 1, 2, . . . , (H − 1) (2)

yH
it = Gt exp(zH

it ) − (pt + Dt) , (3)

where Gt is an aggregate shock (defined more explicitly below) and the idiosyncratic
shocks, zh

it, follow a unit root process with heteroskedastic innovations,

zh
it = zh−1

i,t−1 + ηit (4)

z0
i,t = 0 (5)

ηit ∼ N(−σ2
t /2 , σ2

t ) (6)

σ2
t = a + b log(Gt/Gt−1) . (7)

This structure is essentially identical to the Constantinides-Duffie formulation, the
only exception being that in the last period of life the amount pt + Dt is subtracted
from income, instead of just Dt. In either case the implication is that the amount of
aggregate financial wealth is zero. This property is critical for the construction of an
autarkic equilibrium. In Section 4 we relax this condition and allow for trade. The
incorporation of positive financial wealth will turn out to be a driving force in our
results.

The equilibrium of this model is autarky with individual consumption ch
it =

Gt exp(zh
it). Bond and equity prices satisfy

qt = β∗Etλ
−γ∗

t+1 (8)

pt = β∗Etλ
−γ∗

t+1 (pt+1 + Dt+1) , (9)

where λt+1 = Gt+1/Gt, β∗ = β exp(γ(1 + γ)a/2) and γ∗ = γ − bγ(1 + γ)/2 (see
Constantinides and Duffie (1996) for derivations). A cross-sectional law of large num-
bers implies that the variable Gt, and therefore the growth rate λt, coincides with
per-capita consumption, which we denote Ct (the reason for making a potential dis-
tinction will become apparent in the next section),

Ct =
1

H
Ẽt

H
∑

h=1

Gt exp(zh
it) = Gt ,
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where Ẽt is a cross-sectional expectations operator which conditions on time t ag-
gregate information. Since Ct = Gt, the pricing equations (8) and (9) represent a
representative agent equilibrium where the agent’s preference parameters (β∗, γ∗) are
amalgamations of actual preference parameters (β, γ) and technological parameters
(a, b). The main idea behind the Constantinides-Duffie model is that (i) because
β∗ > β, the model may resolve the ‘risk-free rate puzzle,’ and (ii) if b < 0 (i.e., the
volatility of idiosyncratic shocks is countercyclical) then ‘effective’ risk aversion ex-
ceeds actual risk aversion (γ∗ > γ), and the model may resolve the equity premium
puzzle.

3.1 Calibration

We now ask if the values of a and b implied by labor market data satisfy the above
requirements and help the model account for the equity premium. We use estimates
from Storesletten, Telmer, and Yaron (2004b) which are based on annual PSID data,
1969-1992. They show that (a) idiosyncratic shocks are highly persistent and that a
unit root is plausible, (b) the conditional standard deviation of idiosyncratic shocks
is large, averaging 17%, and (c) the conditional standard deviation is countercyclical,
increasing by roughly 68% from expansion to contraction (from 12.5% to 21.1%).
In Appendix A we show that these estimates map into values a = 0.0143 and b =
−0.1652.

We use a stochastic process for λt which is essentially the same as that of Mehra
and Prescott’s (1985): a two-state Markov chain with mean, standard deviation and
autocorrelation of aggregate consumption growth of 0.018, 0.033, and −0.14, respec-
tively (we use a slightly lower value for the standard deviation which matches our
dataset). We choose the ‘effective’ discount factor, β∗, to match the average U.S.
riskfree interest rate, and the effective risk aversion coefficient, γ∗, to match either
the U.S. Sharpe ratio or the unlevered U.S. equity premium. Table 1 reports the
implications for the ‘actual’ risk aversion coefficient, γ. To match the Sharpe ratio, a
value of γ∗ = 13.6 is required. This corresponds to an actual risk aversion coefficient
of γ = 7.8. To match the equity premium γ∗ = 15.42 is required, which corresponds
to γ = 8.6.5 To facilitate a direct comparison with the numerical results (shown
below) for an economy with trade, we also report the results for the case in which
actual risk aversion is 8. Time preference is characterized by β∗ = 1.140 (β = 0.69),
β∗ = 1.148 (β = 0.64), and β∗ = 1.142 (β = 0.68) respectively.

The Constantinides-Duffie model, then, is successful at what it sets out to do;
given a realistic parameterization for idiosyncratic risk, it accounts for the equity

5Cogley (2002) formulates an asset-pricing model with idiosyncratic risk (to individuals’ consump-
tion) and uses the empirical time-varying cross-sectional moments of consumption growth from the
Survey of Consumer Expenditures (CEX) to ask what level of risk aversion would be required to
account for the empirical equity premium. Interestingly, this approach delivers a risk aversion of 8
(assuming a plausible level of measurement error).
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premium without resorting to extreme values for risk aversion and/or negative time
preference. Along other dimensions, of course, the model is counterfactual. It gener-
ates excessive volatility in both risky and riskless asset returns and cannot account
for the ubiquitous rejections of Euler equation tests based on (8) and (9) (i.e., such
tests typically reject for all values of β∗ and γ∗). Constantinides and Duffie (1996)
prove that this can be rectified with an alternative process for the conditional vari-
ance σ2

t from equation (6). The remainder of our paper, however, focuses on a more
fundamental set of the model’s restrictions, those which involve age and risk sharing.

3.2 The Implications of Retirement

We now introduce retirees and ask to what extent they mitigate the model’s suc-
cess. There are two senses in which the process (2)–(7) does not capture retirement.
First, agents face idiosyncratic income shocks in all periods of life. Second, agents
receive income each period until death, thus obviating the need to save for retirement.
We begin by incorporating the first feature, which can be analyzed in the no-trade
environment. The second requires trade and is incorporated in Section 4.

We define a retired agent as one who does not receive an idiosyncratic shock
beyond some retirement age so that, for retirees, a = b = 0. Given this, equations (8)
and (9) no longer describe autarkic equilibrium prices. Marginal rates of substitution
(at autarky) are

workers: βEt(
Gt+1

Gt
)−γeγ(1+γ)a/2(

Gt+1

Gt
)γb(1+γ)/2 , (10)

retirees: βEt(
Gt+1

Gt
)−γ . (11)

Retirees differ from workers in two ways. First, with a > 0 the exponential term in
equation (10) is positive, implying that retirees discount future consumption more
than workers. Intuitively, the absence of idiosyncratic risk reduces their demand
for precautionary savings and they assign a lower price to a riskfree bond. Second, if
b < 0, retirees appear less risk averse than workers, assigning a relatively high value to
risky assets or, equivalently, demanding a relatively small risk premium. By removing
the countercyclical volatility from the retiree’s endowments we have effectively given
them a greater capacity to bear aggregate risk.

We can now do one of two things to characterize an equilibrium. We can allow
trade and solve for market clearing prices to replace equations (8) and (9). This would
involve a substitution of consumption from retirement toward the working years, and
an increased exposure to aggregate risk for retired individuals. Alternatively, we can
follow Constantinides and Duffie (1996) and characterize endowments which give rise
to a no-trade equilibrium, but subject to the constraint that retirees do not receive
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idiosyncratic shocks. The difference between these endowments and those in equations
(2) and (3) will be suggestive of what will characterize an equilibrium with trade.

A three-generation example, H = 3, will make the point. Generations 1 and 2
receive endowments according to equations (2)–(7). Generation 3 — the old agents
— receive

y3
it = ft Gt exp(z3

it) − (pt + Dt) , (12)

but with z3
it = z2

it (i.e., the innovation in equation (4) equals zero), and

ft = e−a(1+γ)/2
(

Gt

Gt−1

)−b(1+γ)/2

.

Given the endowment (12), the prices (8) and (9) once again support an autarkic
equilibrium. Relative to the original endowment, the old now receive less goods
(on average) with more aggregate risk, just as the above intuition suggests. What
has changed, however, is aggregate consumption. Assigning a population weight of
20 percent to the old generation (corresponding to the U.S. population), aggregate
consumption is

Ct = Ẽt

(

0.8[Gt exp(z1
it) + Gt exp(z2

it)] + 0.2ftGt exp(z3
it)
)

= Gt

(

0.8 + 0.2 e−a(1+γ)/2
(

Gt

Gt−1

)−b(1+γ)/2
)

, (13)

which, because we’ve added aggregate risk to the endowment of the old, can be
substantially more variable than Gt.

The prices (8) and (9) are now valid, but only in an economy with more variability
in aggregate consumption growth than the original. The above calibration (which
underlies Table 1) is therefore invalid. Aggregate consumption growth, as implied by
equation (13), now has a standard deviation of 4.2 percent, 27% larger (0.9 percentage
points) than the benchmark volatility of consumption growth. In this sense, adding
retirees implies that, without changing preferences, the model can only account for
asset prices with an unrealistically high amount of aggregate variability.

An alternative is to re-calibrate the process Gt/Gt−1 so that aggregate consump-
tion growth, Ct/Ct−1 from equation (13), has mean, standard deviation and auto-
correlation which match the U.S. data. Results are given in the 6th to 8th rows of
Table 1. Holding risk aversion fixed (row 6), we find that the required reduction in
the variability of aggregate consumption growth causes the model’s Sharpe ratio to
fall from 41.2 percent to 34.4 percent. The equity premium falls from percent to 3.4
percent to 2.3 percent. For the alternative calibration (row 8), the Sharpe ratio and
equity premium fall from 45.9 percent to 38.6 percent and 4.1 percent to 2.9 percent,
respectively.
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To summarize, retirement has the effect one might expect. Because retirees do not
face countercyclically heteroskedastic shocks — the driving force in the Constantinides-
Duffie model — they are less averse to bearing aggregate risk. An autarkic allocation
must therefore skew the aggregate risk toward the old, who are content to hold it
in return for a relatively low expected return. In this sense, the incorporation of
retirement resurrects the equity premium puzzle.

4 Models With Trade

The previous section emphasized the importance of how idiosyncratic shocks are dis-
tributed over the life cycle. Equally important is the distribution of what is being
shocked: the human wealth represented by the flow of income, yh

it. Human wealth
typically accounts for a large fraction of total wealth for young people and a small
fraction for older people. Given the nature of our question — How do shocks to
human wealth affect the valuation of financial wealth? — incorporating this seems
of first-order importance. It may also overturn the implication of the previous sec-
tion, which was driven by older agents bearing the lion’s share of the aggregate risk.
If a realistic human/financial wealth distribution reverses this, making the younger
agents who face the idiosyncratic risk instrumental in pricing the aggregate risk, the
incorporation of retirement may actually help the model to account for the equity
premium.

The major cost of incorporating a life-cycle wealth distribution is that, necessar-
ily, we must allow for trade (i.e., if nontradeable income is zero after retirement, the
young must save and the old must dissave). With several exceptions — Gertler (1999)
for example — this means using computational methods to analyze the model. The
benefits, however, are numerous. First, we can make the model more realistic along
certain dimensions which are important for calibration (e.g., the demographic struc-
ture). Second, a more realistic life-cycle distribution of human wealth will necessarily
imply a more realistic life-cycle distribution of financial wealth (recall that in the
Constantinides-Duffie model financial wealth equals zero). This is important because
financial wealth is the means with which agents accomplish buffer-stock savings and
self-insurance. Finally, the model will display partial risk-sharing behavior, even with
unit root idiosyncratic shocks. Partial risk sharing is an undeniable aspect of U.S.
data on income and consumption.

With all this in mind, we make the following changes to the framework of Section 3.

Financial markets.

With trade, the menu of assets is no longer innocuous. We now limit asset trade to
a riskless and a risky asset. The latter takes the form of ownership of an aggregate
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production technology. Agents rent capital and labor to constant-return-to-scale firm
which then splits its output between the two. Labor is supplied inelastically and, in
aggregate, is fixed at N . Denoting aggregate consumption, output and capital as Yt,
Ct and Kt respectively, the production technology is

Yt = ZtK
θ
t N1−θ (14)

Kt+1 = Yt − Ct + (1 − δt)Kt (15)

rt = θZtK
θ−1
t N1−θ − δt (16)

wt = (1 − θ)ZtK
θ
t N−θ, (17)

where rt is the return on capital (the risky asset), wt is the wage rate, θ is capital’s
share of output, Zt is an aggregate shock and δt is the depreciation rate on capital.
The depreciation rate is stochastic:

δt = δ + (1 − Zt)
s

Std(Zt)
, (18)

where δ controls the average and s is, approximately, the standard deviation of rt.
6

This production process delivers four key ingredients: (i) the model is tractable
(solving the analogous endowment economy is substantially more difficult), (ii) the
volatility of the return on equity can be calibrated realistically, (iii) the volatility
of aggregate consumption growth can be calibrated realistically, (iv) the return on
human capital — essentially the wage rate — can be substantially less volatile than
the return on equity. Each ingredient is critical for our question. The first two
are obvious.7 The third ensures that the aggregate part of the asset-pricing Euler
equations is realistic (i.e., see equations (8) and (9)), which is essential if we are to
isolate the incremental impact of idiosyncratic risk. The fourth is instrumental for
life-cycle portfolio choice. It determines which age cohorts hold equity in equilibrium
and, consequently, whether or not idiosyncratic risk is priced.

Endowments.

The endowment processes (2)–(7) are of a special form required to support an au-
tarkic outcome. Since this is no longer required, and because of the incorporation

6Greenwood, Hercowitz, and Huffman (1988) and Greenwood, Hercowitz, and Krusell (1997)
have used a similar production technology in a business cycle context. Boldrin, Christiano, and
Fisher (2001) have done so in an asset pricing context. Our technology is essentially a reduced-form
representation of, for instance, Greenwood, Hercowitz, and Krusell (1997), equation (B3).

7The tractability afforded by the production economy is due to the fact that the return on the
risky asset can be written as a simple function of the market-clearing level of aggregate capital. In
an endowment economy, in contrast, an separate stochastic process for the risky asset return must
be characterized. den Haan (1997) was, to our knowledge, the first to do the latter in a model with
two assets and a large number of agents.
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of production, we reformulate them as follows. First, to capture the fact that young
people have relatively little financial wealth relative to human wealth, we endow all
newborn agents with zero units of equity and zero units of bonds. Next, the non-
tradeable endowment now takes the form of labor efficiency units, not units of the
consumption good.8 At time t the ith working agent of age h is endowed with nh

it

units of labor which they supply inelastically. Retirees are agents for whom h exceeds
a retirement age H̄. They receive nh

it = 0. For workers,

log nh
it = κh + zh

i,t , (19)

where κh is used to characterize the cross-sectional distribution of mean income across
ages, and

zh
it = ρzh−1

i,t−1 + ηit , ηit ∼ N(0, σ2
t ) ,

with z0
it = 0. We use a two-state specification for σ2

t :

σ2
t = σ2

E if Z ≥ E(Z)

= σ2
C if Z < E(Z) .

Individual labor income now becomes the product of labor supplied and the wage
rate: yh

it = wtn
h
it.

9

With ρ = 1 this process is analogous to the Constantinides-Duffie process, (2)–(7).
The exceptions are that (i) income is now a share of the aggregate wage bill instead
of aggregate consumption, (ii) financial income is no longer ‘taxed’ at 100 percent
as in (2)–(7), thereby implying that aggregate financial wealth is zero, and (iii) the
variance of the innovations to zh

it is now a discrete function of the technological shock
Z, not a continuous function of aggregate consumption growth.

4.1 Equilibrium

The state of the economy is a pair, (Z,µ), where µ is a measure defined over an appro-
priate family of subsets of S = (H×Z ×A), H is the set of ages, H = {1, 2, . . . ,H},
Z is the product space of all possible idiosyncratic shocks, and A is the set of all
possible beginning-of-period wealth realizations. In words, µ is simply a distribution

8Strictly speaking, this is inconsistent with the empirical approach of Storesletten, Telmer, and
Yaron (2004b) which measured idiosyncratic risk using labor income, not hours worked. To reconcile
the two, we have generated simulated data on labor income from our model and estimated a labor
income process identical to that in Storesletten, Telmer, and Yaron (2004b). Owing in large part
to relatively low variability in the wage rate, wt, the results were very similar. In this sense, the
population moments for labor income in our model have been calibrated to sample moments on
non-financial income from the PSID.

9Our model assumes that bequests are zero. This provides focus on our main point: the effect of
intergenerational dispersion in the ratio of human to total wealth.
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of agents across ages, idiosyncratic shocks and ex-post wealth. The existence of ag-
gregate shocks implies that µ evolve stochastically over time (i.e., µ belongs to some
family of distributions over which there is defined yet another probability measure).
We use G to denote the law of motion of µ,

µ′ = G(µ,Z,Z ′) .

The bond price and the return on equity can now be written as time-invariant func-
tions q(µ,Z) and r(µ,Z). The wage rate is w(µ,Z). Omitting the (now redundant)
time t and individual i notation, the budget constraint for an agent of age h is,

ch + k′
h+1 + b′h+1q(µ,Z) ≤ ah + nhw(µ,Z) (20)

ah = khr(µ,Z) + bh

k′
H+1 ≥ 0

b′H+1 ≥ 0

where ah denotes beginning-of-period wealth, kh and bh are beginning-of-period cap-
ital and bond holdings, and k′

h+1 and b′h+1 are end-of-period holdings. We do not
impose any portfolio restrictions over and above restricting terminal wealth to be
non-negative (the third and fourth restriction).

Denoting the value function of an agent of age h as Vh, the choice problem can be
represented as,

Vh(µ,Z, zh, ah) = max
k′

h+1
,b′

h+1

{

u(ch)+

βE V ′
h+1

(

G(µ,Z,Z ′), Z ′, z′h+1, k
′
h+1r(G(µ,Z,Z ′), Z ′) + b′h+1

)}

, (21)

subject to equations (20). An equilibrium is defined as stationary price functions,
q(µ,Z), r(µ,Z) and w(µ,Z), a set of cohort-specific value functions and decision
rules, {Vh, k′

h+1, b
′
h+1}

H
h=1, and a law of motion for µ, µ′ = G(µ,Z,Z ′), such that r

and w satisfy equations (16) and (17), the bond market clears,
∫

S
b′(µ,Z, zh, ah) dµ = 0 ,

aggregate quantities result from individual decisions,

K(µ,Z) =

∫

S
kh(µ,Z, zh, ah) dµ

N =

∫

S
nh dµ ,

agents’ optimization problems are satisfied given the law of motion for (µ,Z) (so that
{Vh, k′

h+1, b
′
h+1}

H
h=1 satisfy problem (21)), and the law of motion, G, is consistent with

individual behavior. We characterize this equilibrium and solve the model using the
computational methods developed by Krusell and Smith (1997) and described further
in Appendix B.
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4.2 Quantitative Properties

Our model has three motives for trade which are absent in the Constantinides-Duffie
framework. First, retirees don’t face any idiosyncratic shocks but workers do. Second,
retirees don’t receive any income. Therefore, they must save for retirement by accu-
mulating financial assets while working and then sell these assets to younger agents as
they age. Third, if ρ < 1 working-age agents will self-insure against mean-reverting
idiosyncratic shocks by trading in financial markets. In what follows, we eliminate
the latter motive for trade and set ρ = 1. The reasons are that we’d like to empha-
size the first two motives — the life-cycle motives — and we’d like to maintain some
comparability with the Constantinides-Duffie model. Computational tractability is
also more manageable with unit-root shocks.10

We calibrate our economy as follows. The most important issues are listed here,
with additional details relegated to Appendix A.

1. Idiosyncratic risk, captured by equation (19), follows a unit-root process with
a regime-switching conditional variance function chosen to match the estimates
in Storesletten, Telmer, and Yaron (2004b). Their estimate of ρ is 0.952. We
scale down the variances in our model so that, with ρ = 1, the unconditional
variance over the life-cycle matches that implied by their ρ = 0.952 estimates.
This results in σE = 0.0768 and σC = 0.1298.

2. The discount rate β is chosen to ensure the capital-to-output ratio is set to 3.3.

3. The magnitude of the depreciation shocks in equation (18) is set so that the
standard deviation of aggregate consumption growth is 3.3 percent. We choose
this (as opposed to matching the variability of equity returns) because, just as
in representative agent models, realistic properties for aggregate consumption
are the primary disciplinary force on asset-pricing models with heterogeneity.
Equations (8) and (9) make this clear. The resulting implications for the stan-
dard deviation of equity returns is reported in Table 2. The volatility of the
theoretical equity premium is 6.8%, 3.2 percentage points less than the U.S.
sample value.

4. We examine economies with and without retirees. In both cases agents are
born with zero financial assets. In economies with retirees — those of age H̄ or
greater — retired agents receive zero labor income and comprise 20 percent of
the population.

10A previous version of the paper did examine mean-reverting shocks and found the asset-pricing
implications to be qualitatively similar for ρ = 0.92. This isn’t terribly surprising given that our
model features finite lives.
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Our main results are in Table 2. The first row reports the Sharpe ratio and the
mean and standard deviation of the risk-free and risky rates of return for an economy
without retirement. This economy is analogous to the no-retirement Constantinides-
Duffie economy described in Table 1. The main difference, however, is that aggregate
financial capital is positive in our economy but zero in the Constantinides-Duffie
economy. The impact is substantial. The Sharpe ratio falls from 42.1 to 30.9. Why?
Because positive aggregate capital permits self-insurance behavior: the accumulation
and decumulation of a stock of precautionary savings in the face of good and bad
idiosyncratic shocks, implying that consumption responds less than one-for-one to an
earnings shock. Unlike the Constantinides-Duffie model, agents in our model exhibit
self-insurance behavior even with unit-root shocks. This is described further in Section
5.2. For now, what’s important is that self-insurance behavior mitigates exposure
to idiosyncratic shocks, thereby mitigating exposure to CCV risk and reducing the
Sharpe ratio.

The second row of Table 2 shows what happens when retirement in introduced.
Relative to the no-retirement economy, the Sharpe ratio increases slightly, from 30.9
to 32.6. This is surprising in light of Section 3.2, where retirement resulted in a
substantial decrease in the Sharpe ratio. What’s going on is, again, driven by the
existence of aggregate capital. To understand this, see Figure 1 which plots the
age-profile of financial wealth. The figure shows that young agents in the economy
with retirement accumulate wealth more slowly than those in the economy without
retirement. That is, retirement induces a distributional effect which shifts capital-
holdings toward older agents. This tends to increase the Sharpe ratio since it reduces
the ability of young agents to self-insure and increases their exposure to idiosyncratic
shocks and CCV risk. We substantiate this interpretation further in Section 5.

Why do young agents save less when they know they will receive less income
when they are old? At first blush, this seems a contradiction. The answer is related
to how we calibrate our models. In order to make sensible comparisons, we insist
that, in all models, the capital-output ratio is equal to 3.3. This means that in
an economy with retirees there must be less aggregate capital. The reason is that
retirement implies less labor supply. Since holding fixed the capital-output ratio is
equivalent to holding fixed the capital-labor ratio, retirement must also imply less
aggregate capital. We accomplish this by lowering the discount factor from 0.98 to
0.80 (see Table 1). The answer to the question, then — Why do young agents save
less? — is driven by a general equilibrium effect. We want to understand the effects of
retirement by comparing economies with similar amounts of capital relative to output
or, equivalently, similar rates of return. Ceteris paribus, introducing retirement will
decrease the rate of return. Therefore, we undo this by lowering the discount factor.
This has the desired effect on aggregate capital and the rate of return. It also has
an interesting distributional effect in that more of the ownership of aggregate capital
shifts towards the old.
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5 Explaining the economic forces at work

The above interpretations of our results might seem like story telling. This section
attempts to do what all good computational economics should do: substantiate the
stories by describing other aspects of the solution as well as supplementary exper-
iments. We begin by describing consumption allocations, followed by the portfolio
rules which support them.

There are three main economic effects at work:

1. Self-insurance behavior.

2. Intergenerational sharing of aggregate risk.

3. Life-cycle distribution of aggregate capital

The first two decrease the Sharpe ratio whereas the third increases it. In our calibra-
tion the first dominates and the second and the third are basically offsetting.

More specifically, the first effect echoes the discussion in Section 4.2. That is, a
key feature of our model is the existence of aggregate capital. Unlike the autarkic
Constantinides-Duffie economy of Section 3.2, aggregate capital induces imperfect
risk sharing, even with unit-root shocks. This mitigates the effect of idiosyncratic
risk and reduces the Sharpe ratio. A number of previous papers have reached similar
conclusions — most notable for our setup is Krusell and Smith (1997). Section 5.2,
below, provides further details on the imperfect-risk-sharing properties of our model
and compares them to U.S. data.

To understand the second effect, consider Figure 2 which plots an age-dependent
measure of ‘aggregate risk bearing:’

Cov

(

Rt+1 ,
ch+1,t+1

ch,t

)

.

The essential point of Section 3.2 was that retirement causes this measure to increase
with age. That is, non-traded CCV risk for workers means that retired agents have
a comparative advantage in aggregate risk-bearing. In equilibrium, therefore, their
consumption covaries more with aggregate variables such as the equity return. A
simple calculation confirms this. For γ = 8, using the calibration from Section 3.2,
the above covariance is larger for retirees than for workers by a factor of −b(1+γ)/2 =
1.75.

Figure 2 shows that a similar mechanism is at work in our model with capital.
The three lines in the figure correspond to an economy without retirement, with re-
tirement, and with retirement and complete markets. Consider first the distinction
between complete and incomplete markets, with retirement. With complete markets
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aggregate risk-bearing is uniform across age. With incomplete markets it increases,
just as in the Constantinides-Duffie model with retirement. This, then, makes precise
what we mean by ‘idiosyncratic risk inhibiting the intergenerational sharing of ag-
gregate risk.’ Imperfectly-pooled idiosyncratic shocks cause the sharing of aggregate
shocks to depart from the first-best outcome. The resulting asset-pricing effects are
the central point of our paper. Table 2 shows that the Sharpe ratio in the complete-
markets economy is 25% compared to 33% in our benchmark economy.

Consider next the effect of retirement, with incomplete markets. Figure 2 shows
that the allocation with retirement represents a shift of aggregate risk-bearing from
the young, toward the old. This mirrors Section 3.2. There, the effect on the Sharpe
ratio was unambiguously negative. Here, however, Table 2 shows that the Sharpe
ratio increases slightly. Why? The answer is driven by the last of the above three
economic forces, the life-cycle distribution of aggregate capital.

The third effect is described by Figure 3. We plot the age-dependent variability
of consumption growth, a measure of self-insurance behavior which is very important
for asset pricing. The graph shows that, with retirement, the young face substantially
higher consumption variability than without. This is because the reduction in aggre-
gate capital held by the young — recall Figure 1 — mitigates the extent to which the
young can self-insure. This is what we referred to above as a ‘distributional effect.’
Retirement induces less capital-holding among the young, which increases their ex-
posure to CCV risk, which tends to increase the Sharpe ratio. The small net increase
in the Sharpe ratio in Table 2 indicates that this distributional effect dominates the
effect of enhanced intergenerational risk sharing documented in Figure 2, but only
slightly. The two effects are basically offsetting.

5.1 Portfolio behavior

Now that we understand the distribution of aggregate risk in consumption, we can
explain the portfolio rules which support it. Figures 4 and 5 plot the portfolio levels
and weights, respectively, for both complete and incomplete market economies. We
also find it useful to report some results for homoskedastic economies: incomplete-
market economies with idiosyncratic risk but without CCV risk.

We start with complete markets. The distinguishing feature is that consumption
growth rates across agents are equated with the aggregate consumption growth rate.
However, the supporting portfolio policies differ because agents of different ages have
different amounts of human and financial capital. Consider first the retirees. They
hold diversified portfolios of stocks and bonds. The average share of stocks for a 70-
year old, for instance, is about 1/2. The reason is that stock returns are much more
volatile than aggregate consumption growth (7.4% versus 3.3%). Retirees have zero
labor income, so, in order to replicate aggregate consumption risk, they hold lots of
their wealth in bonds.
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Consider next the relatively old workers. They are different from retirees in that
they still have labor income. They also hold more of their financial wealth in stocks.
The reason is that, similar to the Bodie, Merton, and Samuelson (1992) (BMS) model,
labor income has bond-like properties. In BMS this means that labor income is
deterministic. Not so in our model. Labor income is risky. In fact, it is perfectly
correlated with stock returns (like in most RBC-style models). However, it is also a
lot less volatile because stock returns bear the brunt of the depreciation-rate shocks
from equation (18). The upshot is the same mechanism as in BMS; older workers
hold more stock than retirees because their labor income serves as a partial hedge
against their stock portfolio. See Figures 4 and 5

Things change, however, for young workers. They have negative financial wealth
and, as a result, the youngest agents in the complete-market economy actually short-
sell stocks. The result is a hump-shaped portfolio profile over the entire life-cycle.
What drives this, vis-a-vis BMS, is a combination of negative financial wealth and
risky wages. Average wage rates are risky and perfectly correlated with stock returns.
With negative financial wealth it is as if the agent is levered in aggregate risk.11

Hence, by shorting stocks, young agents reduce their exposure to aggregate risk, thus
implementing the complete-market allocation.

We can now describe behavior in the incomplete market, CCV economy. The
key to understanding it is understanding how its distribution of aggregate risk differs
from the complete-market economy, and how differences in portfolio rules implement
this. Recall that in Figure 2 aggregate risk in the CCV economy is concentrated on
the old. In the complete-market economy it is uniformly distributed. Consequently,
going from complete markets to CCV, we should see stock holdings shifted from the
young to the old. This implication is clearly borne out in Figure 4 where the stock
profile of the CCV economy is, for the young, shifted to the right. All agents younger
then 55, in the CCV economy, hold less stock and more bonds than their complete-
market counterparts (after age 55 the relationship is reversed). Similarly, Figure 5
shows that after 55, the share of stocks is higher in the CCV economy than in the
complete-market economy.

The resulting hump-shaped pattern in equity ownership in the CCV economy (see
Figure 5) is broadly consistent with U.S. data and has been the focus of recent work
by Amerkis and Zeldes (2000) and Heaton and Lucas (2000). Brown (1990) shows
that non-tradeable labor income can generate hump-shaped portfolio rules in age, and
Amerkis and Zeldes (2000) discuss a similar phenomenon.

11Consider, for example, a worker who maintains a large debt, invested in bonds. If consumption
equals wages net of the deterministic interest rate payments, consumption will be more volatile than
wages. With sufficiently large debt, the agent’s consumption will be more volatile than aggregate
consumption, so she would want to reduce her exposure to aggregate risk. Consequently, the agent
would short stocks as an insurance against aggregate risk: shorting stocks implies that in good (bad)
times, when earnings growth is large (small), stock repayment is large (small).
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5.2 Risk Sharing

A counterfactual implication of the Constantinides and Duffie (1996) model is that the
equilibrium features no risk sharing while the bulk of the existing evidence suggests
that partial risk sharing is a better characterization of reality. This seems important
for the question at hand, which essentially asks how idiosyncratic consumption risk
affects the market price of risk. Surely the magnitude of the consumption risk which
agents face — a synonym for the degree of partial risk sharing — is relevant for this
question?

An advantage of the life-cycle model is that, even with unit root shocks, allocations
exhibit partial risk sharing. The reason involves the way in which the life-cycle savings
interacts with ‘buffer-stock savings:’ the savings reaction to an unexpected shock. In
our model, provided that financial wealth is positive, the marginal propensity to save
out of current income is increasing in the level of current income but decreasing in the
level of wealth. The implication is that, in spite of being characterized by unit-root
shocks, agents in our economy are able to partially smooth consumption (i.e., achieve
some self-insurance).

One measure of self-insurance behavior is the volatility of consumption relative to
that of income. In our model, with the exception of the youngest, the cross-sectional
variance in consumption is less than that of income. Averaged over age, consumption
is roughly 10 percent less variable (in terms of the standard deviation). In U.S.
data, this value is at least 35 percent (see Deaton and Paxson (1994), Storesletten,
Telmer, and Yaron (2004a), or Heathcote, Storesletten, and Violante (2005)), so, by
this metric, our model exhibits too little risk sharing. An alternative — one which is
more directly related to the essence of risk sharing — is the cross-sectional volatility
of consumption growth, reported in Figure 3. In this case, we see a larger difference
between our model and the autarkic outcome. As shown, autarky implies that, for
workers, the graph is flat at 0.107. Our model features a monotonically decreasing
graph, starting at roughly autarky and falling to near zero. The main reason is what
we’ve emphasized above: a decreasing ratio of human to total capital and the resulting
mitigation of the impact of idiosyncratic shocks. Risk sharing behavior is yet another
dimension of our model for which this ratio is the main economic force at work.

5.3 Effect of Risk Aversion

Lowering risk aversion to 3 obviously lowers the Sharpe ratio and also the contribution
of CCV-risk to the Sharpe ratio (over and above the Sharpe ratio with complete
markets). However, the qualitative findings discussed above and documented in the
figures (which all pertain to economies with a risk aversion of 8), remain unchanged
with a risk aversion of 3.
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6 Conclusions

Our main question is whether idiosyncratic labor-market risk matters for the pricing
of aggregate risk. We emphasize the importance of the life cycle and of capital ac-
cumulation. A priori, it seemed that both would reduce the ability of idiosyncratic
risk to account for the equity premium puzzle. We’ve learned that this isn’t quite
right. Although the CCV effect first pointed out by Mankiw becomes diminished, it
remains important. The Sharpe ratio in our model is halfway between the observed
U.S. value of 41% and the complete-markets value of 25%. What turns out to be
critical is a realistic calibration of the level of aggregate capital. We make this clear
by showing that in an economy without aggregate capital — our OLG version of the
Constantinides-Duffie model — life-cycle effects unambiguously reduce the Sharpe ra-
tio. Capital changes this. Depending on the amount of it, life-cycle effects can either
increase or decrease the Sharpe ratio. Our calibration results in a marginal increase.
Getting the amount of aggregate capital right makes a big difference in quantitatively
assessing the impact of idiosyncratic risk.

What else have we learned about the life-cycle and idiosyncratic risk? Mankiw’s
main idea was that there is an important interaction between idiosyncratic and ag-
gregate shocks. We show that life-cycle effects generate a further (endogenous) inter-
action which relates to allocations. This is most evident in risk-sharing allocations.
Idiosyncratic risk is concentrated on the young and is difficult to transfer across
generations. Aggregate risk is not. But the former can interfere with the latter.
The existence of idiosyncratic risk can inhibit the intergenerational sharing of aggre-
gate risk. We demonstrate this by comparing the consumption allocations between
our incomplete-markets model and its complete-markets counterpart. With complete
markets, aggregate risk sharing across generations is uniform. With incomplete mar-
kets old agents bear more aggregate risk than young agents. To borrow from the
title of Mankiw’s paper, our model features a “concentration of aggregate risk” on a
subset of the population. We show that this increases the model’s Sharpe ratio.

These risk-sharing allocations are supported by portfolio allocations. Like Bodie,
Merton, and Samuelson (1992), portfolio choice in our model is driven by life-cycle
variation in the ratio of human wealth to financial wealth. What’s different, however,
is idiosyncratic labor-market risk which affects the former but not the latter. There
are two main forces at work. First, as an agent ages, idiosyncratic risk becomes less
important to them. This happens both because they face fewer (persistent) shocks in
the future and because human wealth declines as a fraction of total wealth. The CCV
effect, therefore, becomes less important with age and tolerance for equity-holding
increases. Second, because equity returns are substantially more volatile than the
wage rate, age also brings with it an increased exposure to aggregate shocks, because
an increasing share of an agent’s income derives from financial assets instead of human
wealth. This effect eventually counteracts the first effect and, late in the working life,
tolerance for equity-holding begins to decrease with age. Taken together, the two
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effects imply hump-shaped portfolio rules. Young agents hold zero equity, retired
agents hold diversified portfolios of equity and bonds, and middle-aged agents hold
levered equity, issuing bonds to both the young and the old. In our model, hump-
shaped portfolio rules represent the (imperfect) intergenerational sharing of aggregate
risk.

Constantinides, Donaldson, and Mehra (2002) (CDM) also stress the importance
of life-cycle effects for the equity premium. Like us, an important feature of their
model is that young agents hold zero equity, thereby concentrating aggregate risk on
older agents. The reasons, however, are fundamentally different than in our frame-
work, which gives rise to stark, testable restrictions between the two. Our model
is distinguished by idiosyncratic risk within generations. A young agent’s choice to
avoid equity is a portfolio allocation decision: equity is too risky, so they choose not
to hold any. In the CDM framework, where heterogeneity only exists across genera-
tions, the driving force is consumption smoothing and how it interacts with borrowing
constraints. Young agents receive a relatively meager endowment, cannot borrow or
short sell equity, and therefore choose not to hold any assets whatsoever. The two
models, therefore, offer starkly different interpretations of why one might see a young
household choose not to hold equity. The testable restrictions are related to overall
savings behavior and how important the precautionary motive is. In our model the
average young household is a net saver during the first third of their lives. That is,
the precautionary motive dominates the life cycle motive, and the decision to avoid
equity is driven by risk, in our case an avoidance of CCV risk. The CDM framework
is consistent with the same average, young household not accumulating any assets
but, in contrast, viewing equity (in a shadow value sense) as an attractive invest-
ment. Which of these interpretations is more important — it seems clear to us that
the world features aspects of each of them — is something we leave to future work.

20



References

Aiyagari, S. R., (1994), Uninsured idiosyncratic risk and aggregate saving, Quarterly
Journal of Economics 109, 659–684.

Aiyagari, S. R. and M. Gertler, (1991), Asset returns with transactions costs and
uninsured individual risk, Journal of Monetary Economics 27, 311–331.

Alvarez, F. and U. Jermann, (2001), Quantitative asset pricing implications of endo-
geneous solvency constraints, Review of Financial Studies 14, 1117–1152.

Amerkis, J. and S. P. Zeldes, (2000), How do household portfolio shares vary with
age?, Unpublished manuscript, Columbia University.

Balduzzi, P. and T. Yao, (2000), Does heterogeneity matter for asset pricing, Unpub-
lished manuscript, Boston College.

Benzoni, L., P. Collin-Dufresne, and R. Goldstein, (2004), Portfolio choice over the
life-cycle in the presence of ’trickle down’ labor income, Working paper, Univer-
sity of Minnesota.

Bodie, Z., R. C. Merton, and W. F. Samuelson, (1992), Labor supply flexibility and
portfolio choice in a life cycle model, Journal of Economic Dynamics and Control
16, 427–49.

Boldrin, M., L. J. Christiano, and J. D. Fisher, (2001), Habit persistence, asset returns
and the business cycle, American Economic Review 91, 149–166.

Brav, A., G. M. Constantinides, and C. Geczy, (2002), Asset pricing with hetero-
geneous consumers and limited participation: Empirical evidence, Journal of
Political Economy 110, 793–824.

Brown, D. P., (1990), Age clienteles induced by liquidity constraints, International
Economic Review 31, 891–911.

Cogley, T., (2002), Idiosyncratic risk and the equity premium: Evidence from the
consumer expenditure survey, Journal of Monetary Economics 29, 309–334.

Constantinides, G. M., J. B. Donaldson, and R. Mehra, (2002), Junior can’t borrow: a
new perspective on the equity premium puzzle, Quarterly Journal of Economics
117, 269–296.

Constantinides, G. M. and D. Duffie, (1996), Asset pricing with heterogeneous con-
sumers, Journal of Political Economy 104, 219–240.

Deaton, A. and C. Paxson, (1994), Intertepmoral choice and inequality, Journal of
Political Economy 102, 437–467.

21



den Haan, W., (1994), Heterogeneity, aggregate uncertainty and the short term in-
terest rate: a case study of two solution techniques, Working paper, University
of California at San Diego.

den Haan, W., (1997), Solving dynamic models with aggregate shocks and heteroge-
neous agents, Macroeconomic Dynamics 1, 355–386.

Gertler, M., (1999), Government debt and social security in a life cycle economy,
Carnegie Rochester Conferance Series on Public Policy 50, 61–110.

Gomes, F. and A. Michaelides, (2004), Asset pricing with limited risk sharing and
heterogeneous agents, Working paper, LBS.

Graham, J. R., (2000), How big are the tax benefits of debt?, Journal of Finance 55,
1901–1941.

Greenwood, J., Z. Hercowitz, and G. W. Huffman, (1988), Investment, capacity uti-
lization and the business cycle, American Economic Review 78, 402–18.

Greenwood, J., Z. Hercowitz, and P. Krusell, (1997), Long-run implications of
investment-specific technological change, American Economic Review 87, 342–
362.

Guvenen, F., (2005), A parsimonious macroeconomic model for asset pricing:
Habit formation or cross-sectional heterogeneity?, Working Paper, University
of Rochester.

Heathcote, J., K. Storesletten, and G. L. Violante, (2005), Two views of inequality
over the life-cycle, Journal of the European Economic Association (Papers and
Proceedings) 3 (2-3), 543–552.

Heaton, J. and D. J. Lucas, (1996), Evaluating the effects of incomplete markets on
risk sharing and asset pricing, Journal of Political Economy 104, 443–487.

Heaton, J. and D. J. Lucas, (2000), Portfolio choice and asset prices; the importance
of entrepreneurial risk, Journal of Finance 55, 1163–1198.

Huggett, M., (1993), The risk free rate in heterogeneous-agents, incomplete insurance
economies, Journal of Economic Dynamics and Control 17, 953–969.

Huggett, M., (1996), Wealth distribution in life-cycle economies, Journal of Monetary
Economics 38, 469–494.

Krueger, D. and F. Perri, (2006), Does income inequality lead to consumption in-
equality? Evidence and theory, Review of Financial Studies 73, 163–193.

Krusell, P. and A. A. Smith, (1997), Income and wealth heterogeneity, portfolio choice,
and equilibrium asset returns, Macroeconomic Dynamics 1, 387–422.

22



Krusell, P. and A. A. Smith, (1998), Income and wealth heterogeneity in the macro-
economy, Journal of Political Economy 106, 867–896.

Lucas, D. J., (1994), Asset pricing with undiversifiable risk and short sales constraints:
Deepening the equity premium puzzle, Journal of Monetary Economics 34, 325–
341.

Mankiw, N. G., (1986), The equity premium and the concentration of aggregate
shocks, Journal of Financial Economics 17, 211–219.

Marcet, A. and K. J. Singleton, (1999), Equilibrium assets prices and savings of
heterogeneous agents in the presence of portfolio constraints, Macroeconomic
Dynamics 3, 243–277.

Mehra, R. and E. Prescott, (1985), The equity puzzle, Journal of Monetary Economics
15, 145–61.

Ramchand, L., (1999), Asset pricing in international markets in the context of agent
heterogeneity and market incompleteness, Journal of International Money and
Finance 18, 871–890.

Rı́os-Rull, J. V., (1994), On the quantitative importance of market completeness,
Journal of Monetary Economics 34, 463–496.

Sarkissian, S., (2003), Incomplete consumption risk sharing and currency risk premi-
ums, Review of Financial Studies 16, 983–1005.

Storesletten, K., (2000), Sustaining fiscal policy through immigration, Journal of
Political Economy 108, 300–323.

Storesletten, K., C. I. Telmer, and A. Yaron, (2004a), Consumption and risk sharing
over the life cycle, Journal of Monetary Economics 59(3), 609–633.

Storesletten, K., C. I. Telmer, and A. Yaron, (2004b), Cyclical dynamics in idiosyn-
cratic labor market risk, Journal of Political Economy 112(3), 695–717.

Storesletten, K., C. I. Telmer, and A. Yaron, (2007), Asset Prices and Intergener-
ational Risk Sharing: The Role of Idiosyncratic Earnings Shocks, forthcoming,
Handbook of Investments: The Equity Risk Premium, editor Rajnish Mehra,
North Holland, Amsterdam.

Telmer, C. I., (1993), Asset pricing puzzles and incomplete markets, Journal of Fi-
nance 48, 1803–1832.

Weil, P., (1992), Equilibrium asset prices with undiversifiable labor income risk, Jour-
nal of Economic Dynamics and Control 16, 769–790.

23



Zhang, H., (1997), Endogenous borrowing constraints with incomplete markets, Jour-
nal of Finance 52, 2187–2209.

24



A Calibration Appendix

This appendix first describes the calibration of the no-trade (Constantinides and
Duffie (1996)) economies in Section 3 and Table 1, and then goes on to describe
the calibration of the economies with trade, presented in Section 4 and Table 2. It
also demonstrates the sense in which our specification for countercyclical volatility
— heteroskedasticity in the innovations to the idiosyncratic component of log income
— is consistent with the approach used by previous authors (e.g., Heaton and Lucas
(1996), Constantinides and Duffie (1996)). In each case the cross sectional variance
which matters turns out to be the variance of the change in the log of an individual’s
share of income and/or consumption.

Calibration of No-Trade Economies

Aggregate consumption growth follows an i.i.d two-state Markov chain, with a mean
growth of 1.8% and standard deviation of 3.3%. This is essentially the process used
in Mehra and Prescott (1985) with slightly more conservative volatility. The Con-
stantinides and Duffie (1996) model is then ‘calibrated’ via a re-interpretation of the
preference parameters of the Mehra and Prescott (1985) representative agent. Recall
that we use β and γ to denote an individual agent’s utility discount factor and risk
aversion parameters, respectively. Constantinides and Duffie (1996) construct a rep-
resentative agent (their equation (16)) whose rate of time preference and coefficient
of relative risk aversion are (using our notation),

− log β∗ = − log(β) −
γ(γ + 1)

2
a , (22)

and

γ∗ = γ −
γ(γ + 1)

2
b , (23)

respectively. In these formulae, the parameters a and b relate the cross sectional
variance in the change of the log of individual i’s share of aggregate consumption (y2

t+1,
using Constantinides-Duffie’s notation) to the growth rate of aggregate consumption:

Var(log
ci,t+1/ct+1

cit/ct
) = a + b log

ct+1

ct
. (24)

All that we require, therefore, are the numerical values for a and b which are implied
by our PSID-based estimates in Table 1 of Storesletten, Telmer, and Yaron (2004b).

Our estimates are based on income, yit. Because the Constantinides-Duffie model
is autarkic, we can interpret these estimates as pertaining to individual consumption,
cit. Balduzzi and Yao (2000), Brav, Constantinides, and Geczy (2002), and Cogley
(2002) take the alternative route and use microeconomic consumption data. While
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their results are generally supportive of the model, they each point out serious data
problems associated with using consumption data. Income data is advantageous is
this sense. In addition, our objective is just as much relative as it is absolute. That is,
consumption is endogenous in the model of Section 4, driven by risk sharing behavior
and the exogenous process for idiosyncratic income risk. What Table 1 asks is, “what
would the Constantinides-Duffie economy look like, were its agents to be endowed
with idiosyncratic risk of a similar magnitude?” Also, “how does our model measure
up, in spite of its non-degenerate (and more realistic) risk sharing technology?” Using
income data seems appropriate in this context. For the remainder of this appendix
we set cit = yit.

We need to establish the relationship between our specification for idiosyncratic
shocks and the log-shares of aggregate consumption in equation (24). Denote indi-
vidual i′s share at time t as γit, so that,

log γit ≡ log cit − log Ẽtcit ,

where the notation Ẽt(·) denotes the cross-sectional mean at date t, so that Ẽtcit is
date t, per-capita aggregate consumption. The empirical specification in Storesletten,
Telmer, and Yaron (2004b) identifies an idiosyncratic shock as the residual from a log
regression with year-dummy variables:

zit = log cit − Ẽt log cit ,

which have a cross-sectional mean of zero, by construction, and a sample mean of
zero, by least squares. The difference between our specification and the log-share
specification is, therefore,

log γit − zit = Ẽt log cit − log Ẽtcit

= Ẽt log γit − log Ẽtγit .

The share, γit, is defined so that its cross-sectional mean is always unity. The second
term is therefore zero. For the first term, note that in both our economy and the
statistical model underlying our estimates, the cross sectional distribution is log nor-
mal, conditional on knowledge of current and past aggregate shocks. If some random
variable x is log normal and E(x) = 1, then E(log x) = −Var(log x)/2. As a result,

log γit − zit = −
1

2
Ṽt(log γit) ,

where Ṽt denotes the cross-sectional variance operator. Because lives are finite in
our model, and because we interpret data as being generated by finite processes, this
cross-sectional variance will always be well defined, irrespective whether or not the
shocks are unit root processes.
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The quantity of interest in equation (24) can now be written as,

log
ci,t+1/ct+1

cit/ct
≡ log γi,t+1 − log γit

= zi,t+1 − zit −
1

2

(

Ṽt+1(log γi,t+1) − Ṽt(log γit)
)

(25)

The term in parentheses — the difference in the variances — does not vary in the
cross section. Consequently, application of the cross-sectional variance operator to
both sides of equation (25) implies,

Ṽt+1

(

log
ci,t+1/ct+1

cit/ct

)

= Ṽt+1 (zi,t+1 − zit) .

The process underlying our estimates is

zi,t+1 − zit = (1 − ρ)zit + ηi,t+1 ,

where the variance of ηi,t+1 depends on the aggregate shock. For values of ρ close to
unity the variance of changes in zit is approximately equal to the variance of ηi,t+1.
The left side of equation (24) is, therefore, approximately equal to the variance of
innovations, ηi,t+1,

Ṽt+1

(

log
ci,t+1/ct+1

cit/ct

)

≈ Ṽt+1

(

ηi,t+1

)

.

For unit root shocks — which we assume for most of Section 4, this holds exactly.
The estimates of σE and σC in Storesletten, Telmer, and Yaron (2004b), Table 1, are
therefore sufficient to calibrate the Constantinides-Duffie model.

All that remains is to map our estimates into numerical values for a and b from
equation (24). Since aggregate consumption growth is calibrated to be an i.i.d process
with a mean and standard deviation of 1.8% and 3.3% respectively, — aggregate
consumption growth, the variable on the right hand side of equation (24), takes on
only two values, 5.1% and -1.5%. Computing the parameters a and b, then simply
involves two linear equations:

σ2
E = a + 0.051b

σ2
C = a − 0.015b ,

Storesletten, Telmer, and Yaron’s (2004b) estimates are σ2
E = 0.0156 and σ2

C =
0.0445. These estimates, however, are associated with ρ = .952. For our unit root
economies, we scale them down so as to maintain the same average unconditional
variance (across age). This results in σ2

E = 0.0059 and σ2
C = 0.0168. The resulting

values for a and b are a = 0.0143 and b = −0.1652.
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Calibration of Models with Trade

The models in Section 4 are calibrated as follows. A period is interpreted as one
year. The aggregate shock in equation (16) follows a first-order Markov chain with
values Z ∈ {0.98, 1.02}. The unconditional probabilities are 0.5 and the transition
probabilities are such that the probability of remaining in the current state is 2/3 (so
that the expected duration of a ‘business cycle’ is 6 years). Capital’s share of output,
θ from equation (16), is set to 0.40, and the average annual depreciation rate, δ, is
set to match the average riskfree rate of 1.3 percent. This results in δ = 8.8%. The
parameter s is chosen so that the standard deviation of the risky return, rt, is 10
percent.

Risk aversion is set to 8 so that the no-trade economy matches the Sharpe ratio
(see Table 1). The discount factor β is chosen so that the average capital-output ratio
is equal to 3.3.

The demographic structure is calibrated to correspond to several simple properties
of the U.S. work force. The annual population growth is 1%. Agents are ‘born’ at age
22, retire at age 65 and are dead by age 85. ‘Retirement’ is defined as having one’s
labor income drop to zero and having to finance consumption from an existing stock
of assets.

The following Table illustrates the aggregate properties of our economy. As in
Mehra and Prescott (1985), the sample starts in 1929.

Panel A: Population Moments of HP-filtered data, Theoretical Economy

Std Dev Autocorrelation Correlation with Output

Output 0.037 0.84 1.00
Investment 0.056 0.69 0.79
Consumption 0.037 0.64 0.90

Panel B: Sample Moments of HP-filtered data, U.S. Economy, 1929-2005

Std Dev Autocorrelation Correlation with Output

Output 0.073 0.616 1.000
Investment 0.298 0.451 0.815
Consumption 0.036 0.697 0.887

U.S. sample moments are based on annual NIPA data, 1929-2005. Theoretical moments

are computed as sample averages of a 20,000 periods long simulated time series. Both
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the empirical and the simulated data are filtered using an HP-smoothing parameter of

400.

The calibration of our model is focused on asset pricing, targeting the variability
of consumption and the variability of the return on equity. However, as is clear from
this table, the production side of our economy is not too unrealistic. This holds true
even if we were to focus on growth rates. Note that the large empirical volatility of
investments is due to the sample incorporating the Great Depression.

B Computational Appendix

Our general solution strategy follows the work of den Haan (1994), den Haan (1997)
and, in particular, Krusell and Smith (1997) and Krusell and Smith (1998). The
crucial step is the specification of a finite dimensional vector to represent the law of
motion for µ. Given this, each individual faces a finite-horizon dynamic programming
problem. The essence of the fixed point problem is the consistency of the law of motion
for µ with the law of motion implied by individual decisions. More specifically, our
algorithm involves the following steps.

Algorithm

1. Approximate the distribution of agents, µ, with a finite number of moments
or statistics, µm. The idea is to capture the information relevant for portfolio
decisions in an efficient way as possible. Natural candidates are various moments
of individual wealth and bond holdings. Instead, we use aggregate capital and
the conditional expected equity premium ξt as moments.12 Note that ξt is in an
agent’s period t information set. The seemingly unconventional state variable –
a conditional price – captures in an efficient way the price information subsumed
in a range of equity and bond-holding moments.

2. To solve agent’s dynamic programming problem it is necessary to forecast both
µ′

m and ξ′. We approximate the agents’ expectations for the law of motion of
µm and ξ by

(µ′
m, ξ′) = Ĝ(µm, ξ, Z, Z ′) = A(Z,Z ′) × (µm, ξ) (26)

where A(Z,Z ′) is an m × (m + 1) matrix (conditional on Z and Z ′). The
aggregate shock Z can take on two values, Z ∈ {Z, Z̄}, so each element in the

12The conditional expected equity premium is defined as ξt ≡ Et{Rt+1} − q−1

t , where Rt+1 is the
return on equity in period t + 1 and qt is the period t price of a claim that pays one unit of the
consumption good in period t + 1. Note that, given ξt and conditional expectations over the future
states of the world, the implicit bond price is qt = (Et{Rt+1} − ξt)

−1. We use ξ because it fluctuates
substantially less than q, which implies that our approximation of the decision rules become more
accurate.
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matrix A(Z,Z ′) above can take on four different values. Assume a particular
set of values for A(Z,Z ′) ∀Z,Z ′ ∈ {Z, Z̄}.

3. Using the specification above, we solve the following modified version of (21):

V̂h(ξ, µm, Z, z, ǫ, a) = max
b′
h+1

,k′
h+1

{u(ch) +

βE
[

V̂ ′
h+1(Ĝ(µ,Z,Z ′), Z ′, z′, ǫ′, k′

h+1 · R(Ĝ(µ,Z,Z ′), Z ′) + b′h+1)
]}

(27)

subject to (20).13 The implementation of this is described below.

4. Assume an initial distribution of a large, but finite, number of agents, µ, across
wealth, idiosyncratic shocks and age (we use 1000 agents in each age cohort).
Using the decision rules obtained in (27), simulate a long sequence of the econ-
omy (20100 periods) and discard the first 100 periods from this sequence. Note
that, for each period in time, ξ must be set so that the bond market clears.
That is, find a ξ∗ such that

∫

b′h(µm, ξ∗, Z, z, ǫ, a)dµ = 0. This is the sense in
which ξ is an ‘endogenous moment.’

5. Update Ĝ by running a linear regression of (ξ′, µ′
m) on µm and ξ from the

realized sequence in Step 4. If the coefficients change, use the updated Ĝ and
return to Step 3. Continue this process until convergence.

6. Evaluate the ability of Ĝ to forecast µ′
m and ξ′. If the goodness of fit is not

satisfactory, return to Step 1 and increase the number of moments or change
the functional form of Ĝ.

Moments of µm and accuracy

Following Krusell and Smith (1997), we began with just the first moment, aggregate
capital, µ1 = log(k̄). This variable has strong predictive power on log(k̄′) (R2 of
0.9998), but less predictive power on ξ′ (see Table B1).

Next, we ask what other moment(s) matter for forecasting ξ′. To this end, we
collected long time series of 18 additional moments of the distribution of agents (see
Table B1 for details). Of these, the moments with the largest marginal improvement
of forecast accuracy of ξ′ (over the forecast including only log(k̄′)) are the wealth
of workers and the fraction of agents constrained in the bond market, which each
improve the R2 with on average 0.05 and 0.03, respectively. Including all the 18
moments (together with log(k̄)) increase the forecast accuracy to 0.994. Finally, we
regressed ξ′ on ξ and log(k̄), and found that the R2 increased to 0.9992, with a

13Note that in order to ensure that the bond market clears each period, ξ is included as an argument
in the value function (Krusell and Smith (1997) use the bond price). One difference from their
approach is that, as ξ enters the value function for all age groups, it does not simplify our computations
to exclude ξ′ from next period value functions and rely on “approximate” future market clearing.
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standard deviation of forecast error less than 0.02% of ξ. Hence, ξ provides a better
forecast than all the 18 moments together. Our interpretation of this finding is that
the the conditional expected equity premium or, equivalently, the bond price, capture
a large amount of information relevant for future bond prices. Formally, we could not
reject the hypothesis that the residuals from predicting (µ′

m, ξ′) by Ĝ(µm, ξ, Z, Z ′) are
uncorrelated with the 18 variables described above for the simulations we employ.

In summary, we include ξ as an “endogenous” moment in µm in order to improve
the forecast of ξ′. Note that, as the value functions explicitly incorporate ξ as a
parameter, including ξ in the forecast of ξ′ come at zero computational cost.

Dynamic Programming Problem

We now describe how the dynamic programming problem in (27) is solved.

1. First, we choose a grid for the continuous variables in the state space. That is,
we pick a set of values for k̄, ξ, and a. The grid points are typically chosen to
lie in the stationary region of the state variables and in addition, for wealth,
near the borrowing constraint and far in excess of the maximum observed wealth
holdings (conditional on age). We pick 13 points for aggregate capital, 13 points
for the conditional expected equity premium, and 29 points for individual wealth
at each age.

2. Second, we make piecewise linear approximations to the decision rules by solving
for portfolio holdings on the grid and iterating on the Euler equations.

This is done in the following way. Given the terminal condition associated with
(20), the decision rules of the oldest agents (H years old) must be b′H+1 =
k′

H+1 = 0, in any state of the world. That is, the agent consumes all their
wealth.

Knowing cH , we can in turn compute b′H and k′
H at each grid point using Euler

equations of an H − 1 year old agent:

u′
H−1(cH−1) = E{u′

H (c′H)R′ | µm, Z, z, ǫ}

qu′
H−1(cH−1) = E{u′

H (c′H) | µm, Z, z, ǫ} (28)

Knowing b′H and k′
H at each grid point, we then obtain a piecewise linear ap-

proximation of the decision rules by linear interpolation (outside the grid we do
linear extrapolation). Computing cH−1 is then straightforward, and this proce-
dure is repeated for H − 2 year old agents and iterated backwards until h = 1.
Note that no further iterations are needed; given the (imperfect) expectations
Ĝ and the decision rules for h+1 years old agents, the piecewise approximations
are found in one single step for h years old agents.
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Table B1
Predictability

Regressors R2

(Zt = , Zt+1 = ) (1,1) (1,2) (2,1) (2,2)

log(k̄), ξ .999 .999 .999 .999

log(k̄) .740 .907 .865 .922
log(k̄), {Xj}

6
j=1 .842 .931 .909 .941

log(k̄), {Xj}
6
j=1, {X

∗
j }

6
j=1 .984 .997 .996 .996

log(k̄), {Xj}
6
j=1, {X

∗
j }

6
j=1, {Bj}

6
j=2 .986 .998 .997 .997

log(k̄), {Xj}
6
j=1, {X

∗
j }

6
j=1, {Bj}

6
j=2, frbt, frst .987 .998 .997 .997

log(k̄), X∗
1 .803 .951 .922 .962

log(k̄), frbt .802 .923 .898 .935

Xj ≡ E[(ait − āt)
j ], ait denotes the wealth of agent i at time t and āt the average wealth at time t,

X∗
j ≡ E[(a∗

it − ā∗
t )

j ], a∗
it denotes the wealth of working agent i and ā∗

t the average wealth of workers

at time t, Bj ≡ E[(bit)
j ], and bit denotes the bond holdings of agent i at time t. frbt and frst denote

the fraction of agents that are constrained in time t at the bond and equity market respectively. The

bottom two rows represent the top two individual regressors among all regressors other than log(k̄)

and ξ. The reported R2 are of regressions of ξ′ = a(Z, Z′) + X(Z, Z′) ∗ B(Z, Z′)

C Relationship to Companion Papers

This paper originally circulated as part of the working paper “Persistent Idiosyncratic
Shocks and Incomplete Markets.” It was subsequently split into two (distinct) com-
panion papers, this paper and Storesletten, Telmer, and Yaron (2004b). The latter is
an empirical study of CCV using PSID data. A third paper — Storesletten, Telmer,
and Yaron (2007) — borrows the basic OLG model of Section 4 from this paper and
uses it to focus upon the impact of having or not having CCV shocks on equity risk
premia and portfolio rules. The two papers overlap somewhat in the discussion of
portfolio behavior, but the basic questions and punchline are quite different. This
paper asks (i) if retirement matters in an autarkic endowment economy and (ii) if
the results change when we allow for capital accumulation and do a careful job of
calibration. Storesletten, Telmer, and Yaron (2007) does not ask the first question.
While it does use the issue of retirement to motivate the overall use of an OLG model
for idiosyncratic risk and asset pricing, it does not conduct the retirement versus no-
retirement experiments and does not make the central point about aggregate capital
and self-insurance behavior with unit-root shocks. Its focus is on something absent
in this paper: the marginal impact of CCV risk in a life-cycle context.
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Table 1
Asset Pricing Properties – No Trade Economies

Risk Riskfree Rate Equity Premium Sharpe

Aversion Mean Std Dev Mean Std Dev Ratio

U.S. data 1.30 1.88 6.85 16.64 41.17
U.S. data, unlevered 1.30 1.88 4.11 10.00 41.17

Models Without Trade (Constantinides-Duffie):

No Retirement (match SR) 7.8 1.30 5.87 3.41 8.28 41.2
No Retirement 8.0 1.30 6.01 3.55 8.43 42.1
No Retirement (match EP) 8.6 1.30 6.55 4.11 8.95 45.9
Retirement (SR) 7.8 1.30 5.00 2.35 6.83 34.4
Retirement 8.0 1.30 5.02 2.42 6.89 35.1
Retirement (EP) 8.6 1.30 5.62 2.87 7.43 38.6

‘Models Without Trade’ correspond to a calibration of the Constantinides and Duffie (1996) model

using the idiosyncratic risk estimates from Storesletten, Telmer, and Yaron (2004b), Table 1, and the

aggregate consumption moments from Mehra and Prescott (1985). Details are given in Appendix A.

In rows labeled ‘match SR’ and ‘match EP,’ risk aversion is chosen to match the U.S. Sharpe ratio

and the mean equity premium, respectively. Rows labeled ‘Retirement’ hold risk aversion at these

levels and then incorporate retirement, defined as old agents not receiving any idiosyncratic shocks

(Section 3.2).

U.S. sample moments are computed using non-overlapping annual returns, (end of) January-

over-January, 1956-1996. Estimates of means and standard deviations are qualitatively similar using

annual data beginning from 1927, or a monthly series of overlapping annual returns. Equity data

correspond to the annual return on the CRSP value weighted index, inclusive of distributions. Riskfree

returns are based on the one month U.S. treasury bill. Nominal returns are deflated using the GDP

deflator. All returns are expressed as annual percentages. Unlevered equity returns are computed

using a debt to firm value ratio of 40 percent, which is taken from Graham (2000).
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Table 2
Asset Pricing Properties – Economies with Trade

Risk Riskfree Rate Equity Premium Sharpe
Aversion β K/Y σ2

C σ2
E Mean Mean Std Dev Ratio

Complete Markets 3 0.965 3.3 0 0 4.4 0.63 7.0 9.0
Incomplete Markets (with Retirement) 3 0.948 3.3 0.0168 0.0059 2.3 0.86 6.7 12.8
Complete Markets 8 0.959 3.3 0 0 4.8 2.28 9.1 25.0
Incomplete Markets (with Retirement) 8 0.8 3.3 0.0168 0.0059 1.6 2.23 6.8 32.6
Incomplete Markets (Without Retirement) 8 0.977 3.3 0.0168 0.0059 1.3 2.31 7.5 30.9

Population moments from the models described in Section 4. The calibration procedure is discussed in the text and appendix. β is the

discount factor, K/Y is the average capital/output ratio, and σ2
C and σ2

E are the variances of the permanent innovations to earnings in

recessions (contractions) and booms (expansions), respectively. All economies are calibrated so that aggregate consumption volatility is 3.3%.

In economies without retirement, agents work and live until age 85. In economies with retirement, agents work until age 65 and live until age

85, receiving zero labor income during the retirement years. Idiosyncratic shocks are calibrated so the unit root economy has the same average

volatility as that in an economy based on the estimates of Storesletten, Telmer, and Yaron (2004b).
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Figure 1
Financial Wealth by Age
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Age profile of average financial wealth (across agents of the same age) for three different

economies: complete markets (CM), incomplete markets with retirement (CCV), and incom-

plete markets without retirement (NoRet).
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Figure 2
Aggregate Risk Bearing by Age
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The measure of ‘aggregate risk bearing’ described in Section 5 of the text: the age-specific

covariance between individual consumption growth and the return on equity. The lines corre-

spond to complete markets (CM), incomplete markets with retirement (CCV), and incomplete

markets without retirement (NoRet).
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Figure 3
Standard Deviation of Consumption Growth by Age
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The lines correspond to complete markets (CM), incomplete markets with retirement (CCV),

and incomplete markets without retirement (NoRet).
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Figure 4
Quantity of Bonds and Stocks, by Age
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The lines labeled ‘CM’ correspond to the complete-markets economy. Those labeled ‘CCV’

correspond to the incomplete-market economy, with retirement.
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Figure 5
Bond and Stock Portfolio Shares, by Age
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The line labeled ‘CM’ corresponds to the complete-markets economy. Those labeled ‘CCV’

corresponds to the incomplete-market economy, with retirement.
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