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Abstract

To better understand how entrepreneurial ventures vary as they evolve, we introduce and develop
the concept of an organizational routine in a prototypical state, a protoroutine. Protoroutines
allow experienced new ventures (but not inexperienced start-ups) to economize on decision-making
and execution time in problem solving by drawing from an inventory of prior solutions to chal-
lenges. Protoroutines are not, however, tailored to the challenge at hand. We embed protoroutines
into a simulation-based model featuring agents with differing decision-making speeds and abilities
of exploring more distant solutions, two parameters influenced by founding team characteristics.
Search speed and distance are typically traded off against each other at the team design level. Pro-
toroutines may therefore be particularly helpful in organizational contexts in which it is optimal to
have both search speed and distance. We characterize the organizational contextual configurations
along the dimensions of environmental turbulence and decision complexity in which protoroutines,
search speed, and search distance are associated with elevated (and dampened) organizational per-
formance. One important conclusion is that decision-making speed can be a valuable organizational
resource across organizational environments. Overall, our agent-based model and simulation results
deepen our understanding of how and with what performance consequence new ventures develop.
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1 Introduction

We have little understanding of how start-ups vary as they develop. In part, this gap results from

the difficulty of defining when a start-up “graduates” to a more established status. Consequently,

the entrepreneurship literature tends to consider a bimodal distribution of settings. One set of

studies considers brand new start-ups and early-stage challenges such as venture idea appropriation,

recruiting, setting strategy, and resource assembly. Another set of studies examines relatively late-

stage phenomena such as corporate governance before and after an initial public offering and the

long-run performance of venture capital funded ventures. While this is a gross characterization

of the literature in that some studies have examined intermediate stages of venture development

such as the financial contracting consequences of attaining revenue-positive status (Kaplan and

Stromberg 2003) and the evolution of human resource management systems (Baron et al. 1996),

our aim is to explicitly study the new venture evolution process.

We do so by introducing the concept of a protoroutine, an organizational routine that is not

yet perfected, and is therefore in a prototype stage of development. Like routines, which can be

enacted in response to a given stimulus or task (e.g., an employee recruiting routine), protoroutines

allow firms to economize on decision-making time (Nelson and Winter 1982). Protoroutines differ

in their usage relative to routines, however, in that they are not tailored to the task or challenge at

hand. The concept of protoroutines accords well with the sparse literature examining intermediate

stages of venture growth. Emergent (yet unperfected) organizational processes are likely associated

with, for example, being cash-flow positive or developing a formal human resource management

system. Such processes are available to experienced new firms but do not yet exist in completely

new ventures.

We study protoroutines in the context of ventures that differ in their founding team charac-

teristics and in the organizational environments in which they operate, allowing us to address the

research question: what is the effect of emergent organizational routines on venture performance
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given different founding team and environmental characteristics? To motivate our agent-based sim-

ulation model and method, we first discuss the literature on organizational resources afforded by

founding team characteristics, culminating in the proposition that there might be a team design

tradeoff in achieving both decision-making speed and search distance. Since protoroutines emerge

partly as a result of organizational choice in pace of development and serves the function of econ-

omizing on decision-making speed, protoroutines serve two purposes in our study. Protoroutines

both describe an organizational process associated with venture development and serve as an or-

ganizational instrument that may be useful, particularly in the case of functional tradeoffs at the

founding team design level. Our simulation seeks to understand the organizational environmental

conditions under which protoroutines bolster or dampen venture performance.

One of the earliest and potentially most important challenges for founders of entrepreneurial

ventures is assembling a founding team. A multitude of factors may potentially guide team com-

position, and these factors may span both current and anticipated venture needs.1 A robust inter-

disciplinary literature investigates the relationship between founder (and top management) team

characteristics and venture performance. On the one hand, some studies have found that teams

with varied functional backgrounds and perspectives are generally more able to explore distant

problem-solving terrain relative to more homogenous teams (Eisenhardt and Schoonhoven 1990;

Ancona and Caldwell 1992; Smith et al. 1994; Hong and Page 2004; Beckman 2006). Diverse

teams, however, tend to be less cohesive (Schweiger et al. 1986), worse in communicating and man-

aging conflict (Smith et al. 1994), and slower at decision-making (Virany et al. 1992; Geletkanycz

and Hambrick 1997). Uniform teams, on the other hand, tend to be faster in decision-making

1While altering team composition might be one way of addressing the evolving needs of the organization, a body
of literature suggests powerful founder “imprinting” effects wherein policies, procedures, and organizational culture
established at organizational birth can have long-lived effects on corporate strategy, human resource management,
and top management teams (Stinchcombe 1965; Boeker 1989; Eisenhardt and Schoonhoven 1990; Baron et al. 1996).
We take founder imprinting as a starting point by recognizing that founding team composition can exert long-term
effects that can shape venture performance. However, in keeping with the desire to further understand new venture
evolution, we overlay protoroutine development at the organizational level to better understand the process of venture
development.
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(Murray 1989) and have higher mutual understanding and trust (Stinchcombe 1965), but tend to

underperform diverse teams in innovating (Bantel and Jackson 1989).

The general findings from the team design literature are that uniform teams are faster in

decision-making and execution speed while diverse teams are better at generating more distant or

novel problem-solving ideas. A simple theory of optimal founding team composition would therefore

be to form teams that are both homogenous and diverse along different dimensions (e.g., common

prior employer but varied functional backgrounds). Two studies suggest that this approach is sen-

sible. Eisenhardt and Schoonhoven (1990) found that successful newly-founded US semiconductor

firms combine healthy conflict (associated with founders’ diverse industry experience) with fast

decision-making (linked to founders’ joint work experience). Beckman (2006) analyzed 170 young

high-technology firms in Silicon Valley and concluded that founding teams with both diversity and

common prior company affiliations experienced superior performance. The literature, however,

does not give guidance on the organizational contexts when it is preferable to have elements of

both team diversity and uniformity.

We consider the effect of decision-making speed (which is related to team characteristics and

protoroutine use) and search distance (related to team characteristics) given two non-mutually ex-

clusive aspects of the organizational environment, turbulence and complexity. Turbulence is the

rate of external environmental change across time periods and can incorporate elements of technol-

ogy and/or competitive landscape shifts. Complexity is a function of decision interdependence. A

low complexity environment occurs when the payoff to one decision is not dependent on another de-

cision made within the organization, with high complexity characterized by highly coupled decision

choices.

Empirically assessing the relationship between protoroutines and venture performance given

different founding team and organizational environmental characteristics is challenging because it

is difficult to assemble a dataset which simultaneously and comprehensively incorporates variation
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in all the necessary elements. Moreover, we believe that our focal domain will benefit from a

simulation analysis because it involves some empirical or analytic grounding but is limited by

weak conceptualization (as Murray (1989) and Smith et al. (1994) acknowledge), particularly in

the domain of intermediate venture development. Such a context of pre-existing simple, but not

comprehensive, theory is ripe for simulation-based analysis (Davis et al. 2007).

Our main simulation results can be briefly described as follows. First, decision-making speed

is positively associated with organizational performance for all agents, regardless of degree of envi-

ronmental turbulence and decision complexity. The performance boost of greater decision-making

speed is higher for inexperienced start-ups relative to experienced new ventures, however, suggest-

ing that faster speed can partially offset inexperienced agents’ inability to use protoroutines. In

addition, experienced agents’ performance suffers in the face of environmental turbulence and is

bolstered by decision complexity, while inexperienced ventures’ performance is largely invariant

to environmental turbulence. With low decision complexity, a low search distance is best, but as

complexity increases, teams’ ability to search at greater ranges yields superior performance.

The remaining sections of the paper develop the conceptual foundations of protoroutines before

describing our agent-based simulation model and the results. A discussion section concludes the

paper.

2 Routine Formation in New Ventures

Organizational routines, which are characterized in the literature as semi-automatic patterns of

actions that emerge from collective and coordinated interactions among individuals (Nelson and

Winter 1982), are central to the evolutionary theory of the firm. Yet while we have a general

understanding of factors instigating changes in routines such as crises (Gersick and Hackman 1990;

Feldman and Pentland 2003), we know little about the process by which routines are formed and

the consequences of using routines in prototype form. We suspect this stems from the shortfall
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in the literature in articulating the organizational processes by which new ventures develop. As a

prelude to describing our simulation model, we compare and contrast protoroutines with established

organizational routines (which have received the lion’s share of attention in the literature) in an

effort to both improve protoroutine conceptualization and motivate our modeling of the concept.

A protoroutine is a tentative solution to a problem, and is drawn from an organization’s in-

ventory of prior solutions. The latter property draws on the notion that routines more generally

embody successful solutions to problems solved by the organization in the past (Paoli and Prencipe

2003), while the former property is inspired by Nelson and Winter’s (1982: 130-131) conceptualiza-

tion of routine formation arising from new, “trial-and-error” combinations of existing routines. As

with routines, protoroutines allow the firm to economize on cognitive effort (and can therefore save

decision-processing time). Protoroutines, however, differ from established organizational routines

in both their usage and storage.

Established routines are used almost without conscious volition (Nelson and Winter 1982: 75)

when organizations encounter a situation of a particular type as a result of repeated experience with

the stimulus. In contrast, protoroutines are selected and implemented after a deliberate decision-

making process due to ventures’ limited interaction with a given stimulus. Consistent with the

notion of learning curves in which learning is initially slow due to response-based experimentation,

protoroutines are tentative solutions to challenges that are adjusted over time. As a result, pro-

toroutines are volatile, and are more likely to either disappear after a few applications or to be

radically updated. Protoroutines may be developed over time in ventures both as a result of simple

operating experience as well as via conscious business policy, for example through codification.

Well-tested and robust protoroutines will “graduate” to become organizational routines.

Protoroutines also tend not to be tailored to specific tasks. While more established orga-

nizations develop a portfolio of coordinated behavior that may allow them to adapt to specific

contingencies and address particular problems, younger firms do not have such an inventory of rou-
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tines. Due to their limited experience, new ventures have only a superficial understanding of the

causal correspondence between protoroutines and their effects. As a result, younger organizations

will be more flexible in using and testing protoroutines on a wider range of situations.

There is also a difference in the organizational storage of routines as compared to protorou-

tines. Whereas the locus of memory of routines is embedded within the organization as a whole

(Nelson and Winter 1982), protoroutine storage is more at the individual founder or founding team

level. Protoroutines are therefore more sensitive to changes in founding team composition, while

established routine effectiveness may be stable even with full turnover of individuals or executives

associated with a function.

3 Agent-Based Simulation Model

To examine the performance impact of protoroutine development given different founding team

characteristics and organizational environments, we describe our agent-based simulation model.

We first define the task environment and then describe the agents’ characteristics.

3.1 Defining the Task Environment

We adopt a problem-based approach according to which agents solve a sequence of challenges in the

simulation. Each challenge has a structure of a conventional NK fitness landscape (Kauffman 1993),

which is the set of all possible 2N binary strings of length N and their associated fitness values.

Each string represents the N decisions that agents may make. The fitness value is the performance

associated with each string of binary bits, and is generated by assigning a contribution value to each

bit of the binary string. The overall fitness value associated with an N -vector of decisions is then the

average of all the contribution values. Because of the presence of possible interactions among the

N bits, changes in specific choices might indirectly affect other choices. The higher the number of

interactions among the choices, the more rugged the performance landscape will be (the higher the
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number of performance levels the firm might achieve). Conversely, low-interaction landscapes will

be characterized by a lower number of local peaks. The number of interactions among each of the

N decisions is determined by the parameter K(in the manner proposed by Kauffman (1993), which

aims to capture interdependencies among a firm’s decisions and how they relate to environmental

complexity, following the concept advanced by Simon (1962)). As a result, each decision within the

N -dimensional vector of decisions will be associated with a contribution value, which is a function

of how the binary decision and the other elements that affect that particular decision are chosen.

For each possible combination of decisions and the other decisions that affect it, a contribution

value is defined by a random draw from a uniform distribution {0,1}.

The distinct NK landscapes that define the sequence of challenges that the agents face over

the simulation are generated by the following mechanism. First, an arbitrary initial NK fitness

landscape constitutes challenge 0. Altering the fitness contributions of the landscape preceding it

generates the subsequent landscape, and applying this process recursively generates the remaining

challenges. Formally, let fc0 be the set of all the possible distinct fitness contributions existing in

the original NK landscape (challenge 0). For challenge m and the set of the distinct fitness contribu-

tions, fcm = fcm−1+RND[-RW;+RW].2 This function assigns a new set of fitness contributions by

altering fitness contributions in the prior challenge according to a random walk of range RW. The

NK landscapes therefore shift across challenges, with modified peak topology while maintaining

complexity structure K. The parameter RW allows us to model differences in turbulence across

industries, with higher values of this parameter reducing the degree of landscape correlation across

challenges. This landscape discontinuity is a key feature of environmental turbulence (Murray 1989;

Keck 1997; Carpenter and Fredrickson 2001). Figure 1 summarizes this overall task environment.

To map the task environment to the new venture development process, consider the follow-

ing example. Ventures confront correlated challenges over time. For each challenge, the founding

team faces a string of binary decisions, N (which comprise a policy). Such decisions may span, for

2Note that the number of distinct fitness contributions in a given NK landscape equals N∗2(1+K).
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example, organizational design and level of vertical integration (e.g., whether to outsource manufac-

turing, whether to backward integrate into research and development, and whether to partner with

a given industry incumbent). Other decisions may relate to human resource management (e.g.,

whether to allow dedicated time for employees to conduct undirected activities, whether to use

performance-based compensation schemes, and whether to replace the chief executive officer of the

venture). Still other decisions may relate to revenues and funding (e.g., whether to offer a volume

discount to a particular chain store, whether to raise venture capital funding, and whether to utilize

an advertising-based revenue model). The parameter K refers to the level of interdependence of

the N decisions. The productivity of one human resource management decision, for example, may

importantly depend on a complementary human resource decision (Ichniowski et al. 1997) or to

decisions made with respect to information technology (Bresnahan et al. 2002). If the N decisions

are highly coupled with respect to overall efficacy, ventures will face high decision complexity.

To gain more insight on the properties of the family of NK landscapes generated by this

mechanism, we analyze the evolution of local peak distribution across challenges. A local peak is

a binary string whose associated fitness cannot be improved by any possible 1-bit mutation of its

elements. The number and distributions of the local peaks characterize the topology of each NK

landscape (Kauffman 1993). In an unreported analysis we calculated the average number of local

peaks observed across 300 challenges generated by the mechanism described above. We analyzed

three distinct levels of complexity (K={0,2,5}) and two levels of random walk ranges (RW={0.01,

0.05}). As expected, the average number of local peaks increases with K and stabilize to 1 in case

of single-peaked worlds (K=0) (Kauffman 1993). The analysis confirms that our method preserves

the complexity structure of the sequence of challenges in that the average number of local peaks

tends to fluctuate in a relatively narrow bandwidth. This bandwidth increases with higher ranges

of the random walk and so in the presence of higher turbulence adjacent challenges composing the

sequence tend to be less correlated. The graphs reported in Figure 2 provide further support. We
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first analyze the fraction of local peaks coincident with those in the original challenge (challenge 0)

across subsequent landscapes (Figure 2a-b). The graphs (Figure 2a refers to K=2 and Figure 2b to

K=5) clearly illustrate that when the random walk range is higher (RW=0.05) the percentage of

local peaks identical to those of the original landscape rapidly plummets with successive challenges,

whereas when the range is lower (RW=0.01), the decreasing curve approaches 0 more slowly.3 To

understand the extent to which landscapes tend to differ in successive challenges, Figure 2c-d

reports the percentage of local peaks that overlap in each pair of subsequent challenges in case of

low and high turbulence and in case of K=2 (Figure 2c) and K=5 (Figure 2d). The graphs show

similar landscape topology across challenges in less turbulent environments (RW=0.01) while lower

landscape correlation holds in more turbulent environments (RW=0.05).

[Insert Figure 2 about here]

3.2 Agents’ Characteristics

In our model an agent represents a founding team as a whole. The ultimate goal of each agent

in the simulation is to find a profitable solution for each of the sequential challenges. The agents’

overall performance in the simulation is the average of payoffs obtained for each of the challenges

that she faces.

We define a search strategy as a set of decisions agents make to solve their set of challenges.

For each challenge, this sequence of decisions is as follows: (1) definition of a starting point, (2)

allocation of processing time, and (3) evaluation of alternatives. The first decision refers to the

choice of initial string from which the agents explore each challenge. The second aspect indicates

the amount of processing time that the agents use to explore each challenge in an attempt to find

a profitable solution. Finally, once the agent has decided both the quantity of processing time that

she intends to use and the string from which she intends to start her exploration, she will perform

3We did not report the graph of low complexity (K=0) associated with a single local peak, as the percentage of
distinct local peaks trivially converges to 0 after one or fewer steps.
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a series of evaluations of possible improvements of the initial string and perform a mutation only

if it improves upon the status quo. An agent’s solution for a given challenge is the string with the

highest fitness found during the allocated processing time. We now describe two alternative search

strategies that the agents may follow.

3.2.1 Inexperienced start-ups

The inexperienced start-up mirrors new ventures with relatively inexperienced founding teams.

These agents will only adopt one possible search strategy for each challenge. In this directed

exploration strategy, the starting point linked with the original challenge (challenge 0) will be

randomly determined, and each starting point of subsequently generated landscapes will be drawn

from the neighborhood of the most successful solution the agent found for prior challenges. In

particular, to select a starting point for addressing each new challenge, the agent will first select

the string with the highest fitness value among the solutions found in the past and then mutate

each bit of this string with probability equal to 0.5. This mechanism aims to capture the role of

prior experience: founders of inexperienced start-ups jointly develop some priors on how to address

challenges (and so have a coarse, un-detailed map), but experiment with their policy choices (as

their map does not detail the terrain of the focal challenge).

The processing time linked with directed exploration is allocated in a simple way. All agents

start the simulation with the same amount of processing time t0. The time allocated by an inex-

perienced start-up for generic challenge m (ATm) equals the overall remaining time tm divided by

the number of remaining challenges M − m, where M represents the total number of challenges

in the simulation. The amount of time available at the end of the evaluation process for challenge

m, which will constitute the remaining amount of time to be considered during the next challenge

(tm+1), is equal to tm – ATm (see Figure 1 for a summary of this process). As a result of this time

allocation process, an inexperienced start-up will allocate the same amount of processing time for
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each of the challenges in the simulation.4

Given the amount of processing time allocated and the definition of the starting point, the

evaluation process conducted for each directed exploration differs depending on the agents’ search

distance (SD) and decision-making speed (SP). The former parameter refers to the number of

binary bits in a decision string the agent is able to flip in each evaluation. Higher levels of SD

represent agents able to evaluate longer jumps in the landscape space (Levinthal 1997).

The second parameter that characterizes the agents’ evaluation process is team decision-making

speed (SP). Given the time allocated to solve a certain challenge, agents differ in the number of

evaluations that they may be able to perform. We define SP as the number of evaluations that

she is able to perform in one unit of time. Note that the integer 1 does not represent the smallest

possible unit of time. Also, if a fraction (or multiple) of the integer 1 is considered, the related

number of evaluations will be rounded to the next closest integer.5 As a result, the number of

evaluations performed by inexperienced start-ups attempting to improve its starting point for each

challenge will be constant and equal AT ∗ SP , i.e. the time allocated to the particular challenge

multiplied by the speed of the agent expressed in terms of number of evaluations performed in a

time unit equal to 1.

3.2.2 Experienced new ventures

The second type of agent encompasses either those firms that have developed a sufficient level of

experience over time or start-ups whose management team members have a substantial amount of

prior joint experience in founding and/or operating a new venture.6

4This mechanism implies that agents are aware of both the total number of challenges in the simulation and the
amount of time they have to solve them. The former assumption is based on the premise that founding teams are
generally aware of the level of organizational development necessary for a favorable outcome, such as launching an
initial public offering. Founding team and/or investor-imposed deadlines for addressing challenges that may be time
and/or event-based motivates the latter assumption (and is consistent with the findings of Gersick (1994)).

5Therefore, if an agent’s SP equals 10, in 0.34 units of time she will perform 3 evaluations.
6While we envision different event-based goals/deadlines for inexperienced start-ups (becoming an experienced

venture) and experienced ventures (becoming an established firm), from a modeling standpoint, all agents face 300
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The distinctive characteristic of such experienced new ventures is that they may adopt pro-

toroutines. Experienced new ventures therefore have the choice of two strategies for addressing each

of their challenges. The first option is a directed exploration as previously detailed for inexperienced

start-ups. The second option is using a protoroutine. In contrast to the case of directed exploration

where each new starting point was in the neighborhood of the most successful past solution, each

new starting point using a protoroutine exactly coincides with the most successful solution from

the stock of preceding challenges. This mechanism captures the deliberate and conscious aspect

of protoroutines in the context of founding team decision-making. In addition, in accordance with

the unspecific target aspect of protoroutines (as compared to established organizational routines),

teams do not match the set of problems to each specific protoroutine.7 When an agent applies a

protoroutine for challenge m, she will perform no further evaluations in an attempt to improve the

initial string. The time allocated to implementing this strategy, AT, is equal to the low arbitrary

value of 1/SP .8

Because of its cognitive efficiency, the application of a protoroutine will only “cost” a limited

amount of processing time relative to directed exploration. As a result, by using a protoroutine, the

firms will be able to bank time, thereby creating a buffer to be used for future directed explorations.

However, recall that applying protoroutines has a downside when compared to directed exploration.

In a directed exploration, the agent adapts to the specific NK challenge by attempting to improve

the starting point. In contrast, a selected protoroutine may fail to represent a profitable solution

for challenge m given the ever-evolving landscape topology.

The decision of implementing a protoroutine as opposed to a directed exploration for a focal

successive challenges. The exact nature of individual challenges, however, can be conceptualized flexibly.
7For the sake of simplicity we only consider past fitness levels as the basis for selecting protoroutines, although other

possible selection criteria are possible. Furthermore, we tested result robustness with an exponential organizational
“forgetting” curve in which memory of the most fit prior solution fades with non-use over time. We selected parameters
that match the new venture development process, and the results are not significantly different than the ones reported
below.

8The denominator of this expression aims to capture differences among agents’ decision-making speed. Although
the amount of allocated time in applying protoroutines will be generally small, faster agents will use proportionally
lower processing time.
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challenge is another facet of the deliberate decision-making process that distinguishes protorou-

tines from well-established routines. This decision is stochastically determined over time by a

monotonically non-decreasing function of the number of processed challenges, which defines the

agent’s confidence level. Moreover, the agent will increase its likelihood of exercising a protorou-

tine over time if, in its last application, the protoroutine generated more positive feedback.9 Figure

1 summarizes the search strategies available to experienced new ventures.

[Insert Figure 1 about here]

4 Results

We use computer simulations to compare the overall performance of different types of young orga-

nizations operating in different environments.10 In doing so, we considered the following parameter

space in the simulations. For all agents, we set the number of new venture decisions (N), the

number of challenges each agent faces (M), and the initial total time availability (t0), equal to

10, 300 and 300, respectively. We then set two possible ranges of the random walks to simulate

environmental turbulence, RW ={0.01, 0.05} and three levels of complexity, K={0, 2, 5}. With

respect to the agent’s characteristics, we considered nine levels of decision-making speed, SP ={10,

15, 20, 25, 30, 35, 40, 45, 50} and three levels of search distance (SD) equal to 1, 3, and 5. We

organize our results by first discussing the performance impact of search speed and search distance,

together with the moderating role of protoroutines. We then turn our attention to the relation-

ship between organizational contextual factors (environmental turbulence and decision complexity)

9Specifically, the confidence function equals:

CPR =

�
Cm−1 + Cm−1(z + (s ∗ fPR)) C < h
h C ≥ h

where m is an arbitrary challenge, z and s are two arbitrary coefficients <1, h is an arbitrary boundary limit
beyond which the confidence level stabilizes, and fPR represents the fitness obtained by protoroutines. We set h to
0.8 in our simulations, but the results are robust to a range of alternative values.

10To develop the code and run the simulations we used the open source software, Laboratory for Simulation
Development (http://www.labsimdev.org/Joomla 1-3/).
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and performance, again discussing the moderating role of protoroutines. A third section discusses

the joint performance effects of agent characteristics and protoroutine development under different

organizational context configurations. A final section discusses result robustness.

4.1 Performance effects of search speed, search distance, and protoroutines

Since founding team characteristics influence firms’ search speed and search distance, we examine

the relationship between these parameters and organizational performance. Afterwards, we analyze

the extent to which protoroutines moderates this same relationship.

Let us first consider the relationship between team decision-making speed (SP) and firm per-

formance. A general finding, which holds for each level of complexity and turbulence, is a positive

performance effect produced by SP. In Figures 3-5, where speed is plotted on the x-axis and perfor-

mance on the y-axis, each performance curve is monotonically non-decreasing in SP. However, the

advantage of agents performing more evaluations in a given time unit varies depending on whether

the firm is an inexperienced or experienced new venture: the performance benefits of decision-

making speed are higher for the former compared to the latter (the slopes of the derivatives in

Figures 3-5 [a,c] are systematically higher than those in the Figures 3-5 [b,d]). Consequently,

time buffers generated by protoroutines may partly compensate for slower founding team decision-

making speed. On the other hand, in the absence of protoroutines, agents’ speed represents a key

performance booster.

These results shed light on the debate in the literature on the effect of decision-making speed.

The proposition that speed is associated with performance in turbulent environments is not con-

troversial (e.g., Eisenhardt (1989)). However, some studies have found that speed is also beneficial

in stable environments (Keck 1997; Baum and Wally 2003) while others have found that faster

decision-making speed is undesirable in stable environments (Judge and Miller 1991). Our results

are consistent with the former view, and may stem from the unique challenge new ventures face,
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that opportunity windows may open and shut even in relatively stable organizational environments.

Let us now consider the relationship between search distance (SD) and performance. We find

that the optimal level of search distance is contingent on decision complexity. Under low complexity

(K=0), agents with the lowest SD obtain superior performance regardless of the settings of the other

parameters in the simulation (Figure 3a-d), but the optimal search distance varies with moderate

and high complexity. With moderate complexity (K=2) the agents displaying the intermediate and

high search distance tend to outperform especially as decision-making speed increases (Figure 4a-

d). Finally, in case of high complexity (K=5), agents with higher search distance tend to generally

outperform (Figure 6a-d).

Therefore, agents with higher search distance obtain superior performance in the presence of

higher complexity. These findings are surprising if compared with the prior findings in the NK

literature (Levinthal 1997; Rivkin and Siggelkow 2003). The fact that searching at a low distance

(under low complexity) can be profitable stands in contrast to the intuitive idea that agents that

explore a wider portion of the landscape have an advantage over agents that may only perform

evaluations at a lower search distance. In probing this result in more detail, we found that our

settings uncovered a unique property of NK fitness landscapes. The relationship between SD and

agents’ fitness values for different levels of complexity is sensitive to the number of evaluations

that the agent performs to explore the landscape, which is linked with decision-making speed.11

When K=0, the fitness landscape contains a single peak, and performing a few long jumps in the

landscape is less profitable than searching locally, whereas with higher complexity (and rugged

landscapes), the former search strategy is best, as the agent is more likely to get stuck in a local

peak or realize only small performance improvements by searching the immediate neighborhood.

Therefore, as opposed to the case of search speed, we did not find any strong influence of adopting

11We analyzed this property by replicating the analysis for inexperienced agents after setting the speed of the
agents at a significantly higher level (SP=500, a level ten times higher than the highest parameter value we employ
in our parameter space), thus allowing the agents to perform a high number of evaluations. The results confirm that
with a higher number of evaluations, agents with the highest search distance generally outperform others.
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protoroutines on the optimal search distance.12

[Insert Figures 3,4,5 about here]

4.2 Performance effects of environmental turbulence, decision complexity, and

protoroutines

Here we highlight the comparative performance of inexperienced and experienced agents at different

levels of turbulence and complexity. Comparisons across the graphs in Figures 3-5 show that

experienced agents tend to achieve better results as environmental turbulence decreases (compare

Figures 3-5 [b] vs. [d]) and as complexity increases (compare Figures 3 [b,d] vs. Figure 4 [b,d]

vs. Figure 5 [b,d]). On the other hand, inexperienced agent performance tends to be invariant to

turbulence levels (compare Figures 3-5 [a] vs. [c]), but these inexperienced agents obtain higher

fitness in case of moderate complexity (compare Figure 4 [a,c] vs. Figure 3 [a,c] and Figure 5 [a,c]).

Let us examine the effect of protoroutines in different turbulence settings in more detail. Higher

environmental turbulence is detrimental for the performance of experienced agents whereas it does

not negatively influence the performance of inexperienced agents. Consider the evolution of search

strategy characteristics for experienced agents operating in low vs. high turbulence environments.

The level of confidence in exercising a protoroutine is higher when the environment is less turbulent

(RW=0.01); accordingly, in this circumstance, protoroutines are used more frequently and therefore

banked time is higher on average. However, using protoroutines in rapidly changing landscape

topographies tends to produce negative fitness due to the higher mismatch between solutions and

task environment characteristics. Inexperienced start-ups, on the other hand, continuously engage

in solution adaptation (directed exploration) across challenges, and so performance for these agents

tends to be invariant to environmental turbulence. Figure 6 shows these results more clearly

by comparing the fitness values of an inexperienced with an experienced agent across challenges

12One exception is the case of intermediate complexity where, as compared with inexperienced agents, protoroutines
tend to favor teams that search at higher distance and low to moderate speed.
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under low and high environmental turbulence (RW=0.01 and 0.05, respectively). In these plots,

all the other settings of the simulation are held constant across the agents (with intermediate

levels of complexity, search distance, and speed). For experienced agents, the performance of both

protoroutines and directed explorations degrade with turbulence, while fitness is relatively constant

for the inexperienced agent (compare Figure 6 [c,d] with [a,b]). At the same time, average fitness

is higher for the experienced agent under low turbulence but higher for the inexperienced agent

when the environment is highly turbulent (contrast Figure 6 [a,c] with [b,d]).

With regard to decision complexity, our primary finding is that experienced agent performance

increases with complexity. To see this result more clearly, Figure 7 compares the fitness values

of an inexperienced with an experienced agent across challenges under varying levels of decision

complexity (K=0, 2, and 5, respectively). In these plots, all the other settings of the simulations are

held constant across the agents (with intermediate levels of search distance, speed, and turbulence).

For experienced agents, the performance of protoroutines and directed explorations increase with

complexity, whereas the same pattern does not hold for inexperienced agents (compare Figure 7

[d,e,f] vs. [a,b,c]). These results suggest that understanding the mapping between decision choice

and payoffs is particularly useful when the fitness landscape is very rugged. Protoroutines allow the

organizational to access past problem solutions, which in turn may (imperfectly) help map these

payoffs. Through a process by which experienced agents’ protoroutines yield higher performing

directed explorations and vice-versa, experienced agents build a more detailed map, which can be

particularly useful under complexity.

[Insert Figures 6,7 about here]
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4.3 Joint performance effects under different organizational context configura-

tions

In this section we build on our prior results to examine the joint performance effects of founding

team characteristics (as they impact search speed and search distance) and new venture evolution

(protoroutines) under different configurations of decision complexity and environmental turbulence.

The logic behind this analysis is three-fold. First, as previously discussed, there is an inherent trade-

off in team design such that search distance (associated with more diverse teams) is often at odds

with search speed (associated with more uniform teams). As the recent literature has suggested,

designing teams that are both uniform and diverse on different dimensions may circumvent this

tradeoff. However, the literature does not give guidance on when it is preferable to have some

elements of both. Second, protoroutine development may be a function of business policy (as well

as naturally evolving over time). It is thus important to understand when to try to spur or dampen

protoroutine development. Moreover, there may be situations in which composing such teams may

not be feasible. Third, examining the joint effects of the above two effects enlarges the firm strat-

egy space because it is possible to use protoroutines to accomplish some of the same functionality

enabled by founding team design (search speed), and so protoroutines may be particularly helpful

when there are tradeoffs at the team design level. We therefore consider four different contextual

configurations in which each of complexity and turbulence can be low or high. For each configura-

tion, we discuss the joint founding team and venture development performance effects, which are

summarized in Table 1.

[Insert Table 1 about here]

4.3.1 Low complexity and low turbulence

When decisions are relatively independent and the external environment is stable, teams with high

search speed and low search distance are preferred. The positive impact of search speed is invariant
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to all contextual configurations, while the overall search distance effect is driven by the negative

impact of high search distance (the effect of SD is invariant to environmental turbulence).13 The

combination of high SP and low SD is relatively easy to implement by designing a uniform team.

Protoroutines can also add performance value, as they work well in low turbulence while not having

a detrimental effect under low complexity.

4.3.2 High complexity and low turbulence

When decisions are highly interdependent but the external environment is stable, teams with both

high search speed and distance are preferred. Search distance benefits in highly complex situations

drive the overall positive SD effect. Achieving both high SP and SD at the team configuration

level involves mixing uniform and diverse team members together. Protoroutines are particularly

beneficial in this contextual setting, as they work well in complex environments and when turbulence

is low.

4.3.3 Low complexity and high turbulence

When decisions are not highly coupled at the same time that the external environment is turbulent,

the highest performing teams are those with high search speed and low search distance for the same

reasons discussed in section 4.3.1 above. As in that case, uniform teams are preferred. Protoroutines

in this contextual configuration, however, are detrimental to organizational performance, as they

are not helpful under low complexity and are harmful under high turbulence.

4.3.4 High complexity and high turbulence

Finally, when decisions are tightly coupled and the external organizational environment changes

at a relatively fast pace, mixed uniform and diverse teams are best for the same reasons discussed

13It is worth noting that in Table 1, although the pattern of signs associated with founding team characteristics is
similar across levels of turbulence, our results suggest that their relative magnitude is somewhat different.
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in section 4.3.2 above. The results on the net effect of protoroutine development are ambiguous,

however, as protoroutines are beneficial in complex situations but harmful when turbulence is high.

To gain more insight on the net effect of protoroutines in this environment, we investigate the

performance of organizations that adopt protoroutines frequently despite high turbulence. Should

the net effects on performance be positive in case of high complexity, one could conclude that

(under the assumptions of the model) even in highly complex and turbulent settings, protoroutines

may be beneficial. To set up this analysis we alter the protoroutine confidence function. In our

analysis thus far, experienced agents adjust their confidence in exercising a protoroutine vis-à-

vis implementing a directed exploration depending on the feedback that they receive from the

adoption of a protoroutine as described in footnote 9. We refer to these agents as “sensitive”

to environmental feedback when choosing a solution strategy. When industry turbulence is high,

however, experienced new ventures know that their performance tends to degrade, and so may

instead decide to ignore feedback from the environment as specified in the protoroutine confidence

function. As a result, these types of agents will increase their protoroutine confidence by following a

monotonic function that increases solely depending on the number of challenges already processed.

We refer to these agents as environmentally “insensitive.”

In Figure 8, we show graphically that these agents develop higher confidence in protoroutine

adoption over time, leading to a greater time buffer, all else equal. In Table 2, we report performance

results obtained by insensitive vs. sensitive experienced agents under high turbulence (RW=0.05)

and varied levels of decision complexity. The values in the table represent relative agent performance

by differencing insensitive from sensitive agent performance (and so positive values, in bold, are

situations in which insensitive agents outperform sensitive ones). The comparison reveals that the

fitness values associated with insensitive agents are systematically higher relative to sensitive agents

in case of high complexity and lower in case of moderate complexity, whereas they tend follow a

more irregular pattern in the case of low complexity. In this analysis, although the magnitude at
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which the landscape topography shifts over time is invariant for insensitive and sensitive agents,

differences in the evolution of time buffers generated by agents exist due to the different confidence

function in adopting protoroutines. Taken together, these results suggest that even in turbulent

environments where protoroutines generally underperform, when decision complexity is high, a

higher reliance on protoroutines (and the resulting time buffers generated) yields performance

benefits, at least within our selected parameter space. We conclude that when complexity and

turbulence are both high, it is beneficial to design teams that are both uniform and diverse, and

protoroutine development may further enhance performance.

[Insert Table 2 & Figure 8 about here]

4.4 Results Robustness

4.4.1 Robustness to selected parameter space

Throughout the simulations, we set the number of decisions to make N equal to 10. The remaining

parameters were chosen on the basis of reasonable low, medium, and high values. Regarding the

value of K, we observed a progressive evolution of our results as the parameter ranged between 0

and 5. We therefore chose three representative values to facilitate our discussion of results. We

followed a similar approach to select search distance values. For the parameter SP, we included a

higher range of values to mitigate the risk of capturing only a portion of the overall effects. Our

speed results are robust to a wider span of values (except for much higher values of SP, as discussed

above).

We also differentiate, as previously discussed, between stable and turbulent industries by vary-

ing the random walk range that defines the magnitude of change in the sequence of challenges.

More stable industries are simulated with a RW value of 0.01; more turbulent industries take on an

RW value of 0.05. To check result sensitivity, we varied the values of RW. The results are similar

but with lower magnitude for values of RW lower than 0.05 and higher than 0.01. The results
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become unstable for RW values beyond 0.05. Larger random walk value ranges generate strongly

uncorrelated landscapes at each time step, and while we wish to model some degree of environmen-

tal turbulence, our setup is not well-equipped to deal with strongly discontinuous environments

(as in Tushman and Anderson (1986)). We also tested the reliability of our operationalization of

industry turbulence with a measure of environmental uncertainty that has been validated in the

literature, and found consistent results.14

4.4.2 Robustness to alternative starting landscapes

To avoid the risks of result sensitivity to a specific pattern of random binary strings chosen in

the simulation, we averaged all our fitness values across 20 different starting landscapes, for each

landscape, across 20 randomly chosen agents, and for each of these 400 combinations, across 300

different challenges. Because the firms that adopted the protoroutines will tend to directly im-

plement the configuration that in the past generated the highest performance, one could suspect

that the stochastically determined differences in the evolution in the inventory of protoroutines

will create a bias in the results. To address this, we created a history of each agent’s initial life by

running 100 time steps before starting each of the 400 different simulations of an experienced new

venture that composed the averages that we use for each setting of the parameters. To each of the

400 independent runs, we attributed a random search distance (SD) and a random decision-making

speed (SP) within the range considered in our parameter space.

14This empirical measure has been used and validated by several studies in the literature (Dess and Beard 1984;
Keats and Hitt 1988; Carpenter and Fredrickson 2001). To calculate a performance indicator at the industry level, we
summed all the fitness values obtained by our population of agents for each challenge in both the stable and turbulent
industries. We then selected ten contiguous blocks of five subsequent challenges as inputs to predict the industry
trend at the sixth challenge. These values were generated by calculating the ratio between the standard error of the
predictor coefficient that was obtained by regressing the industry performance indicators over the five-year blocks
against year and average industry performance over the same time period. We then averaged these values for the
ten blocks of challenges considered, thus obtaining a single value for each of the two industries. The value of the
indicator of the more turbulent industry was consistently higher than that of the more stable one, thus providing
some external validation.
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4.4.3 Robustness to alternative search styles

We conducted a supplemental analysis to test whether the results are sensitive to our choice of

search distance definition. We define an alternative SD mode that aims to capture another possible

way by which founding teams may conduct decision-making evaluation. We allow the agent to

search only at the SD distance, a setting we label peripheral search. We therefore force the agent

to flip a number of binary bits equal to SD to perform each evaluation. This compares to our

baseline method in which the agent may change a number of decisions lower or equal to SD to

perform a single evaluation. This second interpretation, labeled radial search, is similar to that

used by prior studies in the NK literature (Rivkin and Siggelkow 2003). All our results hold also

in case of peripheral search. However, it is worth noting that under peripheral search, the optimal

search distance is much more sensitive to the agents’ decision-making speed and environmental

turbulence as compared to radial search, in which higher search distance tends to outperform at

higher complexity regardless of the settings of the other parameters. The positive effect generated

by radial search as compared to peripheral search for agents searching at higher distances is not

surprising. First, note that for minimal search distance (SD=1), peripheral and radial search result

in identical search processes by definition. In case of higher search distances (SD=3,5) radial search

is more profitable than peripheral search since the former search mode holds the option of exploring

both the periphery and the sub-area within it as compared to peripheral search.

Analyzing possible alternative search styles represents an interesting extension of the model.

Different search styles may capture alternative ways by which founding teams integrate the individ-

ual knowledge of their members. In the cases discussed above, peripheral search may represent a

team decision-making search process exploring only the periphery of members’ collective knowledge

whereas radial search may refer to the case in which the team uses its members’ knowledge sets

as a collection of resources, the integration of which may be optionally exploited to explore more

distant solutions.
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5 Discussion

We address the research question: What is the effect of emergent organizational routines on venture

performance given different founding team and environmental characteristics? We do so by first

identifying distinctive traits that characterize protoroutines, organizational routines in a prototyp-

ical state. We embed protoroutines in an agent-based simulation model to examine how and when

protoroutines contribute to firm performance. While relatively uniform founding teams tend to

accomplish decision-making faster, more diverse teams are able to consider more distant solutions.

Protoroutines enlarge the organizational strategy space because it is possible to use protoroutines

to accomplish some of the same functionality enabled by founding team design (search speed), and

so they may be particularly helpful when there are tradeoffs at the team design level. Using this

perspective, our simulation results allow us to examine under what configuration of organizational

contexts (environment turbulence and decision complexity) protoroutines are desirable. At a higher

level, our approach adds to our understanding of the organizational processes in young enterprises

that develop by both business policy and experience, together with their performance implications.

The existing literature on organizational routines contains little depth on the process of new

routine formation, aside from the general notion that experimentation is likely necessary (Nelson

and Winter 1982). We start from the premise that organizational routines are neither beneficial

nor detrimental per se, as the prior literature has examined both their positive attributes such as

cognitive efficiency (March 1958; Simon 1981) as well as their negative ones, such as organizational

inertia (Hannan and Freeman 1988) and competency traps (March 1991). In our model, protorou-

tines are beneficial for experienced agents because they economize on execution time, though they

are not optimized for solving focal challenges.

Our results suggest that protoroutines are beneficial at lower levels of environmental turbulence

and higher levels of complexity. Like standard operating procedures, organizational routines benefit

from recurrent application in contexts with little causal ambiguity. The turbulence results are
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consistent with this notion, as routinization is difficult in tumultuous conditions. Interestingly,

we found that while routines should most easily develop in less complex situations, they are most

profitable under high decision complexity, suggesting that it is in such contexts that entrepreneurial

ventures may wish to encourage protoroutine development via business policy. Even under turbulent

conditions, which tend to dampen the performance of protoroutines, we find the intriguing result

that under high complexity, experienced agents ignoring performance feedback with respect to their

policy choices in their protoroutine confidence function outperform similar agents internalizing such

feedback. This suggests that on balance, protoroutines may be beneficial when the organizational

environment is both complex and turbulent. Indeed, of the four joint organizational environmental

configurations we consider, protoroutines contribute to firm performance in all cases except under

low complexity and high turbulence.

We also contribute to the literature on founding team composition. Given the tendency of

individuals to associate with common others, founding teams are more homophilous relative to

what would be expected from the distribution of potential founding teams (Ruef et al. 2004).

These more homogenous teams tend to excel at decision-making speed but lag in search distance

(and vice-versa for heterogeneous teams). While the recent literature on teams suggests forming

teams that are uniform in some dimensions while diverse on others, our method allows us to

map ideal team composition to different configurations of organizational context (environmental

turbulence and decision complexity). In that regard, our analysis informs start-up designers of the

circumstances under which they may wish to “go against the grain” and add more diversity to their

founding teams (our results suggest in high complexity situations). In a further contrast to the

extant literature, our simulation results suggest that purely diverse teams (without at least some

dimension of uniformity) are never optimal.

Our final contribution is at the nexus of team composition and protoroutine development.

Since protoroutine use can accomplish some of the same functionality (decision-making speed) as
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founding team design, protoroutines add an organizational instrument which may be particularly

useful when there is a search speed and search distance tradeoff at the team design level (as is the

case when high complexity is paired with low turbulence, and when high complexity occurs at the

same time as high turbulence).

In future work, we hope to enrich the model presented here. While our definition of environ-

mental turbulence takes into account the influence of rapidly changing environments, we have little

understanding on the possible effects of more punctuated change, which may take place even in rel-

atively stable industries (Tushman and Anderson 1986). Moreover, in our simulations we consider

the team composition as fixed. It may be interesting to evaluate the impact of changes in founding

team composition on new venture performance at different points of the enterprise development

lifecycle.

In conclusion, by embedding protoroutines into a model relating founder characteristics to

venture performance, we gain insight into the role of time as a potentially valuable organizational

resource. We believe that the resulting framework deepens our understanding of how and with

what performance consequence new ventures develop.
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m = An arbitrary challenge

M = Total number of challenges in the simulation

fcm,d = All possible distinct fitness contributions in the NK fitness landscape associated with challenge m (m M)

RND [-RW; +RW] = Random value drawn from a continuous uniform distribution between RW and +RW

i = An arbitrary agent

ATi,m = Processing time allocated by the ith agent to solve challenge m

M - m = Number of challenges left in the simulation

ti,m = Overall processing time available for agent i at the beginning of challenge m

SPi = Speed of the ith agent 

F itness for challenge m:

F itness for challenge m:

Figure 1: Description of the task environment and search strategies adopted by inexperienced start-ups and expe-
rienced new ventures
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Figure 2: Description of the evolving landscape topography

Averages over 20 independent agents starting from 20 randomly generated landscapes and 300 challenges. The
percentage of local peaks coincident with those observed in the original challenge (Challenge 0) is plotted on the y-axis.
K represents the level of complexity of the landscape. RW represents the range of the random walk by which the fitness
contributions linked with the challenges are modified over time.
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Figure 3: Comparison of the results obtained by inexperienced start-ups and experienced new ventures
under low complexity (K=0)

Averages over 20 independent agents starting from 20 randomly generated landscapes. Agent decision-
making speed (SP) (x-axis) is plotted against average performance (y-axis). SD represents agents search
distance. K represents the level of complexity of the landscape. RW represents the range of the random
walk by which the fitness contributions linked with the challenges are modified over time. Inexperienced
start-ups only adopt directed explorations; experienced new ventures adopt either directed explorations or
protoroutines. For each agent: N=10, t0=300, M=300.
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(b) Experienced, RW=0.01
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Figure 4: Comparison of the results obtained by inexperienced start-ups and experienced new ventures
under medium complexity (K=2)

Averages over 20 independent agents starting from 20 randomly generated landscapes. Agent decision-
making speed (SP) (x-axis) is plotted against average performance (y-axis). SD represents agents search
distance. K represents the level of complexity of the landscape. RW represents the range of the random
walk by which the fitness contributions linked with the challenges are modified over time. Inexperienced
start-ups only adopt directed explorations; experienced new ventures adopt either directed explorations or
protoroutines. For each agent: N=10, t0=300, M=300.
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(b) Experienced, RW=0.01
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(c) Inexperienced, RW=0.05
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Figure 5: Comparison of the results obtained by inexperienced start-ups and experienced new ventures
under high complexity (K=5)

Averages over 20 independent agents starting from 20 randomly generated landscapes. Agent decision-
making speed (SP) (x-axis) is plotted against average performance (y-axis). SD represents agents search
distance. K represents the level of complexity of the landscape. RW represents the range of the random
walk by which the fitness contributions linked with the challenges are modified over time. Inexperienced
start-ups only adopt directed explorations; experienced new ventures adopt either directed explorations or
protoroutines. For each agent: N=10, t0=300, M=300.
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Figure 6: Comparison between fitness values generated by directed exploration and protoroutines under varied turbulence

Data generated by an individual agent operating in an arbitrary landscape. RW represents the range of the ran-
dom walk by which the fitness contributions linked with the challenges are modified over time. The agent is set either as
an inexperienced start-up (a,b) or as an experienced new venture (c,d) searching peripherally with K=2, N=10, t0=300,
M=300, SD=3, and SP=30.
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Figure 7: Comparison between fitness values generated by directed exploration and protoroutines under varied complexity

Data generated by an individual agent operating in an arbitrary landscape. K represents the complexity of the set-
ting. The agent is set either as an inexperienced start-up or as an experienced new venture with N=10, t0=300, M=300,
SD =3, SP =30, and RW =0.03.
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Figure 8: Comparison of experienced new ventures displaying sensitivity and insensitivity to environmental feedback in
using protoroutines

Averages over 20 independent agents starting from 20 randomly generated landscapes. RW represents the range of
the random walk by which the fitness contributions linked with challenges are modified over time. Experienced new
ventures adopt either directed explorations or protoroutines. Insensitive agents do not adjust their confidence function in
adopting protoroutines depending upon the observed profitability of the protoroutines (whereas sensitive ones do adjust).
For each agent: N=10, t0=300, M=300, K=2, SD=3, and SP=30.
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Table 1: Comparison between fitness values generated by directed exploration and protoroutines under varied
complexity

Founding Team Characteristics New Venture Evolution
Search Speed Search Distance Protoroutines

(a)

complexity

(b)

turbulence

(a) (b) (a)+(b) (a) (b) (a)+(b) (a) (b) (a)+(b)

Low Low + + + – 0 – 0 + +
High Low + + + + 0 + + + +
Low High + + + – 0 – 0 – –
High High + + + + 0 + + – ?

Averages over 20 independent agents starting from 20 randomly generated landscapes. Low and high complexity
equal to K=0 and 5 respectively whereas low and high turbulence equal to RW=0.01 and 0.05, respectively. For all
agents N=10, t0=300, M=300. The columns (a) report the sign of the impact of high levels of the parameter with
respect to the level of complexity indicated in the column labeled “complexity.“ The columns (b) report the sign
of the impact of high levels of the parameter with respect to the level of turbulence indicated in the column labeled
“turbulence.“ The columns (a)+(b) report the expected sign of the net impact of high levels of the parameter given
the related signs of columns (a) and (b). The sign “+“ (“–“) indicates that high (low) levels of the parameters
are desired, and “0“ indicates an irrelevant impact.
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Table 2: Comparison of experienced new ventures displaying sensitivity and insensitivity to environmental feedback in
using protoroutines

K=0 K=2 K=5
SD
SP

1 3 5 1 3 5 1 3 5

10 0.0062 0.0049 0.0052 -0.0074 -0.0073 -0.0089 0.0064 0.0061 0.0058

15 0.0024 0.0025 0.0034 -0.0107 -0.0105 -0.0109 0.0057 0.0048 0.0049

20 0.0002 0.0010 0.0025 -0.0123 -0.0122 -0.0119 0.0057 0.0048 0.0039

25 -0.0009 0.0000 0.0014 -0.0131 -0.0139 -0.0133 0.0047 0.0053 0.0047

30 -0.0016 -0.0007 0.0004 -0.0147 -0.0148 -0.0144 0.0056 0.0043 0.0044

35 -0.0018 -0.0012 0.0000 -0.0147 -0.0154 -0.0149 0.0043 0.0054 0.0043

40 -0.0022 -0.0014 -0.0006 -0.0150 -0.0156 -0.0157 0.0050 0.0047 0.0038

45 -0.0025 -0.0018 -0.0008 -0.0154 -0.0158 -0.0156 0.0046 0.0043 0.0036

50 -0.0024 -0.0018 -0.0009 -0.0160 -0.0168 -0.0164 0.0042 0.0039 0.0039

Averages over 20 independent agents starting from 20 randomly generated landscapes. The values reported represent the
differences between the fitness values obtained by insensitive agents minus those obtained by the sensitive agents. Both types
of agents are experienced new ventures. Insensitive agents do not adjust their confidence function in adopting protoroutines
depending upon the observed profitability of the protoroutines (whereas sensitive ones do adjust). Bold values represent
cases in which insensitive agents obtain higher performance relative to sensitive agents. SP represents the processing speed
of the agent in terms of number of evaluations of potential mutations performed in a unit of time equal to 1. SD represents
search distance. K represents the level of complexity of the landscape. For each agent: N=10, t0=300, M=300.
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