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1 Introduction

We investigate whether financial frictions are quantitatively important in determining the

cross-section of expected stock returns. Specifically, we construct a production based asset

pricing framework in the presence of financial market imperfections and use GMM to explore

the stochastic Euler equation restrictions imposed on asset returns by the optimal investment

decisions of firms.

Our results suggest that financial frictions provide an important common factor that can

improve the pricing of the cross-section of expected returns. In addition, we find that the

shadow price of external funds is strongly procyclical, i.e., financial market imperfections are

more important when economic conditions are relatively good. These results are generally

robust to the use of alternative measures of fundamentals such as profits and investment,

alternative assumptions about the forms of the stochastic discount factor, and alternative

measures of the shadow price of external funds.

The intuition behind our results is simple. The empirical success of production based asset

pricing models lies in the alignment between the theoretical returns on capital investment

and stocks returns. Given the forward looking nature of the firms’ dynamic optimization

decisions, the returns to capital accumulation will be positively correlated with expected

future profitability. Accordingly, the model generates a series of investment returns that is

procyclical and leads the business cycle. This pattern accords well with the observed cyclical

behavior of stock returns documented by Fama (1981) and Fama and Gibbons (1982).

Financial frictions create an important additional source of variation in investment

returns. Specifically, financial market imperfections introduce a wedge, driven by the shadow

cost on external funds, between investment returns and fundamentals such as profitability.

All else equal, a countercyclical wedge generally lowers the correlation between the theoretical

investment returns and the observed stock returns. This will weaken the performance of the

standard production based asset pricing model. Conversely, a procyclical shadow cost of

external funds will strengthen the empirical success of the model.

Our work has important connections to the existing literature on empirical asset pricing.

Our findings that financing frictions provide an important risk factor for the cross section
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of expected returns are consistent with recent research by Lamont, Polk, and Saa-Requejo

(2001) and Whited and Wu (2004). However, by explicitly modelling the effect of financial

market imperfections on optimal investment and returns, our structural approach helps to

shed light on the precise nature of the underlying financial market imperfections.

By identifying the role of cyclical fluctuations in the shadow price of external funds, our

results also have important implications for the corporate finance literature. In particular,

our basic finding that financing frictions are more important when economic conditions are

relatively good can be used to distinguish across the various existing theories of financial

market imperfections.1

Our research builds on Cochrane (1991, 1996) who first explores the asset pricing

implications of optimal production and investment decisions by firms. Our work is also

closely related to recent research by Li (2003) and by Whited and Wu (2004). Li (2003)

builds directly on our approach to investigate implications of financial frictions at the firm

level. Whited and Wu (2004) adopt a similar framework to estimate the shadow price of

external funds using firm-level data, and then construct return factors on the estimated

shadow price. Their work provides an important empirical link between the shadow price of

external funds and firm specific variables. Both sets of authors find that financing frictions

are particularly important for the subset of firms a priori classified as financially constrained.2

Finally, our work complements Gomes, Yaron, and Zhang (2003a) who study asset pricing

implications of a very stylized model of costly finance in an asset pricing setting. Specifi-

cally, they use a fully specified general equilibrium model to show that to match the equity

premium and typical business cycle facts the model must imply a procyclical variation in the

cost of external funds. In contrast to the very simple example in Gomes, Yaron, and Zhang

(2003a), our current paper allows a much more general characterization of the role of financial

market imperfections — thus providing a more suitable framework for empirical analysis.

The remainder of this paper is organized as follows. Section 2 shows how financial market

imperfections affect firm investment and asset prices under fairly general conditions. This

1For example, Dow, Gorton, and Krishnamurthy (2003) agency model also has the feature that financing
frictions become more important when economic conditions are relatively good.

2Other papers in this area include Whited (1992), Bond and Meghir (1994), Restoy and Rockinger (1994),
and Li, Vassalou and Xing (2001).
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section derives the expression for returns to physical investment, the key ingredient in the

stochastic discount factor in this economy. Section 3 describes our empirical methodology,

while Section 4 discusses the results of our GMM estimation and tests. Finally, Section 5

offers some concluding remarks.

2 Production Based Asset Pricing with Financial

Frictions

In this section we incorporate financial frictions in a production based asset pricing framework

in the tradition of Cochrane (1991, 1996) and derive the expression for the behavior of

investment returns, the key ingredient in our stochastic discount factor.

2.1 Modelling Financial Frictions

Several theoretical foundations of financial market imperfections are available in the

literature. Rather than offering another rationalization for their existence we seek instead

to summarize the common ground across the existing literature with a representation of

financial constraints that is both parsimonious and empirically useful.

While exact assumptions and modelling strategies often differ quite significantly across

authors, the key feature of this literature is the simple idea that external funds (new equity

or debt), are not perfect substitutes for internal cash flows. It is this crucial property that

we explore in our analysis below by assuming that any form of financial market imperfection

can be usefully summarized by adding a distortion to the relative price between internal and

external funds.

Consider the case of new equity finance. Suppose that a firm issues Nt dollars in new

equity and let Wt denote the reduction on the claim of existing shareholders per dollar of

new equity issued. In a frictionless world it must be the case that Wt =1, since the value of

the firm is not affected by financing decisions. However, the presence of any financial market

imperfections such as transaction costs, agency problems or market timing issues will cause

Wt to differ from 1. Characterizing the exact form of Wt requires a detailed model of the pre-

cise nature of the distortion but it is not necessary to derive the key asset pricing restrictions
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below. Similarly we need not take a stand about whether new issues add or lower firm value.

Suppose now that the firm also uses debt financing, Bt, and let Rt denote the gross

(interest plus principal) repayment per dollar of debt raised. As before, without any financial

frictions, the cost of this debt will be equal to the return on savings and the opportunity cost

of internal funds, say Rft. The presence of any form of imperfection, such as asymmetric

information or moral hazard problems, will again distort relative prices and will cause Rt

to differ from Rft, at least when Bt > 0. As in the case of equity issues, this basic idea is

sufficient to derive the asset pricing results below.

2.2 Investment Returns

Consider the problem of a firm seeking to maximize the value to existing shareholders,

denoted Vt. The firm makes investment decisions by choosing the optimal amount of capital

at the beginning of the next period, Kt+1. Investment, It, and dividends, Dt, can be financed

by internal cash flows Πt, new equity issues, Nt, or new one-period debt Bt+1. Assuming

one-period debt simplifies the notation significantly but does not change the basic results.

The value-maximization problem of the firm can then be summarized as follows:

V (Kt, Bt, St) = max
Dt,Bt+1,
Kt+1,Nt

{Dt − WtNt + Et [Mt+1V (Kt+1, Bt+1, St+1)]} (1)

subject to

Dt = Π(Kt, St) − It −
a

2

[
It

Kt

]2

Kt + Nt + Bt+1 − RtBt (2)

It = Kt+1 − (1 − δ)Kt (3)

Dt ≥ D, Nt ≥ 0 (4)

where St summarizes all sources of uncertainty, Mt+1 is the stochastic discount factor (of the

owners of the firm) between t to t + 1 and D is the firm’s minimum, possibly zero, dividend

payment. Note that we allow a firm to accumulate financial assets, in which case debt, Bt,

is negative. We also assume that investment is subject to convex (quadratic) adjustment

costs, the magnitude of which is governed by the parameter a. Without adjustment costs the

price of capital is always one and the capital-gain component of returns is always zero, and
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is clearly counterfactual. The form of the internal cash flow function Π(·), is not important.

For simplicity, we assume only that it exhibits constant return to scale.

Equation (2) is the resource constraint for the firm. It implies that dividends must equal

internal funds Π(Kt, St), net of investment spending It, plus new external funds Nt + Bt+1,

net of debt repayments RtBt. Equation (3) is the standard capital accumulation equation,

relating current investment spending, It, to future capital, Kt+1. We assume that old capital

depreciates at the rate δ.

Letting µt denote the Lagrange multiplier associated with the inequality constraint on

dividends, the optimal first-order condition with respect to Kt+1 (derived in Appendix A.1)

implies that:

Et[Mt+1R
I
t+1] = 1 (5)

where RI
t+1 denotes the returns to investment in physical capital and is given by:

RI
t+1 = RI

t+1(π, i, µ) ≡
(1 + µt+1)(πt+1 + a

2
i2t+1 + (1 + ait+1)(1 − δ))

(1 + µt)(1 + ait)
(6)

And i≡I/K is the investment-to-capital ratio and π≡Π/K is the profits-to-capital ratio.3

To gain some intuition on the role of the financial frictions, we can decompose (6) into:

RI
t+1(π, i, µ) =

1 + µt+1

1 + µt

R̃I
t+1 and R̃I

t+1(π, i) ≡
πt+1 + a

2
i2t+1 + (1 + ait+1)(1 − δ)

1 + ait
(7)

where R̃I
t+1 denotes the investment return with no financial constraints, i.e., µt+1 = µt = 0,

which is entirely driven by fundamentals, i and π. The role of the financial market

imperfections is completely captured by the term
1+µ

t+1

1+µ
t

, which depends only on the shadow

price of external funds.

The decomposition in equation (7) provides important intuition on the effects of financial

market imperfections on returns. This result show that if µt = µt+1 financing frictions do

not affect returns at all. They will simply have a permanent effect on the value of the

firm without producing time series variation in returns. This highlights the crucial role of

cyclical variation in the shadow price of external funds. From the standpoint of asset returns

3Equation (6) is general and holds in the presence of quantity constraints such those created by credit
rationing (see Whited (1992) and Whited and Wu (2004)). For details see Gomes, Yaron, and Zhang (2003b).
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however, the exact level of µ is irrelevant.

3 Empirical Methodology

3.1 Testing Framework

The essence of our empirical strategy is to use the information contained in asset prices to

formally evaluate the effects of financial constraints. Specifically, we test

Et[Mt+1Rt+1] = 1 (8)

where Rt+1 is a vector of returns, that may include stocks and bonds as well as the returns

to physical investment from equation (5).

Following Cochrane (1996) we ask whether investment returns are factors for asset

returns. Formally, we parameterize the stochastic discount factor as a linear function of

the returns to physical investment:

Mt+1 = l0 + l1R
I
t+1 (9)

The role of financial frictions in explaining the cross-section of expected returns as a

factor is captured by their impact on RI in the pricing kernel (9). Thus, financial frictions

will be relevant for the pricing of expected returns only to the extent that they provide a

common factor or a source of systematic risk, which influences the stochastic discount factor.

In this sense, our formulation is essentially a structural version of an APT-type framework

such as those proposed in Fama and French (1993, 1996) and Lamont, Polk, and Saá-Requejo

(2001), in which one of the factors proxies for aggregate financial conditions.

In the presence of financing frictions, equation (9) is only an approximation to the exact

pricing kernel for this economy since in general the pricing kernel will also depend on the

corporate bond return, as shown in Gomes, Yaron, and Zhang (2003b). Below we also

implement this more general representation of the pricing kernel in Section 4.
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3.2 The Shadow Price of External Funds

Empirically, our characterization of investment returns is useful because it requires only data

on the two fundamentals, i and π, as well as a measure of the shadow cost of external funds

to be implemented. Formally, we parameterize the shadow price of external funds µt with

the following form:

µt = b0 + b1ft (10)

where b0 and b1 are parameters and ft is some aggregate index of financial frictions.

Recall that the key element for asset returns is the time series variation in µt, which is cap-

tured by the cyclical properties of the financing factor ft. Thus, the estimated value of b1 will

summarize all information about the impact of financial market imperfections on returns.4

Cyclicality plays an important role in the various theories of financial market

imperfections. For example models emphasizing the importance of agency issues between

insiders and outsiders suggest that frictions are more important when economic conditions

are good and managers have too many funds available. Conversely, models that focus on

costly external finance typically emphasize the role of credit market constraints and rely on

the fact that the cost of external funds rises when economic conditions are adverse.5 By

isolating the dynamic properties of the shadow price of external funds we can do more than

just assess the overall impact of financing frictions on asset returns. Our methodology also

allows us to distinguish between the various theories of financial market imperfections.

As a first measure of aggregate financial frictions we use the default premium, defined

as the yield spread between Baa and Aaa rated corporate bonds. Bernanke (1990) and

Stock and Watson (1989, 1999) show that the default premium is one of the most powerful

predictors of aggregate economic conditions. The default premium is also a frequent measure

of the premium of external funds in the literature, (e.g., Kashyap, Stein, and Wilcox (1993),

Kashyap, Lamont, and Stein (1994), Bernanke and Gertler (1995), and Bernanke, Gertler,

and Gilchrist (1996, 1999)).

4Since levels do not affect returns b0 is irrelevant. As a practical matter for our empirical estimation we
fix b0. Later we show that our results are not affected by this choice.

5Jensen (1986) is an example of the former while Bernanke and Gertler (1989) provide an example of the
latter. Stein (2003) offers a detailed survey of this literature.
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In our tests we also use two additional measures of the marginal cost of external finance.

The first is the aggregate return factor of financial constraints constructed in Lamont, Polk,

and Saa-Requejo (2001). The other measure is the aggregate distress likelihood constructed

by Vassalou and Xing (2003). Section 4.4 describes these measures, as well as more elaborate

specifications of equation (10), in detail.

3.3 Implementation

We use GMM to estimate the factor loadings, l, as well as the parameters, a and b1, by

utilizing M as specified in (9) in conjunction with moment conditions (8). Specifically, three

alternative sets of moment conditions in implementing (8) are examined (see also Cochrane

(1996)). First, we look at the relatively weak restrictions implied by the unconditional

moments. We then focus on the conditional moments by scaling returns with instruments,

and finally we look at time variation in the factor loadings, by scaling the factors.

For the unconditional factor pricing we use standard GMM procedures to minimize a

weighted average of the sample moments (8). Letting
∑

T denote the sample mean, we

rewrite these moments, gT as:

gT ≡ gT (a, b0, b1, l) ≡
∑

T [MR − p]

where R is the menu of asset returns being priced and p is a vector of prices. We then

choose (a, b1, l) to minimize a weighted sum of squares of the pricing errors across assets:

JT = g′
TWgT (11)

A convenient feature of our setup is that, given the cost parameters, the criterion function

above is linear in l, the factor loading coefficients. Standard χ2 tests of over-identifying

restrictions follow from this procedure. This also provides a natural framework to assess

whether the loading factors or technology parameters are important for pricing assets.

It is straightforward to include the effects of conditioning information by scaling the

returns by instruments. The essence of this exercise lies in extracting the conditional

implications of (8) since, for a time-varying conditional model, these implications may not
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be well captured by a corresponding set of unconditional moment restrictions as noted by

Hansen and Richard (1987).

To test conditional predictions of (8), we expand the set of returns to include returns

scaled by instruments to obtain the moment conditions:

E [pt ⊗ zt] = E [Mt,t+1 (Rt+1 ⊗ zt)]

where zt is some instrument in the information set at time t and ⊗ is Kronecker product.

A more direct way to extract the potential non-linear restrictions embodied in (8) is to

let the stochastic discount factor be a linear combination of factors with weights that vary

over time. That is, the vector of factor loadings l is a function of instruments z that vary

over time. With sufficiently many powers of z, the linearity of l can actually accommodate

nonlinear relationships. Therefore, to estimate and test a model in which factors are expected

to price assets only conditionally, we simply expand the set of factors to include factors scaled

by instruments. The stochastic discount factor utilized in estimating (8) is then,

Mt+1 =
[
l0 + l1R

I
t+1

]
⊗ zt

4 Findings

Section 4.1 describes our data. Section 4.2 reports the results from GMM estimation and tests

for our benchmark specifications, while Section 4.3 discusses and interprets our empirical

findings regarding the role of financing frictions. Finally, Section 4.4 includes a wide array

of robustness checks on our results.

4.1 Data and Descriptive Statistics

Macroeconomic data comes from National Income and Product Accounts (NIPA) published

by the Bureau of Economic Analysis, and the Flow of Funds Accounts available from the

Federal Reserve System. These data are cross-referenced and mutually consistent, so they

form, for practical purposes, a unique source of information. The construction of investment

returns requires data on profits, investment, and capital. Capital consumption data are used

to compute the time series average of the depreciation rate, δ, the only technology parameter
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not formally estimated. To avoid measurement problems due to chain weighting in the earlier

periods, our sample of macroeconomic data starts in the first quarter of 1954 and ends in the

last quarter of 2000. Since models of financing frictions usually apply to non-financial firms,

we focus mainly on data from the Non-Financial Corporate Sector. However, for comparison

purposes, we also report results for the aggregate economy. Appendix B provides a more

detailed description of the macroeconomic data.

Information about stock and bond returns comes from CRSP and Ibbotson and account-

ing information is from Compustat. To implement the GMM estimation, we require a reason-

able number of moment conditions constructed from stock and bond returns. Our benchmark

specification uses the Fama-French 25 size and book-to-market portfolios that are well known

to display substantial cross-sectional variation in average returns. The portfolio data are ob-

tained from Kenneth French’s website. In all cases we use real returns, constructed using the

Consumer Price Index for all Urban Households reported by the Bureau of Labor Statistics.

Investment data are quarterly averages, while stock returns are from the beginning to the

end of the quarter. As a correction, following Cochrane (1996), we average monthly asset

returns over the quarter and then adjust them so that they go from approximately the middle

of the initial quarter to the middle of the next quarter.6 Next, the default premium is defined

as the difference between the yields on Baa and Aaa corporate bonds, both obtained from

the Federal Reserve System. As an alternative measure, we also use the spread between Baa

and long term government bonds yields. Finally, conditioning information comes from two

sources: the term premium, defined as the yield on ten year notes minus that on three-month

Treasury bills, and the dividend-price ratio of the equally weighted NYSE portfolio.

Besides the size and book-to-market portfolios, we also use portfolios that are expected

ex-ante to display some cross-sectional dispersion in the degree of financing constraints.

These portfolios are the NYSE size deciles; ten deciles sorted on the cash flow to assets

ratio; ten deciles sorted on interest coverage, defined as the ratio of interest expense to the

sum of interest expense and cash flow (earnings plus depreciation); 27 portfolios based on a

three-dimensional, independent 3×3×3 sort on size, book-to-market, and the Kaplan and

6Lamont (2000) also discusses the importance of aligning investment and asset returns.
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Zingales (1997, KZ hereafter) index, and finally nine portfolios based on a two-dimensional,

independent 3×3 sort on size and the Whited and Wu (2005) index (WW hereafter).7

Our sample selection and construction of the KZ portfolios follows closely Lamont, Polk,

and Saa-Requejo (2001). We include only data from manufacturing firms that have all the

data necessary to construct the KZ index and have a positive sales growth rate deflated by

the Consumer Price Index in the prior year. We form portfolios in each June of year t, using

accounting data from the firm’s fiscal year end in calender year t−1, and using market value

in June of year t. And we calculate subsequent value-weighted portfolio returns from July of

year t to June of year t+1. Because of data limitations, the sample of monthly returns goes

from July 1968 to December 2000. See Appendix B for more details on portfolio construction.

Finally, Whited and Wu (2005) construct an index of financial constraints through

structural estimation of an investment Euler equation. They argue convincingly that their

index provides a much better way of capturing firm characteristics associated with financial

constraints than the KZ index.8 A limitation of using WW index is that we can not use

3×3×3 sorts on size, book-to-market, and the WW index as this yields portfolios with almost

no observations. Instead we use only the double sorted portfolios based on size and the WW

index.

Table 1 reports descriptive statistics for our test portfolios. Panel A reports the statistics

for the Fama-French size and book-to-market portfolios and Panel B reports those for the

ten size deciles. These results are well known. Panels C and D report the results for ten

deciles sorted on the ratio of cash flow to assets and interest coverage, respectively. Firms

with more cash flow relative to assets and firms with low interest coverage are generally con-

sidered to be less financially constrained. From Panel C, firms with high cash flow to assets

have generally higher average returns than those with low cash flow to assets. And from

Panel D, firms with high interest coverage also earn higher average returns than firms with

low interest coverage. But in both cases the differences in average returns are insignificant.

7Although the size deciles do not display much cross-sectional variation in average returns we include
them because size is a common proxy for financing constraints (e.g., Gertler and Gilchrist (1994); Lamont
et al. (2001)).

8In particular Whited and Wu (2005) find that firms deemed constrained by the KZ index are often large,
over-invest and have a higher incidence of bond ratings.
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Panel E of Table 1 reports the results of portfolios from independent three-way sorts

of the top third, the medium third, and the bottom third of size, of the KZ index, and of

book-to-market. We classify all firms into one of 27 groups. For example, portfolio p123

contains all firms that are in the bottom third sorted by size, in the medium third sorted

by the KZ index, and in the top third sorted by book-to-market. We also construct a zero-

investment portfolio on the KZ index, denoted pKZ , while controlling for both size and book-

to-market. Formally, pKZ = (p131 + p132 + p133 + p231 + p232 + p233 + p331 + p332 + p333)/9−

(p111 + p112 + p113 + p211 + p212 + p213 + p311 + p312 + p313)/9. From Panel E, consistent with

the evidence in Lamont, Polk, and Saa-Requejo (2001), the financing constraints factor earns

an average return of -0.30% per month with a t-statistic of -2.73.

Panel F of Table 1 is based on the nine Whited and Wu (2005) portfolios from independent

two-way sorts of the top third, the medium third, and the bottom third of size and the WW

index. All firms are classified into one of nine groups. For example, portfolio SC contains

all firms that are both in the bottom one-third sorted by size (S) and the top one-third

(Constrained) sorted by the WW index. And portfolio SU contains all firms that are both

in the bottom one-third sorted by size and the bottom one-third (Unconstrained) sorted by

the WW index. The zero-investment portfolio on financing constraints, denoted pWW , with

size controlled, is defined as pWW =(SC+MC+BC)/3−(SU +MU +BU)/3. This portfolio

earns an average return of 0.18% per month with a t-statistic of 0.95.

4.2 GMM Estimates and Tests

Table 2 reports iterated GMM estimates and tests for the benchmark specification. The

benchmark uses the Fama-French 25 size and book-to-market portfolio returns to form

moment conditions. We limit the number of moment conditions by using in the unconditional

model excess returns of portfolios 11, 13, 15, 23, 31, 33, 35, 43, 51, 53, and 55, one

investment excess return, and the real corporate bond return.9 The conditional and scaled

models use excess returns of portfolios 11, 15, 51, and 55, scaled by instruments, excess

investment return, and the real corporate bond return. The subsets of portfolios used to

9The first digit denotes the size group and the second digit denotes the book-to-market group, both in
ascending order. For example, portfolio 15 is formed by taking the intersection of smallest size quintile and
highest book-to-market quintile.
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form moment conditions maintain the cross-sectional dispersion of average returns in the

original 25 portfolios. Our benchmark estimates use the default premium as the instrument

for the shadow price of external funds in equation (10). In all cases we report the value of

the parameters a and b1 as well as estimated loadings, l, and corresponding t-statistics. Also

included are the results of J tests on the model’s overall ability to match the data, and the

corresponding p-values.

The results in Table 2 show a consistently positive estimate for the adjustment cost

parameter, a. Although the exact values are relatively large when compared to typical

microeconomic estimates, they are probably a result of the smoothness of the aggregate

investment data and are consistent with those used in Cochrane (1991).

More importantly, however, we also find a negative, and occasionally significant, value

for the financing parameter, b1. Given the strongly countercyclical nature of the default

premium, our finding that b1 is negative also implies that the shadow price of external funds

is quite procyclical. Intuitively, financing distortions are more important when aggregate

economic conditions are relatively good.

The JT tests of over-identification show that our benchmark specification is rejected

at conventional significance levels. This result is probably not surprising, given our

parsimonious model structure and the strong cross-sectional variations in the average Fama-

French portfolios returns. Nevertheless, Figure 1 shows that our setting generally improves

upon a frictionless model. The pricing errors associated with the model with financing

constraints are consistently smaller than those associated with the model when b1 = 0.

Specifically, adding financial constraints reduces the pricing error from 2.24% per quarter to

2.10% in the unconditional model, from 1.82% to 1.23% in the conditional model, and from

3.48% to 1.80% in the scaled factor model.

Table 3 departs from our benchmark specification by augmenting the pricing kernel (9)

to include the return on corporate bonds, RB.10 The results are generally consistent with

our findings in Table 2. The adjustment cost parameters are again consistently positive,

10Gomes, Yaron, and Zhang (2003b) show that this is the correct form of the pricing kernel in the presence
of financing frictions, since the return to physical investment is now a linear combination of stock and bond
returns, with the weights given by the leverage ratio.
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although generally lower in value. The point estimates for the shadow cost coefficient, b1,

are again consistently negative and now generally significant.

4.3 The Effects of Financial Frictions

The implications of the results in Tables 2 and 3 for the effects of financing frictions on returns

can be summarized as follows: (i) financial market imperfections can play an important role

in pricing the cross section of expected returns; and (ii) the shadow price of external funds

seems to exhibits procyclical variation.

What drives these results? Mechanically, our GMM estimation seeks to minimize a

weighted average of the price errors associated with (8). Intuitively, this requires aligning

the dynamic properties of the stochastic discount factor (essentially driven by investment

return) and those of asset returns (basically driven by the large volatility in stock returns).

A successful estimation procedure will then choose parameter values for a and b1 so that the

investment return has similar dynamic properties to those of the targeted stock returns.

To gain more intuition on our results, we therefore examine the dynamic properties of

the investment returns generated under alternative values of b1, and compare those with the

behavior of stock returns.

Correlation Structure

We start by focusing on the correlation structure of stock and investment returns with the two

economic fundamentals, aggregate investment/capital ratio i, and aggregate profits/capital

ratio π. Recall that equation (6) decomposes investment returns into a frictionless

component, R̃I , that is driven by the fundamentals i and π, and a financing component,

captured by the dynamics in the shadow price of external funds, µ.

Figure 2 displays the correlation structure between returns and various leads and lags of

the fundamentals π (Panel A) and i (Panel B). In both panels, the dynamic pattern of the

frictionless returns, R̃I (b1 = 0), is very similar to that of the observed RS. In particular,

both returns lead future economic activity, while their contemporaneous correlations with

fundamentals are somewhat low. As Cochrane (1991) notes, this is to be expected if firms

adjust current investment in response to an anticipated shocks to future productivity.
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Figure 2 also shows how the effect of financing on investment returns depends on the

cyclical nature of the premium on external funds, here measured by the default premium.

As the figure shows, financing frictions improve the model’s ability to match the underlying

pattern of stock returns only when b1 < 0.

The economic intuition is the following. Suppose for a moment that the shadow price

of external funds was countercyclical, so that b1 > 0. In this case, a rise in expected future

productivity is also associated with an expected decline in the marginal cost of external

financing. Productivity and financial constraints provide two competing forces for the

response of investment returns to business cycle conditions. An increase in expected future

productivity implies that firms should respond by investing immediately. However, since the

shock also entails lower marginal cost of external funds in the future, firms prefer to delay

investment. Relative to a frictionless world, equation (6) implies a reduction in investment

returns, and thus lower correlations with future economic activity. Figure 2 shows however

that this reaction is not consistent with observed asset return data.

Finally, Figure 2 also indicates that there is no obvious phase shift between any of the

series, suggesting that our results are not likely to be sensitive to timing issues such as those

created by the existence of time-to-plan, or perhaps time-to-finance in this context. What

seems crucial is the cyclical pattern of the shadow price of external funds.

Properties of the Pricing Kernel

Further intuition can be obtained by looking directly at the effect of the financing premium

on the properties of the pricing kernel. Table 4 describes the effects of imposing b1 > 0 in

each set of moment conditions (unconditional, conditional, and scaled factor), while keeping

the value of the adjustment cost parameter a is set at its optimal level reported Table 3.

The left panel of the table indicates that a countercyclical shadow price of external funds,

b1≥0, lowers the absolute magnitude of the correlation between the stochastic discount factor

and value-weighted returns (as well as the price of risk σ(M)/E(M)), thus deteriorating the

performance of the stochastic discount factor.

Perhaps a more direct way to evaluate the effect of a positive b1 on the pricing kernel is
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to examine the implied pricing errors. A simple way is to use the beta representation, which

is equivalent to the stochastic discount factor representation in (8), (e.g., Cochrane (2001)):

Rp − Rf =αi + β1i(R
I − Rf ) + β2i(R

B − Rf )

for any portfolio p. Given the assumed structure of the pricing kernel this representation

exists, with αp =0. Therefore, large values of α indicate poor performance of the model.

The middle panel of Table 4 reports the implied αs for the regressions on both small firms

(NYSE decile 1) and value-weighted returns. The panel displays a clear pattern of rising α

as we increase the magnitude of b1. Indeed, while we cannot reject that α=0 when b1 =0,

this is no longer true for most positive values of b1.

Finally, we report the implications of financial constraints for the moments of investment

returns and their correlations with market returns. While both the mean and the variance of

investment returns are not really affected when b1 increases, the correlation with stock returns

falls significantly. Indeed, while the correlation between the two returns is about 30 percent

with b1 =0, the correlation becomes negative with a positive b1. Since the overall performance

of a factor model hinges on its covariance structure with stock returns, it is not surprising

that financial constraints are important only if the shadow price of external funds if b1 <0.

Implications

Our findings on the procyclical properties of the shadow cost of external funds effectively

impose a restriction on the nature of these costs. Thus our results can also be viewed as an

important test to the various alternative theories of financial market imperfections.

In this sense our estimates lend some support to models that emphasize the importance

of frictions generated by the presence of agency problems (e.g., Dow, Gordon and

Krishnamurthy (2004)). The reason is that these types of financial imperfections are much

more likely to be important when economic conditions are relatively good.

Conversely our results seem less supportive of costly external finance theories, where

adverse liquidity shocks are magnified by a rising cost of external funds. As we have seen,

this interpretation of the data significantly worsens the ability of investment returns to match
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the observed data on asset returns.11

Finally it is tempting to interpret our findings that b1 < 0 as evidence that external funds

are less expensive than internal cash flows. This interpretation however is incorrect since

our tests cannot identify the overall level of the constant term, b0, in equation (10).

4.4 Robustness

We now examine the robustness of our basic results by exploring several alternatives to the

benchmark test specification.

Alternative Sets of Moment Conditions

Table 5 reports GMM estimates and testing results using moment conditions derived from

the various alternative portfolios discussed in Section 4.1. Panel A of Table 5 forms

moment conditions using the ten size portfolios; these portfolios are interesting because

size is a common proxy for financing constraints (e.g., Gertler and Gilchrist (1994); Lamont,

Polk, and Saa-Requejo (2001)). The model is able to price this set of moment conditions

much better and it cannot be rejected using the over-identification test. The estimated b1

coefficients are also all negative and significant, a result again reinforced by the reported

likelihood ratio tests. The shadow price of external funds therefore continues to display

procyclical variations using this alternative set of moment conditions.

Panels B and C of Table 5 show that the evidence is somewhat more mixed when we

use as testing portfolios ten deciles sorted on the ratio of cash flow to assets and deciles

sorted on interest coverage. Although the estimated b1 coefficients are mostly negative, they

are often insignificant. Overall, the evidence seems to lean towards a procyclical shadow

price of external funds. And from the over-identification tests, the model is again reasonably

successful in pricing these returns. Similar evidence about the role of financial frictions comes

from the triple-sorted portfolios on size, the KZ index, and book-to-market, as well as the

double-sorted portfolios on size and the WW index, as reported by Panels D and E of Table 5.

11Gomes, Yaron, and Zhang (2003a) study a general equilibrium version of one model of costly external
finance and show the potentially counterfactual implications for asset prices.
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Alternative Specifications for the Shadow Cost of External Funds

Table 6 investigates whether our results are sensitive to the use of our benchmark specification

for the shadow cost of external funds in equation (10).

To construct the estimates in Panel A of Table 6 we follow Whited (1992) and Love

(2003) and directly parameterize the ratio

(1 + µt+1)/(1 + µt) = b0 + b1ft,

where we again choose the default premium to be the common financing factor, ft. While

this specification does not allow us to identify the shadow cost directly it has the benefit

of allowing us to identify the properties of the wedge between investment returns with and

without financing frictions. Our estimates of a negative value for the slope parameter, b1,

illustrate again the procyclical nature of this wedge.

Although the default premium is a good predictor of aggregate economic activity (e.g.

Bernanke (1990), and Stock and Watson (1989, 1999)) Panels B and C investigate the results

of using two other proxies for the financing factor. The first is the aggregate default likelihood

measure constructed in Vassalou and Xing (2003), who construct an aggregate measure of

financial distress by aggregating over estimated firm-level default likelihood indicators. This

measure of financial distress increases substantially during recessions. Data for this indicator

is available at monthly frequency between January of 1971 and December of 1999. The

second measure is the common factor of financing constraints measured by the KZ index

after controlling for size constructed by Lamont, Polk, and Saa-Requejo (2001).12

Panel B of Table 6 reports the GMM results when the aggregate default likelihood is

used to model the shadow price of external funds, while Panel C reports the effects of using

pkz instead. In both cases we obtain estimates of b1 that are not significantly different from

zero. This is perhaps due to the fact that the common factor of financial constraint does not

covary much with business cycle conditions, as shown in Lamont, et al (2001).

12This common factor is based on the portfolios from a double sort of the top third, medium third, and
the bottom third of size (B,M , and S) and the KZ index (H,M , and L). All firms are then classified into
nine groups. For example, portfolio LS contains all firms both in the bottom third of size and the KZ index.
The common factor is then defined as (HS + HM + HB)/3 − (LS + LM + LB)/3.
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Finally, we also investigate a more elaborate parametrization of the shadow price of

external funds often used in the microeconomic literature (e.g. Hubbard, Kashyap, and

Whited (1995))

µt = b0 + b1πt + b2ft × πt.

Our results in Panel D of Table 6 show that this specification works less well at the aggregate

level as neither financing factor is generally significant. Similar results are also obtained when

using cash flows alone as a factor.

This finding that corporate cash flows do not seem to be an important component of

our financing factor is difficult to reconcile with a strict interpretation of popular agency

theories (Jensen (1986) and Dow et all (2004)) since these typically imply that distortions

are directly linked to available cash. Popular versions of models of costly external finance

usually also predict that cash-flow is (inversely) related to the marginal cost of funds.

Thus the lack of significance of cash flow does not shed much light on these alternative

views on the source of financial market imperfections. The reason is probably the relatively

low time series variation in aggregate cash-flows, at least when compared to our other

financing factors such as the default premium.

Alternative Macroeconomic Series

Table 7 documents the effects of using alternative macroeconomic data in the construction of

the investment returns in (6). Specifically, in Panel A we use after tax profit data, while Panel

B is based on data for the entire economy and not just the non-financial corporate sector.

Panels C considers the case when investment is divided into equipment and structures.

To do this we modify our original setup and assume that firms accumulate two forms of

capital with potentially different adjustment cost technologies. Note that we now obtain

separate moment conditions for equipment and structures. Our results conform with the

intuition that adjustment costs are much larger for structures than equipment. Although

the model performs generally better than in our benchmark specification, the effects of this

disaggregation on our estimates of b1 are fairly small.

Finally, Panel D reports the results of relaxing our assumption of constant returns to
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scale of cash flows. Specifically, Love (2003) shows that, under fairly general assumptions

about technology, marginal profits are proportional to the sales to capital ratio. Thus, we

replace average profits in equation (6) with γ×Y/K, where Y is the gross product of the non-

financial corporate sector. The estimates of γ are in the empirically plausible range, between

0.1 and 0.15, and the overall goodness-of-fit of the model is also significantly improved.

Moreover the estimated coefficients for the parameter b1 are always negative and generally

quite significant.

Alternative Pricing Kernels

We also consider two perturbations on the pricing kernels. First, we relax the linear factor

representation of the pricing kernels. Several alternative approaches to modelling nonlinear

pricing kernels have been advanced in the literature, (e.g., Bansal and Vishwanathan (1993)).

Here we explore this possibility by re-estimating the moment conditions using some nonlinear

pricing kernels. Panels A and B in Table 8 show that our results are not much affected by

assuming that the pricing kernel is quadratic in either RI alone or in both RI and RB.

Alternatively we also examine the effects of using a more general form for investment

returns that allows for the fact that the required rate on debt, Rt, is a (stochastic) function

of the leverage ratio, i.e., Rt = R(Bt/Kt, St). As shown in Appendix A.2, the investment

return in this case depends on the first-derivative of the interest rate with respect to the

debt-to-capital ratio. Specifically,

rI
t+1 ≡

(1 + µt+1)

[
πt+1 + a

2
i2t+1 + R1

(
Bt+1

Kt+1
, St+1

) [
Bt+1

Kt+1

]2

+ (1 − δ)(1 + ait+1)

]

(1 + µt)(1 + ait)
(12)

Following Bond and Meghir (1994) we parameterize R as a quadratic function of Bt/Kt:

R

(
Bt

Kt

, St

)
= r0 + r1

(
Bt

Kt

)
+ r2

(
Bt

Kt

)2

(13)

which implies that R1

(
Bt

Kt

, St

)
=r1 + 2r2

(
Bt

Kt

)
. We then estimate the parameters r1 and r2

along with other parameters in the investment return.

Panel C of Table 8 reports our findings. As before the b1 estimates are negative and often

significant, suggesting that our basic conclusion is robust to the alternative specification of
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investment return in equation (12). The estimated values for the parameters r1 and r2 are

generally not statistically significant, although the point estimates have the expected signs.

4.5 Cross-Sectional Variations in Factor Sensitivity

This section provides further information on financial frictions as a common factor in the

cross section of returns by examining the variation in return sensitivity to the constrained ag-

gregate investment returns across different assets. Intuitively if the economically-motivated

characteristics used to construct the test assets are good indicators of financial frictions, they

should forecast cross-sectional variation in sensitivity to aggregate financial frictions.

Loadings on RI
t+1 mask exposures to both the unconstrained investment returns, R̃I

t+1,

and the financing factor
1+µ

t+1

1+µ
t

. To isolate these two effects, we use equation (6) to decompose

RI
t+1 as follows: log(RI

t+1) = log(R̃I
t+1)+log(

1+µ
t+1

1+µ
t

). We then use each of these terms as a

pricing factor to calculate the return sensitivities across the various portfolios.

Table 9 reports the results. Panel A looks at the popular 25 size and book to market

portfolios and shows that, controlling for size, growth firms have higher loadings on both

aggregate investment and financing factors that value firms. Controlling for book-to-market

however, we find that small firms have only slightly lower loadings than big firms.

This evidence contrasts with the findings of one-way sorts on size alone, reported in Panel

B, which show that small firms have generally higher loadings than big firms. Together, these

results suggest that the conventional wisdom that small firms are more financially constrained

merely reflects the fact that they are often also growth firms.

Panels C and D show that the loadings on financial factor are generally higher for port-

folios of firms that are likely to face more financial frictions – firms with either low ratios of

cash flow to assets or high interest coverage.

Panel E shows that the same pattern holds for the triple-sorted portfolios on size, the

KZ index, and book-to-market. Controlling for size and book-to-market, a higher value for

the KZ index is associated with higher loadings in the financing factor. With the exception

of large firms, this pattern is weaker when we use double-sorted portfolios on size and the
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WW index. Nevertheless the portfolio pWW has a positive loading of 0.24 on the financing

factor, nearly identical to the 0.27 loading that we find for the pKZ portfolio.

The last panel in Table 9 reports the variation in factor loadings across the 30 industry

portfolios constructed in Fama and French (1997). Of these tobacco, oil, and utilities show

significantly lower loadings on aggregate financial frictions captured by log(
1+µ

t+1

1+µ
t

). Since

these three industries are often identified as having both relatively high free cash flows and

low growth opportunities, they are also the least likely to be less dependent on external

funds and thus credit market conditions.

Finally, we also investigate the cyclical properties of the loadings on the financing factor

for each of these industries. In particular, we examine both the volatility (coefficient of

variation) of the loading on the financing factor and its correlation with the underlying

return on investment.

Table 10 documents the time-series behavior of estimated industry loadings for oil and

tobacco as well as more “typical” industries such as retail and transportation. These results

are interesting because tobacco and oil industries have often been identified as particularly

prone to agency problems (e.g., Jensen (1989)). Relative to our benchmark sectors, we

find that loadings of tobacco and oil returns are both significantly more volatile. Moreover

in the case of tobacco, the sensitivity on the financing factor actually tends to increase

when economic conditions are relatively good — a feature that is consistent with the idea

that agency costs may matter in this sector. Conversely in both retail, transportation and

also oil these sensitivities tend fall in good times, suggesting that agency costs may not be

as important for these industries. Although somewhat less structural the evidence in this

section sheds additional light and complements our earlier findings.

5 Conclusion

By concentrating on optimal firm behavior, the investment-based asset pricing model

(Cochrane (1991, 1996)) provides a natural way of integrating new developments in the

theory of corporate finance into an asset pricing framework. We pursue this line of research

by incorporating financial frictions into a production based asset pricing model and ask
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whether they help in pricing the cross-section of expected returns. Our methodology allows

us to identify the impact of financial frictions on the stochastic discount factor with cyclical

variations in cost of external funds. We find evidence that financing frictions may provide

an important common factor for the cross section of stock returns. Moreover, we also find

that if financial market imperfections are important then the shadow price of external funds

must exhibit a strong procyclical variation, so that financial frictions are more important

when economic conditions are relatively good. Conversely, a countercyclical shadow cost of

external funds worsens the ability of our model to price the cross-section of expected returns.
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A Derivation of Investment Returns

A.1 The Benchmark Model

We start by rewriting the firms’ value-maximization problem as:

max V (K0, B0, S0) ≡ E0

[
∞∑

t=0

M0t(Dt − WtNt)

]

where M0t is the common stochastic discount factor from time 0 to time t. Dividend is:

Dt = Π(Kt, St) − It −
a

2

[
It

Kt

]2

Kt + Nt + Bt+1 − RtBt

Capital accumulation is:
Kt+1 = It + (1 − δ)Kt

and the dividend constraint:
Dt ≥ D

Letting µt denote the Lagrange multiplier associated with the dividend constraint, the
Lagrange function conditional on the information set at time t is:

Lt = . . . + M0t(1 + µt)

[
Π(Kt, St) −

a

2

[
Kt+1

Kt

− (1 − δ)

]2

Kt − Kt+1 + (1 − δ)Kt + Nt + Bt+1 − RtBt

]
+

Et

[
M0t+1(1 + µt+1)

[
Π(Kt+1, St+1) −

a

2

[
Kt+2

Kt+1

− (1 − δ)

]2

Kt+1 − Kt+2 + (1 − δ)Kt+1 + Nt+1 + Bt+2 − Rt+1Bt+1

]]

The first-order condition with respect to Kt+1:

0 =
∂Lt

∂Kt+1

= M0t(1+µt)[1+ait]+Et

[
M0t+1(1 + µt+1)[Π1(Kt+1, St+1) +

a

2
i2t+1 + (1 + ait+1)(1 − δ)

]

where it ≡ It/Kt and Π1 is the first-order derivative of Π(Kt+1, St+1) with respect to Kt+1.
Equations (5) and (6) then follow by noting that Mt+1 = M0t+1/M0t and Π1 = Π/K with
constant return to scale.

A.2 Investment Return with Alternative Financial Constraints

In the benchmark model, the interest rate on debt, Bt, is independent on firm characteristics.
We now assume that the interest rate on Bt is given by R(Bt/Kt, St). Following Bond and
Meghir (1994), we model the interest rate as depending on the amount of debt, Bt, and the
physical size of the firm, Kt, only through the rate Bt/Kt. Moreover, the interest rate is a
function of the exogenous state variable, St, and is stochastic. Finally, firms still face the
dividend nonnegativity constraint and its multiplier is denoted µt.
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The value of the firm is now:

V (K0, B0, S0) = max
{It,Kt+1,Bt+1}∞t=0

Et

[
∞∑

t=0

M0t

[
(1 + µt)

[
Π(Kt, St) − It −

a

2

[
It

Kt

]2

Kt + Bt+1 − R

(
Bt

Kt

, St

)
Bt

]
− qt (Kt+1 − (1 − δ)Kt − It)

]]

The first-order conditions with respect to It, Kt+1, and Bt+1 are, respectively

qt = (1 + µt)

[
1 + a

It

Kt

]
(A1)

qt = Et

[
Mt+1(1 + µt+1)

[
Π1(Kt+1, St+1) +

a

2

[
It

Kt

]2

+ R1

(
Bt+1

Kt+1

, St+1

)[
Bt+1

Kt+1

]2

+ (1 − δ)qt+1

]]
(A2)

1 + µt = Et

[
Mt+1(1 + µt+1)

[
R

(
Bt+1

Kt+1

, St+1

)
+ R1

(
Bt+1

Kt+1

, St+1

)
Bt+1

Kt+1

]]
(A3)

Combining equations (A1) and (A2) yields the investment return in equation (12). And
the corporate bond return is given by equation (A3):

rB
t+1 ≡

1 + µt+1

1 + µt

[
R

(
Bt+1

Kt+1

, St+1

)
+ R1

(
Bt+1

Kt+1

, St+1

)
Bt+1

Kt+1

]
(A4)

Note that the investment and the bond returns satisfy that:

Et[Mt+1r
I
t+1] = 1; and Et[Mt+1r

B
t+1] = 1 (A5)

B Data Construction

Macroeconomic data comes from National Income and Product Accounts (NIPA) published
by the Bureau of Economic Analysis, and the Flow of Funds Accounts available from the
Federal Reserve System. These data are cross-referenced and mutually consistent, so they
form, for practical purposes, a unique source of information. Most of our experiments use
data for the Nonfinancial Corporate Sector. Specifically, Table F102 from the Flow of Funds
Accounts is used to construct measures of profits before (item FA106060005) and after tax
accruals (item FA106231005). To these measures we add both consumption of capital goods
(item FA106300015) and inventory valuation adjustments (item FA106020601) to obtain
a better indicator of actual cash flows. Investment spending is gross investment (item
105090005). The capital stock comes from Table B102 (item FL102010005). Since stock
valuations include cash flows from operations abroad, we also include in our measures of
profits the value of foreign earnings abroad (item FA266006003) and that of net foreign
holdings to the capital stock (items FL103092005 minus FL103192005, from Table L230)
and investment (the change in net holdings). Financial liabilities come from Table B102.
They are constructed by subtracting financial assets, including trade receivables, (item
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FL104090005) from liabilities in credit market instruments (item FL104104005) plus trade
payables (item FL103170005). Interest payments come from NIPA Table 1.16, line 35. All
these are available at quarterly frequency and require no further adjustments. All data for
the aggregate economy come from NIPA.

We obtain Fama-French size and book-to-market portfolios from Kenneth French’s
website. We also employ ten size deciles of NYSE stocks from CRSP to facilitate comparison
of our work to Cochrane (1996). Corporate bond data comes from Ibbotson’s index of Long
Term Corporate Bonds. The default premium is defined as the difference between the yields
on Aaa and Baa corporate bonds, from CRSP. Term premium, defined as the yield on 10
year notes minus that on three-month Treasury bills, and the dividend-price ratio of the
equally weighted NYSE portfolio from CRSP. Dividend-price ratios are also normalized so
that scaled and non-scaled returns are comparable.

We follow closely Lamont, Polk, and Saa-Requejo (2001) to construct portfolios related
to financing constraints. We obtain firm-level accounting information from the annual
Compustat file. Our return series start in July 1968, based on accounting data from
December 1967. To enter our sample, a firm must have all the data necessary to construct
the KZ index, have an SIC code between 2000 and 3999 (manufacturing firms only), and
have positive real sales growth deflated by the Consumer Price Index in the prior year.

The KZ index is based on Table 9 in Lamont, Polk, and Saa-Requejo (2001) and is
equal to: −1.001909 × [(item 18, income before extraordinary items + item 14, depreciation
and amortization)/(item 8, net property, plant, and equipment)] + 0.2826389 × [(item 6,
total liabilities and stockholders’ equity + CRSP December market equity − item 60, total
common equity − item 74, deferred taxes)/(item 6, total liabilities and stockholders’ equity)]
+ 3.139193 × [(item 9, long term debt + item 34, debt in current liabilities)/(item 9, long
term debt + item 34, debt in current liabilities + item 216, stockholders’ equity) − 39.3678
× [(item 21, common dividends + item 19, preferred dividends)/(item 8, net property,
plant, and equipment) − 1.314759 × [(item 1, cash and short term investments)/(item 8,
net property, plant, and equipment)], where item 8 is lagged. The item numbers refer to
Compustat annual data items. Firms with high KZ index are more constrained financially
than firms with low KZ index.

Finally, we measure cash flow to assets ratio by (item 18, income before extraordinary
items + item 14, depreciation and amortization)/(item 8, net property, plant, and
equipment). And we measure interest coverage by (item 15, interest expense)/(item 15,
interest expense + item 18, income before extraordinary items + item 14, depreciation and
amortization).
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Table 1 : Descriptive Statistics of Test Portfolios

Panel A: Fama-French 25 size and book-to-market portfolios (January 1954 to December 2000)

Low 2 3 4 High Low 2 3 4 High

mean std

Small 0.79 1.27 1.27 1.51 1.58 Small 7.70 6.66 5.74 5.38 5.64
2 0.89 1.18 1.36 1.43 1.55 2 6.95 5.69 5.05 4.90 5.43
3 1.01 1.26 1.26 1.40 1.48 3 6.39 5.14 4.74 4.59 5.10
4 1.08 1.08 1.31 1.40 1.40 4 5.66 4.90 4.65 4.52 5.26

Big 1.06 1.05 1.14 1.14 1.23 Big 4.65 4.41 4.18 4.27 4.64

Panel B: Ten NYSE portfolios sorted on size (January 1954 to December 2000)

Small 2 3 4 5 6 7 8 9 Big 1-10 t1−10

mean 1.45 1.26 1.24 1.23 1.19 1.20 1.13 1.17 1.10 1.03 0.42 1.64
std 6.43 5.59 5.34 5.12 4.98 4.87 4.73 4.65 4.41 4.05

Panel C: Ten portfolios sorted on the ratio of cash flow to assets (July 1968 to December 2000)

Low 2 3 4 5 6 7 8 9 High 10-1 t10−1

mean 0.13 0.36 0.52 0.53 0.44 0.49 0.50 0.49 0.37 0.52 0.39 1.15
std 9.03 6.02 4.94 5.06 5.12 5.34 5.33 5.63 5.80 7.73

Panel D: Ten portfolios sorted on interest coverage (July 1968 to December 2000)

Low 2 3 4 5 6 7 8 9 High 10-1 t10−1

mean -0.09 0.46 0.48 0.45 0.62 0.55 0.55 0.45 0.06 0.21 0.30 1.01
std 7.40 6.68 5.79 5.19 5.25 5.39 5.10 5.52 5.93 6.98

Panel E: Portfolios from a 3×3×3 sort on size, the KZ Index, and BE/ME
(July 1968 to December 2000)

p111 p113 p131 p133 p222 p311 p313 p331 p333 pKZ tpKZ

mean -0.03 0.86 0.20 0.80 0.51 0.56 1.05 -0.07 0.50 -0.30 -2.73
std 9.11 7.19 9.62 7.13 6.68 4.92 6.54 7.34 6.66

Panel F: Nine portfolios from a 3×3 sort on size and the Whited-Wu Index
(October 1975 to December 2000)

SC SM SU MC MM MU BC BM BU pWW tpW W

mean 0.83 0.66 0.89 0.75 0.81 0.66 1.23 0.97 0.71 0.18 0.95
std 6.44 6.45 7.99 6.77 6.11 6.55 7.75 6.16 4.78

This table reports mean and volatility in monthly percent for testing portfolios. The starting sample date

in Panels A and B is limited by the availability of macroeconomic series used in the GMM estimation.

The starting date in Panels C and D is limited by data availability from Compustat. The portfolios used

in Panel F are from Whited and Wu (2005). In Panel E, we form 27 portfolios based on independent

sorts of the top third, the medium third, and the bottom third of size, of the KZ index, and of book-

to-market. For example, portfolio p123 contains firms that are in the bottom third sorted by size, in

the medium third sorted by KZ, and in the top third sorted by book-to-market. To save space we only

report nine out of 27 portfolios including all eight extreme portfolios in the three dimensions of size,

KZ, and book-to-market, and the medium group, portfolio p222. Portfolio pKZ is the zero-investment

constrained-minus-unconstrained (high-minus-low KZ index) factor-mimicking portfolio, after controlling for

both size and book-to-market, i.e., pKZ = (p131 + p132 + p133 + p231 + p232 + p233 + p331 + p332 + p333)/9−

(p111 + p112 + p113 + p211 + p212 + p213 + p311 + p312 + p313)/9. In Panel F, the nine portfolios are based on

independent sorts of the top third, the medium third, and the bottom third of size and of the Whited-Wu

(WW) index are: small size/constrained (SC), small size/median WW (SM), small size/unconstrained (SU),

medium size/constrained (MC), medium size/medium WW (MM), medium size/unconstrained (MU), big

size/constrained (BC), big size/medium WW (BM), and big size/unconstrained (BU). Portfolio pWW is the

zero-investment constrained-minus-unconstrained (high-minus-low WW index) factor-mimicking portfolio on

the WW index, after controlling for size, i.e., pWW =(SC + MC + BC)/3 − (SU + MU + BU)/3.
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Table 2 : GMM Estimates and Tests in the Benchmark Specification

Unconditional Conditional Scaled Factor

Parameters

a 6.55 ( 1.50) 4.81 ( 0.98) 6.44 ( 1.22)

b1 -0.11 (-2.41) -0.12 (-4.80) -0.12 (-2.96)

Loadings

l0 40.14 ( 3.31) 50.35 ( 4.04) 41.93 ( 3.51)

l1 -38.57 (-3.24) -48.60 (-3.98) -40.27 (-3.42)

l2 -0.31 (-3.23)

l3 0.28 ( 1.80)

JT Test

χ2 40.84 25.32 24.03

p 0.00 0.01 0.01

Likelihood Ratio Test (b1 =0)

χ2
(1) 0.97 22.49 10.74

p 0.33 0.00 0.00

This table reports GMM estimates and tests for the benchmark specification. The sample is from the second

quarter of 1954 to the third quarter of 2000. The shadow price of external funds is µt = b0+b1ft, where ft

is the default premium, defined as the difference between the yields on Baa and Aaa corporate bonds. We

report the estimates for a, b1, the pricing kernel loadings, l’s, the χ2 statistic and corresponding p-value for

the JT test on over-identification, and the χ2 statistics and associated p-values of the Wald and Likelihood

ratio tests on the null hypothesis that b1 =0. t-statistics are reported in parentheses to the right of parameter

estimates. The unconditional model uses the excess returns of portfolios 11, 13, 15, 23, 31, 33, 35, 43, 51,

53, and 55 of the Fama-French 25 size and book-to-market portfolios, one investment excess return over real

corporate bond return, and real corporate bond return. The Fama-French portfolios are labelled such that the

first digit denotes the size group and the second digit denotes the book-to-market group, both in ascending

order. The conditional and scaled factor estimates use excess returns of the Fama-French portfolios 11, 15,

51, and 55, scaled by instruments, excess investment return, and the real corporate bond return. Instruments

are the constant, term premium (tp), and equally weighted dividend-price ratio (dp). The pricing kernel is

M = l0 + l1R
I for the unconditional and conditional models and M = l0 + l1R

I + l2(R
Itp) + l3(R

Idp) for the

scaled factor model. RI is real investment return and is constructed from the flow-of-fund accounts using

data from the nonfinancial corporate sector with before-tax profits.
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Table 3 : GMM Estimates and Tests with Bond Returns in the Pricing Kernel

Unconditional Conditional Scaled Factor

Parameters

a 10.75 ( 1.40) 17.43 ( 2.98) 5.15 ( 0.68)

b1 -0.38 (-2.11) -0.11 (-7.96) -0.10 (-3.10)

Loadings

l0 59.81 ( 1.33) 49.09 ( 4.70) 51.06 ( 2.83)

l1 -57.38 (-1.28) -37.70 (-4.32) -67.77 (-2.70)

l2 -0.69 (-0.16) -9.85 (-2.11) 18.98 ( 1.17)

l3 6.02 ( 1.43)

l4 3.62 ( 0.68)

l5 -6.48 (-1.49)

l6 -3.40 (-0.61)

JT Test

χ2 48.27 21.54 14.85

p 0.00 0.03 0.04

Likelihood Ratio Test (b1 =0)

χ2
(1) 0.64 9.97 4.47

p 0.42 0.00 0.03

This table reports GMM estimates and tests for the benchmark model using an augmented pricing kernel.

The sample is from the second quarter of 1954 to the third quarter of 2000. µt is the same as in Table

2. We report the estimates for a, b1, and the loadings, l’s, in the pricing kernel, the χ2 statistic and

corresponding p-value for the JT test on over-identification, and χ2 statistic and p-value of the Wald

test on the null hypothesis that b1 = 0. t-statistics are reported in parentheses to the right of parameter

estimates. The pricing kernel is M = l0 + l1R
I + l2R

B for the unconditional and conditional models and

M = l0 + l1R
I + l2R

B + l3(R
Itp) + l4(R

Idp) + l5(R
Btp) + l6(R

Bdp) for the scaled factor model. RI and RB

are real investment and bond returns respectively. Moment conditions, instruments, and data, are the same

as those reported in Table 2.
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Table 4 : Properties of Pricing Kernels, Jensen’s α, and Investment Returns

Pricing Kernel Jensen’s α Investment Return

b1
σ[M ]
E[M ] ρM,RS αvw tvw

α αd1 td1
α mean σRI ρ(1) ρRI ,RS

Unconditional Model

0.00 0.82 -0.28 0.26 0.35 1.02 0.78 6.55 0.97 0.76 0.30

0.15 0.57 -0.03 3.03 4.94 5.69 5.45 6.56 1.70 0.38 -0.31

0.30 0.58 -0.07 3.07 6.22 5.58 6.66 6.58 2.98 0.31 -0.41

Conditional Model

0.00 0.75 -0.29 0.16 0.30 0.68 0.77 5.91 2.24 0.09 0.35

0.15 0.37 0.39 1.46 2.70 3.01 3.25 5.92 2.23 0.00 -0.01

0.30 0.79 0.17 2.22 4.51 4.21 5.02 5.93 3.05 0.10 -0.24

Scaled Factor Model

0.00 0.81 -0.36 0.03 0.06 0.51 0.55 6.02 1.99 0.14 0.36

0.25 0.67 -0.06 1.63 2.92 3.35 3.48 6.03 2.06 0.06 -0.05

0.50 0.61 0.01 2.38 4.79 4.48 5.30 6.04 2.98 0.15 -0.27

This table reports, for each combination of parameters a and b1, properties of the pricing kernel, including

market price of risk (σ[M ]/E[M ]), the contemporaneous correlation between pricing kernel and real market

return (ρM,RS ), Jensen’s α and its corresponding t-statistic (tα), summary statistics of investment return,

including mean, volatility (σRI ), first-order autocorrelation (ρ(1)), and correlation with the real value-

weighted market return (ρRI ,RS ). Jensen’s α is defined from the following regression: Rp − Rf =

α + β1(R
I − Rf ) + β2(R

B − Rf ) where Rp is either the real value-weighted market return (Rvw) or the

real decile one return (R1), Rf is the real interest rate proxied by the real treasury-bill rate, RI is the real

investment return, and RB is the real corporate bond return. In each case the cost parameters a’s are held

fixed at the GMM estimates.
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Table 5 : GMM Estimates and Tests with Alternative Moment Conditions

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Panel A: Size deciles Panel B: Deciles on cash flow/assets Panel C: Deciles on interest coverage

Parameters

a 2.80 ( 0.84) 9.35 ( 1.78) 8.56 ( 1.54) 17.72 ( 0.54) 53.19 ( 0.32) 3.07 ( 0.15) 2.50 ( 0.32) 34.83 ( 0.39) 1.80 ( 0.27)

b1 -0.36 (-3.14) -0.08 (-5.07) -0.08 (-4.12) 0.16 ( 0.76) -0.18 (-0.43) -0.14 (-1.81) 0.06 ( 0.65) -0.17 (-1.23) -0.27 (-5.57)

Loadings in the Pricing Kernel

l0 111.81 ( 2.51) 47.72 ( 3.94) 51.53 ( 2.85) 42.32 ( 0.79) -1.86 (-0.26) -13.11 (-0.75) 43.51 ( 0.76) -6.11 (-1.01) 26.84 ( 1.90)
l1 -110.43 (-2.52) -43.85 (-3.32) -57.57 (-2.89) -33.84 (-0.61) 1.43 ( 0.43) 9.42 ( 0.79) -41.21 (-0.72) 4.61 ( 1.24) -28.38 (-2.16)
l2 1.43 ( 0.27) -2.19 (-0.54) 7.88 ( 0.55) -7.01 (-0.94) 1.39 ( 0.31) 3.66 ( 0.41) -0.67 (-0.14) 2.40 ( 0.78) 2.17 ( 0.25)
l3 3.69 ( 1.08) 0.57 ( 0.31) 2.43 ( 1.03)
l4 2.46 ( 0.54) -0.25 (-0.04) 1.88 ( 0.59)
l5 -3.79 (-1.05) -0.58 (-0.30) -1.89 (-0.76)
l6 -2.37 (-0.50) 1.11 ( 0.17) -1.95 (-0.58)

JT 6.44 8.27 6.75 4.29 19.47 12.59 12.61 20.21 12.64

p 0.49 0.69 0.46 0.75 0.05 0.08 0.08 0.04 0.08

Likelihood Ratio Test on b1 =1

χ2
1 0.89 9.18 5.64 0.58 1.18 3.29 0.43 4.20 3.18

p 0.35 0.00 0.02 0.45 0.28 0.07 0.51 0.04 0.07

Panel D: 27 portfolios on size, KZ, and b/m Panel E: Nine portfolios on size and WW

Parameters

a 33.98 ( 0.78) 35.00 ( 1.33) 31.45 ( 0.92) 1.75 ( 0.18) 1.79 ( 0.23) 13.67 ( 0.53)

b1 0.11 (1.43) -0.13 (-2.60) -0.13 (-0.83) -0.13 (-2.37) -0.09 (-1.81) 0.08 (0.95)

Loadings in the Pricing Kernels

l0 53.88 ( 1.58) 13.04 ( 1.80) 5.69 ( 0.44) -23.04 (-1.12) -23.41 (-1.30) 71.74 ( 0.39)
l1 -41.86 (-1.17) -7.81 (-1.31) -9.84 (-0.81) 21.21 ( 1.09) 22.73 ( 0.61) -79.47 (-0.43)
l2 -10.55 (-0.77) -4.13 (-1.12) 6.94 ( 0.34) 2.40 ( 0.66) 1.27 ( 0.61) 8.81 ( 0.69)
l3 1.29 ( 0.40) 8.87 ( 2.32)
l4 2.47 ( 0.37) 8.04 ( 1.01)
l5 -2.05 (-0.60) -8.19 (-2.18)
l6 -3.05 (-0.43) -8.32 (-0.91)

JT 14.56 40.60 15.95 7.66 18.36 11.78

p 0.02 0.00 0.10 0.26 0.07 0.11

Likelihood Ratio Test (b1 =0)

χ2
1 2.52 11.02 0.45 5.59 3.27 0.89

p 0.11 0.00 0.50 0.02 0.07 0.33
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Table 5, Continued

This table reports GMM estimates and tests using alternative moment conditions constructed from ten size

deciles of NYSE stocks (Panel A), ten deciles sorted on cash flow to assets ratio (Panel B), ten deciles sorted

on interest coverage (Panel C), 27 portfolios sorted on size, the KZ index, and book-to-market (Panel D),

and from nine portfolios sorted on size and the WW index (Panel E). The sample of Panel A is from the

second quarter of 1954 to the third quarter of 2000. Because of data restriction from Compustat, the sample

of Panels B–D is from the fourth quarter of 1968 to the third quarter of 2000. And the sample in Panel E

goes from the first quarter of 1976 to the third quarter of 2000. In Panels A to C, the unconditional models

use as moment conditions the excess returns of the respective ten deciles and one investment excess return

(all over the real corporate bond returns) and the real corporate bond returns. The conditional and the

scaled factor models use the excess returns of decile one, four, seven, and ten, investment excess returns,

all scaled by instruments, and the real corporate bond returns. In Panel D, the unconditional model uses

as moment conditions investment excess return, the real corporate bond returns, and the excess returns of

portfolios p111, p113, p131, p133, p222, p311, p313, p331, and p333 from the 27 portfolios based on a triple-sort

on size, the KZ index, and book-to-market. The portfolio classification is the same as that in Panel E

in Table 1. The conditional and the scaled factor models in Panel D use the excess returns of portfolios

p111, p131, p222, p313, and p333, investment excess returns, all scaled by instruments, and the real corporate

bond returns. Instruments include a constant, term premium, and equally weighted dividend-price ratio.

In Panel E, the unconditional model uses as moment conditions the excess returns of all nine portfolios

from a double sort on size and the WW index, one investment excess return, and the real corporate bond

returns. The conditional and the scaled factor models use the excess returns of portfolios SU , SC, BU , and

BC, investment excess returns, all scaled by instruments, and the real corporate bond returns. In all cases

we report the estimates for a and b1, the factor loadings l, the χ2 statistic and corresponding p-value for

the JT test on over-identification, and χ2 statistic and p-value of the Wald test on the null hypothesis that

b1 =0. t-statistics are reported in parentheses to the right of parameter estimates. The pricing kernel and

the specification of the shadow price of external funds are the same as those reported in Table 3.
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Table 6 : GMM Estimates and Tests with Alternative Instruments in the Shadow

Price of External Funds

Panel A: (1 + µt+1)/(1 + µt)=b0 + b1ft+1 Panel B: Aggregate Default Likelihood

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 14.77 ( 2.73) 23.02 ( 1.71) 19.71 ( 3.27) 0.00 ( 0.00) 9.50 ( 0.80) 28.17 ( 1.57)

b1 -0.11 (-1.04) -0.36 (-8.47) -0.40 (-4.68) 0.00 ( 0.83) -0.01 (-2.47) 0.03 ( 0.86)

JT Test

χ2 56.28 36.83 25.33 54.11 34.56 21.93

p 0.00 0.00 0.00 0.00 0.00 0.00

Likelihood Ratio Test (b1 =0)

χ2
(1) 0.16 2.84 3.31 1.33 4.79 2.58

p 0.69 0.09 0.07 0.25 0.03 0.11

Panel C: LPS’s Financing Constraints Factor Panel D: µ = b0 + b1(CF/K) + b2f(CF/K)

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 0.00 ( 0.00) 5.50 ( 1.97) 1.40 ( 0.41) 12.92 ( 1.80) 5.66 ( 0.42) 19.85 ( 2.20)

b1 -0.10 (-1.12) 0.15 (1.69) 0.14 ( 1.32) -1.57 (-0.12) 28.78 (1.05) -2.75 (-0.47)

b2 -0.52 (-0.04) -16.49 (-1.76) -1.36 (-0.28)

JT Test

χ2 10.61 18.98 9.72 46.98 23.29 17.23

p 0.22 0.06 0.21 0.00 0.01 0.01

Likelihood Ratio Test (b1 =0 or b1 =b2 =0)

χ2 0.58 2.74 1.69 0.55 12.85 1.26

p 0.44 0.10 0.19 0.76 0.00 0.53

This table reports GMM estimates and tests using alternative specifications of the shadow price of external

funds. Panel A specifies the shadow price as a linear function of the default premium measured as the

difference between yields of Baa and long-term government bonds, as opposed to that between yields of Baa

and Aaa corporate bonds in Table 3. Panel B specifies the shadow price as a linear function of the aggregate

default likelihood indicator constructed by Vassalou and Xing (2003). Panel C specifies the shadow price

as a linear function of the common factor of financing constraints constructed by Lamont, Polk, and Saa-

Requejo (2001, LPS). We report the estimates for a and b1 (as well as b2 in Panel D), the χ2 statistic and

corresponding p-value for the JT test on over-identification, and χ2 statistic and p-value of the Wald test on

the null hypothesis that b1 =0 or b1 =b2 =0. t-statistics are reported in parentheses to the right of parameter

estimates. The pricing kernel and moment conditions are the same as those reported in Table 3.

35



Table 7 : GMM Estimates and Tests with Alternative Macroeconomic Data

Panel A: Nonfinancial After Tax Panel B: Aggregate Profits

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 0.43 ( 0.11) 1.52 ( 0.28) 2.45 ( 0.31) a 1.01 ( 0.10) 19.53 ( 1.92) 0.00 ( 0.00)

b1 -0.05 (-1.53) -0.12 (-4.33) -0.09 (-3.59) b1 -0.08 (-1.88) -0.10 (-2.26) -0.09 (-4.66)

JT Test

χ2 36.61 21.28 14.35 χ2 39.33 27.06 19.36

p 0.00 0.03 0.05 p 0.00 0.00 0.01

Likelihood Ratio Test (b1 =0)

χ2
(1) 3.07 15.40 2.26 χ2

(1) 4.76 10.65 3.16

p 0.08 0.00 0.13 p 0.03 0.00 0.08

Panel C: Disaggregate Investment Panel D: Sales

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

aequ 10.79 ( 2.34) 6.72 ( 2.55) 16.10 ( 2.24) a 2.50 ( 0.36) 23.92 ( 1.53) 0.00 ( 0.00)

astr 47.93 ( 2.70) 55.04 ( 5.36) 90.87 ( 1.56) γ 0.08 ( 0.93) 0.17 ( 1.82) 0.11 ( 2.10)

b1 -0.11 (-1.05) -0.12 (-3.26) -0.13 (-1.27) b1 -0.40 (-6.30) -0.14 (-7.61) -0.10 (-3.40)

JT Test

χ2 26.15 48.91 12.77 χ2 37.79 21.77 14.28

p 0.00 0.00 0.17 p 0.00 0.02 0.31

Likelihood Ratio Test (b1 =0)

χ2
(1) 6.19 36.35 8.62 χ2

(1) 2.58 9.69 3.40

p 0.01 0.00 0.00 p 0.11 0.00 0.07

This table reports GMM estimates and tests using alternative macroeconomic data. Panel A measures

profits Π as nonfinancial profits after tax, and Panel B measures Π as the profits of the aggregate economy

(not just the non-financial corporate sector). In Panel C, we allow two investment returns instead of one

aggregate investment return as in Table 3. RI
equ is the return on equipment investment and RI

str is the return

on structure investment. Data on investment and capital on equipment and structure are constructed from

the flow-of-fund accounts. Panel C also allows the adjustment cost parameter to vary across the two sectors;

aequ is the adjustment cost parameter for equipment investment and astr is that for structure investment.

Panel D measure profits Π as γ×Sales, where γ is an additional parameter to be estimated, as opposed to

nonfinancial profits before tax in the benchmark specification. We report the estimates for a and b1, the χ2

statistic and corresponding p-value for the JT test on over-identification, and χ2 statistic and p-value of the

Wald test on the null hypothesis that b1 =0. t-statistics are reported in parentheses to the right of parameter

estimates. The moment conditions are the same as those reported in Table 3.
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Table 8 : GMM Estimates and Tests with Alternative Pricing Kernels

Panel A: Panel B: Panel C:
M = l0 + l1R

I + l2(R
I)2 M = l0 + l1R

I + l2R
B + l3(R

I)2 + l4(R
B)2 Alternative Investment Return in M

Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor Unconditional Conditional Scaled Factor

Parameters

a 8.42 ( 1.98) 9.79 ( 2.56) 14.97 ( 1.94) 8.47 ( 1.30) 5.00 ( 0.39) 17.50 ( 0.56) 12.60 ( 0.31) 46.62 ( 1.52) 56.24 ( 0.81)

b1 -0.09 (-1.95) -0.10 (-2.56) -0.09 (-4.49) -0.40 (-7.83) -0.13 (-5.41) -0.16 (-1.90) -0.38 (-2.92) -0.11 (-4.59) -0.10 (-0.65)

r1 2.85 ( 0.30) 8.80 ( 1.64) 4.62 ( 0.48)

r2 -4.41 (-0.31) -14.00 (-1.63) -6.59 (-0.46)

JT Test

χ2 42.40 27.14 15.25 39.62 21.78 3.61 31.08 15.75 7.98

p 0.00 0.00 0.03 0.00 0.01 0.06 0.00 0.07 0.16

Likelihood Ratio Test (b1 =0)

χ2
(1) 1.24 20.40 8.17 0.83 9.92 0.48 0.68 21.07 1.69

p 0.26 0.00 0.00 0.36 0.00 0.49 0.41 0.00 0.21

This table reports GMM estimates and tests using alternative pricing kernels. Panel A uses the pricing kernel: M = l0 + l1R
I + l2(R

I)2 for

the unconditional and conditional model, and M = l0 + l1R
I + l2(R

I)2 + l3(R
I · tp) + l4(R

I · dp) + l5((R
I)2 · tp) + l6((R

I)2 · dp) for the scaled

factor model. Panel B uses the pricing kernel: M = l0 + l1R
I + l2R

B + l3(R
I)2 + l4(R

B)2 for the unconditional and conditional model and

M = l0 + l1R
I + l2R

B + l3(R
I)2 + l4(R

B)2 + l5(R
I ·tp)+ l6(R

I ·dp)+ l7(R
B·tp)+ l8(R

B·dp)+ l9((R
I)2·tp)+ l10((R

I)2·dp)+ l11((R
B)2·tp)+ l12((R

B)2·dp)

for the scaled factor model. Panel C uses the same pricing kernel as that used in Table 3, except that the investment return is given by equation (12)

in Appendix A.2. Following Bond and Meghir (1994), this alternative investment return allows the interest rate on one-period debt to depend on the

debt-to-capital ratio, i.e., R(Bt/Kt, St)=r0 + r1(Bt/Kt) + r2(Bt/Kt)
2. RI and RB are the real investment and corporate bond returns, respectively.

We report the estimates for a and b1, the χ2 statistic and corresponding p-value for the JT test on over-identification, and χ2 statistic and p-value of

the Wald test on the null hypothesis that b1 =0. In addition, we report the estimates of r1 and r2 in Panel C. t-statistics are reported in parentheses

to the right of parameter estimates. The moment conditions are the same as those reported in Table 3.
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Table 9 : Cross-Sectional Variation in Return Sensitivity on the Constrained

Aggregate Investment Factor and Its Financial-Constraint Component

Panel A: Fama-French 25 size and book-to-market portfolios (January 1954 to December 2000)

Low 2 3 4 High Low 2 3 4 High

bI , loadings on RI
t+1 tbI , t-stats of RI

t+1 loadings

Small 2.44 2.25 2.08 1.79 1.55 Small 4.80 5.45 6.20 6.02 7.50
2 2.51 2.08 2.08 1.76 1.29 2 6.02 6.29 7.18 6.30 5.19
3 2.41 2.10 2.01 1.85 1.20 3 6.34 6.89 7.28 6.03 4.80
4 2.30 1.97 1.89 1.77 1.36 4 6.65 6.83 6.26 6.85 5.18

Big 2.52 2.18 2.07 2.03 1.89 Big 6.39 6.01 5.57 5.92 5.43

bµ, loadings on log(
1+µt+1

1+µt
) tbµ

, t-stats of log(
1+µt+1

1+µt
) loadings

Small 2.40 2.28 2.26 1.73 1.46 Small 3.28 3.85 4.38 3.89 4.22
2 2.40 2.33 2.47 1.86 1.38 2 4.16 4.97 5.82 4.80 3.51
3 2.64 2.42 2.19 2.06 1.16 3 4.90 5.66 6.21 5.43 3.54
4 2.40 2.16 2.10 1.90 1.33 4 5.01 5.55 5.28 5.97 4.65

Big 2.68 2.44 2.26 2.27 1.95 Big 5.18 5.43 5.42 6.25 4.56

Panel B: Ten NYSE deciles sorted on size (January 1954 to December 2000)

Small 2 3 4 5 6 7 8 9 Big 1-10

bI 2.44 2.20 2.09 1.96 1.97 1.86 1.82 1.68 1.48 1.36 1.07
tbI 6.53 7.03 7.00 7.52 8.00 7.26 7.82 7.42 7.09 8.06 3.38

bµ 3.97 3.66 3.48 3.29 3.36 3.23 2.92 2.61 2.42 1.91 2.05
tbµ

5.02 5.32 5.49 5.80 6.43 5.73 5.85 5.76 5.31 4.54 3.66

Panel E: Portfolios from a 3×3×3 sort on size, the KZ Index, and book-to-market
(July 1968 to December 2000)

p111 p131 p113 p133 p311 p331 p313 p333

bI 1.26 1.53 1.01 1.23 0.63 0.87 0.81 0.76
tbI 4.23 5.30 4.49 5.26 7.00 4.20 3.60 5.67

bµ 2.04 2.30 1.63 2.64 1.31 1.75 2.08 2.43
tbµ

2.61 2.30 2.82 3.86 4.20 2.64 4.40 3.90

Panel F: Nine Portfolios from a 3×3 Sort on Size and the Whited-Wu Index
(October 1975 to December 2000)

SC SM SU MC MM MU BC BM BU

bI 3.41 3.41 3.33 3.27 3.07 3.54 2.51 2.95 1.58
tbI 3.85 3.98 2.30 3.32 3.90 4.55 2.16 3.66 2.64

bµ 3.59 4.07 3.81 3.73 3.41 3.98 2.64 3.36 1.53
tbµ

3.48 4.12 2.51 3.27 4.02 4.35 2.20 3.95 2.40
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Table 9, Continued

Panel G: 30 Fama-French (1997) industry portfolios (January 1954 to December 2000)

Food Beer Smoke Games Books Hshld Clths Hlth Chems Txtls mean

bI 0.96 1.46 0.68 2.10 1.83 1.54 2.33 1.11 1.68 2.13 1.73
tbI 5.26 2.98 1.89 5.77 6.53 5.97 4.91 5.27 6.03 5.07 5.58

bµ 1.49 1.81 0.91 2.00 2.10 1.63 2.61 1.21 1.93 2.46 1.83
tbµ

5.48 3.28 1.67 3.97 5.11 4.30 3.83 3.19 4.52 4.00 4.22

Cnstr Steel FabPr ElcEq Autos Carry Mines Coal Oil Util

bI 1.88 2.24 2.19 2.02 2.34 1.91 1.50 1.46 0.84 0.71
tbI 6.70 5.11 6.16 6.88 9.39 4.17 3.17 2.37 2.11 4.25

bµ 2.08 2.16 2.02 2.06 2.46 2.01 1.39 1.22 0.54 0.97
tbµ

4.82 4.19 3.77 4.75 6.60 3.16 2.24 2.11 1.06 5.25

Telcm Servs BusEq Paper Trans Whlsl Rtail Meals Fin Other

bI 0.93 1.87 2.57 1.83 2.09 1.72 1.99 2.43 1.74 1.76
tbI 5.04 7.81 6.89 9.37 5.15 5.80 7.42 6.85 5.62 7.53

bµ 1.21 1.79 2.23 1.95 2.16 1.58 2.31 2.48 2.12 1.92
tbµ

5.55 4.96 3.63 6.06 4.05 4.10 5.19 5.26 5.30 5.22

This table reports cross-sectional variation in return sensitivity with respect to the constrained aggregate

investment return, RI
t+1, and its component capturing aggregate financial frictions,

1+µt+1

1+µt
. Note from

equation (6), RI
t+1 =

1+µt+1

1+µt
R̃I

t+1, where R̃I
t+1 captures the unconstrained aggregate investment return

and
1+µt+1

1+µt
captures the component of financial constraints. We report slope coefficients from univariate

regressions of portfolio returns onto RI
t+1, denoted bI , and their t-statistics, denoted tbI . We also report slope

coefficients (denoted bµ, and their corresponding t-statistics, denoted tbµ
) of log[(1 + µt+1)/(1 + µt)] from

bivariate regressions of portfolio returns onto log(R̃I
t+1) and log[(1 + µt+1)/(1 + µt)]. All the t-statistics are

adjusted for heteroscedasticity and autocorrelations of up to 12 lags. Panels A–F use testing portfolios

in the left-hand side of the regressions including Fama-French 25 portfolios (Panel A), ten NYSE size

deciles (Panel B), ten deciles sorted on the ratio of cash flow to assets (Panel C), ten deciles sorted on

interest coverage (Panel D), selective portfolios from a triple sort on size, the KZ index, and book-to-market

(Panel E), and nine portfolios from a double sort on size and the Whited-Wu index (Panel F). When

testing portfolios are used, RI
t+1 and log[(1 + µt+1)/(1 + µt)] are constructed using their corresponding

estimates of adjustment-cost parameter a and financing cost parameter b1 reported in Tables 2 and 5.

Finally, Panel G reports the results from the 30 Fama-French (1997) industry portfolios. In this case, RI
t+1

and log[(1 + µt+1)/(1 + µt)] are constructed using the benchmark estimates of adjustment-cost parameter

a and financing cost parameter b1 reported in Tables 2. The 30 industries are Food (food products), Beer

(beer and liquor), Smoke (tobacco products), Games (recreation), Books (printing and publishing), Hshld

(consumer goods), Clths (apparel), Hlth (healthcare, medical equipment, pharmaceutical products), Chems

(chemicals), Txtls (textiles), Cnstr (construction and construction materials), Steel (steel works), FabPr

(fabricated products and machinery), ElcEq (electrical equipment), Autos (automobiles and trucks), Carry

(aircraft, ships, and railroad equipments), Mines (precious metals, nonmetallic, and industrial metal mining),

Coal (coal), Oil (petroleum and natural gas), Util (utilities), Telcm (communication), Servs (personal

and business services), BusEq (business equipment), Paper (business supplies and shipping containers),

Trans (transportation), Whlsl (wholesale), Rtail (retail), Meals (restaurants, hotels, motels), Fin (banking,

insurance, real estate, trading), and Others.
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Table 10 : Time Series Properties of Conditional Loadings on Financial Constraints

for Tobacco, Oil, Transportation, and Retail Industries

Tobacco Oil Transportation Retail

Mean 1.72 1.17 3.41 2.87
Volatility 1.18 1.41 0.58 0.52

Corr with RI 0.14 -0.11 -0.27 -0.43

This table reports mean and volatility of conditional loadings on financial constraints captured by

log[(1 + µt+1)/(1 + µt)] for four industries including tobacco, oil, transportation, and retail. Conditional

loadings are estimated using rolling window regressions. The length of the window is 32 quarters (varying

the length in the range of 24–36 quarters yields quantitatively similar results).
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Figure 1 : Predicted Versus Actual Mean Excess Returns

This figure plots the mean excess returns against predicted mean excess return both in quarterly percent for conditional model (Panel A), conditional

model (Panel B), and scaled factor model (Panel C). All three plots are from iterated GMM estimates. The triangles represent the benchmark

specification with financing constraints, and the circles represent the restricted benchmark specification without financing constraints, i.e., b1 =0. The

pricing kernel and the moment conditions are the same as those described in Table 3.

Panel A: Unconditional Estimates Panel B: Conditional Estimates Panel C: Scaled Factor
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Figure 2 : Correlation Structure of Stock and Investment Returns with Leads of Lags of i and π

This figure presents the correlations of investment returns RI and real value-weighted market returns RS with the various leads and lags of I/K and

Π/K. Panel A plots the correlation structure of the above series with I/K and Panel B plots that with Π/K. In the figures, b1 is the slope term in

the specification of financing premium (10).

Panel A: Correlation With Π/K Panel B: Correlation With I/K
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