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Should Investors Avoid All Actively Managed Mutual Funds? A Study in

Bayesian Performance Evaluation

Abstract

This paper analyzes mutual-fund performance from an investor's perspective. We study the portfolio-choice
problem for a mean-variance investor choosing among a risk-free asset, index funds, and actively managed
mutual funds. To solve this problem, we employ a Bayesian method of performance evaluation; a key
innovation in our approach is the development of a flexible set of prior beliefs about managerial skill. We then
apply our methodology to a sample of 1,437 mutual funds. We find that some extremely skeptical prior beliefs
nevertheless lead to economically significant allocations to active managers.
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Should investors avoid all actively managed mutual funds?
A study in Bayesian performance evaluation

Abstract

This paper analyzes mutual-fund performance from an investor’s perspective. We
study the one-period portfolio allocation problem for a mean-variance investor choosing
from arisk-free asset, benchmark assets (passively managed index funds) and non-
benchmark assets (actively managed mutual funds). To solve this problem, we propose
and employ a Bayesian method of performance evaluation; the main innovation in our
approach is the development of aflexible set of prior beliefs about managers abnormal
performance (“aphas’). We motivate this Bayesian approach by demonstrating
unrealistic results for an investor who ignores prior beliefs and relies only on the data.
We then apply our methodology to a sample of domestic diversified equity mutual funds
and ask “what prior beliefs would imply zero investment in active managers?’ In this
sample, it is not possible to reject the null hypothesis that the best performance is due to
chance. Nevertheless, we find that the policy of zero investment in active managers can
only be supported by extremely skeptical prior beliefs about the probability of skill; such

extreme skepticism could not possibly be “proved” using current methods and data.



Actively managed equity mutual funds have trillions of dollars in assets, collect tens of
billions in management fees, and are the subject of enormous attention from investors, the
press, and researchers. For years, many experts have been saying that investors would be
better off in low-cost passively managed index funds. Notwithstanding the recent growth
in index funds, active managers still control the vast majority of mutual-fund assets. Are
any of these active managers worth their added expenses? Should investors avoid all actively
managed mutual funds?

Since Jensen (1968), most studies have found that the universe of mutual funds does not
outperform its benchmarks after expenses.! This evidence indicates that the average active
mutual fund should be avoided. On the other hand, recent studies have found that future
abnormal returns (“alphas”) can be forecast using past returns or alphas,* past fund inflows,?

* Given this evidence,

and manager characteristics such as age, education, and SAT scores.
it is possible that alphas are persistent, and that some managers have positive “expected”
alphas. Perhaps 0.1 percent of all managers have positive expected alphas. Perhaps none do.
Using current data and methods, tests that distinguish between these two possibilities will

have very low power. Nevertheless, such small differences may have large consequences for

investors.

! Recently, Malkiel (1995), Carhart (1995) and Daniel et al. (1997) all find small or zero average abnormal
returns by using modern performance-evaluation methods on samples that are relatively free of survivorship
bias.

2 Carlson (1970), Lehmann and Modest (1987), Grinblatt and Titman (1988, 1992), Hendricks, Patel,
and Zeckhauser (1993), Goetzmann and Ibbotson (1994), Brown and Goetzmann (1995), Elton, Gruber and
Blake (1996), Carhart (1997).

3 Gruber (1996), Zheng (1999).
* Golec (1996), Chevalier and Ellison (1999).



In this paper, we explore these consequences by explicitly taking an investor’s perspective.
We study the one-period portfolio allocation problem for a mean-variance investor choosing
from a riskless asset, benchmark assets (passively managed index funds), and non-benchmark
assets (actively managed mutual funds). We propose and employ a Bayesian method of
performance evaluation; the main innovation in our approach is the development of a flexible
set of prior beliefs about alphas that are consistent with intuition about managerial skill. In
this framework, the prior probability of managerial skill can be made arbitrarily small (or
zero), so investors can interpret the results filtered through their own beliefs.

Our approach is similar to several recent papers that take an investment perspective and
use prior beliefs centered on an economic model. (Kandel and Stambaugh (1996), Pastor
(1999), Péstor and Stambaugh (1999b), and MacKinlay and Pastor (1999)). Like the latter
three papers, our techniques build upon the work of Pastor and Stambaugh (1999a); in
particular, our definition of “skill’ among managers plays the same mathematical role as
“model mispricing” does in their analysis.’

In Section I, we formally pose the investor’s problem and discuss the conditions under
which there is positive investment in an active manager. This exercise shows that an investor
who relies only on the data would choose to invest in an active manager whenever the point

estimate of alpha is greater than zero. This result seems contrary to most investment advice

5 There is a related literature that employs Bayesian methods to explore the role of estimation risk on
portfolio choice. See Barberis (1999), Bawa, Brown and Klein (1979), Brown (1979), Frost and Savarino
(1986), Jobson and Korkie (1980), Jobson, Korkie and Ratti (1979), Jorion (1985, 1986, and 1991) and Klein
and Bawa (1976). In these applications, however, prior beliefs about parameters are typically noninformative
or come from empirical Bayes procedures. Also, another related line of research focuses on the role of prior
beliefs in model testing. See Kandel, McCulloch, and Stambaugh (1995), McCulloch and Rossi (1990), and
Shanken (1987).



about active management and motivates the use of informed prior beliefs about the frequency
and magnitude of manager skill. We then posit a flexible functional form for these beliefs.

Once prior beliefs have been specified, the investor’s decision reduces to a Bayesian
inference problem, which we solve in Section II. Using prior beliefs motivated in Section
I, we derive an analytical solution for the posterior expectation of alpha. Our solution is
expressed as a formula whose inputs are modified moments of well-known distributions.
While our focus is on mutual-fund managers, this formula can also be applied to managers
or portfolio strategies in other contexts. It can be applied to a single manager in isolation
and does not require a comprehensive or bias-free database. In each context, the prior beliefs
may be different, and rightly so. We also show how prior beliefs can be elicited by intuitive
questions such as “what is the probability that a manager has an expected alpha greater
than 25 bp per month?”, and we map the answers to these questions into the parameters of
the prior belief distribution.

Section IIT applies our methodology to an investor’s choice over a large set of equity-
mutual-fund managers. We use a sample of 1437 domestic diversified equity funds in ex-
istence at the end of 1996, and look at the full return history for the managers in place
at that time. Using the three-factor model of Fama and French (1993), we calculate the
posterior expectation of alpha for each manager over a wide range of prior beliefs. We then
ask, “what prior beliefs would imply zero investment in active managers?” To justify such
a zero-investment strategy, we find that a mean-variance investor would require extremely

skeptical beliefs about the possibility of managerial skill. We then discuss how to recon-



cile the frequentist and Bayesian evidence for this sample. Section IV concludes with an

interpretation of our results.

I. The investor’s problem and prior beliefs

Consider a mean-variance investor choosing from a risk-free asset, a set of K benchmark
assets (passively managed index funds) and a single non-benchmark asset (an active invest-
ment manager). Assume that this manager has been randomly selected from a bias-free
sample. Under what conditions will the investor place any of her portfolio in the active
manager? In this section, we derive the necessary condition for positive investment and
show that an investor who relies only on the data will arrive at a counterintuitive outcome.
This motivates a Bayesian performance-evaluation approach with the use of informed prior
beliefs about manager skill. We then propose a flexible and reasonable form for these prior
beliefs.

Let F' and r denote the excess returns on the index funds and active manager, respectively.
Let w be the weight on the active manager, with its optimal level written as w*. Next, define

the “performance-evaluation equation” for the active manager as
r=oa+ [BF +e¢, (1)

where ¢ is distributed N (0,0?). In our analysis, we treat o and 3 as fixed parameters that
“belong” to a manager, and not to the mutual fund that he manages. In principle, the
assumption of fixed parameters can be relaxed and they can be allowed to vary over time

and with the characteristics of the manager’s portfolio.



Under some conditions (see Appendix C), one can adopt a Bayesian procedure for esti-
mating « and solve for w*as

w* = ca, (2)

where & is the posterior mean for @ and ¢; > 0. Thus, the decision rule is to invest in

the active manager if and only if the posterior mean of « is positive. In this case, we have

reduced the decision rule to a Bayesian inference problem on «. For example, if the investor

has diffuse (noninformative) prior beliefs for these parameters, then posterior beliefs would

be completely determined by the data and we could write

w* = ng, (3)

where & is the frequentist OLS estimate (= posterior mean) for « and ¢, > 0. Thus, an
investor with diffuse prior beliefs would invest with the active manager as long as & is
positive.

This result seems counterintuitive — with diffuse prior beliefs, any positive realization for &
would lead to positive investment in the active manager. While the “statistical significance”
of & would play a role in the calculation of c; and the level of w*, it does not affect the sign

*

of w*. Moreover, it is easy to construct examples where & is not statistically significant
but w* is economically large. We believe that the reason this result seems perverse is that
few investors actually have diffuse prior beliefs about . For example, a typical argument
against active management stresses the expenses of active management and the rarity (or
nonexistence) of skilled managers. This argument implies prior beliefs that most managers

have negative expected alphas (after expenses) and that most positive realizations of & are
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due to luck. An investor that implicitly has such prior beliefs should explicitly use them, or
she risks arriving at incorrect and suboptimal outcomes. This is the primary motivation for
our Bayesian performance evaluation methods.

In this paper, we explicitly model such prior beliefs for «. Figure 1 gives a graphical
representation. For now, we consider the case where the variance of € is known, so that the
manager’s level of residual risk is held constant.® The prior separates managers into two
types: skilled (with probability ¢) and unskilled (with probability 1 —g). The key features of
the distribution are the lower bound and point mass of unskilled managers at a < 0, and the
right tail of a normal distribution as the functional form for o among skilled managers. The
normal distribution is chosen for analytic tractability, but is also a useful approximation for
skill distributions in many other contexts. The parameters ¢ and o, allow the investor great
latitude in her beliefs about managerial skill. If she is very skeptical about the frequency
and magnitude of skill, then she would set both parameters to be small. In the limit, either
q =0 or o, = 0 implies no possibility of skill.

The point mass in Figure 1 occurs at @« = a — fee — cost < 0. Here, we set a so that
E («) = — fee — cost. This restriction forces the average «, before fees and costs, to be zero.
With these prior beliefs, all abnormal returns earned by skilled managers must come at the
expense of their unskilled counterparts. Thus, an unskilled manager is expected to earn a
negative « that consists of three components: a, his losses due to transactions with skilled

managers, fee, his total fees, and cost, his transactions costs. While a is the same for all

6 In Section II, we introduce a link between manager’s residual risk and prior expectations for o



managers, the other components, fee and cost, will generally differ across managers.

Why do we assume a lower bound at a? Under some interpretations of equation (1),
this assumption is logical. For example, if the market is semi-strong efficient (Fama (1970))
with respect to (1), where the index funds are interpreted as a complete set of risk factors,
then no manager should be expected to have an a below a. While many managers will
have realizations below this level, one would need to be systematically trading on non-public
“misinformation” in order to have an expected o below «. If, instead, the market is not
semi-strong efficient and managerial skill is based upon the use of public information to
exploit decision-making biases, then differential incidence of such biases would result in a

" By imposing a lower bound at a, we are assuming that any

some prior mass below a.
behavioral biases are evenly distributed among all managers. While this assumption will
affect inference for the worst-performing managers, it should have little effect on posterior
beliefs for the best-performing ones.

Once prior beliefs have been specified, the next step is to combine these beliefs with data
and compute a posterior estimate for a. This posterior estimate can then be substituted

into (2) to obtain the investor’s solution. We solve this Bayesian inference problem in the

next section.

7 One way to model this possibility would be to make the prior distribution for o symmetric around
a. In fact, this assumption would greatly simplify our analysis. We do not use a symmetric distribution
because we find such prior beliefs to be implausible. A symmetric prior distribution for a would imply that
for every skilled manager with superior judgement or the ability to exploit the behavioral anomalies of other
investors, there is another manager who systematically does the opposite.
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II. Bayesian performance evaluation and portfolio choice

This section, along with the Appendix, provides the details of our methodology. In
Section II.A, we provide the likelihood function for a general (unconditional) factor repre-
sentation of manager returns. Section II.B gives a complete mathematical representation
for prior beliefs, and Section II.C poses four questions sufficient to elicit this representation.
In Section II.D, we combine these prior beliefs with the likelihood function and derive an
analytical solution for the posterior expectation of a. Taken together, Sections II.A through
I1.D solve the inference problem for a single manager studied in isolation. Section IL.E ex-
tends the portfolio-choice analysis to multiple managers. Finally, Section II.F discusses the

implications of survivor bias for our analysis.
A. Likelihood

Let r denote a T' x 1 vector of excess returns for a manager and F' a T' x K matrix of
factor returns. The regression disturbance ¢ in (1) is assumed to be a serially uncorrelated,
homoskedastic realization from a normal distribution, with zero mean and variance equal to

o?. Then, we write the likelihood for r conditional on F' as
p(T|OC,ﬁ,O'2,F):N<OCLT+F,8,O'QIT), (4)

where 17 is a T-vector of ones, and I is a T x T identity matrix. Thus, manager returns
conditional on factor returns are normally distributed and have a standard factor structure.
We assume that the factors F' do not depend on «, (3 or g, so the exact specification of the

factor likelihood is not necessary for our analysis in this section.



B. Prior beliefs

The next step is to state the prior beliefs for the parameters in (4). As discussed in the
previous section, managers are either skilled or unskilled. These two states of the world are
indexed by the state variable Z, with Z = 1 denoting the skilled state and Z = 0 denoting
the unskilled state. The probability of the skilled state is ¢q. In the absence of data on
the returns of a manager, the probability that the manager has skill is simply given by the
probability that skill exists in the population, or P (Z = 1). We assume that only o depends
on whether or not the manager is skilled; the factor loadings, 3, and residual risk, o, do not.

Under these assumptions, the prior distribution can be written as
ponfo?) = p(al| Z=0)P(Z=0)+p(a| Z=1)p(Z=Dp(Bo%). ()
We use a diffuse prior on 3 and o? (Gelman et al. (1995))):
2 1 6

The diffuse prior on (3 is necessary in order to obtain analytical results. It is also a reason-
able starting point when analyzing managed portfolios, where 8 can be estimated relatively
precisely (as compared to the 3 of individual stocks). The diffuse prior on ¢ is not necessary
for analytical results, but it simplifies notation and allows us to focus our attention on the
role played by «. Appendix A relaxes this second assumption and solves for the posterior
when 0?2 has an informative prior; then, the diffuse prior used here becomes a limiting case.

We turn next to «, the main parameter of interest. Essentially, we want to write down a
mathematical representation of Figure 1. The one additional twist is to recognize that prior

9



beliefs for o should be conditioned on some level of residual risk. For example, consider a
fully-invested manager who has an « of a;; and is taking on s units of residual risk. Then, if
this manager were to take on a fifty-percent cash position, his residual risk would decrease
to s/2 and his o would fall to a;/2. The full specification of the prior for o recognizes this

relationship and is written as

P(Z=1) = g (7)
P(Z=0) = 1-q, (8)
p(aZ=0,0") = &, (9)
p(alZ=10%) = 2N (g,o—i K—jblwg, (10)

where ¢, is the Dirac delta function with mass point at z, 1x is the indicator function for
the set X, « is a negative constant representing the expected o for an unskilled manager,
and s? is an arbitrary constant specified by the researcher before priors are elicited. Finally,
we assume that the parameters of the (unspecified) factor prior are independent of «, 3, and
o.

The ratio 02/s® effectively links the posterior distributions of o and «. As discussed
above, this link allows us to adjust for the fact that a skilled manager can control his
expected o through the strategic use of leverage.®  The importance of this relationship

becomes clearer in the next section when we discuss the elicitation of priors.

8 The same argument can be used to motivate a link between 3 and o. Since we use a diffuse prior for £,
such a link is not applicable. To be completely consistent, we should also link our prior beliefs for a (and, by
extension, ) to the ratio 02/s%. Unfortunately, this link is not tractable. As long as a is small, however,
the omission will not be quantitatively important.

10



The prior link between a and o is first suggested by MacKinlay (1995) and is imple-
mented in Pastor (1999), Pastor and Stambaugh (1999a), Pdstor and Stambaugh (1999b),
and MacKinlay and Pastor (1999). Mathematically, our link is identical to theirs, although
their motivation is somewhat different. In these papers, o, is an index of potential “mispric-
ing”, and the motivation for the link is to reduce the ex-ante probability of very high Sharpe

ratios among portfolios that combine benchmark and non-benchmark assets.
C. Elicitation of prior beliefs

It is possible to elicit prior beliefs using straightforward questions about performance,
fees, and transaction costs. For example, consider any specific factor representation for
(1). Then, given this factor representation, assume that the manager under study has a

2 equal to a specific value. We call this level s?, and it serves as the

residual variance, o
constant denominator term in (10). Then, conditional on ¢? = s* and the chosen factor

representation, the researcher should answer the following four questions:

e Question 1: What is the probability that the manager is skilled? (i.e., that he has an
a greater than would be earned by randomly selecting stocks while incurring the same

fees and costs.) [Call this answer gq.]

e Question 2: What is the probability that the manager has an « greater than 25 bp per

month? [Call this answer ¢ (25).]
e Question 3: What are the expected fees for the manager? [Call this answer fee.]

e Question 4: What are the expected costs for the manager? [Call this answer cost.]

11



In answering these questions, the researcher should not consider any return-based infor-
mation about the manager that coincides with the sample period under study; this forces
the exclusion of all information about the length of time the manager has survived or the
level of assets that he has under management, both of which will tend to be correlated with
past returns. Instead, the answers should reflect a thought experiment about a new manager
before any return information has been observed.

Note that Question 2 is not asking about the probability of different realizations of &,
but about “true” values of a. Realizations of & will depend on sampling variability. The
true «, on the other hand, is the & we would expect as the number of time periods goes to
infinity. Thus, if a researcher believes that no managers are skilled, then ¢ = 0, and thus
q (25) should be 0 as well. The use of 25 bp in this question is arbitrary, and any other point
in the distribution could be substituted.

Question 2 is conditioned on a specific level of residual variance, s®. This conditioning
is crucial, and we believe that prior beliefs on « are not well-defined without it. The same
reasoning discussed in Section II.B also applies here: if a manager has an expected « of a;
when his residual standard deviation is s, then his expected a would be «;/2 if he levered
down his portfolio and took on only s/2 units of residual risk. By including the o2 /s?
term in the prior beliefs for o, we link our beliefs for o and ¢ in a way consistent with our
elicitation procedures. In this respect, the prior beliefs elicited through these questions are

not really about «, but are instead about Sharpe ratios for combinations of the manager

12



and the benchmarks.” This returns us to the original motivation for the link as given by
MacKinlay (1995).

Given the answers to these questions, we can solve for the remaining parameters of the
prior belief distribution. Let ® () denote the cdf of a standard normal distribution evaluated

at x. Then, we have three equations,

q(25) =P (a>25]0"=5") =2 <1—c1><250_g>>, (11)
a= —qaa\/g, (12)

and
a=a— fee— cost, (13)

which we can solve for the three unknowns, a, a and o,. (11) relates ¢(25) to o, (given the
other parameters), (12) imposes the constraint'’ that the expectation of «, conditional on

2 = 5% is equal to — fee — cost, and (13) is just the definition of a. Table I illustrates some

o
solutions to this system: given inputs of ¢, ¢ (25), fee, and cost, we provide the solutions for
Oa, a, and a. In most of the examples in the table, a tends to be very small, so « is close to
— fee—cost. Alternatively, one can elicit g (25) before fees. To compute the prior parameters

under this alternative method, we just replace a with a — cost on the right-hand-side of (11).

This is the elicitation method used in Section III.

9 We are grateful to Rob Stambaugh for suggesting this interpretation.

10 In some applications, one may wish to relax the constraint in (12) and allow certain types of managers
to have a positive expectation of «. This case is solved in a previous version of the paper (Baks, Metrick,
and Wachter (1999)).

13



D. Posterior beliefs

Our goal in this section is to calculate the mean of the posterior distribution for . Most
of the intuition for this solution is contained in Figure 2 and its corresponding notation as
developed in (14) - (22). The details are given beginning with (23) and in Appendix A.

We denote the mean of the posterior distribution for o, E [« | r, F], as &. Similarly, we
denote the posterior probability that a manager is skilled, P(Z =1 |r, F), as q. Then, it

follows that we can write & as

a=qE[a| Z=1,rF]+(1-§a (14)

The first term on the right-hand-side of (14) reflects the contribution to the posterior
mean coming from the possibility that the manager has skill; the posterior probability of skill
() is multiplied by the posterior expectation of a conditional on skill. The second term on
the right-hand-side of (14) reflects the contribution coming from the possibility that manager
is unskilled; the posterior probability (1 — §) is multiplied by a. Note that our procedure is
not updating ¢ for the “population”; g is treated as known. Rather, our inference problem
only concerns the specific manager under study.

To calculate &, we need to solve for the two unknown elements on the right-hand-side
of (14): Efa| Z=1,r,F] and §. The problem of computing & is thus considered in two
parts. First, we calculate F [a | Z = 1,r, F], the expectation conditional on skill. Second,
we calculate ¢, the posterior probability that the manager is skilled.

In expositing our solution, it is helpful to introduce some notation:

14



X = <F> (15)

a 1
= (X'X) X'r (16)
5
= top left element of (X'X) ", (17)
var (&) = mo®. (18)

Then, the posterior of a conditional on the variance o and Z = 1, which we call the “skilled

posterior distribution”, is given by a truncated normal distribution:!!

D (a | Z=1,rF, 02) x N (0/,0'2) losa, (19)
where
o = da+(1-N)a, (20)
—1
" = (varl(d) i o? (1‘;—22)> 7 21
A= Vail(Q&) 22)

Equations (19) - (22) are illustrated graphically in Figure 2. o’ is the mode of the skilled
posterior distribution given in (19); it would also be the mean, and ¢’? the variance, of
the untruncated version of this distribution. «' is written in (20) as a weighted average of

the maximum likelihood estimate (&) and the prior mode (a), with weights given by A\ and

11 See Appendix A for the details of these calculations.
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1 — A, respectively. In (21), var(&) represents the variance (in a frequentist sense) of the
maximum likelihood estimate for «, conditional on a known residual variance of o>. The
posterior precision, 1/0'%, is the sum of the precision of the prior and the precision of the
data. Intuitively, this says that after having observed the data, there is greater certainty
about the location of the posterior distribution of o than there was for the prior. Thus,
the weight A is determined in (22) by the relative precision of prior beliefs versus sample
information. The greater the precision of &, the more the mode is shifted towards & and
away from the prior mode «.

The marginal posterior for a (conditional on skill) can be obtained in closed form by
successively integrating out 4 and o from the joint posterior. Once ( is integrated out,
the model resembles one where normal data is combined with a conjugate prior. Therefore,
familiar techniques (see, e.g. Gelman et al. (1995)) can be used to integrate out o, suitably

adjusted to reflect the truncation at a. The marginal distribution is then given by:

pla|Z=1,rF)xt, (O/, ﬂj) Losa, (23)
where
B 1— XA,

h = S+ p- (&—a)”, (24)

) &
0 = ; (25)

B
S = (r—x0) (r-x0), (26)
v = T-K. (27)



The parameter A has the same interpretation here as in (22); the greater the precision of
the data relative to the prior precision, the more the posterior mode is shifted towards the
maximum-likelihood estimate.

The posterior expectation of « in the skilled state can then be calculated as

E(a|Z=1,rF)=d +

1
mh - <_; , Amh (28)

v—2 7l/—2> f;oty(a;a’,%> do
The first term on the right-hand-side of (28) is just the mode of the skilled posterior distri-
bution (the mean of the untruncated ¢-distribution), while the second term is an adjustment
for the truncation at a. We use the notational convention that ¢, (o; x,y) is a t-distribution
evaluated at o with mean x, variance y and v degrees of freedom.

We next solve for the second unknown element in (14), g, the posterior probability that

the manager is skilled. From Bayes’ formula for binomial variables, it follows that

p(r|Z=1,F)q

G=P(Z=1|rF)= . 29
e TSIV rET G I
Dividing through by p(r | Z =1, F) yields
~ q
= , 30
q q_’_% ( )
where B is given by
p(r|Z=1F)
B= 31
P 1Z=0.1) oy

If observing the realized data is equally likely whether the manager is skilled or unskilled,

then B = 1, and our posterior probability of Z = 1 equals the prior probability: ¢ = q. The
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more likely the data are for a skilled manager relative to an unskilled manager, the higher
is B and thus, the higher is §.'?

As shown in Appendix A,

t,_1 (a; &, —mS oo
B 1 ( (14)(1/71)) <2/ ¢ <a;o/, ﬂj) da) . (32)

This is the ratio of two ¢-distributions, multiplied by a term to correct for the truncation at
Q.
Finally, with values for E(« | Z = 1,7, F) (equation (28)) and ¢ (equations (30) and

(32)), we can substitute into (14) and obtain a solution for d&.
E. Portfolio choice over multiple managers

The previous analysis applies to an investor with a choice of one manager and K index
funds. In practice, investors can choose among many managers. This section gives the
assumptions that allow our framework to extend to the case of multiple managers. This is
necessary for the application in Section III.

Consider a mean-variance investor choosing among the K index funds, N manager port-
folios, and a riskless asset. Let r; denote the 7" x 1 vector of returns on manager j, and let r
denote the T" x N matrix of returns on all the managers. As in Section II.A, the likelihood

for returns is given by:

p(ri | s B8;,0% F) = N (ajur + FBj,0%1r) . (33)

12 Note that by dividing the numerator and denominator of (30) by ¢, the the posterior odds ratio
1—;'1%&}%% for testing the hypothesis Hy : ¢ = 0 versus H; : ¢ > 0 appears. Thus, B is a “Bayes factor”
associated with testing Hy versus H;.
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To shorten notation, let ¢; = (aj, j,a?), and ® = (¢y,...,¢y). For each manager, the
prior on the parameters, p(qu), is given in Section II.B.

The key assumption that allows us to extend our result is that no manager conveys infor-
mation on any other manager. Specifically, we require that the parameters for the managers

are independent in the prior, and that the likelihoods for each manager are independent:

Assumption 1 : The likelihoods are independent across managers:

p(r|®,F) = []p(r;|@,F) (34)

J

= [Ip(r; | ¢;F). (35)
J
Assumption 2 : The priors are independent across managers:

p(®) = [T (o)) (36)
J

For some applications, the assumptions above might be problematic. Here, we feel that
they are innocuous. Independence across managers would be dangerous assumption if we
intended to make strong statements about the total fraction of a portfolio invested in active
managers. If we restrict ourselves to statements about whether any of a portfolio is in active
managers, then inference about covariances is much less important. There is no reason to
believe that ignoring the information from other managers would bias the results in either
direction.

Assumptions 1 and 2 imply that the posterior distributions across managers are inde-

pendent:

p(®|r, F) o< p(r|®, F)p(®)
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= [Io(rs |65 F)p(e;)
o Hp(¢j | 75, F). (81)

Therefore, the calculation for the posterior of o; when there are multiple managers is identical
to that in II.D for a single manager.

More to the point, the zero-investment condition for multiple managers is analogous to
the zero-investment condition for each manager. An outline of the proof is given here; details
can be found in Appendix C. First, it simplifies the analysis to consider portfolios which offer
a pure play on the manager’s alpha. That is, consider the portfolio that consists of going
long one manager and short the index funds with weights equal to the posterior betas Bj.
Call this portfolio an “alpha” portfolio. It is clear that the portfolio weight on an alpha
portfolio must equal the weight on the corresponding manager. It is shown in Appendix C
that the alpha portfolios have expected return a.

Let V denote the posterior variance-covariance matrix of the N alpha portfolios and the
K index funds, and let E denote the vector of means. Then the optimal weights are given
by:

w VB
: (3)

normalizing constant’

:I:*
where w* is the vector of weights on the alpha portfolios and z* is the vector of weights on

the index funds. In Appendix C, it is shown that V' is of the form:

Vii 0
(39)

0 Vi
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and that Vi, is diagonal. Therefore, the vector of weights on the managers is given by:

w* = 6466, (40)

where ¢, > 0. That is, the investor puts positive weight on a manager, if and only if the

posterior expectation of « is greater than zero.
F. Survivor bias

A possible objection to our framework is that it fails to recognize the possibility of
survivor bias. The investor sees only the fund managers that “survive”, i.e. do not leave
the sample. The question is, does this change the inference problem for the managers that
survive?

Survivor bias can impact the analysis in two ways. First, the fact that poorly performing
managers are not observed could, in principle, affect the posterior distribution of a manager
that is observed. Under the independence assumptions of Section IL.E, this first kind of
survivor bias is not a problem. Second, knowing that the manager in question has survived
might impact the posterior for that manager. This second type of survivor bias is also not
a problem, as this section demonstrates.

We represent survival for manager j by a binary random variable survival;. The question

is whether
p(@; | rj, F) = p(; | 75, F, survival;) 7 (41)

That is, does inference on ¢; change if conditioned on survival;? The answer to the question

is “no”, under the following reasonable assumption on conditions for survival:
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Assumption 3 : p(survival; | rj, F, ¢;) = p(survival; | r;, F').

Assumption 3 states that survival depends only on realized returns. Conditional on real-
ized returns, the manager’s skill (and the parameters 3 and o), do not affect the probability
of survival. Realized returns are, of course, observable, while ¢ is unknown. It is quite
plausible that survival depends on the manager’s observed success, not on unobserved skill.
In what follows, we suppress the j subscript. The discussion easily extends to the case of
multiple managers, using the posterior independence shown in II.E.

Using Assumption 3, it follows that survivor bias is not a problem for our analysis. In

particular, by Bayes’ rule:

. p(survival | r, F,¢)p(¢ | r, F)
. _ 42
p(cb | r, F, suTUZUCll) p(survival | T, F) ( )

= plo|rF). (43)

The intuition behind this result is that the returns are already observed, so there is no

additional information in return-based survival. Note that in general:

p(r | F, ¢, survival) # p(r | F, ¢). (44)

That is, the likelihood conditional on survival is not the same as the likelihood without
conditioning on survival. The prior on ¢ conditional on survival will also differ from the
unconditional prior. Equations (42) and (43) demonstrate that the effect on the prior and

the likelihood must exactly cancel, and thus the posterior remains the same.

22



It is helpful to contrast our setting to those where survivor bias would be a problem.!?
If, for example, we were performing inference on the prior parameter ¢, then knowing that
poorly performing funds disappear would change our posterior. For this reason, we do
not attempt to perform inference on ¢, and instead treat it as fixed in each implementation.
Then, we can map different “known” levels of ¢ into different posterior beliefs. Alternatively,
if we were missing data on a particular fund manager in years where that fund manager did
particularly poorly, this would also bias our conclusions. But this is not the case in our

sample.
III. Should an investor avoid all actively-managed mutual funds?

In this section, we apply our methodology and ask, “given the evidence, what prior beliefs
would induce positive investment in at least one active mutual-fund manager?” Section ITI.A
discusses the data and performance-evaluation regression. Section III.B summarizes the
frequentist evidence for this sample. Section III.C contains the main analysis and answers
the question posed in the title of the paper. Section III.D discusses several criticisms and

limitations of the analysis. Section III.E contrasts the frequentist and Bayesian results.
A. Setup

Our data is drawn from the Center for Research in Security Prices (CRSP) mutual-fund
database (CRSP, 1999). This database includes information collected from several sources

and is designed to be a comprehensive sample of all mutual funds from 1963 to 1996. We

13 For studies of the implications for survivor bias on inference, see Brown et al. (1992), Brown, Goetz-
mann, and Ross (1995), Goetzmann and Jorion (1997)
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restrict ourselves to the subset of funds still operating at the end of 1996, and only include
returns that have been earned by current (as of December 1996) managers. We include only
the returns earned by current managers because we interpret « as a fixed parameter that is
a characteristic of managers, not of funds. In the remainder of the section, we use the terms
“fund” and “manager” interchangeably. We include team-managed funds only if a name is
provided for at least one member of the team; returns for such funds are included for the
tenure of the team’s longest-standing member. Furthermore, we restrict ourselves to funds
with at least one complete year of return history. The resulting sample includes 1437 funds
with an average of 51 months of returns. This sample suffers from survivor bias and will
not be representative of mutual-fund performance as a whole. As discussed in Section ILF,
the assumption that survival is based only on observed returns allows us to ignore survivor
issues in our Bayesian analysis.

The next step is to choose a set of benchmarks for the evaluation. For conciseness, we
restrict our presentation to a single well-known model — the three-factor model of Fama and

French (1993).1* The model is given by

Tjt :Oéj+ﬁ1RMRE+ﬁQSMBt+ﬁ3HMLt+€jt, (45)

where 7, is the excess return to fund j in year ¢, ¢ is the performance measure, and RM RF},

SM By, and HM L, are the time t returns to benchmark portfolios constructed using market,

4 The qualitative results do not change if we use the CAPM or the four-factor model of Carhart (1997).
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size, and value strategies.!?®> While there is an ongoing debate about whether these factors
are proxies for risk, we take no position on this issue and simply view the three-factor
model as a method of performance attribution. Thus, we interpret the estimated alphas as
abnormal returns in excess of what could have been achieved by a matched investment in
the benchmark portfolios. This model suits our purposes, as we wish to determine whether a
manager can outperform an available set of passive index funds, and the main style categories
for both indexation and active management are along size and value/growth dimensions.
While the benchmark returns in (45) are not themselves available as passive index funds,
they are very similar to (combinations of) index products available in the late 1990s.1®

The fact that we ignore any transactions costs that would be incurred in constructing these
benchmark portfolios is keeping with the conservative bias of our analysis; inclusion of such

transaction costs would make managers look better.
B. Frequentist results

Before proceeding with the Bayesian performance evaluation, it is useful to summarize
the frequentist evidence for this sample. The estimation of (45) for all 1437 managers yields
711 managers with a positive &, and 726 with a negative &. Note that these estimates reflect

performance after expenses, and thus show almost half of the managers succeeded in earning

15 See Fama and French (1993) for details on the construction of these portfolios. We are grateful to Ken
French for providing the factor returns.

16 Low-cost index funds are available in 1999 from the Vanguard mutual-fund family (among other places)
in large-capitalization value, small-capitalization value, large-capitalization growth, and small-capitalization
growth categories. Note that low-cost “momentum” index funds are not available, since momentum investing
is by nature a high-turnover activity. This is the main reason we do not include a momentum benchmark
in our analysis.
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back their fees and transactions costs. A big reason for this high success rate is the survivor
bias in the sample, and this bias prevents any useful inference about sample averages.

Despite the limitations of survivor bias, it is interesting to test the null hypothesis that the
best performance in the sample is due to chance. To do this, we first test the null hypothesis
that « is zero for each manager in the sample. On this test, the lowest p-value among all
managers is achieved by Robert Sanborn of the Oakmark Fund, who has an & of 91.7 bp per
month, with a standard deviation for this estimate of 23.8. This yields a t-statistic of 3.8
and a p-value of 0.00014. Thus, under the null hypothesis that « is zero, we would expect
to see such an extreme performance about 1.4 times in a sample of 10,000 managers. Even
if we assume that our sample is randomly selected and consists of independent draws, such
an extreme result is not that surprising. Under the null hypothesis that a is zero for all
1437 funds, the probability that the lowest p-value is less than or equal to 0.00014 can be
calculated as

1—(1-0.00014)"*" = 0.18, (46)

or 18 percent. If survivor bias causes the sample to have a disproportionate number of
good performers, then we would need to adjust upwards the exponent in (46), thus raising
the probability of observing an extreme outcome. In any case, we cannot reject the null
hypothesis that the best performer in this sample has an « equal to zero. At the end of this
section, we explain the relationship between this result and the Bayesian inference described

below.
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C. Bayesian results

In the Bayesian analysis, we combine the return evidence with a range of possible prior
beliefs and then map them into posterior beliefs. To simplify the analysis, we elicit priors
before fees so that we can use the same interpretation of ¢, ¢ (25), and o, for all managers.
In principle, we could use different prior parameters for each manager depending on their

T Total fees are reported in the database and

style, education, or other characteristics.!
vary across managers and across time. Consistent with our elicitation, we analyze gross
returns (by adding back fees for each year), and then subtract the current fee at the end.
Transactions costs are not reported; we use a single value, 6 bp per month, as the cost for

8 In Section II1.D, we discuss the implications of changing this assumption.

every manager.’

For the denominator of the leverage term, given as s® in equation (10), we use the
procedure of Péstor and Stambaugh (1999a) to obtain an empirical-Bayes estimate of 5
for our sample (= 0.00029). This level of s* is a useful normalization that makes it easier
to interpret the results, since prior beliefs can then be stated relative to an average level
of residual risk in the sample. Thus, the elicitation uses the questions from Section II.C.,
and includes an answer for ¢ (25); here, the proper interpretation of ¢ (25) is the probability
of o greater than 25 basis points per month, after transactions costs but before fees, and

conditional on the average level of residual risk in the sample. We will use this definition

of ¢ (25) for interpreting our results. Note that we cannot use our data to infer anything

17 Chevalier and Ellison (1999) provide evidence that many such characteristics are correlated with alphas.

18 This value roughly corresponds to the average monthly transactions costs for mutual funds and large
institutions found in other studies; see Carhart (1997) for turnover rates and implied trading costs, Keim
and Madhavan (1997) for per-trade costs, and Perold (1988) for the methodology behind these calculations.
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about the “true” values of ¢, ¢ (25), 04, or a; this kind of analysis would require an unbiased
sample (ours is not) and an additional adjustment for dependencies across managers. Thus,
we are not attempting to say what prior beliefs “should be”. Rather, our goal is to better
understand how these prior beliefs matter for inference and decision-making.

Given prior beliefs, the next step is to combine these beliefs with the data and calculate
posterior beliefs. As an example, consider the Guardian Park Avenue fund (Class A shares).
Charles Albers managed the fund from July 1972 through the end of our sample in December
1996. (He subsequently left to manage another fund.) Over this sample period, the fund
earned an & of 24.6 bp per month. The standard error on this a estimate is 8.5 bp. If we
perform a frequentist test of the null hypothesis that « is zero, we obtain a p-value of 0.002.

How different are posterior beliefs when using an informed prior for a? Combining
Guardian’s 1996 monthly fees of 6.8 bp with our assumption that transactions costs are six
bp, the prior mean for Guardian’s « is equal to —12.8 bp.!?  (All statements about prior
expectations are made conditional on ¢ = s = 0.00029.) Informed prior beliefs tend to
shrink & towards its prior mean. For good performers, this shrinkage tends to be stronger
the smaller are ¢ and ¢ (25). As an illustration, consider the case where ¢ = 0.001. Thus,
the investor believes that only one in 1000 managers does any better than just throwing
darts at the stock tables. Holding g constant at 0.001, Figure 3 plots Guardian’s & as a
function of the free parameter, ¢ (25). The higher is ¢ (25), the more prior probability the

investor is placing on a > 25 bp per month. Recall that a adjusts for different levels of

19 Guardian also had a maximuin load fee of 450 basis points in 1996, but this fee can often be waived for
some customers. Many of the other top performing funds do not charge any load fees.
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q(25), so that the prior mean of « is always equal to —12.8 bp. The figure covers the range
q(25) € ]0,0.0001]. For the very smallest levels of ¢ (25), & is weighted heavily towards the
prior mean and is negative. This negative range is very small, however, and & is positive
for all values of g (25) greater than 0.000007. By the time we reach ¢ (25) = 0.0001, & is 18
basis points. Thus, if an investor believes that one manager in a 1000 has skill, and one in
10,000 has sufficient skill so that their « is greater than 25 basis points per month, then the
posterior mean for Guardian would be 18 bp.

Why does the posterior mean of Guardian converge so quickly to the frequentist estimate
of 24.6 bp? The main reason is that the point mass for an unskilled manager occurs at —12.8
bp, and this is very far from the frequentist estimate of 24.6. (In frequentist terms, it is almost
two standard deviations to the left of zero.) Thus, the posterior probability of skill for this
manager, ¢, is updated considerably, even for very low levels of ¢ and ¢(25).

As impressive as Guardian’s performance is, it is not the best in the sample. In general,
the best performing managers at low levels of ¢ (25) are those with a positive and “significant”
& and a long history of returns. Like Guardian, these managers tend to have low frequentist
standard errors for their & estimates, and large updates for their probability of skill. Figure
4 plots the highest and tenth highest & among all managers for ¢ (25) € [0,0.0001], holding
g constant at 0.001.2°  As seen in the figure, the best performing manager’s & becomes

positive at about ¢ (25) = 0.000003, and the tenth-best manager becomes positive at about

20 QOur focus on the “best” managers does not run into the statistical difficulties that would occur in a
frequentist analysis. Here, the assumptions discussed in Section II.LE imply that information about manager
1 does not tell us anything about manager j. Thus, conditioning on the best or tenth-best manager does
not affect inference about posterior means for those managers. Effectively, our prior beliefs serve the same
role as the exponent used in the calculation of (46).
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q(25) = 0.000094. At ¢ (25) = 0.0001, the best performing manager has an & of 24 bp, and
the tenth best performing manager has an & of 2 bp.

In Figure 4, the use of a fixed ¢ = 0.001 is done only to provide a concise example.
We could draw this figure for any other level of ¢q. In every case, if ¢ > 0.00002 and
q(25) > 0.00001, there is at least one manager with & > 0. Thus, as long as the investor
believes that at least two in 100,000 managers has skill, and one in 100,000 managers has
an « of at least 25 bp, then she will invest in at least one manager. In a frequentist test,
such small values of ¢ and ¢ (25) would be statistically indistinguishable from ¢ = ¢ (25) = 0,
even in unbiased samples far larger than can currently be constructed. In other words, even
though we could not reject that the best performance was due to chance (in (46)), this test
has very little power against the alternative that ¢ = 0.00002 and ¢(25) = 0.00001. Thus,
we conclude that zero investment in active managers cannot be justified solely on the basis

of the statistical evidence.
D. Discussion

A natural next step would be to quantify the expected losses to an investor who ignored
active managers in favor of the benchmarks. To carry out this analysis, one would need a full
predictive distribution for both benchmark and manager returns (as discussed in Appendix
B), a utility function, and a complete description of the trading environment.?! ~ While
a complete treatment of this portfolio-choice problem is outside the scope of our paper,

simple calculations suggest that even relatively low levels of ¢ (25) might lead to significant

21 See Péstor (1999) and Pastor and Stambaugh (1999b) for examples of this quantification.
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investment in active managers for all but the most risk-averse investors. Even over the
limited range of ¢ (25) considered in Figure 4, there are many managers with positive values
of & that also have posterior standard deviations (for «) and residual standard deviations (o)
of similar magnitudes. Essentially, the trade-off comes down to a maximum expected loss
of fees and costs if the best managers turn out to be unskilled versus the potential expected
gain of several times this amount if the manager is skilled.

Our analysis assumed that cost was known and equal to six bp per month for all managers.
How sensitive are our results to this assumption? Suppose for example, that we had used
9 bp as our baseline level. Then, for any given level of ¢ and ¢ (25), « shifts to the left,
but o, increases (in order to maintain the same probability that « is greater than 25 bp).
This effect can be seen by comparing the third column of Panels A and B in Table I. For
the best performing funds, the second effect tends to dominate and & becomes higher over
most of the range of Figure 4. In fact, the most conservative possible results for the best
performing funds occur if we assume cost is zero. Even in this unrealistic case, however, the
results are qualitatively similar to the 6 bp case. If cost is uncertain, then we cannot obtain
analytical solutions but our intuition is that these effects would be second-order compared
to shifting the baseline level. For example, uncertainty around 6 bp should not have a larger
effect than the most conservative possible shift to 0 bp. Different assumptions about cost
would, however, affect inference about poorly performing funds, but this is not the main
subject of our analysis.

One possible criticism of our results is that they are driven by the restrictions of our
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parametric structure. In particular, one might believe that returns have fatter tails than do
a normal distribution, and that the best-performing managers would not look as good if we
took this into account. While we cannot obtain analytical solutions using fatter-tailed return
distributions, it is possible to gauge the effect of fat tails by looking at simulated data. We
simulated ten years of returns for 1000 funds under three possible distributions for returns:
normal, ¢-distributed with 10 degrees of freedom, and t-distributed with 3 degrees of freedom.
In each case, we set ¢ = 0, so that no fund had any skill. We then replicated Figure 4 for
these data. The results show very little difference across the three return distributions.??
The results of this section are based on a specific performance-evaluation model, but
other popular models lead to the same qualitative conclusions.?> A more serious concern
is our reliance on a factor model with fixed parameters. It is well-known that successful
timing ability, as manifested by changes in betas in response to informed forecasts of factor
returns, will induce bias in the estimation of alphas. To deal with this concern, the methods
developed here could be extended to conditional factor models. Our procedures also assume
that alphas are constant over a manager’s career. One could argue that as markets grow more
competitive, we should expect alphas to shrink for skilled managers. Also, as managers age
and/or their portfolios grow, they may have different abilities, incentives, and opportunities,

and their “true” alpha may change. Such possibilities add more dimensions to the space of

prior beliefs, but we doubt that the main conclusion will change — the prior beliefs necessary

22 Details of these simulations are available from the authors. While the results are not directly comparable
to those of the actual data set, it is interesting to note that for ¢ = 0.001 (as in Figure 4) no simulated
manager had a positive & for any ¢ (25) < 0.0004.

23 Results for the CAPM and the 4-factor model (Carhart (1997)) are available from the authors.
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to support investment in active managers are virtually indistinguishable from either “no

skill” or “no persistence of skill”.
E. Comparison of frequentist and Bayesian results

In Section I, we show how a naive data-driven approach leads to positive investment in
an active manager whenever his & is positive. This counterintuitive outcome motivates a
Bayesian approach with informed priors. In this section, we implement a Bayesian approach
(Section II1.C) and find positive investment for all but the most skeptical prior beliefs. For
this same sample, we show (Section III.B) that the best performance did not seem too
extreme for the sample size. How can we reconcile the Bayesian and frequentist results?

In frequentist language, one can begin to reconcile the results by recognizing that the
“null hypothesis” is different in the two analyses. In the frequentist test of (46), the null
hypothesis is that « is zero for all managers. There are many managers with low p-values
on this test, but none so low so that we can reject the null. In the Bayesian analysis, the
effective null hypothesis of no skill occurs at a negative level of «; for some managers, this
level may be two standard deviations to the left of zero. In the Bayesian analysis, degrees of
“rejection” of the null lead us to update the posterior probability of skill, and these rejections
may be much stronger than if the null were at zero.

Another consideration in reconciling the frequentist and Bayesian results is the recog-
nition that “insignificant” evidence may have large investment implications. This point is
first made, in another context, by Kandel and Stambaugh (1996). The downside of choosing

an active manager is that he may be unskilled. In expectation, the investor will then have
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paid the expenses for nothing. This expected downside is limited. The upside of skilled
management is potentially much larger. Even if the best performers in the sample are not

significantly extreme, they may still be sufficiently extreme to justify their expenses.
IV. Conclusion

Should investors avoid all actively managed mutual funds? The average active fund un-
derperforms index funds on a risk-adjusted basis. Skilled management, if it exists at all, is
difficult to detect. When we analyze a sample of 1437 managers extant at the end of 1996,
we cannot reject the null hypothesis that the best performance is due to chance. These facts
by themselves might lead investors to shun actively managed funds. Our analysis shows
that this conclusion is premature. Given our current methods of performance evaluation,
the prior beliefs necessary to support some investment in active managers could not possi-
bly be distinguished from “zero skill among managers” unless we could observe hundreds of
thousands of managers over many decades. Thus, we conclude that the case against actively
managed funds cannot rely solely on the statistical evidence.

Our analysis does not include elements of the investor’s decision such as load fees, taxes,
and limitations on short sales. Furthermore, nobody knows the correct model of performance
evaluation. Given these limitations, we do not claim to provide a definitive analysis of the
portfolio-choice decision. Most investors may be best served by simple rules-of-thumb, espe-
cially if they do not possess the discipline or technology to implement sophisticated trading
strategies. Nevertheless, we believe that the investor’s perspective motivates the impor-

tance of using informed prior beliefs in a Bayesian method of performance evaluation. This
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method provides a new lens on the performance-evaluation evidence, with the final image in

sharp contrast to frequentist results.
Appendix

A. Details for Section I1.D.

Throughout this Appendix, we assume an informative prior on ¢?, and, as in the text, a

diffuse (improper) prior on [:

p(B) o« 1, (47)

1 h
p(c?) a7z P {—T:Q} . (48)

Results in the text can be obtained by substituting vy = 0 and hy = 0 into the expressions
below. Otherwise, the setup is the same as in Section II, and we make use of the same
notation.

The likelihood for factors, unspecified in the text, is assumed to take the following form:

with realizations independent across ¢. The prior on p, and X is assumed to be diffuse:
_Kdi1
p(tp, Br) o< [Zp[772. (50)

This assumption is made for notational convenience and, except for the discussion of the

predictive distribution below, does not affect our results.
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Derivation of the posterior distribution for a:
From Bayes’ rule, the joint posterior for (0,02, iz, X is given by:

p(0,0% pp, S |7, F) o< p(r| 0,0 F)p(F | pp, Zp)p(0,0%)p(pp, )

08 p(970-2 | r, F)p(MFJEF | F)? (51)

where we have used the prior independence of (0, 0?) and (uz, Xx), and the fact that the
likelihood for r conditional on factors depends only on # and o2, while the likelihood for the
factors depends only on (., Xy). Therefore, (6,0%), and (p, Xx) are independent in the
posterior.

The above arguments imply
p(0,0% | r,F) o< p(r|0,0% F)p(0,0?). (52)

Because Z is independent from (j, ¥r) in the prior, and because the likelihood for factors
does not depend on Z, the equations above are also valid conditional on a value of Z. We
will make use of (52) throughout this Appendix.

The likelihood for r conditional on factors is given by:

p(r| 6,0 F) U—lTexp {—L(r — X0)'(r — XQ)}

202
= iexp{—# (S+(9_@)'X'X(9—@)>}, (53)

ol
where S, 0, 9, and X are defined as in Section IL.D.
Combining the likelihood and the prior yields:

1 1

2 — -
p(0,0° | Z=1,rF) e

(54)
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exp {—% <h0 + S+ ;—z(a —a)? +(0-0)(X'X)(6 - é)) } losg.

«

Integrating with respect to [ yields:

1 1 1 2 — &)?
pla,o® | Z=1,rF) x ———s eXp{——2 <h0+5+§—2(a_g)2+u>}1a>g_

gVotT—-K+2 5 29

Completing the square in « yields:

pavot | 2 =10 F) o —mesp{ = (4 () o= ) s, (56)

O-V+2 o 20-2
where

h = h0+S+<u> (& — a)?, (57)

m

v = vo+T1T — K.

Conditional on ¢, all terms involving o (as well as all terms involving only the data, such

as & and S), can be considered constants. Therefore,

1
2 0./2

pla]o®, Z=1,rF) xexp {— (o — 0/)2} losas (58)

and we have shown (19).

In spite of the truncation, the functional form of the posterior is that of a conjugate prior

distribution. Therefore, 0® can be integrated out of (56) using the properties of the gamma

1

5Ao~%, where

distribution (see, e.g., Gelman et al. (1995)). Define a change of variables u =
A =h+ (Adm) ' (a — )% The resulting function of u is the pdf of a gamma distribution

without the normalizing constant:

_v+1

pla| Z=1,rF) x (g) i (/ uT exp{—u} du> losa. (59)
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Using the proportionality constant for the gamma distribution, and dividing through by h

yields:

stz = (5) () (e st o

which is proportional to the pdf of a ¢-distribution. Therefore,
Amh
pla| Z=1,rF)xt, <o/, Al ) Losa. (61)
y a

Derivation of the posterior expectation & conditional on skill:

Because p(a | Z = 1,7, F) must integrate to 1:

1 Amh
tol e/, 2220 ) 1,0 62
Jo b (a5 07, 2 ) da <a T > = o2

pla| Z=1rF)=

Let = [3°t, (o, o/, Amh/v) da. Then

v41

_ _ 1T(w+1)/2 [Amh [~ (@ —a)?\ 2
Rl z=1nr) = SRR a1+ 0500 e
, 1D +1)/2 [dmh (a—a)?\ T

TR Vo <1+—)\mh )

Amh Amh 1
ty_o | s, . 63
(o0 ) Fr e ©

fry O/—'—
I/_

The first line follows from the pdf of the ¢ distribution, and the last from multiplying and

dividing by the necessary constants.

Derivation of B:

Under our assumptions, p(6,0? | Z =1,F) = p(0,0? | Z = 1). Therefore,

plr | Z=1,F) = /p(r | Z =1,F,0,0)p(0,0% | Z=1)d0do>. (64)
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Substituting in for the likelihood and the prior and integrating with respect to 3 yields:

2 s 11 1 s? ,  (a—a&)? 5
p(r|Z=1,F)= \/7 O_V+2;eXp{—2T‘_2 (ho—f-S—f-O_—Q(a—Q) +T dado”,

where C' is a constant that is identical for Z = 1 and Z = 0. Completing the square in «

plr| Z =1,F) = \/ES/

The form of the equation is the same as in (56). As above, the properties of the gamma

yields:

— Lexp {—# (h+ (Am) ™ (a - 0/)2)} do?.  (66)

distribution are used to integrate out o?:

petz-n-fE2 (8) ) [ (- ) e oo

The term inside the integral is proportional to a t-distribution. Therefore,

pir| Z=1,F)=C(1- )\)% <g>§ r <g> QAOO t,(a;/, Amh/v)da. (68)

The calculation for Z = 0 follows along the same lines. As above, after integrating out

with respect to 3, we obtain:

1 1 (& —a) 2
p(r|Z:O,F):C/Uywexp{—ﬁ<S+ho+T>}da. (69)
Integrating with respect to o2 yields:
2 —5
(r|Z=0,F) C<S+h°+<§‘ @/m) r(s) (70)
Therefore




Both the numerator and the denominator are proportional to a ¢-distribution with v — 1
degrees of freedom (in one case, a was known, while in the other case we integrated with

respect to ). Multiplying and dividing by a constant yields expression (32) in the text.
B. Drawing from the predictive distribution

This section describes how to draw from the joint predictive distribution for r and F'.
We first show how to draw from posterior distribution of (v, 3,02). This is done by first
drawing from the skilled distribution, then the unskilled distribution, and then the full
posterior. Finally, we draw from the predictive distribution of r and F' conditional on all

parameters.

Drawing from the distribution conditional on Z =1 (“skilled posterior”):

Consider random variables 62 and & such that:

2nFz=1 ~ 1¢(%0), (72)
279
a|lo*=6*rF,Z=1 ~ N, d?). (73)
Then
1,6% | F,Z =1 — L (h+ (m) "L (6 — o)? 74
p(&, 6" [r, F,Z = )MWEGXP —272( + (Am)" (& —a')) ¢ (74)

Using the procedure above, but discarding the draw whenever & < a produces a distribution
that has zero mass when & < @, but where the relative densities of any other points are
the same as in (74). By (56), this is exactly the joint distribution of a and . Therefore,
drawing 6% from IG(v/2,h/2) and & | 0? = 52 from N(o/,0"), and discarding the draws
whenever & < a, produces a draw from the joint posterior.
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The posterior for 3 conditional on a and o2 follows from the properties of the multivariate

normal:

where y and @ are submatrices of (X'X) '

m y

(76)
y Q

Drawing from the distribution conditional on Z = 0 (“unskilled posterior”):

It follows from the likelihood and the prior, that conditional on Z = 0 we have

0| Z=0 rFNIc;(” h°+S+m1(é‘_g)2>

2’ 2
Conditional on 0% and on a = a, 3 is drawn from (75).
Drawing from the full posterior:

For any given draw (a’, 3?,07), there is a probability § that the draw comes from the
skilled posterior, and probability 1 — ¢ that the draw comes from the unskilled posterior. Let

u? be a draw from the distribution with uniform mass on [0, 1]. If v/ < §, then (o/, 3, 07)

is drawn from the skilled posterior. Otherwise, a draw is made from the unskilled posterior.

Drawing from the predictive distribution

From the likelihood:
P(TT+1 | 9, 02, FT+1) = N(Oé + Friaf, 02)7 (78)

and
p(Frayr | g, Xr) = N(pp, Xr). (79)
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The following procedure produces draws from the predictive distribution of ;. First
draw (up,2r) from their posterior distribution (see Péstor (1999)), then draw Fr.; from
(79), conditional on those values of ;. and 3Xp. Next draw (a, 3,0?) from the posterior, as
described above. Finally, draw 7, from (78), conditional on those values of the parameters,

and of FT+1 .

C. Derivation of the positive-investment condition for Section I and Section

ILE.

In this Appendix we show that if an asset has a positive posterior expectation of «
(i.e. & > 0) then this asset will be held in positive quantities in the mean-variance tangency
portfolio. The result is demonstrated first for a single asset and then extended to the multiple
asset case of Section ILE.

First consider the single-manager case. In a Bayesian setting the asset weights of the

tangency portfolio are defined by

w VE
= — : (80)
normalizing constant

x*
where w* and z* are, respectively, the optimal weights on the active manager and the
index funds and E and V are, respectively, the mean and variance covariance matrix of

the predictive distribution of all the assets (see Pastor (1999)). Suppose that the first asset

consists of the following portfolio:
e long the manager

e short the index funds with weights equal to 3= E 3 | r, F] .
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We call this asset the “alpha portfolio” (as in Section II.E). Since this portfolio is a linear
combination of the manager and an index funds, we drop the manager from the analysis and
consider the remaining K + 1 portfolios: K index funds and one alpha portfolio. If we can
show that the alpha portfolio has a positive weight in the tangency portfolio defined by (80),
then it follows that the manager would have a positive weight as well.

Conditional on the parameters and past data, next period’s total return on the alpha
portfolio is given by

Rroa=a+ (ﬁ - B) Fri1+eéerq, (81)

while next period’s return on the index funds is

Frin = pp + M40, (82)

where er1 ~ N(0,07%) and 1,., ~ N(0,Xr) are independent. It follows from the law of

iterated expectations that the posterior expectation of index-fund returns is given by:
ElFpa | rF) = E[E[ur+nr | e, Se,r, F| | v, F]

= [ip (83)

where fip = E[pp | r, F].
The predictive expectation for the return on the alpha portfolio is given by:
E[Rpy|[r F] = E[OH‘ (ﬁ—B)FTH + e | r,F}
= G+ E|[(8-B)Fro | F|, (84)

and, from the posterior independence of 3 and ., we have

E[Rpy | 7 F] = a+E[E[(ﬁ—B)FT+1|0,a,uF,zF,r,F} |r,F]
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— &+ B[(3F) e | ]

- a (85)

We next show that the predictive covariance between the returns to index fund 7 and to

the alpha portfolio is zero. The predictive expectation of the product of the returns is given

by

E[RrFir |7 F) = E[Fgaa|r,Fl+E[Fry (8- 8) Fra+ Fraera | 1, F|
= E[aE[E,T+1 | NF:ZFHT:F] | TvF] +
E {(ﬁ - B)E[E,T+1FT+1 | o, 2F] | 7y F}

where F; 71 is the next period return on index fund 4 and fi; - is the posterior expectation
of index fund 7. The second line follows from the law of iterated expectations, and the third
line follows from posterior independence of 6 and F' (note that E[F; 71 Fri1 | pp, Xp, v, F]
is a function of elements of p, and ¥r). Therefore, the predictive covariance of Fr,; and
the next period return on alpha portfolio ¢, denoted by R; 1.1, is zero for all ¢. The structure

of Vis

V11 0
, (87)

0 Va
where v1; is the predictive variance of the return on the alpha portfolio and V5, is the
predictive variance of the index funds. Hence w* o &/v;;, which is positive if and only if

a > 0.
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Next consider the multiple-managers case of Section II.LE. Now there are N alpha port-
folios. For simplicity, we keep the same notation as above; V is still the predictive variance-
covariance matrix, and F is still the vector of means. Assumptions 1 and 2 (from Section
ILLE) imply that the posterior distributions for each manager are independent. Therefore,
all the calculations above remain valid in the case of multiple managers. In particular, the
covariance of the return on any alpha portfolio with any index fund is zero. Therefore, 1%

takes the form:

Viie 0
(83)

0 Vi

Moreover, the posterior expectation on the " alpha portfolio is equal to &. For the con-
clusion, it suffices to show that Vi, is diagonal, i.e. that the covariance between R;ry; and
R; 41 equals zero for any ¢ # j. Conditioning on the values of the parameters and using

the law of iterated expectations yields:

E [Ri,T+1R',T+1 | T, F] = kK [E [(ai + (ﬁz - Bz’)FTH)(aj + (ﬁg - Bj)FTH) | Hr, ZF,T, F} | T, F}

= F [E [OéiOéj + Oéi(ﬁj - Bj)FT—H

+aj(ﬁi - Bi)FT-H + (/82 - Bi)FT-l-lF],”—l-l(ﬁj - Bjy | Br, 2F7r7 F} | r, F}

= 662'043'.

The last equation follows because of the posterior independence of the manager parameters
from the index fund parameters, and the parameters for manager ¢ from the parameters
from manager j. Therefore, the posterior covariance between R, 711 and R; 741 is zero, and

the V1, is diagonal. Thus, there is positive investment in any manager with &; > 0.
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Figure 1:
Prior distribution of «

Figure 1 illustrates the (conditional) prior distribution for «. Please see
Section I for a detailed discussion of the parameters in this figure. « is
the intercept in a factor model (see equation (1)). ¢ is the probability that
a manager is skilled; conditional on skill, we have a ~ N (a,02) with a
left truncation at o, where o = a — fee— cost is the expected abnormal
return for an unskilled manager, a is the expected negative return from
transactions with skilled managers, and fee and cost are the manager’s fees
and transactions costs, respectively. Note that this plot combines a point
mass at a = o and a density for a > a.
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Figure 2:

Prior and posterior distribution of «

Figure 2 illustrates the prior and posterior distributions for a. « is the inter-
cept in a factor model (see equation (1)). ¢ is the probability that a manager
is skilled; conditional on skill and 0? = s*, we have a ~ N (a, 02 ) with a left
truncation at o, where a = a — fee— cost is the expected abnormal return
for an unskilled manager, a is the expected negative return from transactions
with skilled managers, and fee and cost are the manager’s fees and trans-
actions costs, respectively. Conditional on skill and 0% = s2, the posterior
distribution of a is N (o/,0"%) with a left truncation at . ¢ is the posterior
probability that Z = 1. & is the maximum likelihood estimate of a. Note
that this plot combines a point mass at o = o and a density for a > a.
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Figure 3:

Guardian Park Avenue Fund
& as a function of ¢(25) when ¢ = 0.001

Figure 3 shows the relation between & and ¢ (25) for ¢ = 0.001 for the
Guardian Park Avenue Fund, Class A (Manager: Charles Albers). « is the
intercept in the Fama-French (1993) three-factor model (see equation (45)).
@ is the posterior expectation of a. ¢ is the probability that a manager is
skilled; conditional on skill and 0% = s*, we have a ~ N (a, 02 ) with a left
truncation at a, where ¢ is the expected abnormal return for an unskilled
manager. q(25) = P (a > 25| 0% =s?). The prior constant s* is 0.00029.
The sample period for Guardian Park Avenue is 7/72 - 12/96.
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Figure 4:

The highest (top line) and tenth highest (bottom line) & over all
managers when ¢ = 0.001

Figure 4 plots the highest and tenth highest & over all 1437 managers for
q(25) € [0,0.0001] and ¢ = 0.001. « is the intercept in the Fama-French
(1993) three-factor model (see equation (45)). & is the posterior expectation
of a. q(25) = Pr(a > 25| 0% = s?). The plot shows the highest and tenth
highest value of & among all managers for each level of ¢ (25). The prior
constant s* is 0.00029.
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Table I
Elicitation of Prior Beliefs

This table illustrates the mapping from ¢ (25), ¢, fee and cost into the pa-
rameters o, ,a and a. ¢(25) is defined as P (a > 25| 0? = s?); ¢ is the
probability that a manager is skilled; conditional on skill and o? = s%, we
have @ ~ N (a,c? ) with a left truncation at o, where @ = a — fee— cost
is the expected abnormal return for an unskilled manager, a is the expected
negative return from transactions with skilled managers, and fee and cost
are the manager’s fees and transactions costs, respectively. o, ,a and o are
expressed in bp per month; ¢ (25) and ¢ are expressed as probabilities.

Panel A: fee = 8 bp and cost = 6 bp
q(25) q O a Q

0.0001 0.001 23.72 -0.019 -14.02
0.01 15.19 -0.121 -14.12
0.1 12.15 -0.969 -14.97

0.001  0.01 23.83 -0.190 -14.19
0.1 15.62 -1.247 -15.25

0.01 0.1 24.92 -1.988 -15.99

Panel B: fee = 8 bp and cost = 9 bp
q(25) q Ou a a

0.0001 0.001 25.55 -0.020 -17.02
0.01 16.36 -0.131 -17.13
0.1 13.08 -1.044 -18.04

0.001  0.01 25.66 -0.205 -17.20
0.1 16.83 -1.343 -18.34

0.01 0.1 26.84 -2.141 -19.14
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