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Abstract

I study the cross-section of expected stock returns in a general equilibrium
framework in which agents form habits over individual varieties of goods
as opposed to over a composite consumption good. Goods are produced
by monopolistically competitive firms whose income and price elasticities of
demand depend on the habit formation of the consumers. Firms who produce
goods with a low consumption surplus ratio earn low expected returns because
their income and price elasticities of demand are low. By sorting firms in
portfolios based on their consumption surplus ratio or based on their recent
price setting behavior, I find a return spread of 5%, that can not be explained
by the CAPM or by the Fama French three factor model.
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Pieschacón for helpful discussions and comments. All remaining errors are my own.

†Stanford, CA 94305. Phone: (650) 721-1353. Email: jvb2@gsb.stanford.edu



1 Introduction

Explaining the cross-section of expected returns lies at the core of asset pricing. Even though

habit formation models have proven successful in explaining some of the key properties of

the time series of expected returns,1 explaining the cross-section of expected returns seems

more challenging.2 So far, in the asset pricing literature, it is common to assume that

households derive utility and form their habits from the consumption of a single aggregate

good.3 In this paper, I study asset prices in an economy where households form their

habits not over a single aggregate good, but over individual varieties of goods produced by

monopolistically competitive firms. Both the income elasticity and the price elasticity of

demand of each monopolist is time-varying and proportional to the consumption surplus

ratio for the monopolist’s good. Firms that produce goods with a low consumption surplus

ratio, that is, a consumption level close to the habit level, earn low expected returns because

they face low income and price elasticities of demand, making their profits less susceptible

to real aggregate shocks. Furthermore, the low price-elasticity of demand will lead to high

markups.

The main mechanism generating the difference in expected returns is relatively

straightforward. Consumers are highly averse to scaling back on goods for which the

consumption level is close to the habit level, which implies that both the income elasticity and

price-elasticity of demand for such goods is low. In response to negative aggregate shocks,

the demand for goods with a low consumption surplus ratio will remain relatively strong, due

to the low income elasticity of demand. Furthermore, the relative prices of goods with a low

consumption surplus ratio are high, and increase in response to negative aggregate shocks.4

These price increases lower the exposure of the producers to such systematic shocks resulting

in a lower risk premium. In contrast, the producers of goods with a high consumption surplus

ratio, that is, a consumption level that is far way from the habit level, are faced with a

negative relative price change in addition to the negative aggregate productivity shock.

To illustrate the generality of the mechanism that generates the difference in expected

returns, I present two versions of the model, a endowment-based model without production

factors and a production-based model. In the endowment model there are two types

of shocks, one systematic shock to the aggregate habit-adjusted consumption level and

1See Abel (1990), Constantinides (1990), Heaton (1995), Jermann (1998), Campbell and Cochrane (1999)
and Campbell and Cochrane (2000)

2See for example Lettau and Wachter (2007) and Santos and Veronesi (2006)
3Notable exceptions are Ait-Sahalia, Parker, and Yogo (2004), Yogo (2006), Gomes, Kogan, and Yogo

(2006). For the case of investment goods, see Papanikolaou (2007).
4In my model, relative product prices are defined as product prices relative to the aggregate producer

price index.
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idiosyncratic demand shocks to the habit stock of each firm. Whereas the systematic

shock drives the aggregate consumption surplus ratio, the risk free rate and the equity risk

premium, the idiosyncratic demand shock drives the cross-sectional variation of consumption

surplus ratios in the model. As the consumption surplus ratios determine the amount

of exposure to systematic shocks, this cross-sectional variation drives the cross-section of

expected returns. In the production-based model, instead of focusing on demand shocks,

the cross-section of consumption surplus ratios (and hence of expected returns) is driven by

productivity shocks. The main purpose of presenting these two models in parallel is to stress

that regardless of the source of idiosyncratic variation, the implications are the same: firms

with low consumption surplus ratios earn low expected returns.

In both models each good is produced by a single monopolistically competitive firm. Ex

ante all firms are identical but as shocks realize, firms differ with respect to the habit stock

for the goods they produce. In this setup, the unconditional CAPM beta of each firm, that is,

the beta with respect to the market portfolio, equals one and the unconditional risk premia

of all firms are equal. However, each firm’s risk premium is time-varying and dependent on

the habit stock for its good relative to the habit stocks of all other goods in the economy.

I confirm the predictions of the model empirically in two ways. First I use quantity data

between 2001 and 2008 from the Bureau of Economic Analysis on shipments for 423 NAICS

industries. I construct consumption surplus ratios for each industry and sort firms into

portfolios based on the consumption surplus ratio of their industry. This sorting generates

an expected return spread of 6% that cannot be explained by the CAPM or the Fama French

three factor model. Secondly, I use data from the industry level Producer Price Index (PPI)

program. The PPI measures the average change over time in the selling prices received by

domestic producers for their output. By sorting firms into quintile portfolios based on their

recent percentage price changes, I find that firms that recently increased their prices earn

lower expected returns than firms that recently decreased their prices, generating an annual

expected return spread of 6 percent that can neither be explained by the unconditional

Capital Asset Pricing Model (CAPM) nor by size, book-to-market and momentum effects.

In other words, when sorting firms into quintiles based on their recent pricing behavior

a large premium can be generated. The raw (unadjusted) average return difference between

quintile 1 (firms with the largest price decreases) and quintile 5 (firms with the largest

price increases) equals 0.54 percent per month. Part of this premium can be explained by

the CAPM and the loading of the DMI portfolio (Deflationary-minus-Inflationary), on the

market portfolio is positive. The pricing error relative to the unconditional CAPM is however

still significant. When including the other Fama-French factors and momentum, the pricing
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error further increases, as firms with recent price decreases earn high expected returns, but

load negatively and significantly on the book-to-market factor.

My approach stands in contrast to several recent papers that employ cross-sectional

variation on the production side of the economy to explain characteristics of the cross-section

of expected returns.5 In the deep habits model the cross section of expected returns is purely

driven by the habit formation of consumers and I assume that all firms have access to the

same production technology to produce their good. However, it is important to stress that I

view the deep habits model not as a competing explanation for the cross-section of expected

returns but rather as the demand-side complement to the existing literature that employs

cross-sectional differences in the production technologies of firms to explain the cross-section

of expected returns.

Apart from the cross-sectional implications, I also study the aggregate time series

properties of the model. The endowment model performs well in matching the aggregate

moments. The production-based model performs equally well as the one-sector habit

formation model with production as in Jermann (1998). The model matches the aggregate

risk premium, the level of the riskfree rate and the volatility of output growth, investment

growth and consumption growth. Furthermore, by imposing persistence for the evolution of

the habit stock, the model also matches the low volatility of the riskfree rate, whereas in

the one-sector habit formation model with production this volatility seems several factors

too high. However, the volatility of dividend growth in Jermann’s model seems too low,

whereas the deep habits model generates volatile dividend growth rates close to those of

firms’ net payout, as opposed to per share dividends.6 The production-based model also

seems to perform poorly with respect to the conditional moments of the financial variables.

In particular, the variation in the price dividend ratio seems mainly driven by variation in

expected dividend growth rates and not by variation in expected returns, as, in the model,

the latter only has limited variation.

The main feature of the model is that households have preferences and form habits over

individual goods as opposed to over a single aggregate consumption bundle. There are two

special cases when the stochastic discount factor simplifies to the standard habit formation

model with a single aggregate good: (i) when goods are perfect substitutes and (ii) when

there is perfect symmetry between goods (and firms). When goods are perfect substitutes

consumers only care about the size of the aggregate consumption bundle and not about its

composition. This seems an unlikely characteristic of household preferences. With perfect

5See Zhang (2005), Whited, Xiaolei, and Zhang (2007) and Gala (2006).
6See Yogo and Larrain (2007) and Bansal and Yaron (2006)
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symmetry between goods and firms, I mean that all firms face the same productivity shocks

resulting in the same habit level for all goods.7 In this case, the model implies that all

relative prices are constant over time. However, empirically we do observe time variation

in relative prices. Good-specific habits endogenously generate such time variation in prices.

Given that habit formation models have proven successful in explaining the level and time

variation of aggregate risk premia, it seems natural to study the interaction between relative

prices and the cross-section of expected returns in a good-specific habits framework.

The implications of multiple goods for asset prices has also been explored by Ait-Sahalia,

Parker, and Yogo (2004), Yogo (2006) and Gomes, Kogan, and Yogo (2006). Ait-Sahalia,

Parker, and Yogo (2004) argue for the distinction between luxury goods and basic goods.

Households are more risk averse with respect to the consumption of basic goods due to

the presence of a subsistence point for such goods. Using data on the consumption of

luxury goods, they find that the risk aversion implied by luxury good consumption is more

than an order of magnitude less than that implied by national accounts data which mostly

reflects basic consumption. Yogo (2006) and Gomes, Kogan, and Yogo (2006) argue for

the distinction between durable goods and non-durable goods and find that the producers

of durable goods earn higher expected returns, as the demand for durable goods is more

pro-cyclical. The stocks of producers of durable goods therefore carry more systematic risk.

None of these papers, however, consider good-dependent habit formation and the interaction

between the price-setting behavior of producers and the expected returns on their stock.

My model also relates to the recent literature on the cross-section of expected returns

and product market competition. Hou and Robinson (2006) show that US firms in the

quintile of the most competitive industries earn annual returns that are nearly 4% higher

than those of similar firms in the quintile of the most concentrated industries. The market

power that Hou and Robinson (2006) consider is related to the price setting behavior that

I study in this paper. That being said, in my model, the elasticity of substitution between

all goods is equal, and therefore the competition between all firms is equal. Furthermore, in

my model, low expected returns are not a unconditional characteristic of an industry or firm

but are a consequence of the current low income and price elasticities of demand faced by a

particular firm or industry, which is time-varying. When I construct the quintile portfolios,

I indeed find that firms (and industries) frequently rotate across quintiles.8 In contrast, firm

7Even though the stochastic discount factor simplifies to the standard habit formation discount factor
with a single aggregate good, the firm’s optimization problem still takes the habit formation of the consumers
into account, resulting in different cash flow dynamics. I further explore the perfect symmetry case when
assessing the time series properties of the model.

8This also indicates that the return spread I generate is not driven by fixed industry characteristics such
as durables vs non-durables and luxury goods vs necessities.
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sorts based on each industry’s Herfindahl-Hirschman Index (HHI), as in Hou and Robinson

(2006), can be used to generate a spread in expected returns up to several decades into the

future. By including the return spread on the HHI portfolios as a factor, I find that the DMI

portfolio that I construct does not significantly load on the HHI factor, both in the economic

and the statistical sense.9

To my knowledge this is the first paper that explores the implications of good-dependent

habits and producer prices on asset prices. One obvious question that comes to mind is how

coarse the classification of varieties should be. With varieties of goods, I have in mind an

environment in which consumers form habits over narrowly defined categories of goods, such

as clothing, vacation destinations, music and cars. The advantage of defining habits over

categories of goods as opposed to over specific goods within categories, is that household

expenditure on categories of goods general goes up as income increases, that is, they behave

as normal goods. Individual goods within categories, on the other hand, may be inferior

goods, that is, expenditure on these goods decreases as income increases.

The idea that households form their habits over individual varieties of goods has recently

been introduced in the macroeconomic literature by Ravn, Schmitt-Grohe, and Uribe (2006)

who propose to call this type of habit formation ”deep” habits. These authors show that the

deep habits model can help to explain several interesting macroeconomic empirical facts. In

particular, they show that expansions in output driven by preference shocks, government-

spending shocks, or productivity shocks are accompanied by declines in mark-ups. This

implication of the deep habits model is in line with the extant empirical literature, which

finds mark-ups to be counter-cyclical (Rotemberg and Woodford (1999)). Product-specific

habit formation also has a long tradition in the marketing literature, starting with Guadagni

and Little (1983). This literature uses the term ”loyalty variable”. This loyalty variable

measures how hooked consumers are on a given firm’s product and it is measured as a

weighted average of past sales. It therefore closely resembles the notion of habits in the

economics and finance literature. This literature also widely discusses the importance of

brand and product loyalty for firm valuation. In this paper, I argue that product loyalty

does not only increase firm value due to higher cash flows, but also due to a lower discount

factor.

9I thank David Robinson and Kewei Hou for providing me with their data
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2 A Simple Model without Production Factors

2.1 Households, Varieties and Preferences

Following Ravn, Schmitt-Grohe, and Uribe (2006), the economy consists of a representative

household and a continuum of goods, also called varieties, with an aggregate mass of one.

Goods are produced by monopolistically competitive firms. As such, each good is produced

by a single monopolist and there exists a one-to-one mapping between varieties and firms. I

assume that the representative household’s preferences are described by the utility function:

E0

∞
∑

t=0

βt X
1−γ
t

1 − γ
(1)

where Xt is the aggregate level of habit-adjusted consumption for t ∈ {0, 1}. The level of

aggregate habit-adjusted consumption, Xt is defined as:

Xt =





1
∫

0

(Cit − θSit)
1− 1

η di





1

1− 1
η

(2)

where Cit is the level of consumption of variety i, and Sit is the habit of variety i, which

is known at time t − 1 apart from a preference shock. The parameter η is the elasticity of

substitution between the varieties of goods as in Dixit and Stiglitz (1977) and the parameter

θ determines the time non-separability of the preferences. Assume that the habit for good i

in period t is given by:

Sit = (ρSi,t−1 + (1 − ρ) Ci,t−1) exp(εit) (3)

where εit ∼ N(−1
2
σ2

s , σ
2
s) represents the habit or demand shock. This demand shock is

uncorrelated across firms, and therefore averages out when we aggregate over habit levels.10

Let Pit denote the price charged by the producer of good i for one unit of good i at time

t. For a given level of aggregate habit-adjusted consumption Xt, the household chooses its

consumption bundle to minimize total expenditure

min

1
∫

0

PitCitdi (4)

10I model εit as a multiplicative shock instead of an additive shock for the sole purpose of ensuring that
the habit level is always positive.
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subject to equation 2. This optimization results in the following demand function:

Cit =

(

Pit

Pt

)

−η

Xt + θSit (5)

where Pt is an aggregate price index given by Pt =

[

1
∫

0

P 1−η
it di

]

1

1−η

. The consumption of

variety i is decreasing in its relative price pit ≡
Pit

Pt
, increasing in the level of aggregate habit-

adjusted consumption Xt, and, for θ > 0, increasing in the habit stock for consumption of

variety i. As both terms on the righthand side of equation 5 are positive, the consumption

surplus ratio for each good is strictly positive.

2.2 Price and Income Elasticities

The price (P) elasticity of demand (C) for good i at time t measures the percentage change

of the demand for good i when changing the price of good i by one percent while holding

the habit level and the aggregate price level constant:

ǫC,P
it =

∂ ln Cit

∂ lnPit

=

∂ ln

[

(

Pit

Pt

)

−η

Xt + θSit

]

∂ ln Pit

= −η

(

Cit − θSit

Cit

)

. (6)

Note that this elasticity is time-varying and proportional to the consumption surplus ratio

for good i.

Furthermore, the elasticity of demand (C) for firm i with respect to the aggregate habit-

adjusted consumption (X), which ceteris paribus (c.p.) measures the percentage change of

demand in response to a one percent change in Xt, is given by:

ǫC,X
it =

∂ ln Cit

∂ ln Xt
=

∂ ln

[

(

Pit

Pt

)

−η

Xt + θSit

]

∂ ln Xt
=

Cit − θSit

Cit
. (7)

I will refer to this elasticity as the income elasticity of demand even though strictly speaking

it is not the elasticity with respect to income but the elasticity with respect to aggregate

habit-adjusted consumption. This income elasticity is equal to the consumption surplus ratio

and it provides a parsimonious explanation for why firms with a low consumption surplus

ratio earn low expected returns. The profits of firm i can be written as Φit = Cit (Pit − MCit).

Where MCit is the appropriate cost measure. Log changes of profits can therefore be written
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as:

∆ ln Φit+1 = ∆ lnCit+1 + ∆ ln (Pit+1 − MCit+1) (8)

First assume for now that prices and costs are constant. In this case, profits only vary over

time due to changes in the quantity sold Cit. With a slight abuse of notation, the covariation

between the log stochastic discount factor and log changes in profits can then be written as:

− γcov (∆ lnΦit+1, ∆ lnXit+1) ≈ −γcov

(

Cit − θSit

Cit
∆ ln Xit+1, ∆ ln Xit+1

)

(9)

= −γ

(

Cit − θSit

Cit

)

var (∆ ln Xit+1) (10)

The equation above shows that firms with a low consumption surplus ratio have a demand

for their product with a low income elasticity. Hence, such firms have a lower exposure

to aggregate shocks, that is, shocks to aggregate habit-adjusted consumption Xt. Because

shocks to aggregate habit adjusted consumption drive shocks to the stochastic discount

factor, such firms have a lower risk premium.

In the derivation above I have assumed that quantities are free to adjust and that prices

remain constant. Now consider the other extreme when quantities are not free to adjust.

In this case, product prices will have to adjust in equilibrium.11 Suppose, for example,

that all firms face an equally large percentage productivity shock. Suppose further that

firms can not unwind this negative productivity shock by employing more input factors to

production, which implies an equally large negative output shock. In this case, firms with a

low consumption surplus ratio are less risky due to their smaller price elasticity of demand.

The price elasticity of demand of each firm is proportional to the consumption surplus ratio.

As a consequence, if the percentage change of the quantities is the same for all goods, the

goods with the smallest consumption surplus ratio will have the largest product price change.

Because the price elasticity of demand is so small, small quantity changes imply large price

changes. As a consequence, in response to a negative (aggregate) productivity shock, the

product prices of goods with a low consumption surplus ratio will increase, which serve as

a hedge against these negative productivity shocks. Because the aggregate price index is

normalized to one, firms with a high consumption surplus ratio will face a real price decrease

in addition to the negative productivity shock.

The latter result can also be understood in terms of markups. Note that the deep habits

model endogenously generates countercyclical markups. For all firms, these countercyclical

11One particular example when quantities are not free to adjust is the presence of adjustment costs to the
input factors to production which I will further discuss in the next section, which addresses the fully fledged
model.
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markups serve as a hedge against aggregate income shocks. Even though aggregate demand

goes down, the markup increase will compensate for this loss in demand. However, the

argument presented in the previous paragraph indicates that markups go up more for firms

with a low consumption surplus ratio thereby creating cross-sectional differences in expected

returns. As such, the differences in expected returns are driven by both income- and price-

elasticity effects.

2.3 Competitive Markets

I assume that each variety of good is offered by both a monopolistically competitive firm

as well as by a competitive market.12 I assume that the monopolistically competitive firms

own a technology that allows them to offer their product at a lower marginal cost than the

competitive market can. This assumption bounds from above the price that each monopolist

is willing to set. If the monopolist charges too high a price, the competitive market takes

over. If such a competitive market would not exist, there is an incentive for firms to charge

an infinitely large price for their product and exploit the habit formation of the consumers

in this way.13

2.4 Firms

Each monopolistically competitive firm produces its product at a fixed marginal cost MC

and maximizes its real value subject to the demand function and the habit process, resulting

in the following Lagrangian:

Li = E0

[

∞
∑

t=0

(

Xt

X0

)

−γ
(

(Pit−MC)
Pt

Cit + νit

{

p−η
it Xt + θSit − Cit

}

+ζit {(ρSit + (1 − ρ) Cit) exp(εit+1) − Sit+1}

)]

(11)

12I thank V.V. Chari and Larry Christiano for suggesting this market structure to me.
13Ravn, Schmitt-Grohe, and Uribe (2006) assume that consumers have a taste for product variety and

that consumers are allowed to drop a certain variety from the consumption bundle if the monopolist would
charge too high a price. The implication of this assumption is the same, which is that the price charged by
the monopolist is bounded from above.
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Each firm i takes Xt and Pt as given. The variable Sit is an endogenous state variable.

Taking first order conditions with respect to Cit, Sit and pit we obtain:

[Cit] :
Pit − MC

Pt
− νit + (1 − ρ) ζit = 0 (12)

[Sit] : Et

[

Λt+1

Λt
(θνit+1 + ρζit+1)

]

= ζit (13)

[pit] : Cit − ηνitp
−η−1
it Xt = 0. (14)

The first of these three equations balances the marginal cost and benefit from a one unit

increase of consumption. The Lagrange multiplier νit measures the value of an additional

unit of demand in this period. This value is equal to the real markup plus the present-value

of having (1 − ρ) additional units of habit in the next period. The present value of having

one additional unit of habit in the next period equals ζit, so the value of having 1 − ρ such

units equals (1 − ρ) ζit.

The second equation balances the marginal costs and benefits of increasing the habit

of the households, which due to the persistence of the habit stock is a dynamic tradeoff.

An additional unit of habit in this period leads to ρ additional units of habit in the next

period. Having an additional unit of habit allows the firm to raise prices as the price

elasticity of the consumers’ demand is now lower, generating an additional revenue equal to

θνit+1. Note that the optimal price response depends on the time non-separability of the

consumers’ preferences measured by θ. Finally, the third equation equates the marginal costs

and benefits of changing the price of the good by one unit.

2.5 Endowment Dynamics

Instead of modeling the consumption process for each firm i, I postulate that log aggregate

habit-adjusted consumption follows a persistent AR(1) process around a deterministic time

trend g in the spirit of Jermann (1998):

xt ≡ ln(Xt) = gt + zt (15)

zt = ̺zzt−1 + εzt (16)

where εzt is the systematic shock in the economy, which is uncorrelated to the idiosyncratic

demand shocks in the habit process εit. I assume, that the shock εzt is normally distributed

with mean zero, and time-varying volatility such that when the aggregate consumption
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surplus ratio is low, the volatility of the stochastic discount factor is high:

εzt ∼ N(0, exp(−bxt−1)σ
2
z) (17)

This is consistent with Campbell and Cochrane (1999) who consider one composite

consumption good and model log consumption growth as a homoskedastic i.i.d. process,

implying that zt has time-varying volatility inversely related to the consumption surplus

ratio. Both in my framework as well as in Campbell and Cochrane (1999), this time-varying

volatility drives the variation in risk premia.

I wish to stress that time-varying volatility does not play an important role in generating

a cross-sectional spread in expected returns, which is the main topic of this paper. However,

it does play an important role in matching the time series properties of the riskfree rate and

the equity risk premium to the data as further explained in Section 2.8.3.

2.6 Calibration

Define the set of parameters Θ as:

Θ ≡ {β, γ, η, g, ̺z, ρ, θ, σz, σs, MC} (18)

Table 8 lists the calibrated parameters. The risk aversion parameter γ is calibrated to a

value of 8. The deterministic log growth rate of the economy is calibrated to 0.4% per

quarter as in Jermann (1998). The subjective discount factor β is calibrated to 1.01 such

that β∗ = β(exp(g))1−γ equals 0.98. I calibrate the elasticity of substitution to a value of

5.3, as in Ravn, Schmitt-Grohe, and Uribe (2006). I set the time-separability parameter θ

equal to 0.8 following Jermann (1998) and Constantinides (1990). I set the volatility of the

endowment shock σz to 2.65% and the volatility of the idiosyncratic demand shock to 7%. I

normalize the marginal cost MC of each firm to 1.

2.7 Solution Method

Each firm takes the processes for Xt and Pt as given. The process for Xt (or equivalently

zt) is exogenous. The value of Pt, on the other hand, is a function of the cross-sectional

distribution of prices Pit, which in turn depends on the whole cross-sectional distribution of

habit levels Sit. Following Krusell and Smith (1997), summarizing this infinitely dimensional
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state variable by the average habit level in the economy given by:

St =

∫ 1

0

Sitdi (19)

leads to a highly accurate solution. I demonstrate this in the following way. The price-

setting behavior Pit of each firm conditional on a guess P ∗

t should be such that the aggregate

price index level Pt =

[

1
∫

0

P 1−η
it di

]

1

1−η

, is equal to P ∗

t . I solve the model using perturbation

methods as further described in Appendix A, using the following steps:

1. I solve the model setting the volatility of the idiosyncratic demand shocks to zero:

σ2
s = 0. Under appropriate conditions for the starting values of the state variables, this

implies that all firms are identical. Because now all firm-specific variables are equal,

aggregation over firms is straightforward, and the model can easily be solved for one

representative firm.

2. I then solve the problem for firm i including the idiosyncratic demand shock and take

the process for the aggregate price level from step 1. That is, the guess P ∗

t equals the

aggregate price level from step 1.

3. I simulate at each point in time a cross-section of firms using the solution found in step

2, and compute at each point in time the aggregate price index level Pt =

[

1
∫

0

P 1−η
it di

]

1

1−η

implied by this cross-sectional distribution.

4. I compare the aggregate price index level Pt from step 3 with the aggregate price index

level P ∗

t and find that they have almost identical means, identical standard deviations

and a correlation of 0.999.

2.8 Simulation Results

The simulation results are summarized in Table 2 and Figures 1, 2 and ??. The results can

be summarized as follows. First, the model generates an expected return spread of 4% which

can be generated by sorting firms either based on their consumption surplus ratios or on their

relative prices. Secondly, the model seems to be able to match several key characteristics of

both real and financial variables, such as the dynamics of aggregate consumption growth,

the riskfree rate and the equity risk premium. In the following subsections, I will present

these results in detail.
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2.8.1 The Cross-Section of Expected Returns

The main result of the paper is summarized in Figures 1 and 2. I simulate a cross-section of

1000 firms over time. Figure 1 plots a histogram of the cross-section of annualized expected

excess returns in a period where both zt and the aggregate habit level St are at their average

values. The histogram shows that with the current calibration, the model generates an

annual expected return spread of 4%. Figure 2 takes the same cross-section of expected

excess returns and plots them against the cross-section of consumption surplus ratios. The

figure shows that there is a positive relationship between the consumption surplus ratio of

firm i and the expected excess return of firm i. Firms with a low consumption surplus ratio

have low income and price elasticities of demand and are therefore less risky.

Finally, Figure 3 takes the same cross-section of consumption surplus ratios, and plots

them against the cross-section of relative prices pit = Pit

Pt
. The figure shows that there is a

negative relationship between the consumption surplus ratio of firm i and the relative price

it charges for its product. Firms with a low consumption surplus ratio have a low price

elasticity of demand and therefore set high a price for their product. As the relationship

between consumption surplus ratios and expected returns is positive and the relation between

consumption surplus ratio and relative prices is negative, the relationship between expected

returns and prices is negative. That is, an expected return spread can be generated by

sorting firms into portfolios based on their price setting behavior.

2.8.2 Real Variables

In this version of the model there is no investment. Hence aggregate real consumption

equals aggregate real production (GDP). In the data, the quarterly volatility of aggregate

consumption growth is 0.6% and the quarterly volatility of GDP growth equals 1%. Without

investment, my model can either match the volatility of aggregate consumption growth or the

volatility of aggregate GDP growth, not not both. I calibrate the volatility of the aggregate

shock εz such that in the model the volatility of aggregate consumption (production) growth

equals 0.7%.

The model generates a countercyclical aggregate markup of prices over marginal costs

with an average of 25% and a time series unconditional standard deviation of 8.8%. The

model also gives predictions for the volatility of quantity growth of individual firms. In the

model, the quarterly volatility of ∆ln(Cit) equals 5.9%, about ten times as high as aggregate

consumption growth.
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2.8.3 Risk Free Rate

The model is also able to match the volatility of the riskfree rate. Campbell and

Cochrane (1999) model their habit dynamics such that the riskfree rate is constant within a

consumption-based framework. Jermann (1998) and Boldrin, Christiano, and Fisher (2001)

present production-based models with standard habit dynamics, but conclude that the

volatility of the riskfree rate is too high. The habit dynamics in my model are standard

and habits are equal to an exponentially weighted sum of past consumption levels. The

mechanism through which I match the volatility of the riskfree rate is through the time-

varying volatility of the z-process, which is modeled such that when times are bad and the

consumption level is close to the habit level, the volatility of the stochastic discount factor is

high. This is consistent with Campbell and Cochrane (1999), but the mechanism is slightly

different. In Appendix C I derive the dynamics of the riskfree rate and show that:

rft ≈ − log β + γg −
1

2
γ2σ2

z + γ
(

γbσ2
z − (1 − ρ)

)

zt

The average riskfree rate is equal to − log β + γg− 1
2
γ2σ2

z . The exposure of the risk free rate

to the exogenous state variable zt is given by γ (γbσ2
z − (1 − ρ)). When the parameter b is

calibrated to a value of (1−ρ)
γσ2

z
, the riskfree rate is constant. In this case, the precautionary

savings motive γ2bσ2
zzt and the expected growth of zt, represented by the term (1 − ρ) zt

cancel each other out.

2.8.4 Stock Returns

The annual aggregate equity risk premium equals 5.8% in the model, which is slightly higher

than the 5.5% in the data. With the current calibration, the model underestimates the

volatility of the return on the aggregate stock market. The annual stock market volatility

equals 14.1%, slightly lower than the 17.8% in the data. The volatility of annual aggregate

earnings growth equals 22.5% in the model and 22.1% in the data.

The time variation in the volatility of zt also drives the large variation in the conditional

equity risk premium. The quarterly volatility of the conditional risk premium equals 0.4%,

which is higher then the quarterly volatility of the riskfree rate, which equals 0.3%. The risk

premium is also highly persistent. These facts seems consistent with the recent evidence on

return predictability.14

The model also gives predictions for the volatility of the stock returns and earnings growth

of individual firms. The annual volatility of each firm’s stock is 32% and the volatility

14See for instance Campbell and Cochrane (1999), Cochrane (2006) and ?.
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of earnings growth is 42% which are both close to the data in the CRSP/COMPUSTAT

database. The model thus generates substantial idiosyncratic volatility generated by

idiosyncratic demand (habit) shocks.

3 A Model with Production

In the previous section I have presented a parsimonious model without production factors.

The marginal cost of each firm was constant and firms could produce as many products at

this marginal cost as desirable. I now present a production-based economy which generates

similar results to the model presented in the previous section.

3.1 Households

The representative household’s preferences are described by the utility function:

E0

∞
∑

t=0

βtU (Xt, ht) (20)

where Xt is the level of habit-adjusted consumption and ht is the number of hours worked.

The level of aggregate habit-adjusted consumption, Xt is defined as:

Xt =





1
∫

0

(Cit − θSit)
1− 1

η di





1

1− 1
η

(21)

where the habit stock Sit is predetermined:

Sit+1 = (1 − ρ)Cit + ρSit (22)

These habits imply a demand for variety i of the form:

Cit = p−η
it Xt + θSit (23)

where pit ≡ Pit/Pt is the relative price of good i relative to the nominal price index

Pt ≡

[

1
∫

0

P 1−η
it di

]

1

1−η

.15

15When instead of a mass of firms, there is a discrete number of firms i ∈ {1, ..., N} with weights w (i),

aggregate consumption is given by Xt =

[

N
∑

i=1

w (i) (Cit − θSit)
1− 1

η di

]

1

1−
1

η

, the demand function is given by
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3.2 Firms

Goods are produced by monopolistically competitive firms. Each good is manufactured using

labor via the following production technology:

Yit = GtZithit (24)

where Yit is the output of good i and hit is firm i’s labor force. I assume that the dynamics

of the components of the Solow residual are given by:

Gt+1

Gt
= eḡ (25)

zit+1 = ρizzit + εz
i,t+1 (26)

where zit+1 ≡ ln(Zit) and εz
it ∼ N (0, σ2

iz). In this specification, Gt represents the economy-

wide deterministic trend growth. Note that the process Zit is a firm-dependent mean-

reverting process. These dynamics imply that the economy as a whole grows at a trend

ḡ and that individual firms’ outputs vary around this trend. As such the output of firms are

cointegrated, in the sense that they share the same deterministic trend.

Firms are price-setters who satisfy demand at the announced prices:

Yit ≡ ZitGthit ≥ Cit (27)

I assume that firms faces quadratic adjustment costs to labor given by:

LACit = bGt

(

hit

hit−1

− 1

)2

(28)

There exists a large body of empirical work on the adjustment costs to labor and capital at the

plant level.16 At the macro level, these adjustment costs are required to generate sizeable

risk premia.17 Such short-term frictions make the supply side of the economy relatively

inelastic. In my model, this implies that if the consumption surplus ratio of a particular

good is currently low, consumption can not quickly adjust upward despite a high marginal

utility of doing so. Instead, this demand pressure will temporarily drive up the price of that

good.

Cit =
(

pit

Nw(i)

)−η

Xt + θSit and the aggregate price index is given by Pt ≡

[

N
∑

i=1

(

1
N

)1−η
w (i)

η
P 1−η

it di

]

1

1−η

16See Cooper and Haltiwanger (2000) and Cooper and Willis (2004) and the references therein.
17See also Jermann (1998) and Rouwenhorst (1995).
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The consumption demand faced by the monopolist producing good i is given by

Cit = p−η
it Xt + θSit, (29)

where habit evolves according to:

Sit+1 = ρSit + (1 − ρ) Cit + εit+1. (30)

The Lagrangian of firm i′s problem can then be written as:

E0

∞
∑

t=0

Λt

Λ0

[

pitCit − Wthit − LACit + κit {ZitGthit − Cit}

+νit

{

p−η
it Xt + θSit − Cit

}

+ ζit {ρSit + (1 − ρ)Cit + εit+1 − Sit+1}

]

(31)

where Λt

Λ0
represents the stochastic discount factor as further defined in the next section.

The state variables of firm i are the habit stock Sit, the state of the technology Zit and the

labor force hit. Taking first order conditions with respect to Cit, Sit, hit and pit we obtain

the following four equations:

[Cit] : pit − κit − νit + (1 − ρ) ζit = 0 (32)

[Sit] : Et

[

Λt+1

Λt

(θνit+1 + ρζit+1)

]

= ζit (33)

[pit] : Cit − ηνitp
−η−1
it Xt = 0. (34)

[hit] : Et

[

Λt+1

Λt

(

b
hit+1

h2
it

(

hit+1

hit

− 1

))]

−
b

hit−1

(

hit

hit−1

− 1

)

− Wt + κitGtZit (35)

The first of these four equations balances the marginal cost and benefit from a one unit

increase of consumption. The Lagrange multiplier νit measures the value of an additional

unit of demand in this period. This value is equal to the selling price of the good pit minus

the production cost κit plus the present-value of having (1 − ρ) additional units of habit in

the next period. The present value of having one additional unit of habit in the next period

equals ζit, so the value of having 1 − ρ such units equals (1 − ρ) ζit.

The second equation balances the marginal costs and benefits of increasing the habit of

the households, which due to the persistence of the habit stock is a dynamic tradeoff. An

additional unit of habit in this period leads to ρ additional units of habit in the next period.

Having an additional unit of habit allows the firm to raise prices as the price elasticity of

the consumers’ demand is now lower, generating an additional revenue equal to θνit+1. Note

that the optimal price response depends on the time non-separability of the consumers’

preferences measured by θ. The third equation equates the marginal costs and benefits
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of changing the price of the good by one unit. Finally the fourth equation represents the

dynamic tradeoff of adjusting each firm’s labor force.

3.3 The representative household’s maximization

I assume that the preferences of the representative household are given by:

U (Xt) =
X1−γ

t

1 − γ
+ πt

(1 − ht)
1−χ

1 − χ
(36)

where:

πt = µG1−γ
t (37)

In this expression, the constant µ captures the tradeoff between leisure and aggregate habit-

adjusted consumption, which I calibrate such that the share of time devoted to work equals

20 percent. The term G1−γ
t ensures that leisure shares the same time trend as aggregate

habit adjusted consumption. The representative household then optimizes utility subject to:

Xt +

1
∫

0

θpitSitdi + Et [Mt,t+1dt+1] = dt + Wtht + Φt (38)

where dt+1 represents a set of Arrow-Debreu securities. Let Λt denote the Lagrange multiplier

associated with the budget constraint. The first order conditions of the households are then

given by:

Λt = βtX−γ
t (39)

πt
(1 − ht)

−χ

X−γ
= Wt (40)

Further define the stochastic discount factor as:

Mt,t+1 ≡
Λt+1

Λt

= β

(

Xt+1

Xt

)

−γ

. (41)

Define the riskfree rate Rf
t as the inverse of the expected value of the stochastic discount

factor:

Rf
t ≡

1

Et (Mt,t+1)
(42)
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The value of the firm equals the discounted value of real future cash flows:

Vit = Et

∞
∑

j=0

Mt,t+jΦ
i
t+j (43)

which equals the relative price of firm i times the demand for good i, minus labor costs and

labor adjustment costs:

Φit ≡ pitCit − Wthit − LACit (44)

3.4 Asset pricing equations

I assume that firms do not issue shares or debt, and finance their capital stock solely through

retained earnings. The return on each firm’s stock, Ri,t+1 satisfies the pricing equation:

Et [Mt,t+1Ri,t+1] = 1 (45)

where the return is given by:

Ri,t+1 =
PDi,t+1 + 1

PDit

Φi,t+1

Φit

(46)

in which PDi,t+1 is the price-dividend ratio of the firm and Φit are the profits of the firm as

defined above.

3.5 Solving and Calibrating the Model

To find a stationary equilibrium, I first normalize all variables by the deterministic trend,

as further explained in Appendix B. I then solve the model by perturbation, as discussed in

Appendix A. As before I assume in the quarterly calibration that there are two groups of

firms each with aggregate mass 0.5 and that within each group there is perfect symmetry,

implying that each firm within a group faces the same habit stock and the same realization

of the productivity shock. I then calibrate the model using similar parameter values as in the

two-period setup presented earlier. The table below summarizes the calibrated parameters.

Variable Symbol Value

Subjective discount factor β 1.01

Risk aversion γ 5

Elasticity of substitution η 5.3

Time non-separability parameter θ 0.81

Persistence of the habit stock ρ 0.90
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I calibrate the volatility of the productivity shocks such that the aggregate output and

consumption growth volatility equals 0.72 percent. I set the correlation of the productivity

shocks between the two sectors equal to 0.2. Finally, I calibrate the adjustment cost

parameter b such that the volatility of the aggregate number of hours worked matches the

aggregate of the intensive and the extensive margin of aggregate labor in the data.18

3.6 Simulation Results

Table 3 summarizes the aggregate statistics of the model, including aggregate output growth,

the riskfree rate and the average return and volatility of the aggregate stock market. The

table shows that the model matches the aggregate level of the risk free rate and the risk

premium. The model also matches the volatility of aggregate stock returns, but overestimates

the volatility of the riskfree rate as in Jermann (1998).19 In the model, there is no investment

and as such, output and consumption are equal. In the data investment is substantially

more volatile than consumption. The quarterly investment growth rate volatility equals 2.65

percent and the quarterly consumption growth rate volatility is 0.55 percent. Output, which

is the sum of these two components has a quarterly output volatility of 1 percent. Given

that in the model output and consumption are equal, either the consumption growth rate

will be too volatile or output will not be sufficiently volatile. I calibrate the volatility of the

productivity shocks such that the volatility of consumption growth (and therefore output

growth) in the model equals 0.72 percent.

I then study the dynamics of the difference in expected returns between the two sectors

and compare it to the difference in product prices and the difference in the consumption

surplus ratios. The three panels of Figure 4 plot a sample path of 400 quarters for respectively

the difference in expected returns, Et(R1t+1 − R2t+1), the difference in the product prices,

p1t − p2t and the difference in consumption surplus ratios SR1t − SR2t. Recall that the

consumption surplus ratio is defined as:

SRit =
Cit − θSit

Cit
(47)

The graph illustrates that the model generates a near perfect positive correlation between

the difference in expected returns and the difference in consumption surplus ratios, and a

near perfect negative correlation between the difference in product prices and the difference

18In fact, I match the standard deviation of the Hodrick and Prescott (1997) filtered logarithms of the
total hours worked (employment times hours per worker) between 1964 and 2004. This statistic is based on
private non-farm production workers, which are the only ones for whom hours are observed.

19By including capital in the production function, which I address in the next section, the volatility of the
riskfree rate can be substantially reduced, provided that the habit formation process is persistent.
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in consumption surplus ratios. This results in a strong negative correlation between the

product price difference and the difference in expected returns. In other words, the model

predicts that, empirically, a difference in product prices can be used to generate a cross-

sectional spread in expected returns. The values of the above-mentioned correlations are

summarized in the lower panel of Table 3.

4 Capital Stock Variation

So far, I have not included capital as an input to production. However, it is straightforward

to include capital in the production function and obtain comparable cross-sectional results

to the model in the previous section, provided that capital is a separate good and that

each firm’s capital stock faces adjustment costs. These assumptions ensure that there is

limited substitution of input factors across sectors, which is required to generate a negative

relationship between the difference in product prices and the difference in expected returns.

In this section I include capital in the production function to compare the deep habits

model to the standard one sector production economy with habits as in Jermann (1998). In

this comparison I assume that there is perfect symmetry between all firms, which implies

that all firms face the same productivity shocks and have the same habit level. For ease of

exposition I will assume that capital is a composite good, but similar results can be obtained

when assuming that capital is a separate good.

Assume that the production function is given by:

Yit = ezit (Gthit)
α K1−α

it (48)

Assume further that households own and invest in physical capital. At the beginning of a

given period t, the representative household owns capital in the amount of Kt that it can

rent out at the rate ut. The capital stock evolves over time according to:

Kt+1 = (1 − δ) Kt + G

(

It

Kt

)

Kt (49)

where It is the total investment defined by:

It =





1
∫

0

I
1−1/η
it di





1

1−1/η

(50)

which implies that capital is a composite good. The function G is an adjustment cost function
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given by:

G

(

It

Kt

)

= a1 +
a2

1 − 1
τ

(

It

Kt

)1− 1

τ

(51)

where a1 and a2 are chosen to match the steady state properties.20 By solving the dual

problem of minimizing total investment expenditure,
1
∫

0

PitIitdi subject to the aggregation

constraint I find:

Iit =

(

Pit

Pt

)

−η

It (52)

Note that in equation 50 the elasticity of substitution between varieties of individual

investment is also given by the parameter η. In other words, for simplicity I assume that the

elasticity of substitution for investment and consumption is the same. Note, however, that

this assumption can easily be relaxed.

To compare the aggregate time series properties of both models, I now consider the

symmetric case where all firms are identical. This implies that all firms have identical habit

stocks and identical productivity shocks. In this case, the subscript i can be dropped and

the prices are set equal to 1. The first order conditions of the households remain unchanged

and the first order conditions of the firm(s) simplify to:

[Ct] : 1 − κt − νt + (1 − ρ) ζt = 0 (53)

[St] : Et

[

Λt+1

Λt
(θνt+1 + ρζt+1)

]

= ζt (54)

[pt] : ct − ηνtxt = 0. (55)

[νt] : ct = xt + θsit (56)

I then compare the simulated moments from this model to the simulated moments from

Jermann’s (1998) model. To enhance the comparability between the two models even further,

I calibrate the models to fit the same data period as Jermann (1998). I solve both Jermann’s

model and the deep habits model using a 3rd order perturbation method. This allows me to

study the dynamics of the equity risk premium as well as its level.

20The derivatives of G
(

It

Kt

)

Kt with respect to Kt and It are given by respectively:

∂G
(

It

Kt

)

Kt

∂Kt

= G

(

It

Kt

)

− G′

(

It

Kt

)

It

Kt

= a1 +
a2

τ − 1

(

It

Kt

)1− 1

τ

∂G
(

It

Kt

)

Kt

∂It

= a2

(

It

Kt

)− 1

τ
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The results are summarized in Table 4. The bottom panel of the table summarizes

the parameters used to simulate from each model. I generate 1000 simulations of 240

quarterly observations and report the average over all simulations. I consider both the

case where productivity shocks are permanent (ρz = 1) and where productivity shocks are

highly persistent but transitory (ρz = 0.99). I calibrate the volatility of the productivity

shocks to match the volatility of quarterly output growth, which equals 1 percent.

The table shows that both models are well able to match the unconditional moments of

the data, including the volatility of consumption growth, investment growth, the equity risk

premium and the level of the riskfree rate. By increasing the persistence of the habit stock

(ρ), which Jermann (1998) sets equal to zero, the model is close to matching the volatility

of the riskfree rate as well. Whereas the volatility of dividends seems too low in Jermann’s

model, the deep habits model generates too volatile dividends compared to the standard

measure of per share dividends. However, recent work by Bansal and Yaron (2006) and

Yogo and Larrain (2007) suggests that the total net payout of firms is in fact more volatile

than per share dividends. In particular, Yogo and Larrain (2007) find that the volatility of

net payout growth equals 38 percent per year, which is close to the volatility generated by

the deep habits model.

The models’ success in explaining the unconditional moments of the financial variables is

contrasted by their poor performance in matching the conditional moments of the data. Most

importantly, the variation in the price-dividend ratio is almost entirely driven by variation

in expected dividend growth rates and the riskfree interest rate and not by variation in

expected excess returns. The unconditional standard deviation of quarterly expected excess

returns is only 0.1 percent as opposed to a standard deviation of quarterly expected dividend

growth rates of 3.1 percent. Given that the persistence of both variables is approximately

equal, the variance decomposition of the price-dividend ratio is dominated by riskfree rate

and expected dividend growth rate variation.21 The variation in expected returns can be

substantially increased by including preference shocks, that is shocks to the habit formation

process.22 However, even in this case the model still generates substantial variation in

expected growth rates. This expected dividend growth rate variation is in contrast to the

habit formation model in an endowment economy as proposed by Campbell and Cochrane

(1999).

21Furthermore, the correlation between expected excess returns and expected dividend growth rates is low
(not reported), which seems in contrast with the data (see for example Binsbergen and Koijen (2007) and
Lettau and Ludvigson (2005)).

22Such preference shocks are also required to explain the value premium in a habit formation context as
argued by Lettau and Wachter (2007).
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Finally, and interestingly, it seems that even when productivity shocks follow a random

walk, expected consumption growth is time-varying and persistent induced by the high

capital adjustment costs and persistence in the habit formation process, which smoothes

out the influence of the productivity shocks, even when these productivity shocks are

independently and identically distributed (i.i.d.). The high capital adjustment costs are

necessary to match the level of the risk premium. The high persistence of the habit

process (0.85) helps to match the low volatility of the risk free rate. In a recent paper,

Kaltenbrunner and Lochstoer (2007) argue that in a general equilibrium framework with

Epstein-Zin preferences, highly persistent expected consumption growth rates, as proposed

in Bansal and Yaron (2004), arise endogenously from the consumption smoothing behavior of

consumers even when productivity shocks are i.i.d.. However, it seems that habit formation

models with production and capital adjustment costs also produce such persistent expected

consumption (and dividend) growth rates.23

5 Empirical Evidence

The deep habits model suggests (1) a positive relationship between the consumption surplus

ratio and expected returns and a negative cross-sectional relationship between the product

prices of firms and the expected return on their stock. I empirically investigate both these

relationships by sorting firms into quintile portfolios based on past consumption surplus ratios

and recent price increases and decreases. I use annual data on NAICS industry shipments

and Second, I use monthly data from the Producer Price Index (PPI) Program. The PPI

measures the average change over time in the selling prices received by domestic producers

for their output.

A direct test of the model would be to rank firms based on the price elasticity of their

demand curves. Unfortunately, these price-elasticities are unobservable. If the demand

elasticity of firms is constant, the slope of the demand curve can be uncovered through an

instrumental variables analysis involving exogenous shocks of the supply curve. However, in

my model demand elasticities are time-varying as each good’s price elasticity of demand is

proportional to the consumption surplus ratio of that good. Instead I will focus on these

consumption surplus ratios and price changes within industries.

23Note that this suggests that in a production economy the question may not be so much whether expected
dividend and consumption growth rates are time-varying or not, but rather whether consumers care about
such time variation in their preferences.
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5.1 Data

The Bureau of Economic Analysis publishes annual data with quantity indexes on GDP for

423 industries between 1997 and 2008. Merging with the CRSP data based on NAICS code,

this results in annual data between 2001 and 2008. I then use these quantity indexes to

construct a habit level and a consumption surplus ratio.

The PPI tracks price changes for practically the entire output of domestic goods-

producing sectors: agriculture, forestry, fisheries, mining, scrap, and manufacturing. Further,

in recent years, the PPI has extended coverage to many of the non-goods producing sectors

of the economy, including transportation, retail trade, insurance, real estate, health, legal,

and professional services and new PPIs are gradually being introduced for the products

of industries in the utilities, finance, business services, and construction sectors of the

economy.24

The PPI sample I use includes over 25,000 establishments providing approximately

100,000 price quotations per month. Participating establishments report price data primarily

through the mail. Goods and services included in the PPI are weighted by value-of-shipments

data contained in the 1997 economic censuses. I use aggregated PPI data for industries

based on the two digit Standard Industrial Classification (SIC) code between 1983 and 2003.

After 2003, the PPI indexes based on SIC codes is discontinued and replaced by the North

American Industry Classification System (NAICS). My choice of the SIC based PPI index as

well as the data period and the level of SIC detail are motivated by the desire to maximize

the compatibility between Center for Research in Security Prices (CRSP) and PPI data.

Merging CRSP data and PPI data based on the two-digit SIC codes results in monthly

observations between 1983 and 2003 for 35 different industries. I then sort firms into five

portfolios based on the percentage change of their PPI in the previous month. Quintile 1

contains firms whose PPI change was the lowest in the previous month, that is, who have

the largest price decrease. Quintile 5 contains firms whose PPI change was the highest.

I then compute value-weighted returns within each of these quintiles. I will refer to the

portfolio that goes long in quintile portfolio 1 (Deflationary) and short in quintile portfolio

5 (Inflationary), as the DMI (Deflationary Minus Inflationary) portfolio.

5.2 Results

The first panel of Table 5 reports the results from the time series regressions of the excess

returns of the quintile portfolios sorted on the lagged consumption surplus ratio between

24Source: http://www.bls.gov/ppi/
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2001 and 2008. The table also reports the regression of the Q5-Q1 portfolio on a constant

term and the three Fama French factors. The factors, which I acquire from Kenneth French’s

website, include the excess return on the market (mktrf), the book-to-market portfolio (hml),

the size portfolio (smb). The Newey and West (1987) adjusted standard errors are reported

in brackets. The results show that there is a upward monotonic pattern of the pricing error

(or alpha) as the quintiles increase, with an alpha of -0.11 percent for quintile 1 and a pricing

error of 0.27 percent for quintile 5. For the Q5-Q1 portfolio, the alpha is 0.37% per month

which is equivalent to an annual return spread of 4.4%. The loading on the market portfolio

is negative and significant, but economically small. Further the loading on the book-to-

market portfolio and size portfolio is insignificant. The same monotonic pattern of alphas,

can be seen when regressing excess returns on the market portfolio or just a constant. The

p-value for the constant term in the regression is 0.08 for raw returns, 0.12 when regressing

returns on the market portfolio and 0.18 when regressing returns on the three factors. Given

the very short data period, this increase in p-values should be expected, as should be the

relatively low level of significance.

The first panel of Table 6 reports the results from the time series regressions of the net

excess returns of each of the quintile portfolios sorted on lagged producer price changes. The

table also reports the Q5-Q1 (or DMI) portfolio on a constant term and the four factors.

In this case, there is a downward monotonic pattern of the pricing error (or alpha) as the

quintiles increase, with an alpha of 0.37 percent for quintile 1 and a pricing error of -0.21

percent for quintile 5. However, from quintile 4 to quintile 5, there seems to be a slight,

statistically insignificant, increase in the pricing error from -0.29 to -0.21 percent. The DMI

portfolio earns a monthly alpha of 0.58 percent, with a t-statistic of 2.31, which is significant

at the 5 percent level. Interestingly, the loading of the DMI portfolio on the book-to-market

factor is negative and statistically significant. This negative loading increases the alpha

compared to the CAPM benchmark which I report in panel 2 of Table 6. Even though the

CAPM alpha of 0.40 percent is smaller than the four-factor alpha, it is still significant at

the 10 percent level with a p-value of 0.075. Finally, panel 3 of Table 6 reports the average

return on each of the quintiles as well as the standard deviation of the mean. The average

monthly return on the DMI portfolio equals 0.54 percent, which with a standard deviation

of 0.29 percent is statistically significant at the 10 percent level.

The results in Table 6 are generated by sorting on the producer price index change in the

previous month. The producer price index in a given month is computed based on individual

price quotes from firms for their products. As these price quotes are public information, one

would expect that when a firm changes its price, this change is immediately reflected in its

stock price. That being said, the PPI index, which is an aggregate of these price quotes
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within an industry, is not reported until the second week of the next month. To rule out

that my results are driven by ex post sorting on price increases, I also sort firms based on

price changes over a 4-month period starting in month t−5 and ending at t−2. The results

are reported in Table 7. As before, there is a downward pattern of the alpha as the quintiles

increase, with a monthly alpha of 0.47 percent for quintile 1 and an alpha of -0.08 percent for

quintile 5. However, similar to Table 6, the pattern is slightly upward sloping for the last two

quintiles. However this increase is not statistically significant. The DMI portfolio earns a

monthly alpha of 0.54 percent, with a t-statistic of 2.01, which is significant at the 5 percent

level. Again, the loading of the DMI portfolio on the book-to-market factor is negative.

Finally, panel 3 of Table 7 reports the average return on each of the quintiles as well as the

standard deviation of the mean. The average monthly return on the DMI portfolio equals

0.68 percent. Because the standard deviation is 0.27 percent, this is statistically significant

at the 5 percent level.

6 Robustness Checks

6.1 Z-scores of the PPI

In the previous section I have sorted firms into quintile portfolios based on their recent

percentage price changes. This sorting generates a statistically significant alpha with respect

to both the unconditional CAPM and the four factor model. In this section I explore the

possibility that these results are driven by relatively few sectors whose percentage product

price change are either highly volatile or have a mean that differs substantially from the

percentage changes of the aggregate producer price index. To address this issue, I sort firms

not based on percentage price changes, but based on Z-scores. That is, I compute for each

industry the average percentage price change over time and its standard deviation. I then

compute the Z-score by demeaning each months industry price change and then divide this

demeaned value by its corresponding standard deviation. I then sort stocks into quintile

portfolios based on the previous month’s Z-score. I find that sorts based on this criterion

deliver almost identical results to those reported in the previous section.

6.2 Industry competition

As I discussed before, my model also relates to the recent literature on the cross-section of

expected returns and product market competition. Hou and Robinson (2006) show that US

firms in the quintile of the most competitive industries earn annual returns that are nearly
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4% higher than those of similar firms in the quintile of the most concentrated industries.

The market power that Hou and Robinson (2006) consider is related to the price setting

behavior that I study in this paper. However, in my model, low expected returns are not a

unconditional characteristic of an industry or firm but are a consequence of the current low

income and price elasticities of demand faced by a particular firm or industry, which are time-

varying and proportional to the consumption surplus ratio. When I construct the quintile

portfolios, I indeed find that firms (and industries) frequently rotate across quintiles, as

discussed in the next subsection. In contrast, firm sorts based on each industry’s Herfindahl-

Hirschman Index (HHI), as in Hou and Robinson (2006), can be used to generate a spread in

expected returns up to several decades into the future. In Table 8 I include the return spread

on the HHI portfolios as an addititional factor. The table shows that the DMI portfolio that

I construct does not significantly load on the HHI factor and the generated alpha is still

significant at the 5% significance level.

6.3 Markov matrices

To confirm that firms and industries frequently rotate across the quintile, I compute in table

9 the quarterly Markov probabilities of each firm in my dataset. The (i,j) element represents

the probability of a firm switching from quintile i to quintile j over a one quarter horizon.

The matrix shows that even though there is persistence in the quintiles, there is substantial

variation across industries. For example, when computing the 3-year Markov probabilities

by taking the reported matrix to the power 12, it is easy to see that these probabilities are

nearly equal to the unconditional probability distribution of 0.20 for each quintile.

7 Discussion and Extensions

In this paper I have argued that the deep habits model can help to explain part of the

variation in the cross-section of expected returns. In particular, the model explains why there

are expected return differences between firms with recent price decreases and recent price

increases. However, so far the model has not addressed the question of why there is a value or

a size premium. This question is particularly interesting in a habit formation context because

recently Lettau and Wachter (2007) and Santos and Veronesi (2006) have raised the issue that

growth firms have high duration cash flows and are therefore more susceptible to discount

rate risk. Because in habit formation models the shocks to the consumption surplus ratio

(which drives expected returns) and shocks to consumption growth are perfect correlated,

growth firms should carry a premium relative to value firms. Lettau and Wachter (2007)
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argue that to solve this problem, variation in the discount factor should be independent of

cash flow shocks. They then model the variation in the discount factor in a reduced form

setting and argue for a zero (or negative) correlation with cash flow growth shocks. As they

assume that cash flow growth shocks are the only shocks that are priced, this allows for a

zero or even negative risk premium on discount rate shocks.

Lettau and Wachter (2007) suggest that the discount rate variation could be due to a

preference shocks, but it is not obvious why such preference shocks would carry a zero or

negative price of risk. In contrast, the deep habits model endogenously generates a negative

risk premium on preference shocks for those firms with a high habit level, because such firms

can increase their prices the most in response to these systemic shocks. Furthermore, in the

aggregate, the model generates a markup of prices over marginal costs which increases in

response to a positive aggregate preference shock, again providing a (partial) hedge against

systematic preference shocks. As such, the deep habits model seems a promising framework

in which to study the value premium, which I will address in future research.

8 Conclusion

I study the cross-section of expected returns in a general equilibrium framework where

instead of forming habits over some aggregate consumption bundle, agents form habits over

individual varieties of goods. Goods are produced by monopolistically competitive firms,

whose price-elasticity of demand depends on the habit formation for their specific good. As

such, the model generates a strong relationship between the expected return on a firm’s stock

and the selling price of its product, which are both driven by the firm’s habit stock. Firms

with a high habit stock earn low expected returns and charge high prices for their product.

I investigate this relationship empirically by sorting firms into five quintiles based on recent

price changes, as measured by the producer price index. This sorting generates a statistically

significant annual alpha of 6 percent that can not be explained by the four-factor model. I

show that the CAPM seems to price the PPI portfolios better than the four-factor model,

because firms with recent price decreases earn high expected returns, but load negatively on

the book-to-market factor.
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Appendix A: Perturbation

In the derivations below I follow the notation of Schmitt-Grohe (2005), which implies a
reassignment of the symbols yt and xt to represent the whole vector of control variables and
state variables respectively.25. The set of first order conditions that solve the model can be
summarized as:

Etf (yt+1, yt, xt+1, xt) = 0 (57)

where xt has dimensions nx × 1 and denotes the vector with the predetermined (or state)
variables. The state variables can in turn be partitioned into the endogenous state variables,
in this case the habit stock of each firm and its labor force, and the exogenous state variables
which includes the productivity variables Zit and (potentially) the preference shocks. The
vector yt+1, with dimension ny × 1, contains the control variables which includes the relative
prices of all the goods, the consumption of each good and the aggregate habit-adjusted
consumption. Assume that the exogenous state variables follow the law of motion:

Zit+1 = ΓZit + σΣεt+1 (58)

where σ is the so-called perturbation parameter which equals 0 when determining the
deterministic steady state of the model and which equals 1 in the stochastic version of
the model. The vector εt+1 is assumed to be independently and identically distributed, with
mean zero and variance/covariance matrix I. The matrix Γ is assumed to satisfy the usual
stationarity conditions.

The solution to the model is of the form:

yt = ĝ (xt) (59)

and
xt+1 = ĥ (xt) + ησεt+1 (60)

Define n = nx + ny. The function f then maps Rny × Rny × Rnx × Rnx into Rn, because
there are n equations and 2ny + 2nx variables, that is yt+1, yt, xt+1 and xt. The matrix η is
given by:

η =

[

∅

Σ

]

(61)

The key idea of perturbation is to interpret the solution to the model as a function of the
state vector xt and of the perturbation parameter σ which scales the amount of uncertainty
in the economy, leading to:

yt = g (xt, σ) (62)

and
xt+1 = h (xt, σ) + ησεt+1 (63)

where the function g maps Rnx ×R+ into Rny and the function h maps Rnx ×R+ into Rnx .

Given this interpretation, a perturbation method finds a local approximation of the

25See also Juillard (1996)
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functions g and h. By a local approximation, we mean an approximation that is valid
in the neighborhood of a certain point (x̄, σ̄). Taking a Taylor series approximation of the
functions g and h around the point (x, σ) = (x̄, σ̄) we have:

g (x1, x2, σ) = g (x̄1, x̄2, σ̄) +

2
∑

i=1

gxi
(x̄1, x̄2, σ̄) (xi − x̄i) + gσ (x̄1, x̄2, σ̄) (σ − σ̄) (64)

+
2
∑

i=1

gxixi
(x̄1, x̄2, σ̄) (xi − x̄i)

2 + gx1x2
(x̄1, x̄2, σ̄) (x1 − x̄1) (x2 − x̄2)

+
2
∑

i=1

gxiσ (x̄1, x̄2, σ̄) (xi − x̄i) (σ − σ̄) + gσσ (x̄1, x̄2, σ̄) (σ − σ̄)2 + ...

and:

h (x1, x2, σ) = h (x̄1, x̄2, σ̄) +

2
∑

i=1

hxi
(x̄1, x̄2, σ̄) (xi − x̄i) + hσ (x̄1, x̄2, σ̄) (σ − σ̄) (65)

+
2
∑

i=1

hxixi
(x̄1, x̄2, σ̄) (xi − x̄i)

2 + hx1x2
(x̄1, x̄2, σ̄) (x1 − x̄1) (x2 − x̄2)

+
2
∑

i=1

hxiσ (x̄1, x̄2, σ̄) (xi − x̄i) (σ − σ̄) + hσσ (x̄1, x̄2, σ̄) (σ − σ̄)2 + ...

where for ease of exposition I adapt the notation such that there is only one control variable
and only one state variable of each type, that is, one endogenous state variable x1 and one
exogenous state variable x2. The terms gσσ (x̄1, x̄2, σ̄) (σ − σ̄)2 and hσσ (x̄1, x̄2, σ̄) (σ − σ̄)2

measure the influence of the uncertainty in the model on the control and the state variables,
respectively. Note that it is straightforward to include the asset pricing equations in the set
of equations in f.

Et [Mt,t+1Ri,t+1] = 1 (66)

Ri,t+1 =
PDi,t+1 + 1

PDit

Φi,t+1

Φit
(67)

Both the price dividend ratio of each firm and the return on each asset are now approximated
by an nth-order polynomial of the state variables in the same way as in equations 64 and 65.
So for example the Taylor approximation of the return Rt, which I denote by R (x1, x2, σ) ,
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can be written as:

R (x1, x2, σ) = R (x̄1, x̄2, σ̄) +

2
∑

i=1

Rxi
(x̄1, x̄2, σ̄) (xi − x̄i) + Rσ (x̄1, x̄2, σ̄) (σ − σ̄) (68)

+

2
∑

i=1

Rxixi
(x̄1, x̄2, σ̄) (xi − x̄i)

2 + Rx1x2
(x̄1, x̄2, σ̄) (x1 − x̄1) (x2 − x̄2)

+
2
∑

i=1

Rxiσ (x̄1, x̄2, σ̄) (xi − x̄i) (σ − σ̄) + Rσσ (x̄1, x̄2, σ̄) (σ − σ̄)2 + ...

As before, Rσσ (x̄1, x̄2, σ̄) (σ − σ̄)2 measures the influence of the uncertainty in the model on

the return, whose expectation equals the risk premium. From equation 68 we can see that
a first order approximation of the policy function will not generate a risk premium at all,
which is also referred to as the certainty equivalent principle. A second order approximation
will generate a constant risk premium equal to the expectation of Rσσ (x̄1, x̄2, σ̄) (σ − σ̄)2 .
To obtain a risk premium that varies linearly with the state variables, we need terms of the
form:

Rσσxi
(x̄1, x̄2, σ̄) (σ − σ̄)2 (xi − x̄i) (69)

To obtain such terms we need a third-order approximation of the policy function. In general,
for an nth-order approximation of the risk premium dynamics we need an approximation of
the policy functions of order n + 2. If we are interested in the effect of the interaction of
exogenous and endogenous state variables on the risk premia of the assets, we need at least
a 4th order approximation of the policy function.

What remains to be discussed is how to solve for the nth order derivatives of the functions
g and h evaluated at the point (x̄, σ̄). To identify these derivatives, substitute the proposed
solution given by equations 64 and 65. into equation 57. and define:

F (x, σ) ≡ Etf (g (h (x, σ) + ησε′) , g (x, σ) , h (x, σ) + ησε′, xt) = 0 (70)

Here I drop time subscripts and use a prime to indicate variables dated in period t + 1.
Because F (x, σ) must be equal to zero for any possible values of x and σ, it must be the
case that the derivatives of any order of F must also be equal to zero:

Fxkσj (x, σ) = 0 ∀x, σ, j, k,

where Fxkσj (x, σ) denotes the derivative of F with respect to x taken k times and with
respect to σ taken j times. Solving this exactly identified system of equations results in the
values for each of the nth order derivatives.
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Appendix B: Risk Free Rate Dynamics

The risk free rate in the model is given by:

Rft =
1

EtMt+1

log Rft = − log EtMt+1

= − log Et

[

β

(

Xt+1

Xt

)

−γ
]

= − log Et

[

βe−γge−γ(zt+1−zt)
]

= − log β + γg + γ (ρ − 1) zt −
1

2
e−2bztγ2σ2

z

≈ − log β + γg − γ (1 − ρ) zt −
1

2
γ2σ2

z (1 − 2bzt)

= − log β + γg −
1

2
γ2σ2

z + γ
(

γbσ2
z − (1 − ρ)

)

zt

where the approximation follows from a Taylor expansion of e−2bzt around zt = 0.
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Variable Description Variable symbol Value

Risk aversion γ 8

Subjective discount factor β 1.01

Elasticity of substitution η 5.3

Growth rate g 0.004

Persistence of the habit process ρ 0.95

Persistence of the endowment process ̺z 0.98

Time non-separability parameter θ 0.80

Volatility of demand (habit) shocks σs 0.100

Volatility of endowment shocks σz 0.0265

Table 1: Calibration of the Parameters in the Endowment Model.
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Description Symbol Model Data

Real Vars (percent quarterly)
Volatility of Aggregate Consumption Growth σ(∆ln(Ct)) 0.7% 0.6%
Volatility of Quantity Growth of Firm i σ(∆ln(Cit)) 5.9% -
Autocorrelation of Aggregate Consumption Growth ρ(∆ln(Ct), ∆ln(Ct−1)) 0.1 0.3
Average Aggregate Markup (percent) E [ln(Pt/MC)] 25.3% -
Volatility of the Aggregate Markup (percent) σ [ln(Pt/MC)] 8.8% -

Means Financial Vars (percent annual)
Mean log riskfree rate Erft 1.0% 1.1%
Mean log risk premium E[rt+1 − rft] 4.2% 5.5%

Financial Vars (percent annual)
Volatility of the riskfree rate σ(rft) 1.4% 1.4%
Volatility of the market return σ(rt) 12.1% 17.9%
Volatility of stock return of firm i σ(rit) 18.2% 21.4%
Volatility of market earnings growth σ(∆ln(Φt)) 17.5% 22.1%
Volatility of earnings growth of firm i σ(∆ln(Φt)) 32.6% 42.3%

Financial Vars (percent quarterly)
Volatility of the riskfree rate σ(rft) 0.35% 0.4%
Volatility of the conditional risk premium σ(Et(Rt+1 − Rft)) 0.42% -
Autocorrelation of the conditional risk premium ρ(Et[Rt+1 − Rft], Et−1[Rt − Rft−1]) 0.95 -

Parameters
Risk aversion γ 8 -
Subjective discount factor β 1.01 -
Elasticity of substitution η 5.3 -
Deterministic growth rate g 0.004 -
Habit persistence ρ 0.95 -
Endowment persistence ̺z 0.98 -
Time non-separability θ 0.80 -
Volatility of idiosyncratic demand shock σs 0.100 -
Volatility of the Endowment Shock σz 0.027 -

Table 2: Simulation Results: No Production Factors.Simulation results of the model in section 2.
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Model Deep habits Data

St. Dev. Real Vars
σ(∆Y ) (percent quarterly) 0.72 1.00
σ(∆C) 0.72 0.51
σ(∆I) - 2.55

Means Financial Vars (percent annual)
Rft 0.95 0.80
E[Rt+1 − Rft] 5.34 6.18

St. Dev. Financial Vars (percent annual)
σ(Rft) 11.72 5.67
σ(Rt) 19.43 16.54
σ(∆Φt) Dividends 39.80 14.13
σ(∆Φt) Net Payout 39.80 37.80

Correlations (quarterly)
ρ(Et(R1t+1 − R2t+1), p1t − p2t) -0.92 -
ρ(SR1t − SR2t, p1t − p2t) -0.82 -
ρ(SR1t − SR2t, Et(R1t+1 − R2t+1)) 0.98 -

Table 3: Productivity shocks
The table reports the aggregate statistics of the two sector model with labor inputs deep. The volatility
of the productivity shocks is calibrated such that aggregate output growth has a volatility of 0.72 percent.
Aggregate output (Y), aggregate consumption (C) and aggregate dividends (Φ) are equal to the sum of
output, consumption and dividends of each of the two sectors. Note that the unconditional risk premium
on the market E[Rt+1 − Rft] is equal to the risk premium on each firm’s equity given that, apart from the
realizations of the productivity shocks, the model is symmetric. The bottom panel reports the unconditional
correlations between the difference in the conditional risk premia of the two sectors with the product price
difference and the consumption surplus ratio difference.
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Model Deep habits Deep habits Jermann Jermann Data
(ρz = 0.99) (ρz = 1) (ρz = 0.99) (ρz = 1)

St. Dev. Real Vars
σ(∆Y ) (percent quarterly) 1.00 1.00 1.00 1.00 1.00
σ(∆C)/σ(∆Y ) 0.53 0.59 0.49 0.55 0.51
σ(∆I)/σ(∆Y ) 2.71 2.55 2.64 2.57 2.65
σ(Et[∆C]) (percent quarterly) 0.13 0.15 0.34 0.16 -

Autocorrelation Real Vars
ρ(∆Ct, ∆Ct−1) 0.12 0.13 0.59 0.31 0.30
ρ(Et[∆Ct+1, Et−1(∆Ct)]) 0.94 0.93 0.75 0.58 -

Means Financial Vars (percent annual)
Rft 0.95 0.50 0.82 0.03 0.80
Et[Rt+1 − Rft] 6.59 6.09 6.18 6.39 6.18

St. Dev. Financial Vars (percent annual)
σ(Rft) 7.92 6.81 11.46 12.00 5.67
σ(Rt) 20.00 19.70 19.86 19.00 16.54
σ(∆Φt) (Dividends) 39.80 29.50 8.44 8.00 13.6
σ(∆Φt) (Net Payout) 39.80 29.50 8.44 8.00 38.3

St. Dev. Financial Vars (percent quarterly)
σ(Et(Rt+1 − Rft)) 0.10 0.11 0.09 0.12 -
σ(Et[∆Φt+1]) 3.16 3.20 2.76 3.65 -

Autocorrelation Financial Vars (quarterly)
ρ(Et[∆Φt+1], Et−1[∆Φt]) 0.95 0.93 0.58 0.19 -
ρ(Et[Rt+1 − Rft], Et−1[Rt − Rft−1]) 0.92 0.90 0.77 0.24 -

Parameters
β 1.005 1.005 1.01 1.01 -
g 0.004 0.004 0.005 0.005 -
δ 0.025 0.025 0.025 0.025 -
α 0.64 0.64 0.64 0.64 -
ρ 0.85 0.85 0.00 0.00 -
ρz 0.99 1 0.99 1 -
θ 0.86 0.86 0.82 0.82 -
σ 5 5 5 5 -
τ 0.21 0.21 0.23 0.23 -

Table 4: Comparing the deep habits model to the standard one sector habit model with
production.
Comparison of the symmetric deep habits model with the model employed in Jermann (1998). The top panel
summarizes the moments of the real variables in the model, including output, consumption and investment.
The second panel summarizes the moments of the financial variables, including dividends, the riskfree rate
and the return on equity. The third panel summarizes the parameters used to simulate from each of the
models
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Constant Mktrf hml smb

Quintile1-Rf -0.0011 1.2252 0.4062 0.5741
(0.0027) (0.0708) (0.1112) (0.1158)

Quintile2-Rf 0.0009 1.2140 0.4857 0.6142
(0.0024) (0.0971) (0.1242) (0.0781)

Quintile3-Rf 0.0011 1.1094 0.4866 0.7992
(0.0024) (0.0550) (0.0982) (0.1219)

Quintile4-Rf 0.0021 1.0368 0.3809 0.6261
(0.0025) (0.0620) (0.1178) (0.0890)

Quintile5-Rf 0.0027 1.0954 0.4502 0.6434
(0.0025) (0.0636) (0.1220) (0.0997)

Q5-Q1 0.0037 -0.1297 0.0440 0.0693
(0.0028) (0.0590) (0.1120) (0.1188)

Quintile1-Rf 0.0027 1.3139 - -
(0.0039) (0.0791) - -

Quintile2-Rf 0.0052 1.3074 - -
(0.0034) (0.1298) - -

Quintile3-Rf 0.0060 1.2354 - -
(0.0035) (0.0917) - -

Quintile4-Rf 0.0059 1.1355 - -
(0.0033) (0.0939) - -

Quintile5-Rf 0.0069 1.1951 - -
(0.0034) (0.1005) - -

Q5-Q1 0.0042 -0.1189 - -
(0.0027) (0.0681) - -

Quintile1-Rf 0.0009 - - -
(0.0069) - - -

Quintile2-Rf 0.0034 - - -
(0.0068) - - -

Quintile3-Rf 0.0043 - - -
(0.0067) - - -

Quintile4-Rf 0.0044 - - -
(0.0060) - - -

Quintile5-Rf 0.0053 - - -
(0.0064) - - -

Q5-Q1 0.0043 - - -
(0.0025) - - -

Table 5: Quintile portfolios sorted on the lagged consumption surplus ratio
Return regression of the quintile portfolios sorted on the lagged consumption surplus ratio of 423 NAICS
industry portfolios between 2001 and 2008. The first panel reports the time series regression of the excess
portfolio returns of each quintile on the three factors: the market return minus the riskfree rate (Mktrf), the
book-to-market factor (hml), the size factor (smb). The panel reports both the regression for each quintile
as well as the difference between quintile 5 (Deflationary) minus quintile 1 (Inflationary). The second panel
reports CAPM regression and the third panel reports the average return in each quintile. Newey-West
standard errors are reported in brackets below.
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Constant Mktrf hml smb umd

Quintile 1 - Rf 0.0037 1.0374∗∗ 0.0343 0.0904 -0.0040
(0.0023) (0.0567) (0.0857) (0.0697) (0.0486)

Quintile 2 - Rf 0.0017 1.1099∗∗ -0.3958∗∗ -0.0134 -0.1305∗∗

(0.0019) (0.0472) (0.0713) (0.0580) (0.0404)
Quintile 3 - Rf 0.0003 0.9510∗∗ -0.1606∗∗ 0.0361 -0.1440∗∗

(0.0017) (0.0411) (0.0622) (0.0506) (0.0353)
Quintile 4 - Rf -0.0029 0.8884∗∗ 0.0445 -0.0447 0.0300

(0.0020) (0.0491) (0.0742) (0.0603) (0.0421)
Quintile 5 - Rf -0.0021 0.9588∗∗ 0.2821∗∗ -0.0766 0.0343

(0.0017) (0.0423) (0.0640) (0.0520) (0.0363)
DMI (Q5-Q1) 0.0058∗∗ 0.0786 -0.2478∗∗ 0.1671 -0.0383

(0.0024) (0.0580) (0.1157) (0.1309) (0.0794)

Quintile 1 - Rf 0.0038 1.0371∗∗ - - -
(0.0022) (0.0480) - - -

Quintile 2 - Rf -0.0017 1.2667∗∗ - - -
(0.0020) (0.0433) - - -

Quintile 3 - Rf -0.0020 1.0297∗∗ - - -
(0.0017) (0.0365) - - -

Quintile 4 - Rf -0.0023 0.8631∗∗ - - -
(0.0019) (0.0415) - - -

Quintile 5 - Rf -0.0002 0.8420∗∗ - - -
(0.0018) (0.0382) - - -

DMI (Q5-Q1) 0.0040∗ 0.1951∗∗ - - -
(0.0023) (0.0825) - - -

Quintile 1 - Rf 0.0110∗ - - - -
(0.0038) - - - -

Quintile 2 - Rf 0.0071 - - - -
(0.0043) - - - -

Quintile 3 - Rf 0.0052 - - - -
(0.0035) - - - -

Quintile 4 - Rf 0.0037 - - - -
(0.0032) - - - -

Quintile 5 - Rf 0.0056∗ - - - -
(0.0031) - - - -

DMI (Q5-Q1) 0.0054∗ - - - -
(0.0029) - - - -

Table 6: Quintile portfolios sorted on the lagged PPI change
Return regression of the quintile portfolios sorted on the percentage Producer Price change in the previous
month. The first panel reports the time series regression of the excess portfolio returns of each quintile on
the four factors: the market return minus the riskfree rate (Mktrf), the book-to-market factor (hml), the
size factor (smb) and momentum (umd). The panel reports both the regression for each quintile as well as
the difference between quintile 5 (Deflationary) minus quintile 1 (Inflationary). The second panel reports
CAPM regression and the third panel reports the average return in each quintile. Newey-West standard
errors are reported in brackets below. The symbols (*) and (**) indicate significance at the 10 and 5 percent
level, respectively.
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Constant Mktrf hml smb umd

Quintile 1 - Rf 0.0047∗ 1.015∗∗ 0.1246 0.1329∗ 0.0709
(0.0026) (0.0638) (0.0967) (0.0782) (0.0546)

Quintile 2 - Rf 0.0018 0.9765∗∗ -0.3726∗∗ 0.0024 -0.0905∗

(0.0025) (0.0598) (0.0907) (0.0734) (0.0512)
Quintile 3 - Rf -0.0014 0.9664∗∗ -0.1097 0.0692 -0.0872∗

(0.0025) (0.0597) (0.0906) (0.0733) (0.0512)
Quintile 4 - Rf -0.0006 0.7991∗∗ 0.1068 0.0207 -0.0825∗

(0.0023) (0.0565) (0.0856) (0.0693) (0.0484)
Quintile 5 - Rf -0.0008 0.8433∗∗ 0.2622∗∗ -0.0394 0.0016

(0.0021) (0.0512) (0.0777) (0.0628) (0.0439)
DMI (Q1-Q5) 0.0055∗∗ 0.1481∗∗ -0.1376 0.1722∗∗ 0.0693

(0.0027) (0.0660) (0.1001) (0.0810) (0.0565)

Quintile 1 - Rf 0.0059∗∗ 0.9561∗∗ - - -
(0.0025) (0.0543) - - -

Quintile 2 - Rf -0.0009 1.1228∗∗ - - -
(0.0025) (0.0528) - - -

Quintile 3 - Rf -0.0028 1.0253∗∗ - - -
(0.0024) (0.0510) - - -

Quintile 4 - Rf -0.0007 0.7718∗∗ - - -
(0.0023) (0.0481) - - -

Quintile 5 - Rf 0.0006∗∗ 0.7421∗∗ - - -
(0.0021) (0.0448) - - -

DMI (Q1-Q5) 0.0053∗∗ 0.2140∗∗ - - -
(0.0027) (0.0573) - - -

Quintile 1 - Rf 0.0126∗∗ - - - -
(0.0039) - - - -

Quintile 2 - Rf 0.0069 - - - -
(0.0043) - - - -

Quintile 3 - Rf 0.0044 - - - -
(0.0040) - - - -

Quintile 4 - Rf 0.0047 - - - -
(0.0033) - - - -

Quintile 5 - Rf 0.0058∗ - - - -
(0.0031) - - - -

DMI (Q1-Q5) 0.0068∗∗ - - - -
(0.0027) - - - -

Table 7: Quintile portfolios sorted on the monthly PPI change between t-5 and t-2.
Return regressions of the quintile portfolios sorted on the percentage Producer Price change over the 4-
month period starting at t-5 and ending at t-2. The first panel reports the time series regression of the
excess portfolio returns of each quintile on the four factors: the market return minus the riskfree rate
(Mktrf), the book-to-market factor (hml), the size factor (smb) and momentum (umd). The panel reports
both the regression for each quintile as well as the difference between quintile 5 (Deflationary) minus quintile
1 (Inflationary). The second panel reports CAPM regressions and the third panel reports the average return
in each quintile. Newey-West standard errors are reported in brackets below. The symbols (*) and (**)
indicate significance at the 10 and 5 percent level.
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Cofficient Std. Error t-statistic 95% Conf. Interval
cons 0.0058 0.0027 2.1843 0.0006 0.0110

mktrf 0.0787 0.0588 1.3393 -0.0371 0.1945
smb 0.1674 0.1297 1.2902 -0.0883 0.4231
hml -0.2471 0.1132 -2.1840 -0.4701 -0.0241
umd -0.0382 0.0814 -0.4697 -0.1986 0.1222

herfspread -0.0203 0.2629 -0.0771 -0.5384 0.4979

Table 8: Robustness with respect to industry competition
To assess the robustness of my PPI portfolio results to the Herfindahl Hirschmann Index (HHI) portfolios
as in Hou and Robinson (2006), I include their return spread (herfspread) as an additional factor in the
regression analysis. The table reports a time series regression with the DMI portfolio returns on the left
hand side and the 4 factors augmented with the HHI factor on the right hand side.

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Quintile 1 0.694 0.177 0.044 0.031 0.054
Quintile 2 0.166 0.542 0.214 0.055 0.023
Quintile 3 0.042 0.212 0.500 0.190 0.057
Quintile 4 0.027 0.063 0.210 0.535 0.164
Quintile 5 0.058 0.030 0.034 0.164 0.715

Table 9: Markov Probabilities
The matrix reports the Markov probabilities of firms changing from one quintile to another over a one
quarter horizon. The (i, j) element of the matrix indicates the probability of going to quintile j, while
currently residing in quintile i.
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Figure 1: Cross-section of annualized expected excess returns
The histogram shows the cross section of the expected log excess returns Et [ri,t+1] − rft of 1000 simulated
firms. Both the state variable zt and the aggregate habit level St are at their average values. The expected
excess returns are annualized.
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Figure 2: Consumption Surplus Ratios and Expected Excess Returns
The graph plots the values of the consumption surplus ratios Cit = Cit−θSit

Cit
) in the cross-section of 1000

firms, against the expected excess return of in the cross-section. The expected excess returns are annualized.
Both the state variable zt and the aggregate habit level St are at their average values.
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Figure 3: Consumption Surplus Ratios and Relative Prices
The graph plots the values of the consumption surplus ratios Cit = Cit−θSit

Cit
) in the cross-section of 1000

firms, against the relative prices ln(pit) = ln(Pit

Pt
) in the cross-section. Both the state variable zt and the

aggregate habit level St are at their average values.
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Figure 4: Productivity shocks
The graph contains three subplots. The top graph plots a simulated sample path of 400 quarters of the
difference in quarterly expected returns between the two sectors, Et(R1t+1 − R2t+1) as a function of time
in percent. For example, a value of 0.1 implies that the quarterly difference in expected returns equals
0.1%. The second graph plots the corresponding product price difference between the two sectors, given by
p1t − p2t. Note that the aggregate price index, which is a weighted average of the two prices, is normalized
to 1. As such, if the difference equals 0.10, this implies that sector 1’s price is roughly 5 percent below the
aggregate index and sector 2’s price is 5 percent above. Finally, the third plot contains the difference in
consumption surplus ratios between the two sectors, SR1t−SR2t, where SRit = (Cit − θSit) /Cit. To obtain
a benchmark for the size of this variation in the consumption surplus ratios, note that the steady state value
of each sector’s consumption surplus ratio equals 0.19.
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