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The neoclassical theory of investment has mainly been tested with physical investment, but we show that it
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many times better than physical investment. We propose a simple, new Tobin’s q proxy that accounts for
intangible capital, and we show that it is a superior proxy for both physical and intangible investment
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The neoclassical theory of investment has mainly been tested with physical investment, but we

show it also helps explain intangible investment. At the firm level, Tobin’s q explains physical and

intangible investment roughly equally well, and it explains total investment even better. Compared

to physical capital, intangible capital adjusts more slowly to changes in investment opportunities.

The classic q theory performs better in firms and years with more intangible capital: Total and even

physical investment are better explained by Tobin’s q and are less sensitive to cash flow. At the
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it is a superior proxy for both physical and intangible investment opportunities.

JEL codes: E22, G31, O33
Keywords: Intangible Capital, Investment, Tobin’s q, R&D, Organization Capital

* The Wharton School, University of Pennsylvania. Emails: petersry@wharton.upenn.edu,
luket@wharton.upenn.edu. We thank Andy Abel for extensive guidance. We also thank Christo-
pher Armstrong, Andrea Eisfeldt, Vito Gala, Itay Goldstein, João Gomes, François Gourio, Kai Li,
Juhani Linnainmaa, Vojislav Maksimovic, Justin Murfin (discussant), Thomas Philippon, Michael
Roberts, Shen Rui, Matthieu Taschereau-Dumouchel, Zexi Wang (discussant), David Wessels, Toni
Whited, Mindy Zhang, and the audiences at the 2015 European Financial Association Annual
Meeting, 2014 NYU Five-Star Conference, 2015 Trans-Atlantic Doctoral Conference, Bingham-
ton University, Federal Reserve Board of Governors, Northeastern University (D’Amore-McKim),
Penn State University (Smeal), Rutgers University, University of Chicago (Booth), University of
Lausanne and EPFL, University of Maryland (Smith), University of Minnesota (Carlson), and Uni-
versity of Pennsylvania (Wharton). We thank Venkata Amarthaluru and Tanvi Rai for excellent
research assistance, and we thank Carol Corrado and Charles Hulten for providing data. We grate-
fully acknowledge support from the Rodney L. White Center for Financial Research and the Jacobs
Levy Equity Management Center for Quantitative Financial Research.



1 Introduction

The neoclassical theory of investment was developed more than 30 years ago, when firms mainly

owned physical assets like property, plant, and equipment (PP&E). As a result, empirical tests of the

theory have focused almost exclusively on physical capital. Since then, the U.S. economy has shifted

toward service- and technology-based industries, which has made intangible assets like human

capital, innovative products, brands, patents, software, customer relationships, databases, and

distribution systems increasingly important. Corrado and Hulten (2010) estimate that intangible

capital makes up 34% of firms’ total capital in recent years. Despite the importance of intangible

capital, researchers have almost always excluded it when testing investment theories.

Is there a role for intangible capital in the neoclassical theory of investment? If so, how must

we adapt our empirical tests? Is the theory still relevant in an economy increasingly dominated

by intangible capital? For example, Hayashi’s (1982) classic q-theory of investment predicts that

Tobin’s q, the ratio of capital’s market value to its replacement cost, perfectly summarizes a firm’s

investment opportunities. As a result, Tobin’s q has become “arguably the most common regressor

in corporate finance” (Erickson and Whited, 2012). How should researchers proxy for investment

opportunities in an increasingly intangible economy, and how well do those proxies work?

To answer these questions, we revisit the basic empirical facts about the relation between corporate

investment, Tobin’s q, and free cash flow. A very large investment literature, both in corporate

finance and macroeconomics, is built upon these fundamental facts, so it is important to understand

how the facts change when we account for intangible capital. We show that some facts do change

significantly, and we discuss the implications for our theories of investment. Most importantly, we

show that the classic q theory of investment, despite originally being designed to explain physical

investment, also helps explain intangible investment. In other words, the neoclassical theory of

investment is still quite relevant. An important component of our analysis is a new Tobin’s q

proxy that accounts for intangible capital. We show that this new proxy captures firms’ investment

opportunities better than other popular proxies, thus offering a simple way to improve corporate

finance regressions without additional econometrics.

To guide our empirical work, we begin with a theory of a firm that invests optimally in physical
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and intangible capital over time. The theory is a standard neoclassical investment-q theory in the

spirit of Hayashi (1982) and Abel and Eberly (1994). Like physical capital, intangible capital is

costly to obtain and helps produce future profits, albeit with some risk. For this fundamental

reason, it makes sense to treat intangible capital as capital in the neoclassical framework. Our

theory predicts that a firm’s physical and intangible investment rates should both be explained

well by a version of Tobin’s q we call “total q,” which equals the firm’s market value divided by the

sum of its physical and intangible capital stocks.

We test this and other predictions using data on public U.S. firms from 1975 to 2011. We

measure a firm’s intangible capital as the sum of its knowledge capital and organization capital.

We interpret R&D spending as an investment in knowledge capital, and we apply the perpetual-

inventory method to a firm’s past R&D to measure the replacement cost of its knowledge capital.

We similarly interpret a fraction of past selling, general, and administrative (SG&A) spending as an

investment in organization capital, which includes human capital, brand, customer relationships,

and distribution systems. Our measure of intangible capital builds on the measures of Lev and

Radhakrishnan (2005); Corrado, Hulten, and Sichel (2009); Corrado and Hulten (2010, 2014);

Eisfeldt and Papanikolaou (2013, 2014); Falato, Kadyrzhanova, and Sim (2013); and Zhang (2014).

We define a firm’s total capital as the sum of its physical and intangible capital, both measured at

replacement cost. Guided by our theory, we measure total q as the firm’s market value divided by

its total capital, and we scale the physical and intangible investment rates by total capital.

While our intangible-capital measure has limitations, we believe, and the data confirm, that an

imperfect proxy is better than setting intangible capital to zero. A benefit of the measure is that it

is easily computed for all public U.S. firms back to 1975, and it only requires Compustat data and

other easily downloaded data. Code for computing the measure will eventually be on the authors’

websites.

Our analysis begins with OLS panel regressions of investment on q. Consistent with our theory,

total q explains physical and intangible investment roughly equally well: Their within-firm R2

values are 21% and 28%, respectively. Total q explains the sum of physical and intangible investment

(“total investment”) even better, delivering an R2 of 33%. Judging by R2, the neoclassical theory of
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investment works at least as well for intangible capital as for physical capital, and works even better

for an all-inclusive measure of capital. Also consistent with our theory, the literature’s standard

investment regression, which excludes intangible capital, typically delivers lower R2 values.

According to the theory, physical and intangible investment should comove, because they share

the same marginal productivity of capital, as proxied by total q. The data support this view: The

within-firm correlation between physical and intangible investment is 31% but drops to 17% after

controlling for total q.

Throughout the corporate finance literature, researchers use Tobin’s q to proxy for firms’ in-

vestment opportunities. Our OLS R2 values help evaluate these proxies. We find that including

intangible capital in our q measure produces a superior proxy for investment opportunities, no mat-

ter how we measure investment. First we compare total q to the investment literature’s standard q

measure, which scales firm value by physical capital (PP&E) alone. Total q is better at explaining

physical, intangible, and total investment, as well as R&D investment and the literature’s standard

investment measure (CAPX/PP&E). It is also popular to measure Tobin’s q as the firm’s market

value scaled by the book value of assets. The problem with this measure is that “Assets” on the

balance sheet excludes the vast majority of firms’ intangible capital, because U.S. accounting rules

treat R&D and SG&A as operating expenses, not capital investments. Like Erickson and Whited

(2006, 2012), we find that market-to-book-assets ratios are especially poor proxies for investment

opportunities.

The OLS regressions suffer from two well known problems. The first is that the slopes on q

are biased due to measurement error in q. Second, the OLS R2 depends not just on how well q

explains investment, but also on how well our q proxies explain the true, unobservable q. To address

these problems, we re-estimate the investment models using Erickson, Jiang, and Whited’s (2014)

cumulant estimator. This estimator produces unbiased slopes and a statistic τ2 that measures how

close our q proxy is to the true, unobservable q. Specifically, τ2 is the R2 from a hypothetical

regression of our q proxy on the true q. We find that τ2 is 21% higher when we include intangible

capital in the investment-q regression, implying that our new q proxy is closer to the true q.

According to our theory, slope coefficients of investment on total q help measure capital adjust-
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ment costs. Specifically, the inverse q-slope for physical (intangible) investment measures convex

component of physical (intangible) capital’s adjustment costs. We find that intangible investment’s

q-slope is roughly half as large as physical investment’s, implying intangible capital’s convex ad-

justment costs are twice as large as those for physical capital. This finding supports the literature’s

conjecture that intangible capital is costlier than physical capital to adjust, because adjusting in-

tangible capital often requires replacing highly trained employees (e.g., Grabowski, 1968; Brown,

Fazzari, and Petersen, 2009). An important implication of our result is that firms will adjust more

slowly to changes in investment opportunities as the economy shifts toward intangible capital.

We also find that accounting for intangibles roughly doubles the q-slope for physical investment,

implying significantly lower convex adjustment costs for physical capital than previously believed.

Like other simple q theories, ours predicts that cash flow should not help explain investment

after controlling for q. Researchers typically measure cash flow as profits net of R&D and SG&A.

Since R&D and at least part of SG&A are actually investments, one should add them back to

measure cash flow available for investment. After making this adjustment, we find that physical

investment becomes more sensitive to cash flow than previously believed. On this dimension,

the neoclassical theory fits the data worse after accounting for intangibles. In contrast, the R&D

component of intangible investment is insensitive to cash flow, supporting the theory. Since SG&A’s

investment component is difficult to measure, it remains unclear whether intangible investment

overall is more sensitive than physical investment to cash flow. Financing constraints are unlikely

to explain the opposing cash-flow results for physical and R&D capital, since financing constraints

are arguably more severe for R&D capital due to its lower collateral value (Almeida and Campello,

2007; Falato, Kadyrzhanova, and Sim, 2013). More recent theories predict an investment-cash flow

sensitivity even without financing constraints.1 For example, diseconomies of scale can make cash

flow informative about investment opportunities, even controlling for Tobin’s q. Without a full

structural estimation, it is difficult to tell whether our cash-flow results are driven by differences in

financing constraints, diseconomies of scale, or some other source.

1Examples include Gomes (2001), Alti (2003), Cooper and Ejarque (2003), Hennessy and Whited (2007), Abel
and Eberly (2011), Gourio and Rudanko (2014), and Abel (2014).
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Several important investment studies use data only from manufacturing firms.2 Surprisingly,

we find that the classic q theory fits the data better outside the manufacturing industry and,

more generally, in firms and years with more intangible capital. Specifically, investment is usually

better explained by q and is less sensitive to cash flow in subsamples with more intangibles. These

results even hold using the literature’s standard measures that exclude intangibles. Again, our

results imply that the neoclassical theory of investment is just as relevant, if not more so, in an

increasingly intangible economy. Why the theory fits better in high-intangible settings remains

unclear. We find no robust evidence that high-intangible firms are closer to the theory’s ideal of

perfect competition and constant returns to scale. Also, high-intangible firms arguably face more

financing constraints, which should make theory fit worse, not better.

Some of our main results are even stronger in macroeconomic time-series data. For example, the

literature’s standard investment-q regression, which excludes intangibles, delivers an R2 of just 4%,

whereas the regression including intangible capital produces an R2 of 61%. In first differences, total

q explains physical and intangible capital roughly equally well. Again, the neoclassical theory of

investment applies just as well, if not better, to intangible capital.

1.1 Related literature

The empirical investment-q literature is extensive and dates back at least to Ciccolo (1975) and

Abel (1980). Hassett and Hubbard (1997) and Caballero (1999) review the literature. Tests of the

classic q theory using physical capital have been disappointing. Investment is typically sensitive

to cash flow, explained poorly by q (low R2), and produces implausibly large adjustment-cost

parameters (low q-slopes). We show that including intangible capital helps solve the latter two

problems but not the first one. Other attempts to solve these problems with better measurement

include using a “fundamental q” instead of market values directly (Abel and Blanchard, 1986); using

bond prices (Philippon, 2009); correcting for measurement error (Erickson and Whited, 2000, 2012;

Erickson, Jiang, and Whited, 2014); and using state variables directly (Gala and Gomes, 2013).

2Examples include Fazzari, Hubbard, and Petersen (1988); Almeida and Campello (2007); and Erickson and
Whited (2012). A common reason is that manufacturing firms’ capital is easier to measure. Our τ2 statistics confirm
that the literature’s standard q proxy has less measurement error in the manufacturing industry compared to other
industries.
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We also correct for measurement error, and we show that including intangibles yields even larger

improvements than using bond prices.

This is not the first paper to examine the empirical relation between intangible investment and

Tobin’s q. Eisfeldt and Papanikolaou (2013) find a positive relation between investment in organi-

zation capital and q. Almeida and Campello (2007) and others use q and cash flow to forecast R&D

investment. Chen, Goldstein and Jiang (2007) use q to forecast the sum of physical investment

and R&D. Closer to our specifications, Baker, Stein, and Wurgler (2002) measure investment as

the sum of CAPX, R&D, and SG&A, and they regress them on q. Gourio and Rudanko (2014)

examine the relation between q and investment in customer capital, a type of intangible capital.

All these papers use a q proxy that excludes intangibles from the denominator. Besides having a

different focus, our paper is the first to include all types of intangible capital not just in investment,

but also in Tobin’s q and cash flow. Including intangibles in all three measures is important for

delivering our results. Belo, Lin, and Vitorino (2014) show that physical and brand investment are

both procyclical, which is related to our comovement result, but they do not examine Tobin’s q.

Almeida and Campello (2007) examine how asset tangibility and financial constraints affect the

investment-cash flow relation. Like us, they find a higher investment-cash flow sensitivity for firms

using less intangibles. Unlike our measures of asset intangibility, theirs exclude firms’ internally

created intangible assets, which we find make up the vast majority of intangible capital.

Li, Liu, and Xue (2014) structurally estimate a q-theory model that includes intangible capital.

Like us, they find that intangible capital has larger adjustment-cost parameters than physical

capital, and including intangibles decreases physical capital’s estimated adjustment costs. Unlike

us, they focus on the cross-section of stock returns, and they exclude organization capital.

The paper proceeds as follows. Section 2 presents our theory of investment in physical and

intangible capital. Section 3 describes the data and intangible-capital measure we use to test

the theory’s predictions. Section 4 presents full-sample results, and Section 5 compares results

across different types of firms, industries, and years. Section 6 contains results for the overall

macroeconomy. Section 7 explores the robustness of our empirical results, and section 8 concludes.
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2 Intangible capital and the neoclassical theory of investment

In this section we review the neoclassical theory of investment, and we argue that intangible capital

fits well into the theory. We simplify and modify Abel and Eberly’s (1994) theory of investment

under uncertainty to include two capital goods that we interpret as physical and intangible capital.

We present a stylized model, since our goal is to provide theoretical motivation for our empirical

work, not to make a theoretical contribution. Wildasin (1984), Hayashi and Inoue (1991), and

others already provide theories of investment in multiple capital goods. First we present the model’s

assumptions and predictions, then we discuss them.

2.1 Model assumptions and empirical implications

The model features an infinitely lived, perfectly competitive firm i that holds Kphy
it units of physical

capital and Kint
it units of intangible capital at time t. The firm’s total capital is defined as Ktot =

Kphy +Kint. At each instant t the firm chooses the investment rates Iphy and Iint that maximize

firm value Vit:

Vit = max
Iphyi,t+s, I

int
i,t+s

∫ ∞
0

Et[Π
(
Ktot
i,t+s, εi,t+s

)
−cphyi

(
Iphyi,t+s,K

tot
i,t+s, p

phy
i,t+s

)
−cinti

(
Iinti,t+s,K

tot
i,t+s, p

int
i,t+s

)
]e−rsds

(1)

subject to

dKm = (Im − δKm) dt, m = phy, int. (2)

Both types of capital depreciate at the same rate δ. The profit function Π depends on a shock ε

and is assumed linearly homogenous in Ktot. The two investment cost functions c equal

cmi
(
Im,Ktot, pm

)
= pmIm +Ktot

[
ζmi

Im

Ktot
+
γmi
2

(
Im

Ktot

)2
]
, m = phy, int, (3)

where γi > 0. The first term denotes the direct purchase/sale cost of investment, with each new

unit of capital costing pm. The second term equals the cost of adjusting the stock of capital type

m. Capital prices pphyit and pintit , along with profitability shock εit, fluctuate over time according to
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a general stochastic diffusion process

dyit = µ (yit) dt+ Σ (yit) dBit, (4)

where yit =
[
εit pphyit pintit

]′
.

Next we present our four main predictions. All proofs are in Appendix A.

Prediction 1: Physical and intangible capital share the same marginal q. Marginal q equals

average q, the ratio of firm value to its total capital stock:

∂Vit

∂Kphy
it

=
∂Vit
∂Kint

it

=
∂Vit
∂Ktot

it

=
Vit
Ktot
it

≡ qtot
(
εit, p

phy
it , pintit

)
. (5)

Marginal q equals ∂V/∂K and measures the benefit of adding an incremental unit of capital

(either physical or intangible) to the firm. Marginal q equals average q, because we assume constant

returns to scale, perfect competition, and perfect substitutes in production and depreciation. This

prediction provides a rationale for measuring Tobin’s q as qtot, firm value divided by Ktot, the sum

of physical and intangible capital. The value of qtot depends endogenously on the shock ε and the

two capital prices.

The firm chooses its optimal investment rates by equating their marginal q and their marginal

cost of investment. Applying this condition to (3) yields our next prediction.

Prediction 2: The firm’s optimal physical and intangible investment rates follow

ιphyit =
Iphyit

Ktot
it

=
1

γphyi

(
qtotit − ζ

phy
i − pphyit

)
(6)

ιintit =
Iintit

Ktot
it

=
1

γinti

(
qtotit − ζinti − pintit

)
. (7)

Prediction 2 says that the physical and intangible investment rates, both scaled by total capital,

vary with qtot. One empirical implication is that physical and intangible investment rates should

be correlated. The correlation may not be perfect, though, because adjustment-cost parameters

may not be perfectly correlated across firms, and the prices pphyit and pintit may not be perfectly

8



correlated either across firms or over time.

The next predictions follows immediately from Prediction 2 and forms the basis of our empirical

work. Consider a panel of firms indexed by i. We assume parameters γphy and γint are constant

across firms, but other parameters and shocks may vary across firms. We assume the two capital

prices pmit can be decomposed as pmi + pmt .

Prediction 3. In an OLS panel regression of ιphyit on qtotit and firm and time fixed effects (FEs),

the slope on q equals 1/γphy. If the dependent variable is instead ιintit , the q−slope equals 1/γint. If

the dependent variable is ιtotit , the q−slope equals 1/γphy + 1/γint. Any additional regressors, such

as free cash flow, should not enter significantly if added to any of these regressions.

Prediction 3 says that total q helps explain all three investment measures, and it shows that the

OLS slopes identify the adjustment-cost parameters γ. The firm and year FEs are needed to absorb

the terms −ζi − pit in equations (6) and (7).

To our knowledge, the next predictions are new to the literature. Prediction 4 helps us understand

the investment literature’s typical regression, which excludes intangible capital and instead scales

investment and q by physical capital alone.

Prediction 4: Define q∗it = Vit/K
phy
it and ι∗it = Iphyit /Kphy

it . In an OLS panel regression of ι∗it on

q∗it and firm and time fixed effects (FEs), the slope coefficient is a downward-biased estimate of

1/γphy, and the R2 is lower than the R2 from Prediction 3’s regressions.

According to our theory, this regression is misspecified, because the ratio −Ktot
it /K

phy
it is part of

the regression’s disturbance and cannot be explained by the FEs. Its q-slope is downward biased,

meaning it produces upward-biased estimates of the adjustment-cost parameter γphy, because q∗it

depends on the ratio Ktot
it /K

phy
it , making the regressor negatively related to the disturbance.

At this point, we have imposed several restrictive assumptions. To help judge the model’s em-

pirical relevance, we establish one last prediction and use it as a consistency check in our empirical

work. This last prediction links firms’ use of intangible capital to their adjustment costs and q-

slopes. If we impose the additional assumptions that physical and intangible capital have the same
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linear adjustment cost parameters (ζphyi = ζinti ) and purchase prices (pphyit = pintit ), then

lim
t→∞

Kint
it

Ktot
it

=
γphy

γphy + γint
=

βint

βint + βphy
, (8)

where βint and βphy are Prediction 3’s slopes of ιint and ιphy, respectively, on qtot. Intuitively, if

physical and intangible capital are identical except for their adjustment cost parameters γ, then a

firm will hold relatively less intangible capital if intangible capital is costlier to adjust (γint > γphy).

Section 5 performs a consistency check by comparing equation (8)’s ratio of regression slopes across

firms with different amounts of intangible capital.

2.2 Discussion

To summarize, our simple theory predicts that total q helps explains physical, intangible, and

total investment when we scale them by the firm’s total capital. It also illustrates how investment

regressions can identify the convex part (γ) of capital adjustment costs. The theory also tells us that

including intangible capital produces a better-specified investment regression and more accurate

adjustment-cost estimates.

Next, we discuss the theory’s assumptions and limitations. Overall, we argue that intangible

capital fits well into the neoclassical framework.

Conceptually, spending on intangible assets qualifies as a capital investment, because it reduces

current cash flow in order to increase future cash flow (Corrado, Hulten, and Sichel, 2005, 2009).

There is ample evidence that intangible investments increase firms’ future profits, as our theory

assumes. A large R&D literature (e.g., Lev and Sougiannis, 1996) shows that R&D investments

increase firms’ future profits. Recognizing this fact, the Bureau of Economic Analysis (BEA)

began capitalizing R&D in satellite accounts in 1994, and in core NIPA accounts in 2013. A large

marketing literature (e.g., Aaker, 1991; Srivastava, Shervani, and Fahey, 1997) shows that firms

with stronger brands earn higher profits and are worth more, all else equal. More generally, Eisfeldt

and Papanikoloau (2013) show that firms using more organization capital are more productive after

accounting for physical capital and labor. Even though a firm does not own its workers, employee

training still builds the firm’s human capital, because training is costly and increases the firm’s
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future profits.

While employee training and brand building may entail relatively low risk, investments like R&D

projects are highly risky and sometimes fail completely. The same is true for physical investments,

though. The theory above is designed to handle investments with risky payoffs, so payoff risk is

no reason to exclude intangible capital from the neoclassical theory. In addition to payoff risk,

firms also face depreciation risk. Our theory assumes a constant depreciation rate for intangible

capital, whereas the true rate is likely random. For example, it might be appropriate to write off

a large portion of knowledge capital when a firm narrowly loses a patent race. Physical capital’s

true depreciation rate is also likely random, however. For example, an unexpected product-market

change could make a machine obsolete. Again, there is no conceptual difference between physical

and intangible capital here, although there may be a difference of degree.

When researchers test investment theories, they usually measure investment as CAPX and capital

as PP&E. These two measures add together physical assets that are conceptually very different

from each other, like timberland, medical equipment, oil reserves, computers, buildings, and so on.

By using such measures, researchers implicitly treat these physical assets as perfect substitutes.

Similarly, our theory adds together many different types of intangible assets into Kint, and then it

assumes the firm’s profits depend on Ktot, the sum of physical and intangible capital. We therefore

treat all assets as perfect substitutes in producing profits, although we do allow them to have

potentially different adjustment costs. In our opinion, a natural first step is to treat intangible

capital the same way researchers for decades have treated physical capital. Of course, in reality

physical and intangible capital may be complements, not substitutes. One might therefore expect

our empirical measures, which simply add together all capital, to produce poor results. We find

the opposite, which is somewhat surprising and suggests that our simple model provides a useful

approximation of reality.

The theory highlights an important limitation of investment regressions. Whited (1994) and

Erickson and Whited (2000) explain that investment regressions cannot identify the level of adjust-

ment costs. For example, our theory predicts that the linear adjustment-cost parameters ζ are not

separately identified from firm-specific capital prices p. The investment regression only identifies
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the quadratic adjustment-cost parameters γ, meaning the investment regression can only identify

the convex component of adjustment costs. This convex component is interesting, however, since

it determines how investment responds to investment opportunities.

3 Firm-level data

Our sample includes all Compustat firms except regulated utilities (SIC Codes 4900–4999), financial

firms (6000–6999), and firms categorized as public service, international affairs, or non-operating

establishments (9000+). We also exclude firms with missing or non-positive book value of assets

or sales, and firms with less that $5 million in physical capital, as is standard in the literature. We

use data from 1975 to 2011, although we use earlier data to estimate firms’ intangible capital. Our

sample starts in 1975, because this is the first year that FASB requires firms to report R&D. We

winsorize all regression variables at the 1% level to remove outliers.

3.1 Tobin’s q

Guided by our theory, we measure total q by scaling firm value by the sum of physical and intangible

capital:

qtotit =
Vit

Kphy
it +Kint

it

. (9)

We measure the replacement cost of physical capital, Kphy, as the book value of property, plant

and equipment (Compustat item ppegt). The next sub-section defines our measure of Kint, the

replacement cost of intangible capital. We measure the firm’s market value V as the market

value of outstanding equity (Compustat items prcc f times csho), plus the book value of debt

(Compustat items dltt+ dlc), minus the firm’s current assets (Compustat item act), which include

cash, inventory, and marketable securities.

For comparison, we also examine the literature’s standard Tobin’s q measure used by Fazzari,

Hubbard and Petersen (1988), Erickson and Whited (2012), and many others:

q∗it =
Vit

Kphy
it

. (10)
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Erickson and Whited (2006, 2012) compare several alternate Tobin’s q measures, including the

market-to-book-assets ratio, and they find that q∗ best explains investment. The correlation be-

tween q∗ and qtot is 0.82.

3.2 Intangible capital

We briefly review the U.S. accounting rules for intangible capital before defining our measure.3 The

accounting rules depend on whether the firm creates the intangible asset internally or purchases it

externally.

Intangible assets created within a firm are expensed on the income statement and almost never

appear as assets on the balance sheet. For example, a firm’s spending to develop knowledge,

patents, or software is expensed as R&D. Advertising to build brand capital is a selling expense

within SG&A. Employee training to build human capital is a general or administrative expense

within SG&A. There are a few exceptions where internally created intangibles are capitalized on

the balance sheet, but these are small in magnitude.4

When a firm purchases an intangible asset externally, for example by acquiring another firm, the

firm typically capitalizes the asset on the balance sheet as part of Intangible Assets, which equals

the sum of Goodwill and Other Intangible Assets. The asset is booked in Other Intangible Assets

if the acquired asset is “separately identifiable,” such as a patent, software, or client list. Acquired

assets that are not separately identifiable, like human capital, are in Goodwill. When an intangible

asset becomes impaired, firms are required to write down its book value.

We define the replacement cost of intangible capital, denoted Kint, to be the sum of the firm’s

externally purchased and internally created intangible capital. We define each in turn.

We measure externally purchased intangible capital as Intangible Assets from the balance sheet

(Compustat item intan). We set this value to zero if missing. We keep Goodwill in Intangible Assets

in our main analysis, because Goodwill does include the fair cost of acquiring intangible assets that

3Chapter 12 in Kieso, Weygandt, and Warfield (2010) provides a useful summary of the accounting rules for
intangible assets. They also provide references to relevant FASB codifications.

4As explained below, our measure will capture these exceptions via balance-sheet Intangibles. Firms capitalize the
legal costs, consulting fees, and registration fees incurred when developing a patent or trademark. A firm may start
capitalizing software spending only after the product reaches “technological feasibility” (for externally sold software)
or reaches the coding phase (for internally used software). The resulting software asset is part of Other Intangibles
(intano) in Compustat.
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are not separately identifiable. Since Goodwill may be contaminated by non-intangibles, such as

a market premium for physical assets, in Section 7 we also try excluding Goodwill from external

intangibles and show that our results are almost unchanged. Our mean (median) firm purchases

only 19% (3%) of its intangible capital externally, meaning the vast majority of firms’ intangible

assets are missing from their balance sheets. There are important outliers, however. For example,

41% of Google’s intangible capital in 2013 had been purchased externally. Including these externally

purchased intangibles is an innovation in our measure relative to those in the literature.

Measuring the replacement cost of internally created intangible assets is difficult, since they

appear nowhere on the balance sheet. Fortunately, we can construct a proxy by accumulating past

intangible investments, as reported on firms’ income statements. We define the stock of internal

intangible capital as the sum of knowledge capital and organization capital, which we define next.

A firm develops knowledge capital by spending on R&D. We estimate a firm’s knowledge capital

by accumulating past R&D spending using the perpetual inventory method:

Git = (1− δR&D)Gi,t−1 +R&Dit, (11)

where Git is the end-of-period stock of knowledge capital, δR&D is its depreciation rate, and R&Dit

is real expenditures on R&D during the year. The Bureau of Economic Analysis (BEA) uses a

similar method to capitalize R&D, as do practitioners when valuing companies (Damodaran, 2001,

n.d.). For δR&D, we use the BEA’s industry-specific R&D depreciation rates.5 We measure annual

R&D using the Compustat variable xrd. We use Compustat data back to 1950 to compute (11),

but our regressions only include observations starting in 1975. Starting in 1977, we set R&D to

zero when missing, following Lev and Radhakrishnan (2005) and others.6

5The BEA’s R&D depreciation rates are from the analysis of Li (2012). The depreciation rates range from 10%
in the pharmaceutical industry to 40% for computers and peripheral equipment. Following the BEA’s guidance, we
use a depreciation rate of 15% for industries not in Li’s Table 4. Our results are virtually unchanged if we apply a
15% depreciation rate to all industries.

6We start in 1977 to give firms two years to comply with FASB’s 1975 R&D reporting requirement. If we see
a firm with R&D equal to zero or missing in 1977, we assume the firm was typically not an R&D spender before
1977, so we set any missing R&D values before 1977 to zero. Otherwise, before 1977 we either interpolate between
the most recent non-missing R&D values (if such observations exist) or we use the method in Appendix A (if those
observations do not exist). Starting in 1977, we make exceptions in cases where the firm’s assets are also missing.
These are likely years when the firm was privately owned. In such cases, we interpolate R&D values using the nearest
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One challenge in applying the perpetual inventory method in (11) is choosing a value for Gi0, the

capital stock in the firm’s first non-missing Compustat record, which usually coincides with the

IPO. We estimate Gi0 using data on the firm’s founding year, R&D spending in its first Compustat

record, and average pre-IPO R&D growth rates. With these data, we estimate the firm’s R&D

spending in each year between its founding and appearance in Compustat. We apply a similar

approach to SG&A below. Appendix B provides additional details. Section 7 shows that a simpler

measure assuming Gi0 = 0 produces an even stronger investment-q relation than our main measure.

We consider that simpler measure a reasonable alternate proxy for investment opportunities.

Next, we measure the stock of organization capital by accumulating a fraction of past SG&A

spending using the perpetual inventory method, as in equation (11). The logic is that at least

part of SG&A represents an investment in organization capital through advertising, spending on

distribution systems, employee training, and payments to strategy consultants. We follow Hulten

and Hao (2008), Eisfeldt and Papanikoloau (2014), and Zhang (2014) in counting only 30% of SG&A

spending as an investment in intangible capital. We interpret the remaining 70% as operating costs

that support the current period’s profits. Section 7 shows that our conclusions still go through,

albeit with smaller magnitudes, if we use values other than 30%. We follow Falato, Kadyrzhanova,

and Sim (2013) in using a depreciation rate of δSG&A = 20%, and in Section 7 we show that our

conclusions are robust to alternate depreciation rates.

Measuring SG&A from Compustat data is not trivial. Companies typically report SG&A and

R&D separately. Compustat, however, almost always adds them together in a variable misleadingly

labeled “Selling, General and Administrative Expense” (item xsga). We must therefore subtract

xrd from xsga to isolate the SG&A that companies report. Appendix B provides additional details.

Our measure of internally created organization capital is almost identical to Eisfeldt and Pa-

panikolaou’s (2012, 2013, 2014). They validate the measure in several ways. They document a

positive correlation between firms’ use of organization capital and Bloom and Van Reenen’s (2007)

managerial quality score. This score is associated with higher firm profitability, production effi-

ciency, and productivity of information technology (IT) (Bloom, Sadun, and Van Reenen, 2010).

non-missing values.
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Eisfeldt and Papanikoloau (2013) show that firms using more organization capital are more pro-

ductive after accounting for physical capital and labor, they spend more on IT, and they employ

higher-skilled workers. They show that firms with more organization capital list the loss of key

personnel as a risk factor more often in their 10-K filings. Practitioners also use our approach:

A popular textbook on value investing recommends capitalizing SG&A to measure assets missing

from the balance sheet (Greenwald et al., 2004).

Our measure of intangible capital has the benefit of being easily computed for the full Compustat

sample. The measure has limitations, however, as discussed in Section 2.2. Section 4.2 addresses

concerns about measurement-error bias, and Section 7 shows that our conclusions are robust to

several alternate ways of measuring intangible capital. Overall, we believe, and the data confirm,

that an imperfect proxy for intangible capital is better than setting it to zero.

3.3 Investment

Guided by our theory, we measure the firm’s physical, intangible, and total investment rates as

ιphyit =
Iphyit

Ktot
i,t−1

, ιintit =
Iintit

Ktot
i,t−1

, ιtotit = ιphyit + ιintit . (12)

We measure physical investment Iphy as capital expenditures (Compustat item capx), and we

measure intangible investment, Iint, as R&D + 0.3×SG&A. This definition assumes 30% of SG&A

represents an investment, as we assume when estimating capital stocks. For comparison, we also

examine the literature’s standard physical investment measure, denoted ι∗ in our theory:

ι∗it =
Iphyit

Kphy
i,t−1

. (13)

The correlation between ιphy and ι∗ is 0.83.
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3.4 Cash flow

Erickson and Whited (2012), Almeida and Campello (2007), and others measure free cash flow as

c∗it =
IBit +DPit

Kphy
i,t−1

, (14)

where IB is income before extraordinary items and DP is depreciation expense. This is the pre-

depreciation free cash flow available for physical investment or distribution to shareholders. One

shortcoming of c∗ is that it treats R&D and SG&A as operating expenses, not investments. In

addition to the standard measure c∗, we use an alternate cash-flow measure that recognizes R&D

and part of SG&A as investments. Specifically, we add intangible investments back into the free

cash flow so that we measure the profits available for total, not just physical, investment:

ctotit =
IBit +DPit + Iintit (1− κ)

Kphy
i,t−1 +Kint

i,t−1
. (15)

Lev and Sougiannis (1996) similarly adjust earnings for intangible investments, as do practitioners

(Damodaran, 2001, n.d.). Since accounting rules allow firms to expense intangible investments,

the effective cost of a dollar of intangible capital is only (1− κ), where κ is the marginal tax rate.

When available, we use simulated marginal tax rates from Graham (1996). Otherwise, we assume

a marginal tax rate of 30%, which is close to the mean tax rate in the sample. The correlation

between ctot and c∗ is 0.77.

3.5 Summary statistics

Table 1 contains summary statistics. We define intangible intensity as a firm’s ratio of intangible

to total capital, at replacement cost. The mean (median) intangible intensity is 43% (45%), so

almost half of capital is intangible in our typical firm/year. Knowledge capital makes up only

24% of intangible capital on average, so organization capital makes up 76%. The median firm

has almost no knowledge capital, since almost half of firms report no R&D. The average qtot is

mechanically smaller than q∗, since its denominator is larger. The gap is dramatic in some cases.

For example, Google’s q∗ is 10.1 in 2013, but its qtot is only 3.2. Researchers sometimes discard q
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observations exceeding 10, arguing they are unrealistically large. Total q exceeds 10 in only 1% of

observations, compared to 7% for standard q, suggesting total q is a more reliable measure. The

standard deviation of qtot is 74% lower than for q∗. The standard deviation scaled by its mean is

also lower. The average physical and intangible investment rates are roughly equal, but physical

investment is more volatile and right-skewed.

Figure 1 shows that the average intangible intensity has increased over time, especially in the

1990s. The figure also shows that high-tech and health firms are heavy users of intangible capital,

while manufacturing firms use less. Somewhat surprisingly, even manufacturing firms’ capital is

30–34% intangible on average.

4 Full-sample results

In this section we test the theory’s predictions in our full sample. The next section compares

results across subsamples. We begin with the classic OLS panel regressions of Fazarri, Hubbard,

and Petersen (1988). We then correct for measurement-error bias in Section 4.2.

4.1 OLS results and comovement in investment

Table 2 contains results from OLS regressions of investment on lagged q and firm and year fixed

effects. The columns compare different investment measures. For now we focus on R2 values,

because the regression coefficients suffer from measurement-error bias. This bias is especially severe

for cash-flow coefficients (Erickson and Whited, 2000; Abel, 2014), so we exclude cash flow until

the next subsection.

Taken literally, the theory predicts an R2 of 100% in Panel A when we measure investment as

ιphy, ιint, or ιtot. We find R2 values that are well below 100%. One potential explanation is that

we measure q with error, an issue we address in the next subsection. Another is that slopes vary

across firms, or that shocks hit firms’ marginal adjustment cost functions. Our theory’s prediction

holds better for intangible investment (R2 = 27.9%) than for physical investment (R2 = 20.9%),

and it holds better still for total investment (R2 = 32.7%). We also check that this result holds for

the portion of intangible investment coming from R&D, since the portion from SG&A is measured

with more error. When we measure investment as R&D scaled by total capital, we find an R2 of
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27.0% , which is similar to the 27.9% R2 from our main intangible investment measure, ιint.

Our theory predicts a lower R2 for the literature’s usual regression of CAPX/PPE on standard

q, shown in Panel B’s last column. The R2 here is indeed low (23.3%) relative to all the R2 values

in Panel A, with one exception: Standard q explains standard investment slightly better than total

q explains our new physical-investment measure, ιphy. For ιphy, measurement error in intangible

capital may be offsetting any improvements from including intangible capital in the denominator

of q.

One interesting implication of our theory is that physical and intangible investment should comove

strongly within firms, because the two capital types have the same marginal productivity and hence

the same marginal q. We find strong comovement in the data: ιphy and ιint have a 31% correlation

after we remove firm and time fixed effects from both. According to the theory, this comovement

should decrease if we remove the effects of total q. Using the regression residuals for ιphy and ιint

from Panel A, we find that the correlation decreases to 17%. This remaining correlation may just

be an artifact of measurement error in total q.

Throughout the corporate finance literature, researchers use Tobin’s q to proxy for firms’ in-

vestment opportunities. Table 2’s R2 values help us judge how well these proxies work and, in

particular, whether total q or the literature’s standard q measure is the better proxy for investment

opportunities. Panel B shows how well standard q explains the five investment measures, and Panel

C tests whether total q or standard q delivers a higher R2.7 For all five investment measures, total

q delivers a larger R2 value than standard q. The improvement in R2 ranges from 1–8 percent-

age points, or from 5–50%. Some of the improvements are modest in magnitude, but statistical

significance in Panel C is quite high, with t-statistics ranging from 3.4 to 25.

It is tempting to run a horse race by including total and standard q in the same regression.

Since both variables proxy for q with error, their resulting slopes would be biased in an unknown

direction, making the results difficult to interpret (Klepper and Leamer, 1984). For this reason,

we do not tabulate results from such a horse race. We simply note that regressing either ιphy or

7Throughout, we conduct inference on R2 values using influence functions (Newey and McFadden, 1994). In a
regression y = βx+ ε, this approach takes into account the estimation error in β, var(y), and var(x). We cluster by
firm, which accounts for autocorrelation both within and across regressions.
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ιtot on both q proxies produces a positive and highly significant slope on qtot but a negative and

less-significant slope on q∗. For ιint and ι∗, both q variables have a significantly positive slope, but

the slope on qtot is much larger in magnitude.

Outside the investment literature, it is popular to measure Tobin’s q as the firm’s market value

scaled by its book value of assets. Like Erickson and Whited (2006, 2012), we find that these market-

to-book-assets ratios are especially poor proxies for investment opportunities. They produce lower

R2 values than both standard and total q no matter how we measure investment (Online Appendix,

Table A1).

To summarize, total q explains intangible investment slightly better than physical investment

in our full sample, and it explains total investment even better. As our theory predicts, physical

and intangible investment comove strongly within firms, because they share the same q. This re-

sult suggests strong comovement between physical and intangible capital’s marginal productivities.

Judging by these results, the neoclassical theory of investment is just as relevant for intangible

capital as it is for physical capital. We also show that total q is a superior proxy for investment

opportunities no matter how we measure investment.

4.2 Bias-corrected results

According to our theory, total q is better than standard q at approximating the true, unobservable

q. We recognize, however, that total q is still a noisy proxy. For one, we measure intangible capital

with error. Also, Tobin’s q measures average q, but investment depends on marginal q in theory.

Average q equals marginal q in our simple theory, but to the extent that reality departs from this

theory, average q measures marginal q with error.8

Since we only have a proxy for q, all the OLS slopes from the previous section suffer from

measurement-error bias. We now estimate the previous models while correcting this bias using

Erickson, Jiang, and Whited’s (2014) higher-order cumulant estimator.9 The cumulant estimator

8Gala (2014) measures the differences between marginal and average q.
9The cumulant estimator supercedes Erickson and Whited’s (2002) higher-order moment estimator. Cumulants

are polynomials of moments. The estimator is a GMM estimator with moments equal to higher-order cumulants of
investment and q. Compared to Erickson and Whited’s (2002) estimator, the cumulant estimator has better finite-
sample properties and a closed-form solution, which makes numerical implementation easier and more reliable. We
use the third-order cumulant estimator, which dominates the fourth-order estimator in the estimation of τ2 (Erickson
and Whited, 2012; Erickson, Jiang, and Whited, 2014). Results are similar using the fourth-order cumulant estimator
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provides unbiased estimates of β in the following classical errors-in-variables model:

ιit = ai + qitβ + zitα+ uit (16)

pit = γ + qit + εit, (17)

where p is a noisy proxy for the true, unobservable q, and z is a vector of perfectly measured

control variables. The cumulant estimator’s main identifying assumptions are that p has non-zero

skewness, β 6= 0, and that u and ε are independent of q, z, and each other.

Since the cumulant estimator corrects for measurement error, why do we need a new q proxy

with less measurement error? The reason is that, by ignoring intangibles, the literature’s standard

physical investment and q proxies, ι∗ and q∗, are both mismeasured. Their measurement errors

are correlated with each other, violating the cumulant estimator’s assumption that u and ε are

independent of q and each other.10 We cannot solve the problem by regressing total investment on

the standard q measure (ιtot on q∗), because doing so violates the cumulant estimator’s assumption

that ε is independent of q.11 We find that the cumulant estimator produces significantly different

results depending on whether we use total or standard q. This difference confirms that the cumulant

estimator on its own cannot correct for the measurement error in the standard q measure.12

Estimation results are in Table 3. First we discuss the slopes on q. Our estimates imply that

intangible capital’s convex adjustment costs are roughly twice as large as those for physical capital.

According to our theory, the q-slopes measure the inverse capital adjustment-cost parameters γphy

and γint. Panel A’s 0.070 slope for ιphy is roughly double the 0.037 slope for ιint. We obtain a

(Online Appendix, Table A2).
10To see this, assume (1) the world behaves according to ιtotit = qitβ̃, where qit is the unobservable, true q; (2)

our empirical proxy qtotit = qit + ε̃it, where ε̃it is independently distributed; and (3) we mistakenly estimate the
errors-in-variables model using the standard measures: ι∗it = qitβ + uit, and q∗it = qit + εit. One can prove that

uit = qit
(
AitBitβ̃ − β

)
and εit = qit (Bit − 1) + Bitε̃it, where Bit = Ktot

it /K
phy
it and Ait = Iphyit /Itotit . Since uit and

εit both depend on qitBit, they are not independent of q or each other.
11To see this, suppose the previous footnote’s assumptions hold, except we instead estimate the errors-in-variables

model ιtotit = qitβ + uit, and q∗it = qit + εit. One can prove that εit = qit (Bit − 1) + ε̃itBit , so εit and qit are not
independent of each other.

12Results from this horse race between total q and standard q are in the Online Appendix, Table A3. If the
cumulant estimator could correct for the measurement error in standard q, then the two q proxies should produce
similar q-slope estimates and ρ2 values (defined below). Instead we find that using total q produces a significantly
higher q-slope (0.086 vs. 0.023) and higher ρ2 (0.423 vs. 0.314).
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similar result after controlling for cash flow (Panel B), and also if we isolate the R&D component

of intangible investment (column four). As we explain in Section 2.2, an important caveat is that

our regressions can identify the convex component but not the overall level of adjustment costs.

This result helps support Brown, Fazzari, and Petersen’s (2009) conjecture that “R&D likely has

high adjustment costs..., possibly substantially higher than the adjustment costs for physical invest-

ment....” Their argument is that R&D involves spending on highly skilled technology workers who

are costly to hire, train, and replace. Hall (2002), Himmelberg and Petersen (1994), Griliches and

Hausman (1986), and Grabowski (1968) make similar arguments about R&D, and one could make

similar arguments about human-capital investments that are part of SG&A. Empirical evidence

supporting these arguments is currently very limited.13 An important implication of our result is

that firms will adjust more slowly to shocks to their investment opportunities as the economy shifts

toward intangible capital.

Table 3 also changes how we view physical capital’s adjustment costs. Panel A’s last column

shows the literature’s standard regression, which omits intangible capital. Prediction 4 in our

theory states that this regression delivers a downward-biased estimate of 1/γphy, i.e., a downward-

biased q-slope. Consistent with this prediction, this standard regression delivers a q-slope of 0.036,

roughly half as large as the 0.070 slope from the regression using ιphy and scaling q by total capital.

As we explain in Section 2.1, the typical regression delivers downward-biased slopes because the

ratio of physical to total capital is an omitted variable that it positively related to the regressor and

negatively related to the residual. This result helps resolve a puzzle in the investment literature.

Researchers since Summers (1981) have argued that investment-q regressions produce implausibly

small q-slopes, i.e., large adjustment costs. We find that physical capital’s q-slopes are twice as

large as previously believed, once one accounts for intangible capital.

In addition to delivering unbiased q-slopes, the cumulant estimator produces two useful test

13Bernstein and Nadiri (1989a, 1989b) and Mohnen, Nadiri, and Prucha (1986) report slower adjustment speeds
for R&D capital than physical capital in most but not all industries, and for most but not all of their adjustment-cost
measures. Bernstein and Nadiri (1989a, 1989b) use data on 48 firms from 1965–1978 and 35 firms from 1959–1966,
respectively. Mohnen, Nadiri, and Prucha (1986) use three countries’ aggregate data from 1965–1977. Intangible
capital was less prevalent during these years, and U.S. firms were not required to report R&D until 1975. Li, Liu,
and Xue (2014) estimate a structural model off the cross-section of stock returns, and they find larger adjustment
costs for R&D capital. By focusing on R&D capital, all these papers exclude organization capital.
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statistics. The first, ρ2, is the hypothetical R2 from (16). Loosely speaking, ρ2 tells us how well

the true, unobservable q explains investment, with ρ2 = 1 implying a perfect relation. Taken

literally, our theory predicts ρ2 = 1 even if we measure q with error. The second statistic, τ2, is the

hypothetical R2 from (17). It tells us how well our q proxy explains true q, with τ2 = 1 implying

a perfect proxy.

Comparing the total-investment regression to the literature’s typical regression, we see that in-

cluding intangible capital produces a stronger investment-q relation (ρ2 of 0.423 vs. 0.372, a 14%

increase) and a better proxy for Tobin’s q (τ2 of 0.597 vs. 0.492, a 21% increase). On these dimen-

sions, the classic q-theory fits the data better when we account for intangible capital. Model fit is

still far from perfect, though: q explains less than half the variation in investment, and our total-q

proxy explains less than 60% of the variation in true q.

Finally, we discuss the cash-flow slopes shown in Panel B. Our simple theory predicts a zero

cash-flow slope for regressions using ιphy, ιint, and ιtot. We find that physical investment has

a significantly positive cash-flow slope, contrary to the theory’s prediction. We also find that

including intangible capital affects the sensitivity of physical investment to cash flow: The physical

investment-cash flow sensitivity is 60% higher (0.024 vs. 0.015) when we compare the specification

with ιphy to the standard regression using CAPX/PPE.

Compared to physical investment, intangible investment appears roughly twice as sensitive to

cash flow (slope of 0.050 vs. 0.024). Intangible investment is the sum of its R&D and SG&A

components. Which component is most important for producing the high investment-cash flow

sensitivity? Column four of Panel B shows that R&D investment has a slope of zero on cash flow,

consistent with the theory’s prediction. SG&A investment must be highly sensitive to cash flow.

Indeed, we find that SG&A investment has a cash-flow slope of 0.115, which is more than double

intangible investment’s 0.050 slope (Online Appendix Table A4).

One concern here is that measurement error in SG&A investment is biasing its cash-flow slope

upward. Compared to R&D, we measure SG&A investment with considerable error. Our ctot

measure is gross of SG&A investment, meaning we add back SG&A investment when computing it

(equation 15). Any measurement error in SG&A investment will therefore appear mechanically in
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both ctot and SG&A investment itself, biasing its cash-flow slope upward. For this reason, we view

0.115 as an upper bound for SG&A investment’s cash-flow sensitivity. We provide a lower bound

in the Online Appendix by creating an alternate cash-flow measure that is net of SG&A and hence

immune from this concern. SG&A investment has a statistically insignificant slope of 0.008 on this

alternate cash-flow measure. This 0.008 slope provides a lower bound for the true slope, because

netting SG&A from cash flow pushes down the cash-flow slope, and an economically meaningful

cash-flow measure should be gross of all investment, including SG&A investment. In sum, we can

only provide a wide range for SG&A investment’s cash-flow slope (0.008–0.115), which implies a

wide range in intangible investment’s cash-flow slope (0.012–0.050). It is not clear whether physical

or intangible investment is more sensitive to cash flow.

Even absent these measurement challenges, interpreting the investment-cash flow sensitivity is

notoriously difficult. Fazzari, Hubbard, and Petersen (1988) interpret it as evidence of financing

constraints. In contrast, theories by Gomes (2001), Alti (2003), Cooper and Ejarque (2003), Hen-

nessy and Whited (2007), Abel and Eberly (2011), and Gourio and Rudanko (2014) predict an

investment-cash flow sensitivity even in the absence of financing constraints. For example, decreas-

ing returns to scale can make cash flow informative about marginal q, even after controlling for

Tobin’s (average) q. We simply conclude that physical investment is even more sensitive to cash

flow than previously believed, R&D investment is insensitive to cash flow, and SG&A investment’s

cash-flow sensitivity remains unclear. Without performing a full structural estimation, it is difficult

to tell whether these cash-flow results are driven by financing constraints, diseconomies of scale, or

some other source.

5 Comparing subsamples

Next, we compare results across firms, industries, and years. Doing so allows us to test our theory

and compare adjustment costs across subsamples. It also lets us check our main results’ robustness

across subsamples, which we discuss in Section 7.

We re-estimate the previous models in subsamples formed using three variables. First, we sort

firms each year into quartiles based on their lagged intangible intensity (Table 4). Second, we use
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the Fama-French five-industry definition to compare the manufacturing, consumer, high-tech, and

health industries (Table 5). Third, we compare the early (1972–1995) and late (1996–2011) parts

of our sample (Table 6). For each subsample, we estimate regressions using ιphy, ιint, ιtot as well

as the standard regression with CAPX/PPE.

5.1 Testing the theory in subsamples

On three dimensions, we find that the classic q theory, including the theory in this paper, fits the

data better in settings with more intangible capital.

First, R2 values increase dramatically when we move from the lowest to highest intangible quartile

(Table 4, Panel B). For example, the R2 for the total-investment regression increases monotoni-

cally from 23% to 47%. Even when we use the literature’s standard investment and q measures,

we see the R2 increase monotonically from 18% to 30%. This last result is surprising, since the

standard q measure has more measurement error in firms with more intangibles: τ2 is 44% in

quartile four versus 68% in quartile one. The patterns are similar when we compare manufactur-

ing to high-intangible industries, or compare the early and late subperiods. The increases in R2

across subsamples, tabulated in the last columns of Tables 4-6, are statistically significant for all

four investment measures and in all three tables, with just two exceptions out of twelve (Table 5

specification 1 and Table 6 specification 1).

Second, ρ2 values increase monotonically and roughly double when we move from the lowest to

highest intangible quartile (Panel C). This result means that the true q’s explanatory power for

investment is much stronger in firms with more intangible capital. This increase in ρ2 is responsible

for the large increases in R2 across subsamples. Again, the patterns are similar across industries

and years.

Third, cash-flow slopes are significantly lower in firms, industries, and years with more intangible

capital (Panel E). The cash-flow slopes even turn slightly negative in several high-intangible sub-

samples, even when we use the literature’s standard measures. This result is robust across all four

investment measures and across Tables 4–6, with one exception: Intangible investment has a larger

cash-flow slope in higher-intangible quartiles (Table 4). This exception may be an artifact of the

measurement-error bias we discuss in Section 4.2. Like us, Chen and Chen (2012) find a weaker
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investment-cash flow sensitivity in recent years. Our findings suggest this change over time may

partially reflect the rise of intangible capital.

The rest of this subsection seeks to explain why the classic q theory works better in settings with

more intangibles. Put differently, which of the theory’s assumptions are violated more severely in

firms using less intangibles? We start by exploring theoretically whether violations of our simple

model’s assumptions could explain the patterns in Table 4. We solve a more general model that

relaxes Section 2’s assumptions about constant returns to scale, perfect competition, and quadratic

adjustment costs. Details and numerical results are in the Online Appendix, Section 5. We explain

two predictions from the model next.

We find that violating the assumption about quadratic adjustment costs is unlikely to generate

the empirical patterns in Table 4. When we change the adjustment cost function’s exponent from

two to 1.75 or 1.5, we find a negligible effect on predicted R2 values, and we do not find a significant

predicted investment-cash flow relation.

Differences in economies of scale or competition could theoretically explain some of Table 4’s

patterns. Relative to Section 2’s benchmark theory, a theory with imperfect competition or de-

creasing returns to scale produces lower predicted R2 values in regressions of investment on q, and

it also generates a positive investment-cash flow relation— a prediction already known from Abel

and Eberly (2011). If firms using more intangible capital are closer to the perfect-competition,

constant-returns benchmark, this mechanism could explain why they exhibit lower cash-flow slopes

and higher R2 and ρ2 values.

Unfortunately, we find little empirical support for this mechanism. In Section 6 of the Online Ap-

pendix, we check whether firms with more intangibles are indeed closer to the perfect-competition,

constant-returns benchmark. First, we estimate production-function curvature using the methods

of Cooper and Haltiwanger (2006) and Olley and Pakes (1996). Comparing the curvature estimates

across subsamples, we find no statistically significant differences in economies of scale between the

high- and low-intangible quartiles. Also, whereas Table 4’s improvement in model fit is monotonic

across quartiles, the curvature estimates are strongly non-monotonic. Second, we compare three

competition proxies across subsamples. We find mixed results when we use the Herfindahl index to

26



proxy for industry-level competition; different industry classifications deliver increasing, decreas-

ing, or flat patterns across intangible-intensity subsamples. We also compare profitability across

subsamples, since competition should reduce profitability. Again, different profitability measures

produce opposing results. We also compare firm size across subsamples, since relatively small firms

within an industry may face more competition. The relation between firm size and intangible usage

is either statistically insignificant or strongly non-monotonic depending on the size proxy we use.

To summarize, we do not find any robust empirical evidence that high-intangible firms face less

diseconomies of scale or more competition.

One last potential explanation for the pattern in Table 4 is that high-intangible firms are less

financially constrained, making the theory fit the data better. This explanation seems unlikely,

because it is difficult to use intangible assets as collateral, which arguably makes high-intangible

firms more financially constrained (Almeida and Campello, 2007; Falato, Kadyrzhanova, and Sim,

2013). Unfortunately, it is difficult to test this financing-constraints mechanism without a full

structural estimation (Hennessy and Whited, 2007).

5.2 Comparing adjustment costs across subsamples

Table 4 shows interesting patterns in q-slopes across subsamples. According to our theory, these

q-slopes do not help us test our theory’s predictions or assumptions. Instead, the q-slopes reflect

adjustment-cost parameters.

Table 4 shows that firms using more intangibles have significantly smaller slopes of physical

investment on q, and they have significantly larger slopes of intangible investment on q. The

implication is that firms using more intangibles have physical capital with larger convex adjustment

costs, and they have intangible capital with smaller convex adjustment costs.

This pattern in q-slopes points to differences in the nature of physical and intangible capital across

firms, and it may also shed light on why some firms use more intangible capital. As we explain at

the end of Section 2.1, if a firm’s intangible capital is less costly than physical capital to adjust,

then the firm is predicted to use relatively more intangible capital. As a result, firms using more

intangible capital should have a higher intangible-investment q-slope relative to the sum of slopes

for physical and intangible investment. We show these slope ratios in Panel A of Table 4. The
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ratios increase monotonically across the quartiles, consistent with our theory. Our theory further

predicts that the slope ratio equals firms’ intangible intensity. The actual intensities, shown in the

column labels, range from 8% to 76%, whereas the slope ratios ranges from only 22% to 43%. Our

simple theory therefore explains part but not all of firms’ different intangible-capital usage.

This exercise provides a useful consistency check on our theory. Some important caveats are in

order, though. To link q-slopes to firms’ optimal mix of capitals, our theory needs strong additional

assumptions. Specifically, the theory requires that physical and intangible capital are identical in

all ways except for their quadratic adjustment cost parameters. Outside our simple theory, there

may be alternate explanations for the pattern we find in q-slopes across firms. We know from the

investment-q literature that q-slopes need not reflect adjustment costs. For example, Abel and

Eberly (2011) show that even in a world with no adjustment costs, diseconomies of scale can make

investment and Tobin’s q positively related. Also, there may be differences between physical and

intangible capital’s purchase prices, depreciation rates, economies of scale, and adjustment-cost

curvatures. These differences may affect both firms’ optimal mix of capitals and their investment-q

slopes. Since Table 4 does not control for these differences, it is possible that we are just picking

up these omitted differences between physical and intangible capital.

To explore this potential bias further, we solve a more general model that allows physical and

intangible capital to differ in ways not allowed in Section 2. We assume physical and intangible

capital share the same adjustment-cost parameters (γphy = γint), so we shut down the mechanism

proposed above. We then ask whether other differences between physical and intangible capital

could produce predicted q−slope patterns like the ones in Table 4. Details and numerical results are

in the Online Appendix, Section 5. First, we find that differences in purchase prices (pphyit 6= pintit )

can explain why some firms use more intangible capital, but they do not explain why firms have

different investment-q slopes. Second, we show that differences between the two capital types’

economies of scale do not necessarily drive them to use more of one capital type, nor do they make

their q-slopes differ significantly. These first two alternate explanations— differences in purchase

prices or economies of scale— do not seem to work for the empirical patterns we find. Third, we

show that if intangible capital depreciates faster than physical capital, then firms optimally use
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less intangibles, and intangible investment has a slightly lower q-slope than physical investment,

consistent with the patterns in Table 4. Finally, we relax the assumption that both capital types face

quadratic adjustment costs. We show that if intangible capital faces less-convex adjustment costs

than physical capital, then firms optimally use less intangible capital, and intangible investment

has a lower q-slope than physical investment, consistent again with Table 4’s patterns . We cannot

rule out that these last two mechanisms— differences in depreciation rates or adjustment-cost

convexities between the two capital types— are driving Table 4’s cross-sectional relation between

q-slopes and capital mixes.

6 Macro results

The neoclassical theory of investment, including the theory in this paper, can easily be interpreted

as a theory of the macroeconomy rather than a single firm. The macro literature has been interested

in the investment-q relation going back to at least Abel (1980) and Summers (1981). Next, we ask

how this relation changes when we account for intangible capital.

Our macro sample includes 141 quarterly observations for the U.S. economy from 1972Q2 to

2007Q2, the longest period for which all variables are available. Data on aggregate physical q and

investment come from Hall (2001), who uses the Flow of Funds and aggregate stock and bond

market data. The literature’s standard q measure, again denoted q∗, is the ratio of the value of

ownership claims on the firm, less the book value of inventories, to the reproduction cost of plant

and equipment. The standard investment measure, again denoted ι∗, equals private nonresidential

fixed investment scaled by its corresponding stock, both of which are from the Bureau of Economic

Analysis.

Data on the aggregate stock and flow of physical and intangible capital come from Carol Corrado

and are discussed in Corrado and Hulten (2014). Earlier versions of these data are used by Corrado,

Hulten, and Sichel (2009) and Corrado and Hulten (2010). Their measures of intangible capital

include aggregate spending on business investment in computerized information (from NIPA), R&D

(from the NSF and Census Bureau), and “economic competencies,” which include investments in

brand names, employer-provided worker training, and other items. One advantage of these macro
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data relative to our firm-level data is that the macro data do not rely on an assumption about

the fraction of SG&A representing an investment. As before, we measure the total capital stock

as the sum of the physical and intangible capital stocks. We compute total q as the ratio of total

ownership claims on firm value, less the book value of inventories, to the total capital stock. We

define the investment rates ιphy, ιint, and ιtot as in our firm-level analysis. To mitigate problems

from potentially differing data coverage, we use Corrado and Hulten’s (2014) ratio of physical to

total capital to adjust Hall’s (2001) measures of physical q and investment.14

The correlation between standard and total q is extremely high, 0.997. The reason is that total q

equals standard q times the ratio of physical to total capital, and this ratio has changed slowly and

consistently over time (Figure 1). Of more importance is the change from standard to total invest-

ment, which additionally requires multiplying ι∗ by the ratio of capital flows, which is much more

volatile than the ratio of capital stocks. The correlation between total and standard investment is

therefore much smaller, 0.43.

For comparison, we also use Philippon’s (2009) aggregate bond-q measure, which he obtains by

applying a structural model to data on bond maturities and yields. Bond q is available at the

macro level but not at the firm level. Philippon (2009) shows that bond q explains more of the

aggregate variation in what we call physical investment than standard q does. Bond q data are

from Philippon’s web site.

Figure 2 plots the time series of investment and q. The top-left panel shows the standard q

and investment measures, which omit intangible capital. Except in a few subperiods, q explains

investment relatively poorly, as Philippon (2009) and others have shown. The top-right panel

shows that the relation between total q and ιphy is still weak. The bottom-left panel shows a

strong relation between total q and intangible investment, mainly because total q and intangible

investment both trend up from 1982 to 2000. The bottom-right panel compares total investment

and total q. Here the fit looks strongest of all.

To explore these patterns more carefully, Table 7 shows results from time-series regressions of

investment on lagged q. Panel A shows regressions in levels, comparing our four investment mea-

14To be precise, we use Hall’s (2001) data on q∗ and ι∗, and Corrado and Hulten’s (2014) data on A = Kphy/(Kphy+
Kint) and B = Iphy/(Iphy + Iint). We compute qtot = q∗A, ιphy = ι∗A, ιtot = ιphy/B, and ιint = ιtot − ιphy.
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sures. Consistent with Figure 2, the literature’s standard measures and ιphy produce statistically

insignificant q-slopes and R2 values near zero. In stark contrast, intangible and total investment

both have highly significant q-slopes, and they deliver R2 values of 57% and 61%, respectively.

These R2 values are even higher than the 46% R2 that Philippon (2009) obtains by regressing

the standard investment measure on bond q (Panel B). Judging by R2, the classic q theory fits

the data much better when we include intangible capital, because we are better able to explain

the low-frequency trends in q and investment. Put differently, the literature’s standard investment

measure suffers from a low-frequency error—the omission of intangibles—that trends strongly with

q over time.

How well can q explain higher-frequency variation in investment? Panels C and D answer this

question by re-running the previous regressions in four-quarter differences. As in our firm-level

analysis, total q now explains physical and intangible investment roughly equally well, and it

explains total investment even better. As before, intangible investment has a lower q-slope than

physical investment, indicating higher convex adjustment costs. Bond q, though, is much better

than total q at explaining changes in investment. In differences, bond q also explains physical

investment better than intangible investment. Philippon (2009) offers one potential explanation:

Growth options affect stocks more than bonds, and growth options affect intangible investment

more than physical investment. Put differently, physical and intangible capital may have different

values of marginal q; bond q may be a better proxy for physical capital’s marginal q, whereas

the traditional q measures, which use stock prices, may be better proxies for intangible capital’s

marginal q. A second possible explanation is about sample selection: Firms with more intangible

investment typically hold less debt, so they contribute less to the aggregate bond-q measure.

To summarize, at the macro level, including intangibles makes q explain the level of investment

much better, meaning the classic q theory fits the data much better than previously believed. When

we try to explain changes in investment, the macro results look more like our firm-level results.

Bond q is still better at explaining physical investment as well as changes in investment.
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7 Robustness

7.1 Robustness of main results across subsamples

Tables 4-6 show that our main results are quite robust across subsamples. Compared to physical

investment, intangible investment has a lower q-slope in all ten subsamples (Panel A). We always see

larger q-slopes for physical investment in the specification with ιphy compared to the specification

with CAPX/PP&E (Panel A). We always see total q explain total investment better than it explains

either physical or intangible investment, and better than standard q explains standard investment

(Panel B). This result means that including intangibles produces a better proxy for investment

opportunities even in subsamples with less intangible capital, like the manufacturing industry.

In the full sample (Table 3), total q explains intangible investment slightly better than physical

investment. We see the reverse in four of ten subsamples, so we conclude that total q explains

physical and intangible investment roughly equally well.

The improvement in model fit from including intangible capital is especially large in subsamples

with more intangible capital, which is a useful consistency check. Consider the increase in R2 when

we move from the regression that ignores intangibles (specification 4 in the tables) to the regression

that uses ιtot and qtot (specification 3). In Table 4, the increase in R2 is 0.174 (58%) in the highest

intangible quartile, but just 0.050 (27%) in the lowest quartile. This pattern is mainly driven by

τ2, which increases by 0.284 (65%) in the top quartile, but actually decreases by a statistically

insignificant 0.018 (3%) in the lowest quartile. This result means that total q is a better proxy for

true q especially in firms with the most intangible capital. These same patterns are also present,

but less dramatic, across industry and year subsamples.

7.2 What fraction of SG&A is an investment?

Arguably the strongest assumption in our intangible-capital measure is that λ=30% of SG&A

represents an investment, and λ is constant across firms and time. Table 8 shows that our main

conclusions go though, at least qualitatively, when we use different values of λ ranging from zero

to 100%. When λ is zero, firms’ intangible capital comes exclusively from R&D. No matter what

λ value we assume, we find larger q-slopes for physical investment, roughly equal R2 for physical
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and intangible investment, and the highest R2 for total investment. Intangible investment has its

largest R2 when λ = 30%, meaning the data seems to prefer the λ value we use in our main analysis.

The R2 is considerably lower (15% vs. 28%) if λ = 0, so the data does prefer counting at least part

of SG&A as investment.

Instead of assuming 30% of SG&A is investment, we can let the data tell us what the value of λ

is. The structural parameter λ affects both the investment and q measures. We estimate λ along

with the q-slope and firm fixed effects by maximum likelihood, applied to the ιtot regression. The

estimated λ values are 0.38 in the consumer industry, 0.51 in the high-tech industry, and 0.24 in

the health-care industry, which are all in the neighborhood of our assumed 0.3 value. However,

we do not push these λ estimates strongly, for three reasons. First, the investment-q relation is

not the ideal setting for identifying λ. Second, the estimation imposes two very strong identifying

assumptions: the linear investment-q model is true, and we measure all variables perfectly. Finally,

the λ estimate in the manufacturing industry is constrained at 1.0, which is implausibly large and

likely a symptom of the previous two issues. The main message from this subsection, though, is

that our main conclusions hold regardless of the λ value we use.

7.3 Alternate measures of intangible capital

In addition to varying the SG&A multiplier λ, we try eight other variations on our intangible-

capital measure. Specifically, we vary δSG&A, the depreciation rate for organization capital; we

exclude goodwill from firms’ intangible capital; we exclude all balance-sheet intangibles, which

brings us closer to existing measures from the literature; we set firms’ starting intangible capital

stock to zero; and we estimate firms’ starting intangible capital stock using a perpetuity formula,

like Falato, Kadyrzhanov, and Sim (2013). We also drop the first five years of data for each firm,

which makes the choice of starting intangible capital stock less important. We also try dropping

the 47% of firm/years with missing R&D from our regressions. Table 9 provides details about these

variations and their results. Although magnitudes vary somewhat, our main results still hold in all

these variations: total q explains physical and intangible investment roughly equally well, total q

explains total investment even better, and intangible investment always has a lower q-slope.
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7.4 Alternate estimators

In addition to using the cumulant estimator to obtain unbiased q-slopes, we also use Biorn’s (2000)

and Arellano and Bond’s (1991) instrumental variable (IV) estimators. Both estimators take first

differences of the linear investment-q model, then use lagged regressors as instruments for the q

proxy. Erickson and Whited (2012) show that these IV estimators are biased if measurement error

is serially correlated, which is likely in our setting. This bias is probably most severe in the standard

regressions that omit intangible capital, since omitting intangible capital is an important source

of measurement error, and a firm’s intangible capital stock is highly serially correlated. Since the

cumulant estimators are robust to serially correlated measurement error, we prefer them over the

IV estimators. The IV estimators generate similar conclusions about adjustment costs. Specifically,

they produce lower q-slopes for ιint than ιphy, and lower q-slopes for ι∗ than ιphy (Online Appendix,

Tables A8 and A9).

7.5 A mechanical result?

Is it mechanical that total q explains total investment better than standard q explains standard

investment? A potential concern is that moving from the latter regression to the former requires

multiplying both sides of the regression by Kphy/Ktot. Multiplying both sides of a regression by

the same variable can potentially, but not necessarily, increase the R2 even if that variable is pure

noise.

Our result is not mechanical or obvious, however. Multiplying both sides of the literature’s

standard regression by Kphy/Ktot produces the regression of ιphy on qtot, shown in column 1 of

Table 3. Contrary to the potential concern, that regression gets a slightly lower R2, τ2, and ρ2

value than the standard regression (last column in Table 3). Moving to the regression of ιtot on qtot

requires further multiplying ιphy, but not qtot, by the ratio of total to physical investment. This

change would further reduce the R2 if intangible investment were noise, but instead R2 increases.

Moreover, if our measure of intangible investment were just noise, we would not find that it is well

explained by q and comoves with physical investment. Section 8 in the Online Appendix presents a

placebo simulation analysis showing that our main results would not obtain if our intangible capital
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measures were pure noise with similar statistical properties.

8 Conclusion

The neoclassical theory of investment has been applied almost exclusively to physical capital.

We show that the theory is also relevant for intangible capital, which increasingly dominates the

U.S. economy. In both our theory and firm-level data, physical and intangible investment comove

strongly, and they are explained roughly equally well by Tobin’s q. Compared to physical capital,

intangible capital’s convex adjustment costs are roughly twice as large, meaning intangible capital

responds more slowly to changes in investment opportunities. In macro data, Tobin’s q explains

the level of intangible investment many times better than physical investment. The neoclassical

theory performs significantly better in firms, industries, and years with more intangible capital.

Tobin’s q is “arguably the most common regressor in corporate finance” (Erickson and Whited,

2012). Guided by our theory, we provide a new Tobin’s q measure that accounts for intangible

capital, and we show that it is a superior proxy for both physical and intangible investment oppor-

tunities. A benefit of this new measure is that it can be easily computed for the full Compustat

sample. This new Tobin’s q measure offers a simple way to improve corporate finance regressions

without additional econometrics.

This paper revisits the basic facts about investment, Tobin’s q, and cash flow while accounting

for intangible capital. We believe this is an important step, because a vast investment literature in

corporate finance and macroeconomics is built upon these facts. Important next steps include un-

derstanding how physical and intangible capital interact, how they face different prices for different

firms in different periods, how they respond differently to growth options and financial constraints,

and how they show up differently in firms’ market values. Why the classic q-theory fits the data

better in high-intangible settings is also an interesting open question. Finally, there is more work

to do on measuring intangible capital.

35



Appendix A: Proofs

Proof of Prediction 1. Dropping firm subscripts, we can write the value function as

Vt = max
{Iphyt+s ,I

int
t+s}

∫ ∞
0

Et{ Ktot
t+s[H (εt+s)−

γphy

2

(
Iphyt+s

Ktot
t+s

)2

− γint

2

(
Iintt+s

Ktot
t+s

)2

−
(
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) Iphyt+s
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−
(
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) Iintt+s
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t+s

]}.

Note also that total capital follows

dKtot
t = Ktot

t

(
Iphyt

Ktot
t

+
Iintt

Ktot
t

− δ

)
dt. (18)

Following the same argument as in Abel and Eberly’s (1994) Appendix A, firm value must be

proportional to total capital Ktot :

V
(
Kphy,Kint, ε, pphy, pint

)
= Ktotqtot

(
ε, pphy, pint

)
. (19)

Differentiating this equation with respect to Kphy and Kint yields equation (5).

Proof of Prediction 2. Following a similar proof as in Abel and Eberly (1994), one can derive

the Bellman equation and take first-order conditions with respect to each investment rate to obtain

qtott =
∂

∂Imt
cm
(
Imt ,K

tot
t , pmt

)
= pmt + ζm + γm

Imt
Ktot

, m = phy, int. (20)

Rearranging yields equations (6) and (7).

Proof of Prediction 4. Multiplying both sides of equation (6) by Ktot
it /K

phy
it yields

ι∗it =
Iphyit

Kphy
it

=
1

γphy

(
q∗it −

Ktot
it

Kphy
it

(
ζphyi + pphyit

))
. (21)

Now consider a regression of ι∗it on q∗it and firm and time FEs. The residual in that regression,

ε∗it, equals the residual from a regression of − 1
γphy

Ktot
it

Kphy
it

(
ζphyi + pphyit

)
on firm and time FEs. This

residual is non-zero, and hence the regression’s R2 is less than 100%, because the ratio Ktot
it /K

phy
it
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cannot be fully explained by firm and time fixed effects. To see this last claim, define ωit =

Ktot
it /K

phy
it . By Ito’s Lemma, ω evolves according to

dωit
ωit

=
[
ιphyit (1− ωit) + ιintit

]
dt. (22)

The evolution of ωit cannot be fully be explained by firm and time FEs, because it depends on

the investment rates ιphyit and ιintit , which depends on qtotit and hence εit, which cannot be fully

explained by the FEs. Furthermore, the error term ε∗it is negatively correlated to the regressor

q∗it = qtotit K
tot
it /K

phy
it , because Ktot

it /K
phy
it multiplies both terms, albeit with a negative sign in ε∗it.

Because the error term is negatively related to the regressor, the regression produces downward-

biased estimates of 1/γphy.

Proof of last prediction. Set dωit = 0 in equation (22) and solve for the equilibrium value, ω :

ω =
ιintit + ιphyit

ιphyit

=

1
γint

(
qtotit − ζ − pit

)
+ 1

γphy

(
qtotit − ζ − pit

)
1

γphy
(qtotit − ζ − pit)

=
γphy + γint

γint
. (23)

Prediction 5 follows, since Kint/Ktot = 1− 1/ω.

Appendix B: Measuring Intangible Capital

B.1. Measuring SG&A

We measure SG&A as Compustat variable xsga minus xrd minus rdip. We add the following

screen: When xrd exceeds xsga but is less than cogs, or when xsga is missing, we measure SG&A

as xsga with no further adjustments, or zero if xsga is missing.

The logic behind this formula is as follows. According to the Compustat manual, xsga includes

R&D expense unless the company allocates R&D expense to cost of goods sold (COGS). For

example, xsga often equals the sum of “Selling, General and Administrative” and “Research and

Development” on the Statement of Operations from firms’ 10-K filings. To isolate (non-R&D)

SG&A, we must subtract R&D from xsga when Compustat adds R&D to xsga. There is a catch:

When a firm externally purchases R&D on products not yet being sold, this R&D is expensed as

“in-process R&D” and does not appear on the balance sheet. Compustat adds to xsga only the
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part of R&D not representing acquired in-process R&D, so our formula subtracts rdip (In Process

R&D Expense), which Compustat codes as negative. We find that Compustat almost always

adds R&D to xsga, which motivates our formula above. Standard & Poor’s explained in private

communication that “in most cases, when there is a separately reported xrd, this is included in

xsga.” As a further check, we compare the Compustat records and SEC 10-K filings by hand for

a random sample of 100 firm-year observations with non-missing xrd. We find that Compustat

includes R&D in xsga in 90 out of 100 cases, partially includes it in xsga in one case, and includes

it in COGS in seven cases. Two cases remain unclear even after asking the Compustat support

team. The screen above lets us identify obvious cases where xrd is part of COGS. This screen

catches six of the seven cases where xrd is part of COGS. Unfortunately, it is impossible to identify

the remaining cases without reading SEC filings. We thank the Compustat support team from

Standard & Poors for their help in this exercise.

We set xsga, xrd, and rdip to zero when missing. For R&D and SG&A, we make exceptions in

years when the firm’s assets are also missing. For these years we interpolate these two variables

using their nearest non-missing values. We use these interpolated values to compute capital stocks

but not regressions’ dependent variables.

B.2. Measuring firms’ initial capital stock

This appendix explains how we estimate the stock of knowledge and organization capital in firm

i’s first non-missing Compustat record. We describe the steps for estimating the initial knowledge-

capital stock; the method for organization capital is similar. Broadly, we estimate firm i’s R&D

spending in each year of life between the firm’s founding and its first non-missing Compustat record,

denoted year one below. Our main assumption is that the firm’s pre-IPO R&D grows at the average

rate across pre-IPO Compustat records. We then apply the perpetual inventory method to these

estimated R&D values to obtain the initial stock of knowledge capital at the end of year zero. The

specific steps are as follows:

1. Define age since IPO as number of years elapsed since a firm’s IPO. Using the full Compustat

database, compute the average log change in R&D in each yearly age-since-IPO category.
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Apply these age-specific growth rates to fill in missing R&D observations before 1977.

2. Using the full Compustat database, isolate records for firms’ IPO years and the previous two

years. (Not all firms have pre-IPO data in Compustat.) Compute the average log change

in R&D within this pre-IPO subsample, which equals 0.348. (The corresponding pre-IPO

average log change in SG&A equals 0.333).

3. If firm i’s IPO year is in Compustat, go to step 5. Otherwise go to the next step.

4. This step applies almost exclusively to firms with IPOs before 1950. Estimate firm i’s R&D

spending in each year between the firm’s IPO year and first Compustat year assuming the

firm’s R&D grows at the average age-specific rates estimated in step one above.

5. Obtain data on firm i’s founding year from Jay Ritter’s website. For firms with missing

founding year, estimate the founding year as the minimum of (a) the year of the firm’s first

Compustat record and (b) firm’s IPO year minus 8, which is the median age between founding

and IPO for IPOs from 1980-2012 (from Jay Ritter’s web site).

6. Estimate the firm i’s R&D spending in each year between the firm’s founding year and IPO

year assuming the firm’s R&D grows at the estimated pre-IPO average rate from step two

above.

7. Assume the firm is founded with no capital. Apply the perpetual inventory method in equa-

tion (11) to the estimated R&D spending from the previous steps to obtain Gi0, the stock of

knowledge capital at the beginning of the firm’s first Compustat record.

We use estimated R&D and SG&A values only to compute firms’ initial stocks of intangible

capital. We never use estimated R&D in a regression’s dependent variable.

39



REFERENCES

Aaker, David, 1991. Managing Brand Equity, New York: The Free Press.

Abel, Andrew B., 1980. Empirical investment equations: An integrative framework, in Karl Brun-

ner and Allan H. Metzler, eds., On the State of Macro-Economics, Carnegie-Rochester Confer-

ence Series on Public Policy 12, 39–91.

Abel, Andrew B., 2014. The analytics of investment, q, and cash flow, Working paper, University

of Pennsylvania.

Abel, Andrew B., and Oliver J. Blanchard, 1986. The present value of profits and cyclical move-

ments in investments, Econometrica 54, 249–273.

Abel, Andrew B., and Janice C. Eberly, 1994. A unified model of investment under uncertainty,

American Economic Review 84, 1369–1384.

Abel, Andrew B., and Janice C. Eberly, 2011. How q and cash flow affect investment without

frictions: An analytic explanation, Review of Economic Studies 78, 1179-1200.

Almeida, Heitor, and Murillo Campello, 2007. Financial constraints, asset tangibility, and corporate

investment, Review of Financial Studies 20, 1429-1460.

Arellano, Manuel, and Stephen Bond, 1991. Some tests of specification for panel data: Monte

Carlo evidence and an application to employment equations, Review of Economic Studies 58,

277–297.

Baker, Malcolm, Jeremy C. Stein, and Jeffrey Wurgler, 2002. When does the market matter?

Stock prices and the investment of equity-dependent firms, Quarterly Journal of Economics

118, 969–1006.

Belo, Frederico, Xiaoji Lin, and Maria Ana Vitorino, 2014. Brand capital and firm value, Review

of Economic Dynamics 17, 150–169.

Bernstein, Jeffrey I., and M. Ishaq Nadiri, 1989a. Research and development and intra-industry

spillovers: An empirical application of dynamic duality, Review of Economic Studies 249–267.

Bernstein, Jeffrey I., and M. Ishaq Nadiri, 1989b. Rates of return on physical and R&D capital and

structure of the production process: Cross section and time series evidence. In B. Raj (Ed.),

Advances in Econometrics and Modelling.

Biorn, Erik, 2000. Panel data with measurement errors: instrumental variables and GMM proce-

dures combining levels and differences, Econometric Reviews 19, 391–424.

Bloom, Nicholas, Raffaella Sadun, and John Van Reenen, 2010. Recent Advances in the Empirics

of Organizational Economics 2, 105137.

Bloom, Nicholas, and John Van Reenen, 2007. Measuring and explaining management practices

40



across firms and countries, Quarterly Journal of Economics 122, 13511408.

Brown, James R., Steven M. Fazzari, and Bruce C. Petersen, 2009. Financing innovation and

growth: Cash flow, external equity, and the 1990s R&D boom, Journal of Finance 64, 151–185.

Caballero, Ricardo J., 1999. Aggregate investment. In: J.B. Taylor and M. Woodford (Eds.),

Handbook of Macroeconomics, Volume 1, pp. 813-862.

Chen, Huafeng (Jason), and Shaojun (Jenny) Chen, 2012. Investment-cash flow sensitivity cannot

be a good measure of financial constraints: Evidence from the time series, Journal of Financial

Economics 103, 393–410.

Chen, Qi, Itay Goldstein, and Wei Jiang, 2007. Price informativeness and investment sensitivity

to stock price, Review of Financial Studies 20, 619–650.

Ciccolo, John H. Jr., 1975. Four essays on monetary policy, Unpublished doctoral dissertation,

Yale University, New Haven.

Cooper, Russell, and João Ejarque, 2003. Financial frictions and investment: Requiem in Q, Review

of Economic Dynamics 6, 710–728.

Cooper, Russell W. and John C. Haltiwanger, 2006, On the nature of capital adjustment costs,

Review of Economic Studies 73, 611–633.

Corrado, Carol, Charles Hulten, and Daniel Sichel, 2005. Measuring capital and technology: An

expanded framework, In Measuring Capital in the New Economy, Carol Corrado, John Halti-

wanger, and Daniel Sichel, eds., Studies in Income and Wealth, volume 65, Chicago: The

University of Chicago Press.

Corrado, Carol, Charles Hulten, and Daniel Sichel, 2009. Intangible capital and US economic

growth, Review of Income and Wealth 55, 661–685.

Corrado, Carol, and Charles Hulten, 2010. How do you measure a technological revolution? Amer-

ican Economic Review 100, 99–104.

Corrado, Carol, and Charles Hulten, 2014. Innovation Accounting, In Measuring Economic Sus-

tainability and Progress, Dale Jorgenson, J. Steven Landefeld, and Paul Schreyer, eds., Studies

in Income and Wealth, volume 72, Chicago: The University of Chicago Press.

Damodaran, Aswath, 2001. The Dark Side of Valuation, Prentice Hall, Upper Saddle River.

Damodaran, Aswath, n.d. Research and development expenses: Implications for profitability mea-

surement and valuation, http://pages.stern.nyu.edu/ adamodar/.

Eisfeldt, Andrea L., and Dimitris Papanikolaou, 2012. Internet appendix to “Organization capital

and the cross-section of expected returns,” https://sites.google.com/site/andrealeisfeldt/.

Eisfeldt, Andrea L., and Dimitris Papanikolaou, 2013. Organization capital and the cross-section

of expected returns, Journal of Finance 58, 1365–1406.

41



Eisfeldt, Andrea L., and Dimitris Papanikolaou, 2014. The value and ownership of intangible

capital, American Economic Review: Papers and Proceedings 104, 1–8.

Erickson, Timothy, Colin H. Jiang, and Toni M. Whited, 2014. Minimum distance estimation of

the errors-in-variables model using linear cumulant equations, Journal of Econometrics 183,

211–221.

Erickson, Timothy, and Toni M. Whited, 2000. Measurement error and the relationship between

investment and q, Journal of Political Economy 108, 1027–1057.

Erickson, Timothy, and Toni M. Whited, 2002. Two-step GMM estimation of the errors-in-variables

model using high-order moments, Econometric Theory 18, 776–799.

Erickson, Timothy, and Toni M. Whited, 2006. On the accuracy of different measures of q, Financial

Management 35, 5–33.

Erickson, Timothy, and Toni M. Whited, 2012. Treating measurement error in Tobin’s q, Review

of Financial Studies 25, 1286–1329.

Falato, Antonio, Dalida Kadyrzhanova, and Jae W. Sim, 2013. Rising intangible capital, shrinking

debt capacity, and the U.S. corporate savings glut, Finance and Economics Discussion Series

2013-67, Board of Governors of the Federal Reserve System (U.S.).

Fazzari, Steven M., R. Glenn Hubbard, and Bruce C. Petersen, 1988. Financing constraints and

corporate investment, Brookings Papers on Economic Activity 1, 141–206.

Gala, Vito D., and João F. Gomes, 2013. Beyond Q: Investment without asset prices, Working

paper, University of Pennsylvania.

Gala, Vito D., 2014. Measuring marginal q, Working paper, London Business School.

Gilchrist, Simon, and Charles P. Himmelberg, 1995. Evidence on the role of cash flow for invest-

ment, Journal of Monetary Economics 36, 541572.

Gomes, João. F., 2001. Financing investment, American Economic Review 91, 1263-1285.

Gourio, Francois, and Leena Rudanko, 2014. Customer capital, Review of Economics Studies 81,

1102–1136.

Graham, John R., 1996. Proxies for the corporate marginal tax rate, Journal of Financial Eco-

nomics 42, 187–221.

Greenwald, Bruce C.N., Judd Kahn, Paul D. Sonkin, and Michael van Biema, 2004. Value Investing:

From Graham to Buffett and Beyond, Wiley, New York.

Hall, Bronwyn, 2002. The financing of research and development, Oxford Review of Economic

Policy 18, 35–51.

Hall, Robert E., 2001. The stock market and capital accumulation, American Economic Review

42



91, 1185–1202.

Hassett, Kevin. A., and R. Glenn Hubbard, 1997. Tax policy and investment, in Fiscal Policy:

Lessons from the Literature, A. Auerbach, ed. (Cambridge, MA: MIT Press).

Hayashi, Fumio, 1982. Tobin’s marginal q and average q: A neoclassical interpretation, Economet-

rica 50, 213–224.

Hayashi, Fumio, and Tohru Inoue, 1991. The relation between firm growth and Q with multiple

capital goods: Theory and evidence from panel data on Japanese firms, Econometrica 59,

731–53.

Hennessy, Christopher A., and Toni M. Whited, 2007. How costly is external financing? Evidence

from a structural estimation, Journal of Finance 62, 1705–1745.

Himmelberg, Charles P., and Bruce C. Petersen, 1994. R&D and internal finance: A panel study

of small firms in high-tech industries, Review of Economics and Statistics 76, 38–51.

Hulten, Charles, and Xiaohui Hao, 2008. What is a company really worth? Intangible capital and

the “Market to Book Value” puzzle, Working paper, National Bureau of Economics Research.

Kieso, Donald E., Jerry J. Weygandt, and Terry D. Warfield, 2010. Intermediate Accounting,

Thirteenth Edition, John Wiley & Sons.

Klepper, Steven, and Edward E. Leamer, 1984. Consistent sets of estimates for regressions with

errors in all variables, Econometrica 42, 163–184.

Lev, Baruch, and Sudhir Radhakrishnan, 2005. The valuation of organization capital. In Measuring

capital in the new economy, University of Chicago Press.

Lev, Baruch, and Theodore Sougiannis, 1996. The capitalization, amortization and value-relevance

of R&D, Journal of Accounting and Economics 21, 107–138.

Li, Erica X.N., Laura X.L. Liu, and Chen Xue, 2014. Intangible assets and cross-sectional stock

returns: Evidence from structural estimation, Working Paper, Cheung Kong School of Business.

Li, Wendy C.Y., 2012. Depreciation of business R&D capital, Bureau of Economic Analysis /

National Science Foundation R&D Satellite Account Paper.

Newey, Whitney K., and Daniel McFadden, 1994. Large sample estimation and hypothesis testing.

In: R.F. Engle and D.L. McFadden (Eds.), Handbook of Econometrics, Volume IV, Elsevier

Science, pp. 2111–2245.

Olley, G. Steven and Ariel Pakes, 1996. The dynamics of productivity in the telecommunications

equipment industry, Econometrica 75, 1263–1297.

Philippon, Thomas, 2009. The bond market’s q, Quarterly Journal of Economics 124, 1011–1056.

Srivastava, Rajendra K., Tasadduq A. Shervani, and Liam Fahey, 1997. Driving shareholder value:

43



The role of marketing in reducing vulnerability and volatility of cash flows, Journal of Market-

Focused Management 2, 49–64.

Summers, Lawrence H., 1981. Taxation and corporate investment: A q-theory approach, Brookings

Papers on Economic Activity 1, 67–127.

Whited, Toni M., 1994. Problems with identifying adjustment costs from regressions of investment

on q, Economics Letters 46, 327–332.

Wildasin, David E., 1984. The q theory of investment with many capital goods, American Economic

Review 74, 203–210.

Zhang, Mindy X., 2014. Who bears firm-level risk? Implications for cash flow volatility, Working

paper, UT Austin.

44



.3
.4

.5
.6

.7
In

ta
ng

ib
le

 In
te

ns
ity

1970 1980 1990 2000 2010
Year

All Consumer
Manufacturing High Tech
Healthcare

Fig. 1. Capital intangibility over time. This figure plots the mean intangible capital intensity over
time, both for our full sample and within industries. Intangible intensity equals Kint/(Kint+Kphy),
the firm’s stock of intangible divided by its total stock of capital. We use the Fama-French five-
industry definition and exclude industry “Other.”
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Fig. 2. Investment-q relation in macro data. This figure plots Tobin’s q (solid lines) and the
investment rates (dashed lines) over time for the aggregate U.S. economy. The top-left panel uses
data from Hall (2001) and shows standard measures that exclude intangible capital. Standard q
(q∗) is aggregate market value scaled by the physical-capital stock. Standard investment (ι∗) equals
physical investment scaled by the physical-capital stock. The remaining panels also use data from
Corrado and Hulten (2014). Total q is aggregate market value scaled by total capital, the sum of
the physical- and intangible-capital stocks. The top-right panel shows ιphy, physical investment
scaled by total capital. The bottom-left panel shows ιint, intangible investment scaled by total
capital. The bottom right panel shows ιtot = ιphy + ιint. For each graph, the left axis is the value
of q and the right axis is the investment rate.
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Table 1
Summary Statistics

Statistics are based on the sample of Compustat firms from 1975 to 2011. The physical capital
stock, Kphy, is measured as PP&E. We estimate the intangible capital stock, Kint, by applying
the perpetual inventory method to firms’ intangible investments, defined as R&D and 0.3×SG&A;
we then add in firms’ balance-sheet intangibles. Intangible intensity equals Kint/(Kint + Kphy).
Knowledge capital is the part of intangible capital that comes from R&D. The denominator for
all “New measures” below is Kint + Kphy. The denominator for all “Standard measures” below
is Kphy. The numerator for both q variables is the market value of equity plus the book value
of debt minus current assets. The numerator for ιphy is CAPX, and the numerator for ιint is
R&D+0.3×SG&A. Total investment ιtot = ιphy + ιint. The numerator for standard cash flow is
income before extraordinary items plus depreciation expenses. The numerator for total cash flow
is the same but adds back intangible investment net a tax adjustment.

Variable Mean Median Stdev. Skewness

Intangible capital stock ($M) 427 41.7 1990 11.6
Physical capital stock ($M) 1237 77.9 6691 16.5
Intangible intensity 0.43 0.45 0.27 -0.01
Knowledge capital / Intangible capital 0.24 0.01 0.37 1.65

New measures:
Total q (qtot) 1.11 0.57 1.91 3.76
Physical investment (ιphy) 0.10 0.06 0.14 3.47
Intangible investment (ιint) 0.11 0.09 0.11 1.92
Total investment (ιtot) 0.21 0.16 0.18 2.61
Total cash flow (ctot) 0.16 0.15 0.19 0.52

Standard measures:
Standard q (q∗) 3.14 0.93 7.22 4.41
CAPX/PPE (ι∗) 0.19 0.11 0.24 3.52
Standard cash flow (c∗) 0.15 0.16 0.62 -1.63
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Table 2
OLS Results

Results are from OLS panel regressions of investment on lagged Tobin’s q and firm and year fixed
effects. Each column uses a different investment measure noted in the top rows. Physical investment
(ιphy) equals CAPX scaled by total capital (Ktot = Kphy+Kint). Intangible investment (ιint) equals
R&D+0.3× SG&A, scaled by Ktot. Total investment equals ιphy + ιint. R&D investment equals
R&D scaled by total capital; this column excludes observations with missing R&D. Panel A shows
regressions on total q, denoted qtot. Panel B shows regressions on standard q, denoted q∗. The
numerator for both q variables is the market value of equity plus the book value of debt minus
current assets. The denominator for qtot is Ktot. The denominator for q∗ is Kphy. Standard errors
clustered by firm are in parentheses. We report the within-firm R2. Panel C tests whether the R2

values in Panels A and B are different, taking into account the correlation across regressions and
again clustering by firm. Data are from Compustat from 1975 to 2011.

Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions with total q
Total q 0.029 0.020 0.049 0.013 0.062

(0.001) (0.000) (0.001) (0.000) (0.001)

R2 0.209 0.279 0.327 0.270 0.244
(0.008) (0.007) (0.006) (0.009) (0.008)

Panel B: Regressions with standard q
Standard q 0.006 0.005 0.011 0.003 0.017

(0.000) (0.000) (0.000) (0.000) (0.000)

R2 0.139 0.266 0.250 0.250 0.233
(0.009) (0.008) (0.007) (0.010) (0.008)

Panel C: Difference in R2 (Panel A − Panel B)
∆R2 0.070 0.013 0.077 0.020 0.011

(0.003) (0.004) (0.003) (0.005) (0.003)

Observations 141,800 141,800 141,800 75,426 141,800
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Table 3
Bias-Corrected Results

Results are from regressions of investment on lagged Tobin’s q, firm fixed effects, and (in Panel
B) contemporaneous cash flow, all estimated using the cumulants estimator. Each column uses a
different investment measure noted in the column labels and defined in Table 2. Total (standard)
q equals the firm’s market value scaled by Ktot (Kphy). The numerator for standard cash flow is
income before extraordinary items plus depreciation expenses. The numerator for total cash flow
is the same but adds back intangible investment net a tax adjustment. Total cash flow is scaled
by Ktot, standard cash flow by Kphy. ρ2 is the within-firm R2 from a hypothetical regression of
investment on true q, and τ2 is the within-firm R2 from a hypothetical regression of our q proxy
on true q. For comparison, the table also shows the OLS R2 values from Table 2. Standard errors
clustered by firm are in parentheses. Data are from Compustat from 1975 to 2011.

Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot) R&D CAPX/PPE (ι∗)

Panel A: Regressions without cash flow
Total q (qtot) 0.070 0.037 0.086 0.023

(0.001) (0.001) (0.001) (0.000)
Standard q (q∗) 0.036

(0.001)

OLS R2 0.209 0.279 0.327 0.270 0.233
(0.008) (0.007) (0.006) (0.009) (0.008)

ρ2 0.358 0.392 0.423 0.376 0.372
(0.008) (0.008) (0.008) (0.011) (0.008)

τ2 0.437 0.559 0.597 0.593 0.492
(0.009) (0.012) (0.010) (0.016) (0.010)

Panel B: Regressions with cash flow
Total q (qtot) 0.069 0.038 0.086 0.024

(0.001) (0.001) (0.002) (0.001)

Total cash flow (ctot) 0.024 0.050 0.140 0.000
(0.008) (0.004) (0.009) (0.004)

Standard q (q∗) 0.035
(0.001)

Standard cash flow (c∗) 0.015
(0.004)

OLS R2 0.235 0.326 0.374 0.281 0.233
(0.008) (0.007) (0.006) (0.009) (0.008)

ρ2 0.361 0.447 0.481 0.405 0.371
(0.008) (0.009) (0.008) (0.011) (0.008)

τ2 0.435 0.502 0.544 0.568 0.494
(0.010) (0.014) (0.011) (0.017) (0.011)

Observations 141,800 141,800 141,800 75,426 141,800
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Table 4
Comparing Firms With Different Amounts of Intangible Capital

This table shows results from subsamples formed based on yearly quartiles of intangible intensity, which

equals the ratio of a firm’s intangible to total capital. The column labels show each quartile’s mean intangible

intensity. Results are from regressions of investment on lagged q, firm fixed effects, and (in Panel E only)

contemporaneous cash flow. Slopes on q and cash flow, as well as ρ2 and τ2 values, are from the cumulant

estimator. R2 is from the OLS estimator that includes year fixed effects. Specifications (1)-(3) use physical

(ιphy), intangible (ιint), and total investment (ιtot) along with total q, all of which are scaled by total

capital. Specification (4) uses standard investment (ι∗ =CAPX/PPE) and standard q (q∗), which is scaled

by physical capital. Panel A’s last row shows the ratio of specification (2)’s q-slope to the sum of slopes from

specifications (1) and (2); we conduct inference using the delta method. Specifications (5)-(8) in Panel E

add standard cash flow (c∗) and total cash flow (ctot), defined in Table 3. Standard errors clustered by firm

are in parentheses. We use influence functions to conduct inference for ρ2 and τ2.

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 4− 1

Specification (8% intan.) (33% intan.) (56% intan.) (76% intan.) Diff. (StdErr.)

Panel A: Slopes on q
(1) ιphy on qtot 0.095 0.081 0.063 0.050 -0.045 (0.004)
(2) ιint on qtot 0.027 0.032 0.035 0.038 0.011 (0.004)
(3) ιtot on qtot 0.101 0.097 0.086 0.074 -0.027 (0.004)
(4) CAPX/PPE on q∗ 0.065 0.052 0.035 0.033 -0.032 (0.007)
βint/(βint + βphy) 22% 28% 36% 43% 21% (2.90%)

Panel B: OLS R2 values
(1) ιphy on qtot 0.219 0.227 0.259 0.284 0.065 (0.026)
(2) ιint on qtot 0.061 0.170 0.306 0.458 0.397 (0.064)
(3) ιtot on qtot 0.232 0.270 0.357 0.473 0.241 (0.016)
(4) CAPX/PPE on q∗ 0.182 0.195 0.248 0.299 0.117 (0.022)

Panel C: ρ2 values
(1) ιphy on qtot 0.261 0.364 0.486 0.612 0.351 (0.027)
(2) ιint on qtot 0.271 0.311 0.377 0.411 0.140 (0.048)
(3) ιtot on qtot 0.274 0.388 0.498 0.543 0.269 (0.020)
(4) CAPX/PPE on q∗ 0.197 0.282 0.379 0.561 0.364 (0.023)

Panel D: τ2 values
(1) ιphy on qtot 0.650 0.478 0.374 0.375 -0.275 (0.033)
(2) ιint on qtot 0.196 0.365 0.561 0.792 0.596 (0.031)
(3) ιtot on qtot 0.664 0.519 0.503 0.659 -0.005 (0.034)
(4) CAPX/PPE on q∗ 0.682 0.514 0.483 0.439 -0.243 (0.062)

Panel E: Slopes on cash flow
(5) ιphy on qtot, ctot 0.203 0.090 -0.009 -0.036 -0.239 (0.023)
(6) ιint on qtot, ctot -0.018 0.018 0.060 0.110 0.128 (0.013)
(7) ιtot on qtot, ctot 0.227 0.148 0.100 0.129 -0.098 (0.024)
(8) CAPX/PPE on q∗, c∗ 0.182 0.072 0.011 -0.003 -0.185 (0.026)

Observations 35,438 35,453 35,442 35,467
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Table 5
Comparing Industries

This table shows results from industry subsamples. We use the Fama-French five-industry defini-
tion, excluding the industry “Other.” Remaining details are the same as in Table 4.

Manufacturing Consumer High Tech Health Health−Manuf.

Specification (31% intan.) (48% intan.) (55% intan.) (62% intan.) Diff. (StdErr.)

Panel A: Slopes on q
(1) ιphy on qtot 0.083 0.085 0.059 0.068 -0.015 (0.005)
(2) ιint on qtot 0.038 0.037 0.036 0.040 0.002 (0.003)
(3) ιtot on qtot 0.097 0.102 0.079 0.084 -0.013 (0.005)
(4) CAPX/PPE on q∗ 0.041 0.042 0.033 0.038 -0.003 (0.003)

Panel B: OLS R2 values
(1) ιphy on qtot 0.194 0.239 0.307 0.244 0.050 (0.038)
(2) ιint on qtot 0.206 0.209 0.407 0.281 0.075 (0.031)
(3) ιtot on qtot 0.258 0.310 0.460 0.362 0.104 (0.024)
(4) CAPX/PPE on q∗ 0.186 0.214 0.354 0.258 0.072 (0.031)

Panel C: ρ2 values
(1) ιphy on qtot 0.254 0.397 0.540 0.551 0.297 (0.036)
(2) ιint on qtot 0.321 0.234 0.474 0.376 0.055 (0.030)
(3) ιtot on qtot 0.294 0.386 0.572 0.521 0.227 (0.028)
(4) CAPX/PPE on q∗ 0.206 0.290 0.549 0.545 0.339 (0.029)

Panel D: τ2 values
(1) ιphy on qtot 0.557 0.442 0.431 0.319 -0.238 (0.035)
(2) ιint on qtot 0.398 0.485 0.686 0.545 0.147 (0.041)
(3) ιtot on qtot 0.632 0.539 0.634 0.522 -0.110 (0.036)
(4) CAPX/PPE on q∗ 0.655 0.539 0.511 0.365 -0.290 (0.048)

Panel E: Slopes on cash flow
(5) ιphy on qtot, ctot 0.171 0.029 -0.033 -0.059 -0.230 (0.032)
(6) ιint on qtot, ctot 0.041 0.106 0.059 -0.019 -0.060 (0.017)
(7) ιtot on qtot, ctot 0.265 0.190 0.090 0.010 -0.255 (0.034)
(8) CAPX/PPE on q∗, c∗ 0.083 0.048 0.001 -0.003 -0.086 (0.018)

Observations 40,280 36,884 31,680 11,207
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Table 6
Comparing Time Periods

This table shows results from the early (1975–1995) and late (1996–2011) subsamples. The 1995
breakpoint produces subsamples of roughly equal size. Remaining details are the same as in Table
4.

Early Late Late − Early

Specification (8% intan.) (33% intan.) Diff. (StdErr.)

Panel A: Slopes on q
(1) ιphy on qtot 0.083 0.062 -0.021 (0.002)
(2) ιint on qtot 0.035 0.037 0.002 (0.002)
(3) ιtot on qtot 0.100 0.079 -0.021 (0.004)
(4) CAPX/PPE on q∗ 0.043 0.033 -0.010 (0.001)

Panel B: OLS R2 values
(1) ιphy on qtot 0.205 0.208 0.003 (0.018)
(2) ιint on qtot 0.190 0.328 0.138 (0.016)
(3) ιtot on qtot 0.273 0.357 0.084 (0.013)
(4) CAPX/PPE on q∗ 0.209 0.268 0.059 (0.017)

Panel C: ρ2 values
(1) ιphy on qtot 0.304 0.407 0.103 (0.016)
(2) ιint on qtot 0.259 0.497 0.238 (0.018)
(3) ιtot on qtot 0.336 0.511 0.175 (0.016)
(4) CAPX/PPE on q∗ 0.262 0.479 0.217 (0.016)

Panel D: τ2 values
(1) ιphy on qtot 0.501 0.423 -0.078 (0.022)
(2) ιint on qtot 0.504 0.584 0.080 (0.030)
(3) ιtot on qtot 0.595 0.603 0.008 (0.022)
(4) CAPX/PPE on q∗ 0.615 0.477 -0.138 (0.026)

Panel E: Slopes on cash flow
(5) ιphy on qtot, ctot 0.109 -0.033 -0.142 (0.017)
(6) ιint on qtot, ctot 0.090 -0.033 -0.123 (0.013)
(7) ιtot on qtot, ctot 0.256 0.038 -0.218 (0.020)
(8) CAPX/PPE on q∗, c∗ 0.074 -0.008 -0.082 (0.009)

Observations 69,753 72,047
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Table 7
Time-Series Macro Regressions

Results are from 141 quarterly observations from aggregate U.S. data, from 1972Q2 to 2007Q2.
Each column uses a different investment measure noted in the column labels. Standard q (q∗) equals
the lagged aggregate stock and bond market value divided by the physical capital stock; Hall (2001)
computes these measures from the Flow of Funds. Total q includes intangible capital by multiplying
physical q by the ratio of physical to total capital; the ratio is from Corrado and Hulten’s (2014)
aggregate U.S. data. Bond q is constructed by applying the structural model of Philippon (2009)
to bond maturity and yield data; these data are from Philippon’s web site. Newey-West standard
errors with autocorrelation up to twelve quarters are in parentheses. Standard errors for the OLS
R2 values are computed via bootstrap.

Investment scaled by total capital (Ktot)

CAPX/PPE (ι∗) Physical (ιphy) Intangible (ιint) Total (ιtot)

Panel A: Regressions in levels
Total q (qtot) -0.001 0.019 0.017

(0.003) (0.003) (0.003)
Standard q (q∗) 0.002

(0.003)
OLS R2 0.035 0.014 0.570 0.610

(0.034) (0.030) (0.026) (0.040)

Panel B: Regressions in levels with Bond q
Bond q 0.061 0.049 0.006 0.055

(0.009) (0.011) (0.039) (0.032)
OLS R2 0.462 0.347 0.001 0.139

(0.059) (0.050) (0.013) (0.060)

Panel C: Regressions in 4-quarter differences
Total q (qtot) 0.007 0.004 0.01

(0.002) (0.001) (0.003)
Standard q (q∗) 0.007

(0.002)
OLS R2 0.124 0.106 0.096 0.121

(0.057) (0.052) (0.056) (0.060)

Panel D: Regressions in 4-quarter differences with Bond q
Bond q 0.056 0.043 0.017 0.060

(0.006) (0.005) (0.004) (0.008)
OLS R2 0.606 0.620 0.235 0.530

(0.053) (0.059) (0.074) (0.070)
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Table 8
Robustness: What Fraction of SG&A Is An Investment?

Results are from regressions of three investment measures on lagged total q and firm fixed effects.
Slopes on total q are from the cumulant estimator. Within-firm R2 is from the OLS estimator
that also includes year fixed effects. The SG&A multiplier is the fraction of SG&A assumed to
represent an investment. Our main analysis uses a 0.3 multiplier. For each multiplier value, we
re-estimate the intangible investment and capital stocks in the data. Since physical investment,
total investment, and total q are scaled by total capital, their values also depend on the SG&A
multiplier. Each regression uses 141,800 firm-year Compustat observations from 1975 to 2011.

Investment scaled by total capital (Ktot)

SG&A Physical (ιphy) Intangible (ιint) Total (ιtot)

Multiplier q-slope OLS R2 q-slope OLS R2 q-slope OLS R2

0.0 0.060 0.223 0.021 0.147 0.064 0.277
0.1 0.064 0.217 0.025 0.256 0.074 0.307
0.2 0.067 0.213 0.032 0.276 0.081 0.320
0.3* 0.070 0.209 0.037 0.279 0.086 0.327
0.4 0.072 0.206 0.043 0.278 0.092 0.331
0.5 0.075 0.203 0.048 0.274 0.097 0.333
0.6 0.077 0.201 0.054 0.270 0.103 0.335
0.7 0.078 0.200 0.06 0.266 0.108 0.335
0.8 0.080 0.198 0.065 0.262 0.113 0.334
0.9 0.082 0.197 0.071 0.257 0.118 0.333
1.0 0.084 0.196 0.075 0.253 0.122 0.332

* Value used in main analysis
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Table 9
Robustness: Alternate Measures of Intangible Capital

Results are from regressions of our three main investment measures on lagged total q and firm fixed effects.

The column labels indicate the investment measure used. Slopes on q are from the cumulant estimator.

We report the within-firm R2 from the OLS estimator that also includes year fixed effects. The first row

reproduces results from Table 3 with our main intangible-capital measure. Rows 2–7 show results using

alternate measures of intangible capital. Rows two and three use alternate values of δSG&A, the depreciation

rate for organization capital. Row four excludes goodwill from balance-sheet intangibles. Row 5 excludes

all balance-sheet intangibles. Row six assumes firms have no intangible capital before entering Compustat,

which corresponds to setting Gi0 = 0 in equation (11). Row seven estimates firms’ starting intangible capital

using a perpetuity formula that assumes the firm has been alive forever before entering Compustat; the initial

stock of knowledge capital (for example) is Gi0 = R&Di1/δR&D, where R&Di1 is the R&D amount in firm

i’s first Compustat record. Row eight uses our main intangible-capital measures but drops each firm’s first

five years of data. Row 9 uses use our main intangible-capital measure but drops firm/year observations

with missing R&D. Data are from Compustat from 1975 to 2011.

Investment scaled by total capital (Ktot)

Physical (ιphy) Intangible (ιint) Total (ιtot)

Specification q-slope OLS R2 q-slope OLS R2 q-slope OLS R2 N
1. Main results (Table 3) 0.070 0.209 0.037 0.279 0.086 0.327 141,800
2. δSG&A = 10% 0.071 0.213 0.038 0.294 0.088 0.337 141,800
3. δSG&A = 30% 0.069 0.207 0.037 0.270 0.086 0.322 141,800
4. Exclude Goodwill 0.070 0.209 0.037 0.282 0.086 0.329 141,800
5. Exclude balance-sheet Intangibles 0.063 0.199 0.035 0.248 0.079 0.306 141,800
6. Zero initial intangible capital 0.069 0.217 0.040 0.297 0.089 0.343 141,800
7. FKS initial multiplier 0.073 0.193 0.033 0.238 0.084 0.293 141,800
8. Drop first five years per firm 0.069 0.132 0.037 0.153 0.078 0.210 82,174
9. Exclude obs. with missing R&D 0.062 0.267 0.036 0.359 0.081 0.411 75,426
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