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but simple borrowing base covenants successfully restore firm value. Explicitly characterizing optimal
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depreciation rate, higher gross margins, or increased product demand, are typically associated with tighter
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Is Operating Flexibility Harmful Under Debt?

Dan A. Iancu, Nikolaos Trichakis, Gerry Tsoukalas∗

November 12, 2015

Abstract

We study the inefficiencies stemming from a firm’s operating flexibility under debt. We

find that flexibility in replenishing or liquidating inventory, by providing risk shifting incentives,

could lead to borrowing costs that erase more than a third of the firm’s value. In this context,

we examine the effectiveness of practical and widely used covenants in restoring firm value by

limiting such risk shifting behavior. We find that simple financial covenants can fully restore

value for a firm that possesses a mid-season inventory liquidation option. In the presence

of added flexibility in replenishing or partially liquidating inventory, financial covenants fail,

but simple borrowing base covenants successfully restore firm value. Explicitly characterizing

optimal covenant tightness for all these cases, we find that better market conditions, such

as lower inventory depreciation rate, higher gross margins or increased product demand, are

typically associated with tighter covenants. Our results suggest that inventory-heavy firms

can reap the full benefits of additional operating flexibility, irrespective of their leverage, by

entering simple debt contracts of the type commonly employed in practice. For such contracts

to be effective, however, firms with enhanced flexibility and/or operating in better markets must

also be willing to abide by more and/or tighter covenants.

1 Introduction

Operating flexibility, i.e., the ability to adapt after uncertainty resolution, carries benefits that are

widely documented in the literature. These benefits notwithstanding, flexibility may also cause

inefficiencies by increasing borrowing costs due to agency issues. Shielded by limited liability, firms

could use their flexibility to adapt operations in ways that benefit them at the expense of their

creditors. Because debt is priced higher to reflect such risk shifting capabilities, agency costs are

introduced, resulting in a loss of firm value (Myers 1977). This pitfall has been largely ignored in

the OM literature, which has focused primarily on the benefits of increased flexibility, traded off

against potential implementation costs.

∗Iancu (daniancu@stanford.edu) is from Stanford GSB, Trichakis (ntrichakis@hbs.edu) is from Harvard Business
School, Tsoukalas (gtsouk@wharton.upenn.edu) is from the Wharton School, University of Pennsylvania.
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In practice, however, such “flexibility-driven” agency costs can be substantial and all-the-more

difficult to alleviate due to the inherent incompleteness of debt contracts, i.e., their inability to

fully contract upon all future operating decisions (Aghion and Bolton 1992). For instance, while

inventory-heavy firms have considerable latitude in managing their inventory levels, common debt

agreements rarely prescribe or constrain such decisions in a direct way (DeAngelo et al. 2002).

Covenants, i.e., requirements that borrowers must meet and that allow debtholders to take control

in case of violation,1 have been suggested as a practical, albeit “roundabout” way to reduce agency

costs (Smith and Warner 1979). But while existing theory clearly explains how covenants work, it

does not discuss how well they work, that is, the extent to which practical covenants commonly used

in debt agreements mitigate agency issues stemming from operating flexibility. By providing little

guidance on how covenants should be crafted as a function of firm characteristics, existing theory

is also insufficiently “operational” (Bolton 2013). The design and effectiveness of covenants thus

emerge as deciding factors in unlocking the full value of flexibility, with the potential to ultimately

shape a firm’s operating strategy.

Our paper takes a first step towards addressing these important issues by examining them in the

context of inventory management, arguably the operating capability most studied in the operations

management literature. To illustrate, in this context, how firm value can be compromised by

covenants that do not adequately reflect operating flexibility, we recall the now infamous example

of L.A. Gear, a high growth fashion retailer whose lightning rise as a top-performing stock on the

NYSE in the 1990’s was matched by one of “industry’s most spectacular collapses.” (DeAngelo et al.

2002). Faced with a declining market and tight covenant requirements, L.A. Gear’s management

began to systematically liquidate inventory at fire-sale prices, in order to raise emergency cash in

an attempt to avoid covenant violations and meet interest obligations. The firm gradually burned

through its inventory and ultimately declared bankruptcy.2 According to DeAngelo et al. (2002),

“This large liquidation of noncash current assets was made possible by the firm’s large

inventory and accounts receivable beginning balances, with declines in these two items

together fully accounting for the overall decline in current assets. [...] L.A. Gear’s debt

covenants clearly did not eliminate [management]’s ability to liquidate working capital

to fund its various strategic experiments. One possible reason is that [...] working-

capital liquidations fall into a gray area that is difficult to constrain in a productive

way, since they are not an outright sale of assets but are instead decisions made in the

routine course of business not to replace liquid assets as they are drawn down.”

This example highlights how poorly designed covenants may not adequately restrict risk shifting

behavior, and may even distort operating decisions, e.g., by inducing excessive asset liquidations.

1Although debt contracts include several types of covenants (Hilson 2013), our work focuses on performance-based
covenants that rely on financial metrics, which are widely used in practice (Nini et al. 2009, Roberts and Sufi 2009a).

2For a study of the relation between inventory levels and stock prices, see Gaur et al. (2014).
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Our study takes the perspective of an inventory-heavy firm (e.g., a retailer or manufacturer)

facing uncertain demand that can issue competitively priced debt to fund its inventory investments.

We model operations using the classical newsvendor paradigm, supplemented with an intermediate

period during which the firm is afforded different degrees of operating flexibility to adjust inventory

in response to observed sales. To isolate the role of this flexibility in generating agency costs, we

abstract away from other sources of agency issues (such as information asymmetry), and preserve

contract incompleteness by preventing the explicit constraining of future inventory decisions as

part of the debt agreement. We instead allow debt contracts to include covenant terms commonly

employed in practice, specifically, financial and borrowing base covenants (Roberts and Sufi 2009a).

Debt contract terms and inventory decisions are determined endogenously. Inventory decisions

remain with the firm as long as covenants are not breached, and are otherwise transferred to

debtholders, who can seize and liquidate firm inventory to accelerate debt repayment.

Our Contributions

The model we develop yields two main novel insights.

1) We show that flexibility stemming from inventory management capabilities can generate sur-

prisingly substantial agency costs for leveraged firms—potentially amounting to more than a third

of firm value—when debt contracts do not include covenants (see Section 2 for details). We further

find that inventory policies can be significantly distorted, both at inception and at the intermediate

decision point. Specifically, we show that firms may under-order ex-ante and follow counterintuitive

inventory liquidation policies ex-post, preferring continuation when operating results are weak and

liquidation when they are strong. Whereas the former effect is in line with existing theory, the

latter has not previously been demonstrated (see Sections 4 and 5).

2) We show that the aforementioned agency costs and operating distortions can be fully alleviated

by simple covenants widely used in practice (e.g., financial and borrowing base covenants), provided

they are properly designed. We explicitly characterize the optimal types of covenants and their

restrictiveness (respectively referred to as “intensity” and “tightness” in the literature, Demiroglu

and James 2010) needed to restore firm value, and show how these are intrinsically related to three

factors, (i) degree of operating flexibility, (ii) product parameters (e.g., margin and depreciation),

and (iii) external market growth (see Sections 5 and 6).

These core insights suggest several implications and empirical predictions, discussed next.

• First, our findings send a clear message that an inventory-heavy firm contemplating oper-

ational changes to enhance flexibility, such as lead time reduction to accommodate mid-season

replenishment or additional sales channels to allow for (partial) inventory liquidation, should not

hesitate to finance its operations through debt; by suitably structuring its debt contracts, it can

reap the full benefits of extra flexibility, irrespective of leverage. These findings nuance and even
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counter certain predictions in the finance literature that increased (production) flexibility will be

accompanied by increased agency costs, tighter credit terms and reduced debt capacity (MacKay

2003). The implicit assumption underlying such predictions is that covenants used in practice are

insufficiently potent to eliminate agency costs that result from a firm’s operating flexibility. Our

model shows that this is not necessarily the case for inventory-heavy firms. We believe this link

between operating flexibility and covenant effectiveness could be empirically tested (see Section 7.2.)

• Second, we highlight the way operating capabilities and parameters are reflected in covenant

design. We show that in the case of a firm that possesses a mid-season option to make all-or-

nothing (“0-1”) liquidation decisions, such as discontinuing product lines or closing stores, simple

financial covenants would suffice to fully restore firm value. When the firm has added flexibility

to adjust inventory, for instance through replenishment and/or partial liquidations, as in the L.A.

Gear case, financial covenants fail, leading to operating distortions and loss of value. However, we

show that the addition of simple borrowing base covenants specifying an optimal haircut on the

value of inventory succeeds in fully alleviating agency issues. These findings are summarized in

Table 1. Our optimal characterization of covenant intensity and tightness as a function of operating

parameters, moreover, yields a series of new predictions of interest to the empirical literature in

accounting and finance that examines covenant tightness. In particular, we find that better market

conditions, such as lower inventory depreciation rate, higher gross margins and increased product

demand, typically lead to tighter covenants. These insights are further discussed in Section 7.2.

Contract
Newsvendor 0-1 Liquidation Partial Liq. / Replenishment

(no flex) (medium flex) (high flex)

Interest-rate-only 3 7 7

Financial covenant 3 3 7

Borrowing base covenant 3 3 3

Table 1: Optimal debt contracts required as a function of the firm’s operating flexibility. Check marks indicate
feasibility of the contract in completely alleviating agency costs and restoring firm value. For instance, contracts that
only include an interest rate are sufficient for a newsvendor (with no flexibility), but fail under added flexibility.

From a managerial perspective, our findings suggest that for debt contracts to be effective

in practice, firms with enhanced flexibility and/or operating in better markets should be willing

to abide by more and/or tighter covenants. This may seem counterintuitive to an operator, as

(i) better markets may seem to be more “secure,” and (ii) covenants clearly restrict the firm’s

operating discretion. Our model nevertheless predicts that optimally crafted covenants can fully

mitigate agency issues, and are thus in a firm’s best interest. Managerial implications are further

discussed in Section 7.1.

• Extending our model to capture how competition in the lending market can affect results, we

examine the extreme case in which the lender acts as a monopoly. We find inventory-heavy firms

to face more covenants as competition in the lending market wanes, and covenants to no longer be
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sufficient to restore firm value.

• Our model also shows the relationship between covenant inclusion and bankruptcy risk to

be more subtle than previously reported in the literature, and critically dependent on competition

in the lending market and residual growth in product demand. Table 2, which illustrates this

relationship, shows that it is possible that covenants are included and the equilibrium probability

of bankruptcy is zero. Also, it is possible in equilibrium that the risk of bankruptcy exists but

covenants are not included in the debt contract. The table highlights, moreover, that covenants

become more prevalent as competition in the lending market wanes or demand growth rate increases.

perfect competition

“low” market growth “high” market growth

covenants imply
bankruptcy risk

covenants imply and are
implied by bankruptcy risk

covenants neither imply
nor are implied by

bankruptcy risk

bankruptcy risk implies
covenants

monopoly

Table 2: Connection between bankruptcy risk and the inclusion of covenants.

The model extension for the monopolistic lending market is included in the Appendix B. Model

limitations and future directions are summarized in Section 7.3.

Literature Review

Our work lies at the interface of operational and financial decision-making, an area pioneered

by several recent papers. For instance, Xu and Birge (2004) and Dada and Hu (2008) extend the

newsvendor model to include financing constraints, and show how these can affect the optimal order

quantity or capacity choice. The focus here is on short-term financing in the form of trade credit

or debt. We refer the reader to Kouvelis (2012) for a review of this literature. None of these papers

consider a dynamic setting, where agency issues due to risk shifting could be relevant. Several papers

in operations have discussed dynamic inventory decisions under capital constraints or leverage (e.g.,

Porteus 1972, Archibald et al. 2002, Gong et al. 2014), but without modeling strategic interactions

or endogenizing debt contract terms. Boyabatlı et al. (2015) study the interplay of operational and

financial flexility, albeit in a different context than ours.

Closer to our work, Boyabatlı and Toktay (2011) examine a firm’s optimal choice of flexible

capacity under leverage in a static setting, finding that firms are more likely to choose flexible

capacity when they use secured loans, and when they face less demand variability. Critically

different from our model, flexibility does not create any agency issues in Boyabatlı and Toktay

(2011), as it cannot be used to shift risk. To the best of our knowledge, only two papers in the

operations literature examine the relationship between the agency costs of debt and flexibility.
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Chod and Zhou (2014) study a newsvendor-style firm that first secures debt, and then chooses

whether to invest in flexible or inflexible (but cheaper) resources. Risk shifting arises when the

latter option is chosen, as inflexible resources are “riskier” than flexible ones. Thus, in this static

model, increased (resource) flexibility does not accentuate agency issues, but rather reduces them.

In contrast, our emphasis is on studying the risk shifting potential that operating flexibility can

introduce, which can only be captured in a dynamic setting. Finally, Chod (2015) study the role

of trade credit in alleviating the agency costs of debt. The focus is on a newsvendor-style firm that

first secures funding—through bank debt or trade credit—and then places orders for two types of

products. The author shows how agency costs arise under (interest-only) debt financing, as the firm

can order the “riskier” product once debt is in place. In contrast, when trade credit is provided by

a single supplier who can directly contract upon the individual order quantities, agency costs are

fully alleviated. While both Chod (2015) and the present paper discuss agency costs arising from

operating flexibility, the papers differ dramatically in focus: the former looks at trade credit, while

we examine the efficiency and optimal design of common financial contracts (with covenants).

On a broader level, our work is related to a large body of accounting, finance and economics

literature that deals with agency issues and contractual incompleteness. Seminal works include

Jensen and Meckling (1976), Myers (1977), Grossman and Hart (1986), and Aghion and Bolton

(1992). Smith and Warner (1979) were the first to describe how covenants can be used to counter

agency issues, whereas Leland (1994) argued how net worth covenants can mitigate agency issues

occasioned by risk shifting. The literature on the role of covenants in alleviating agency and

incompleteness is vast, and we make no attempt to survey it here—we refer the interested reader

to Bolton and Dewatripont (2004), Tirole (2006), and references therein.

Several papers within this stream study agency costs derived from different types of flexibility,

see, e.g., Childs et al. (2005), Leland (1998), Moyen (2007), Titman et al. (2004). The focus is on

comparative statics to assess the directional impact of flexibility on such costs and/or numerical

studies to quantify the magnitude of costs. Mello and Parsons (1992) and Manso (2008) study

special forms of operating flexibility (captured through switching costs), with the latter deriving

upper bounds on the agency costs. None of these papers look at the effectiveness of optimally

designed covenants in alleviating agency costs, which is the primary focus of our paper.

Closer to our work, some recent papers focus on quantifying agency costs and covenant effec-

tiveness. Gamba and Triantis (2014) compares the effectiveness of different types of covenants used

in practice through a detailed numerical study, showing that covenants could restore anywhere

from 0% to 90% of the firm value loss. Matvos (2013) develops a structural model to measure

which types of covenants are most effective in practice, finding that covenant presence is essen-

tial, but—once covenants are chosen—the benefits of “fine-tuning” them is marginal. In contrast,

we find that significant firm value could be at stake if covenant tightness is not properly set (see

Section 2). Neither of these papers looks at optimal covenant design. Berlin and Mester (1992),
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Sridhar and Magee (1997) and Gârleanu and Zwiebel (2009) study the relation between optimal

covenant design/tightness and renegotiation, which becomes important under information frictions.

We instead study how to optimally design covenants in order to mitigate agency issues caused by

(varying degrees of) operating flexibility, which, to the best of our knowledge, has not been looked

at before. Moreover, the aforementioned papers do not focus on quantifying covenant effectiveness.

In Section 7.2, we review several empirical papers in the literature studying covenant tightness,

intensity, effectiveness that our work nuances and is either aligned with, or even counters.

2 Quantifying Agency Costs

Before introducing the modeling details and analysis, it will be useful to gain a better understanding

of the magnitude of the effects discussed in the introduction. Are flexibility-driven agency costs

a first order effect in our setting? To assess this, we first measure the potential value created by

inventory flexibility, and then quantify how much of this value can be erased under leverage.

We rely on a base case newsvendor model, denoted by N , with a single selling season [0, 2]. To

introduce operating flexibility, we extend this model by splitting the selling season into two periods,

[0, 1] and [1, 2], and in the spirit of Fisher et al. (2001), we allow an opportunity to adjust inventory

in response to observed sales inbetween. We refer to this model as the “flexvendor.” As alluded to

in the introduction, we study different degrees of the flexvendor’s flexibility in adjusting inventory.

In this section, we consider the highest degree of flexibility, where the flexvendor can fully adjust

inventory either by partial liquidation or replenishment, and study the following two variations:

F : a flexvendor with ample capital, who requires no debt financing.

F lev: a leveraged flexvendor, who primarily relies on debt financing through competitively-

priced debt contracts that only include an interest rate.

The flexvendor model is rooted in reality, and motivated by the decision process faced by firms

carrying inventory that depreciates in value over time. In particular, we are inspired by the case of

Hewlett Packard (HP), which attempted to enter the tablet market in the summer of 2011, with two

TouchPad devices (16GB and 32GB versions) that were based on HP’s proprietary webOS software.

As of August 2011, the two devices retailed for $399.99 and $499.99, respectively (Rapaport and

Tracer 2011). Over the course of the month, HP’s sales were extremely disappointing, while its

competitors were rapidly gaining market share. It soon became apparent that HP’s software could

become obsolete, unable to compete with the Apple and Android ecosystems. As a result, towards

the end of August 2011, HP decided to completely liquidate its webOS line of tablets, at fire-sale

prices. After some price experimentation, the retail liquidation prices were set at $249.99 and

$299.99, respectively (Wikipedia 2011).

We rely on this example to calibrate the flexvendor’s operating parameters, namely prices

and unit cost. As HP’s primary distribution channel was through wholesale to its retail partners
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(e.g., Best Buy), we need estimates of HP’s wholesale prices during normal operations, and during

liquidation. According to Damodaran (2015), retail consumer electronics margins averaged 18.38%

in 2011. This implies tablet wholesale prices of around $338 (16GB) and $422 (32GB), during

normal operations, and $211 (16GB) and $253 (32GB) during the liquidation. Furthermore, HP’s

unit costs—including parts and labor—were estimated at around $306.15 (16GB) and $328.15

(32GB), (Wikipedia 2011). Averaging across the two devices, we obtain an average unit cost of

around 83% of wholesale, and an average liquidation price of around 61% of wholesale.

Accordingly, we normalize the flexvendor selling price to 1, and set the unit ordering cost

to 0.83 (in both periods) and the liquidation value to 0.61 at time 1. To capture the webOS

technological obsolescence, there is no salvage value at time 2. Further, we assume first period

demand is uniformly distributed between [0, 10], and the second period demand—conditioned on

the first period realized demand being d1—is uniformly distributed in [0, 2d1]. F lev uses equity of

0.2, so that the purchase is primarily financed by debt. The profits are also normalized to ease

exposition, such that the expected profits of N are set at 100, see Figure 1(a).

Comparing the newsvendor N in Figure 1(a) to the flexvendor F in Figure 1(b) highlights the

value of inventory flexibility: the flexvendor extracts profits of 235, a 135% increase compared to

the newsvendor. This also represents the “first best” outcome for the flexvendor, i.e., the total

profits or firm value achievable with flexibility, and without any financial frictions.
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Figure 1: The value of operating flexibility: (a) Newsvendor vs. (b) Flexvendor

Introducing debt financing leads to agency issues, as the leveraged flexvendor—shielded by lim-

ited liability—can use his additional operating flexibility to adjust the inventory level in risky ways,

e.g., by carrying too much inventory into the second period (this intuition is formalized in Section 4).

This leads to some rather striking results. If debtholders do not anticipate this risk shifting po-

tential, the leveraged flexvendor could expropriate wealth from them, and beat first best, as shown

in Figure 2(a). Under equilibrium pricing, debtholders fully anticipate risk shifting and increase

borrowing rates in response, which introduces agency costs, as shown in Figure 2(b). Consequently,

the leveraged flexvendor achieves profits of 160, which are 32% lower than the flexvendor’s first

best. This loss is substantial, suggesting that flexibility-driven agency costs can be a dominant

8



effect in our setting,3 potentially shaping operations strategy. For instance, consider the situation

where the newsvendor would need to invest 100 to obtain the reordering/liquidation flexibility of

the flexvendor. In the absence of financial frictions, such an investment would be fully justified,

yielding a net benefit of 135−100 = 35. However, under financial frictions, the net benefit becomes

60− 100 = −40, rendering the investment unattractive.

wealth
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(b) Agency costs created

Figure 2: How a leveraged flexvendor could shift risk to extract wealth from non-anticipating debtholders (a), and how
agency costs are created when debtholders anticipate this behavior in equilibrium (b), in the context of interest-only
debt contracts.

To evaluate the potential of covenants in alleviating agency costs, we now consider the case

where the debt contract for the leveraged flexvendor includes a simple financial covenant of varying

tightness, evaluated between the two periods. In particular, the covenant requires that the cash

generated from sales in the first period meet a minimum threshold. The covenant becomes tighter

as the required threshold increases. Upon covenant violation, the decision rights are transferred to

the debtholders. Figure 3 illustrates the effectiveness of a covenant with (a) low, (b) medium or

(c) high tightness in mitigating the value losses. It is interesting to note that the three covenants

reduce agency costs to (a) 13%, (b) 4.5%, and (c) 7.5%, respectively, so that effectiveness is non-

monotonic in covenant tightness. The intuition behind this is that if the covenant is too loose,

risk shifting activities are not adequately restricted. However, if the covenant is too tight, then

the debtholders essentially control the firm after the first period, and take decisions that are also

inefficient. We discuss this extensively in Section 5.

While this simple example sets the stage, it leaves much unanswered: How effective are financial

covenants in mitigating flexibility-driven agency costs and restoring firm value? Is one covenant

enough, or are more needed? How should the covenant intensity and tightness be structured as

a function of the product (price, margin, salvage), the market (demand growth), and the firm’s

operating capabilities (reordering and liquidation options)? The rest of the paper seeks answers to

3We conducted several robustness checks, by varying all parameters in this model, and the magnitude of the effect
persisted. We note that these costs are larger than values reported in other studies. For instance, Chod (2015) reports
agency costs of less than 8% in a single-period inventory model, while Gamba and Triantis (2014) report costs as
large as 18% (albeit in a very different model specification).
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Figure 3: Quantifying how much value covenants can restore for the leveraged flexvendor, as a function of tightness.

these questions.

3 Model

We introduce the flexvendor model by considering a newsvendor who has an early exit option,

i.e., an intermediate time-step at which all remaining inventory can be liquidated, before fully

depreciating (we return to study the flexvendor with replenishment flexibility in Section 6).

3.1 Flexvendor With a Liquidation Option

We consider a setting in which a firm can purchase a single type of product at time t = 0, at unit

cost c > 0. The number of units to purchase is denoted by q; full payment of c q is due upon delivery

of the purchased units, which occurs with zero lead time. There are two selling periods, over which

products are sold at price p = 1 > c. At t = 1, the first period random demand D1 is realized, and

fulfilled to the largest extent possible from the initial inventory of q units. We assume that D1 has

non-negative support, cumulative distribution function (c.d.f.) F1 and probability density function

(p.d.f.) f1, and denote a realization with d1.

At this point, a participating firm faces two options: it can either liquidate (e.g., salvage) the

remaining inventory (q − d1)+ (if any) at unit price s < c and exit the market immediately, or

continue operating for a second selling period. The decision to continue or liquidate, denoted by

` ∈ {0, 1}, is based on the information set at t = 1, which consists of the realized demand d1.

If the firm chooses to continue, i.e., ` = 0, the second period demand D2 is realized and

fulfilled at t = 2, to the largest extent possible. We assume that D2 depends on d1, specifically,

D2|{D1 = d1} =
(
M−1

2 d1

)
Z, where Z is a non-negative random variable with unit mean, and

M > 1 is a parameter determining the demand growth rate, or market strength. In particular, since

E[D2|D1 = d1] = M−1
2 d1, demand is projected to increase if M ≥ 3, and decrease otherwise. We

refer to these cases as follows.

Definition 1. When M ≥ 3 (M < 3), we say that the market is non-shrinking (shrinking).
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Unmet demand is lost without any penalty in both periods, and any remaining inventory is dis-

posed of, without salvage value or cost.4 For simplicity, we assume a zero discount rate throughout

the analysis. The value extracted from such a market under an initial order q is thus given by the

firm’s expected profit,

V (q) = ED1

[
min(D1, q) + max

`∈{0,1}

{
` · s(q −D1)+ + (1− `) · ED2|D1

[
min

(
D2, (q −D1)+

)]}]
, (1)

and the firm chooses q at t = 0 so as to maximize V (q). Let V fb def
= maxq≥0 V (q) denote the

optimal extracted value, and qfb denote the associated optimal order quantity, henceforth referred

to as first best.

3.2 Leveraged Flexvendor

A firm (e.g., a retailer) R operates in the setting described above. When the firm’s initial capital x0

is insufficient to cover the inventory cost cq, it can obtain debt financing from a perfectly competitive

lending market. More precisely, a bank B (“she”) can extend a loan for the amount w
def
= (cq−x0)+,5

under a contract with the following (T)erms and (C)ontingencies.

[T1] (Interest rate and repayment) Payment of principal plus interest charges (at rate r) is due at

t = 2. For ease of exposition, we consider R = 1 + r in the remainder of the paper, and refer

to it simply as the interest rate. The amount due at t = 2 is then Rw.

[T2] (Collateral and withdrawal) The bank obtains perfect security interest in the entire inventory

(to be) purchased by the firm. All cash generated by selling the inventory is remitted to a

lockbox account controlled by the bank, and the firm is unable to access the funds until the

entire loan proceeds Rw are fully repaid, at t = 2. In other words, the lockbox account has

a zero withdrawal limit.

[C1] (Financial covenant) In period t = 1, the firm’s cash flow min(d1, q) is required to exceed a

threshold δ. Failure to abide by the covenant is considered an event of default, which gives

the bank full control rights, as well as the ability to request immediate repayment of all due

principal plus interest, Rw.

[C2] (Borrowing base covenant) In period t = 1, the firm’s borrowing base is calculated using an

advance rate of 1 for cash and α ∈ [0, 1) for inventory, and is thus equal to min(d1, q)+α s (q−
d1)+. The borrowing base is required to exceed a threshold β, and as with [C1], failure to

conform triggers an event of default, and carries the same repercussions.

4The assumption of zero salvage at t = 2 simplifies exposition, without affecting our structural results and insights.
5We implicitly assume that all available equity is used to purchase the inventory at t = 0. Absent other consider-

ations, this is without loss (Kouvelis and Zhao 2012).

11



All contracts we consider include terms [T1-2]. We denote the set of contracts that include no

contingencies by K∅, and refer to such contracts as interest-rate-only contracts. Similarly, let KF

be the set of contracts that include a financial covenant [C1] only, and KB the set of contracts that

include a borrowing base covenant [C2] only. It is worth noting that a borrowing base covenant

is more general than a financial (i.e., cash flow based) covenant, since the latter can always be

replicated through the former by taking α = 0 and β = δ. As such, K∅ ⊂ KF ⊂ KB.

We consider separate model specifications, in which contracts are chosen from either K∅, KF or

KB. To simplify notation, we denote any contract with κ.

3.2.1 Timing of Events

We study the game under perfect and symmetric information between the two players, R and B.

At t = 0, the firm chooses an order quantity q, and the bank chooses the terms (and contingencies)

in the loan contract κ.

At t = 1, demand d1 is revealed to both players and fulfilled, generating a cash flow of min(d1, q)

for the firm. As described above, the firm has the option of continuing operating for a second selling

period, or liquidating any leftover inventory at s and exiting the market. If the latter option is

chosen, the firm uses generated cash flow and liquidation revenues, equal to min(d1, q)+s(q−d1)+,

to repay its debt of Rw. Let `R : R × R → {0, 1} denote the firm’s liquidation policy, with

`R(q, d1) = 1 if and only if the firm liquidates when the initial inventory is q, and D1 = d1.

If the firm chooses to continue operating and the contract includes a covenant, then the bank

evaluates the covenant requirement. If it is breached, the bank has the option of forcing liquidation

in order to secure full payment of the debt. In case the bank exercises this option, she seizes

remaining inventory and liquidates it at unit price s. All proceeds from sales and liquidation are

first used towards debt servicing. If the bank is made whole, the remaining revenues are returned

to the firm. Similar to our previous notation, let `B : R×R→ {0, 1} denote the liquidation policy

of the bank. Note that, unless a covenant is included in the contract and it is breached, the bank

does not have any right to influence the liquidation/continuation decision.

When the firm chooses to continue and the bank does not force liquidation, the second period

demand D2 is realized and filled to the largest extent possible. At t = 2, the generated sales revenues

from the two periods are first used to repay the debt Rw, and the firm keeps any remaining cash

and exits the market.

In this setting, the firm’s and the bank’s cash flows at the end of the game under the liquidation

event6 L (irrespective of the party choosing that option) and continuation event C
def
= L c are

6More formally, L
def
= {`R(q,D1) = 1}∪

{
V ∩{`B(q,D1) = 1}

}
, where V is the event corresponding to a covenant

breach, i.e., V def
=

{
κ ∈ KF ∩ {min(q, d1) < δ}

}
∪
{
κ ∈ KB ∩ {min(q, d1) + αs(q − d1)+ < β}

}
.

12



respectively given by

XR,L (q,D1) =
(
min(D1, q) + s(q −D1)+ −Rw

)+
, XR,C (q,D1, D2) = (min(D1 +D2, q)−Rw)+ ,

XB,L (q,D1) = min
{
Rw, min(D1, q) + s(q −D1)+

}
, XB,C (q,D1, D2) = min

{
Rw, min(D1 +D2, q)

}
.

For the firm, both expressions have a floor at 0, reflecting its limited liability. For clarity, we refer

to the game at t = 1 that determines whether L or C occurs as subgame S. The pure subgame

perfect equilibrium actions can be characterized via backward induction. When κ ∈ K∅, the game

only entails choices by the firm. When κ ∈ KF ∪KB, the outcome of the subgame S can be viewed

as a Stackelberg game, with the firm leading by choosing `R and the bank following by choosing

`B (see Figure 4(b)).

At t = 0, the expected profits of the two players can then be compactly expressed as

πR(q, κ) = E
[
XR,L (q,D1)1{L }+XR,C (q,D1, D2)1{C }

]
− x0,

πB(q, κ) = E
[
XB,L (q,D1)1{L }+XB,C (q,D1, D2)1{C }

]
− w,

where 1 is an indicator function. The firm chooses the order quantity q so as to maximize its

expected profit πR(q, κ), and the bank chooses the debt contract terms κ so as to break even in

expectation, i.e., πB(q, κ) = 0. The sequence of all events is illustrated in Figure 4.

t = 0 t = 1 t = 2
demand revealed &contract

R, B D
L

....................︸ ︷︷ ︸ .........................︸ ︷︷ ︸ ..........................︸ ︷︷ ︸

subgame S with
outcomes C or L

demand
revealed

C

d2
D

S

{πR;πB}

{πR;πB}

d1q, κ

signed

(a) Game under perfect competition

violation

R
`R = 1

`R = 0

R

B
`B = 0

`B = 1

..........................︸ ︷︷ ︸
liquidation/
continuation
decisions

.............︸ ︷︷ ︸
covenant
evaluation

L

C

C

⇔
L

C

S

`R = 0

L

no
violation

(b) Subgame S

Figure 4: Game under perfect competition and subgame S for κ ∈ KF ∪KB (R=Firm, B=Bank, D=Demand).

Assumptions for Analysis

For the sake of analytical tractability, we also introduce the following simplifying assumptions. We

relax these in Section 6.

Assumption 1. The random variable Z that drives second period demand follows a two-point

distribution, taking values 0 and 2 with equal probability.
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The two-point distribution introduces an adverse (D2 = 0, for Z = 0) and a favorable scenario

(D2 = (M − 1)d1, for Z = 2) for the second period demand. Our choices of zero demand in

the adverse scenario and equally likely scenarios allow us to ease exposition, without affecting the

validity of the structural results.

Under Assumption 1, the probability of selling a unit of inventory over the second period is at

most 1/2, and the corresponding expected revenues are at most 1/2 as well, since the selling price

is 1. On the other hand, liquidation yields revenues of s per unit at t = 1. It is easy to see that,

unless s < 1/2, the firm would never prefer to continue in the second period, but rather behave

as a classical newsvendor who sells over one period and then liquidates (or salvages) his leftover

inventory. To circumvent this degeneracy, we introduce the following assumption:

Assumption 2. The liquidation price satisfies s < 1/2.

It is hardly surprising that an upper bound on the value of s is needed to eliminate trivial cases

when liquidation is always preferred.

3.3 Discussion of Modeling Assumptions

Business cycle. Our model extends the classical newsvendor framework by providing a liquidation

option at an intermediate point. This can correspond to a discontinuation of a division or product,

or a going out of business sale (Craig and Raman 2013). Paralleling the standard “salvaging”

assumption in the newsvendor setup, we assume that the entire leftover inventory at t = 1 can

be liquidated at a price s that is a-priori known, and independent of the quantity and first period

demand. While simplistic,7 this assumption adequately captures the mechanisms at play in our

setting, and becomes even more sensible when the bank is also endowed with a liquidation option.

In practice, such liquidations are typically contracted to an external party, such as Gordon Brothers

Group, Hilco Global, ES Group, etc. Such a liquidation house provides binding inventory appraisals

upfront (i.e., in period t = 0), and, in case of liquidation, purchases the entire inventory at a fixed

per-unit price, which reflects a pre-determined haircut on the original appraised value. Thus, any

remaining liquidation risk beyond this haircut is essentially transferred to the liquidation house

(see Craig and Raman 2013 for more details).

Demand distribution. Requiring D1 and D2 to be correlated is standard in the literature (Fisher

and Raman 1996). Our assumption of a discrete second period demand distribution has been

widely used in the literature in similar multi-period game-theoretic models (e.g., see Bolton and

Dewatripont 2004 and references in our literature review in Section 1). Despite its simplicity, the

7Cachon and Kok (2007) recognize that the effective salvaging price depends on remaining inventory, and discuss
appropriate ways for estimating this price. There is also an extensive literature in revenue management concerned
with optimal markdown, the practice of dynamically adjusting prices for remaining inventory at the end of a selling
season, for the purpose of freeing valuable shelf space (see, e.g., Talluri and Van Ryzin 2004 and Phillips 2005).
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two-point distribution is sufficiently rich to capture the main trade-offs driving the players’ dynamic

decisions, and the results derived are robust, as discussed in Section 6 and Section C.1.

Exogenous retail price. We note that the flexvendor in our model is assumed to be price-taking, as

in the classical newsvendor setting.

Collateral. Assuming the loan to be secured allows us to abstract away from potential complexities

related to the bank’s seniority in the capital structure.

No loan limit. In our model, given that the interest rate is determined endogenously, a loan limit

would be superfluous and is thus omitted. This is standard in the finance and the OM literatures

(Boyabatlı and Toktay 2011, Gârleanu and Zwiebel 2009, Myers 1977, Xu and Birge 2004).

No cash diversion/dividends. The presence of a lockbox account and the implicit assumption of

no dividend payment are both common requirements in loan agreements (see Chapter 7 of Hilson

2013, pages 14 and 19). In our model, this allows abstracting away any additional agency issues

related to cash diversion, and focusing on agency issues exclusively due to operating flexibility.

No additional financing. Allowing the firm no access to other external capital (e.g., by new equity

or debt issuance) during the life of the contract is standard in the literature (see, e.g., Chod and

Zhou 2014, Gârleanu and Zwiebel 2009, Myers 1977, Xu and Birge 2004). This allows focusing on

the relationship between the two agents.

Contingencies. Since the goal of our paper is to quantify the effectiveness of simple and practical

covenants in alleviating agency issues, the debt contracts we consider only include financial or

borrowing base covenants. Together with pricing grids, these are the most commonly used forms of

contingencies in practice, as documented by numerous empirical papers (Roberts and Sufi 2009a).

Financial covenant. Financial covenants involve various metrics, such as cash-flow-to-debt ratio,

net worth, interest rate coverage, EBIT to interest ratio, etc. (see, e.g., Dichev and Skinner 2002,

Roberts and Sufi 2009b, and pages 2-4 in Chapter 7 of Hilson 2013). In our base model, it turns

out that all such covenants translate into a minimum threshold requirement on the cash flow

or, equivalently, on the first period demand d1 (note that the covenant can never be breached

upon stock-out).8 The choice of a particular type of financial covenant is therefore without loss

of generality, so that we henceforth base our analysis and discussion on a minimum cash flow

threshold δ that controls the covenant tightness. Finally, entitlement to immediate debt payment

upon a covenant breach is routinely included in contracts (see page 17 in Chapter 7 of Hilson 2013).

Borrowing base covenant. The borrowing base is the value assigned to the borrower’s pledged assets,

calculated by applying particular advance rates against each type of collateral. These rates (i.e.,

8For instance, consider a covenant requiring the net worth to be higher than a threshold τ . For d1 < q, debt at
t = 1 is equal to Rw, and equity is equal to d1 + s(q − d1). The covenant then equivalently requires demand to be
higher than a threshold, i.e., d1 >

τ+Rw−sq
1−s .
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“hair-cuts”) are chosen by the lender as additional risk controls, reflecting the riskiness of each

asset class. Our assumption that cash and inventory have advance rates of 1 and α, respectively,

is consistent with common practice, where accounts receivable advance rates are often 90%-100%,

while inventory rates range from 50% to 90% (Buzacott and Zhang 2004, CH 2014). Most secured

contracts include contingencies requiring the borrowing base to exceed the size of the outstanding

debt throughout the life of the loan. We note that the covenant used in our model is slightly more

general, by requiring the borrowing base at t = 1 to exceed a value β, which is not necessarily equal

to the outstanding debt. We retain the terminology of “borrowing base covenant” for simplicity of

exposition. β controls the tightness of the covenant. A borrowing base requirement at t = 0 would

essentially be equivalent to a loan limit, which is superfluous as per our discussion above.

Bankruptcy costs and procedures. In the event of default, we only consider Chapter 7 bankruptcy

(“liquidation”), but not Chapter 11 (“reorganization”), which would involve having to model the

renegotiation process between the parties. Note also that, in view of our assumption of perfect and

symmetric information, a renegotiation process would be superfluous (see Gârleanu and Zwiebel

2009). We also ignore bankruptcy costs. For a discussion on the effects of non-zero bankruptcy

costs and reorganization, we refer the reader to Birge and Yang (2013) and Birge et al. (2015).

4 Liquidation Policies

We analyze the players’ optimal liquidation policies in subgame S, at the intermediate time t = 1.

To provide a meaningful comparison, we start by deriving the first best policy.

4.1 First Best Liquidation Policy

When the order quantity is q, and the first period demand realization is D1 = d, the first best

policy can be readily derived as the optimal liquidation decision ` in (1).

Lemma 1 (First Best). The first best liquidation policy is a threshold one,

`fb(q, d) = 1{d < dfb(q)}, where dfb(q)
def
=

sq
M−1

2 + s
.

Such a threshold policy is consistent with intuition and hardly surprising. Many studies dealing

with dynamic decisions under debt either de facto assume or derive such policies as optimal (see,

e.g., Babich and Sobel 2004, Gigler et al. 2009, Hart and Moore 1998, Morellec 2001, Swinney

and Netessine 2009). Furthermore, as one might intuitively expect, the threshold dfb is increasing

in q and s and decreasing in M , confirming that the propensity to liquidate increases with order

quantity and liquidation value, but decreases with the second period market strength.
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4.2 Leveraged Firm

Under debt, the firm’s liquidation decisions generally depart from first best. The optimal policy

turns out to critically depend on whether the order quantity q exceeds a particular threshold qD,

given by

qD
def
=





Rx0
Rc− 2s

M−1+2s

if M ≥ M̃ and s < s1
D,

Rx0
Rc− sM

M+s−1

if M < M̃ and s < s2
D,

∞ otherwise,

(2)

where M̃
def
= 2(1− s), s1

D
def
= Rc(M−1)

2(1−Rc) , s2
D

def
= Rc(M−1)

M−Rc . We introduce the following definitions.

Definition 2. When q > qD (q ≤ qD), we say that the firm is (not) sufficiently leveraged.

Definition 3. When M < M̃ (M ≥ M̃), we say that the market is (not) rapidly shrinking.

The first moniker is intuitive, since larger q is tantamount to a larger debt load. Note that whether

this condition holds critically depends on market parameters. In particular, firms are never suffi-

ciently leveraged when inventory does not depreciate too rapidly (i.e., s exceeds some critical value),

and an important distinction is drawn depending on whether markets are “rapidly shrinking,” as

captured in the second definition. Since M̃ < 2, a rapidly shrinking market is reflective of a second

period expected demand considerably below the first period realized demand, which is consistent

with (and stronger than) our earlier condition for a “shrinking market,” M < 3.

With these definitions, we now characterize the liquidation policy of a leveraged firm.

Lemma 2 (Leveraged Firm). In equilibrium,

(a) a firm that is not sufficiently leveraged follows the first best liquidation policy, i.e., `R(q, d) =

`fb(q, d).

(b) a firm that is sufficiently leveraged and operates in a market that is not rapidly shrinking

follows a threshold liquidation policy: `R(q, d) = 1
{
d < dR(q)

}
.

(c) a firm that is sufficiently leveraged and operates in a market that is rapidly shrinking follows

a non-threshold policy: `R(q, d) = 1
{
d ∈

[
0, RwM

)
∪
(
dR(q), dfb(q)

)}
,

where dR(q)
def
=





Rw
M , if M = M̃,

max
(

2sq−Rw
M−2(1−s) ,

Rw
M

)
otherwise.

It is worth noting that a leveraged firm follows the same policy in both the upper and the lower

node of subgame S, i.e., its policy is unaffected by a covenant breach. This is intuitive, since its
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own policy becomes irrelevant when the breach happens, so that the optimal policy in equilibrium

is the same as when the covenant is not breached.

Lemma 2 is summarized in Figure 5. Note that a firm’s behavior critically depends on whether

it is sufficiently leveraged, and on whether the market is rapidly shrinking or not. As intuition

would dictate, under small enough debt levels, a leveraged firm acts as if the entire order were

funded using its own equity (see Figure 5(a)). However, as leverage increases, the policy starts to

deviate substantially.

dfb

d1
FB

0
LEV

(a)

dR

dfb

d10
LEV

FB

(b)

dR

dfb

d1

wR
M

0
LEV

FB

(c)

Figure 5: Firm’s optimal liquidation policy as a function of realized demand d1. The shaded area denotes a preference
for liquidation at t = 1. The policy above the horizontal axis corresponds to a leveraged firm, when it is (a) not
sufficiently leveraged, or sufficiently leveraged in a market that is (b) not rapidly shrinking or (c) rapidly shrinking.
For comparison, the first best policy is depicted below the axis.

When the market is not rapidly shrinking, a sufficiently leveraged firm still follows a threshold

policy, but starts liquidating less often than first best, see Figure 5(b). In fact, the new threshold

dR(q) is not only lower than dfb(q), but also increases in q at a lower rate, implying that the

discrepancy in policies becomes even more pronounced as leverage increases.

Surprisingly, a sufficiently leveraged firm operating in a rapidly shrinking market entirely de-

parts from threshold policies, see Figure 5(c). To understand this behavior, note that market

conditions in this case are particularly dire, as bleak second period prospects are compounded by

a rapidly depreciating inventory value (s < s2
D). At intermediate sales levels

(
wR
M < d < dR(q)

)
,

the latter effect takes precedence, as liquidating (a relatively large) inventory would mean imme-

diate insolvency or extremely low profits for a leveraged firm, while continuing could yield hope of

high(er) profit if the high demand scenario materializes. As before, it is important to note that

a leveraged firm liquidates less often than first best. However, the disagreement here occurs at

intermediate sales levels, where the first best policy liquidates so as to recover a higher total asset

value, while a leveraged firm gambles on continuation. We note that non-threshold policies are not

a by-product of our assumptions, and they persist under considerably more general settings – see

the discussion in Section C.1 of the Appendix.

The critical threshold qD can also be connected with the existence of bankruptcy risk in the

debt agreement, as summarized in the following result.

Lemma 3 (Sufficient leverage and bankruptcy). Under either the first best or the leveraged firm’s

liquidation policy, q > qD is
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(i) a necessary and sufficient condition for bankruptcy risk in non-shrinking markets, and

(ii) a sufficient (but not necessary) condition for bankruptcy risk in shrinking markets.

The result implies that sufficiently leveraged firms always induce bankruptcy risk, and, in fact,

the former phenomenon is actually synonymous with the latter in non-shrinking markets. Since

such markets may be quite natural in practice, this fact bears very relevant implications for our

analysis, suggesting that risky lending agreements of the type examined here are likely to involve

sufficiently leveraged firms, whose liquidation policies depart from first best. Interestingly, this is

not necessarily the case in shrinking markets. Note that the distinction between the two regimes

is given by our earlier definition of shrinking markets (i.e., M ≷ 3), instead of rapidly shrinking

markets (i.e., M ≷ M̃).

4.3 Bank

We next analyze the bank’s optimal liquidation policy in subgame S (see Figure 4(b)).

Lemma 4 (Bank’s liquidation policy). In equilibrium, the bank follows the threshold liquidation

policy `B(q, d1) = 1
{
d1 < dB(q)

}
, unless the collateral value depreciates very rapidly (s < sB) and

the firm is highly leveraged (q > qB), in which case she follows the non-threshold policy `B(q, d1) =

1
{
d1 ∈

[
0, dfb(q)

)
∪
(Rw−2qs

1−2s , dB(q)
)}
, where qB

def
= R(M−1+2s)x0

cR(M−1+2s)−2Ms , sB
def
= (M−1)cR

2(M−cR) , and dB(q)
def
=

Rw.

The result suggests that, barring a particular case, the bank follows a threshold liquidation policy,

with a threshold dB(q) that increases in q, R and c, and decreases in x0. It is important to note

that the bank’s own liquidation preferences are also not efficient in general. In particular, it can

be checked that `B(q, d1) ≥ `fb(q, d1), reflecting the bank’s preference for conservative actions that

result in more liquidation than first best.

Interestingly, the bank also departs from a threshold policy, under similar conditions as the firm,

i.e., low liquidation value and high leverage. Here, when the realized sales are low (d1 <
Rw−2qs

1−2s ),

it can be checked that the firm is bankrupt, and the bank is set to seize all its assets, either at

t = 1 or at t = 2. As such, the bank effectively becomes the owner and operator of the inventory,

and prefers to follow the first best policy, liquidating below the threshold dfb(q), and continuing

otherwise.

While in this paper we assumed perfect and symmetric information, it is nonetheless interesting

to briefly consider a setting where the bank is unable to directly observe the firm’s first period

sales. In such a case, when optimal, the bank’s non-threshold liquidation policy might induce a

firm with sales above Rw−2qs
1−2s , but below dB, to underreport the sales, so as to avoid liquidation.9

9It can be checked that such a firm would prefer continuation to liquidation, and may thus choose to report sales
strictly below Rw−2qs

1−2s
, but above dfb.
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This effect has already been documented in the context of debt-service renegotiation, where a

borrower in default may overstate their debt service abatement in order to obtain better terms

from the lender. Specifically, Bourgeon and Dionne (2013) find that asymmetric information about

liquidation value might induce firms with high values to act as firms with lower values. In our case,

sales underreporting would not be driven only by information asymmetry, but also by the players’

operational preferences. Similar to Bourgeon and Dionne (2013), our model also suggests that this

behavior would be more likely in markets where liquidation values are low and leverage is high.

4.4 Liquidation Conflict

To understand how tension between the players may arise, we now compare their optimal liquidation

policies, and identify the circumstances under which they are in (dis)agreement. To this end, note

that the firm would never prefer liquidating its inventory if this action lead to insolvency. As such,

whenever the firm prefers liquidation, the bank is always made whole, and the two players are in

agreement. When the firm prefers to continue, however, it is possible that the bank might prefer

liquidation. This prompts us to introduce the following definition.

Definition 4. We define the disagreement region D as the set of first period demand realizations

for which the liquidation preferences of the two players are misaligned. More formally,

D def
=
{
d ≥ 0 | XR,L (q, d) < E[XR,C (q, d,D2)|D1 = d ] andXB,L (q, d) > E[XB,C (q, d,D2)|D1 = d ]

}
.

Whenever D 6= ∅, we say that liquidation conflict exists between the two players.

Liquidation conflict here is a direct manifestation of agency issues,10 driven by the shareholder-

debtholder conflict of interest (Jensen and Meckling 1976, Myers 1977, Smith and Warner 1979).

Intuitively, by continuing, the firm (shareholder) has limited downside and potentially large upside,

due to its leverage. It is thus effectively shifting risk to the bank (debtholder). On the contrary,

the bank may prefer liquidation, so as not to expose the collateral to further potential depreciation.

Note that the existence and the extent of liquidation conflict critically depend on the firm’s order

quantity q and market parameters. To this end, our next result precisely characterizes the disagree-

ment region, showing that it is always a (possibly empty) interval of demand values, intrinsically

related to whether a firm is sufficiently leveraged.

Lemma 5 (Liquidation conflict). In equilibrium, liquidation conflict arises if and only if the firm

10We note that agency issues may exist between the two players in other forms, as well, e.g., concerning the choice
of initial order quantity q (see, e.g., Buzacott and Zhang 2004). We use the term “liquidation conflict” to completely
isolate the effect, and pinpoint that it is related to dynamic inventory decisions, i.e., liquidation policies.
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is sufficiently leveraged. More precisely,

D =




∅, if q ≤ qD,
(
d(q), d(q)

)
, otherwise,

where

d(q)
def
=





max
(
dR(q), Rw−2sq

1−2s

)
ifM ≥ M̃,

max
(
Rw
M , Rw−2sq

1−2s

)
otherwise,

and d(q)
def
=




dB(q) ifM ≥ M̃,

min (dB(q), dR(q)) otherwise.

Moreover, d(q)− d(q) is increasing in q.

The result shows that the two players are in complete agreement, i.e., D = ∅, when the firm is

not sufficiently leveraged. Otherwise, liquidation conflict always arises, at intermediate levels of

sales,
(
d(q), d(q)

)
. This is quite intuitive, since for low (high) enough sales, both players agree that

the optimal action is to liquidate (continue). Furthermore, there is increasing conflict as leverage

increases, and, ceteris paribus, conflict is more likely as the market strength M , the interest rate

R or the per-unit cost c increase, or as the firm’s initial capital x0 decreases.

In view of our earlier results, liquidation conflict arises exactly when leveraged firms deviate

from first best. More interestingly, note that while liquidation conflict always arises in the presence

of bankruptcy risk in non-shrinking markets, that is not necessarily the case if the market is

shrinking: strictly higher leverage may be required to generate liquidation conflict, than to result

in bankruptcy risk (see Lemma 3).

5 Flexibility-driven Agency Costs and Covenant Effectiveness

The liquidation conflict identified above could potentially give rise to agency costs. To formalize

this, consider a firm desiring to follow the first best actions, and thus order qfb. Since a debt contract

signed at t = 0 cannot explicitly bind the firm to follow a particular operational policy at t = 1,11

once the debt is in place, the (now leveraged) firm would actually follow the liquidation policy `R

in equilibrium, which generally differs from the first best policy `fb, as discussed in Lemma 2. By

rationally anticipating this risk shifting behavior at t = 1, the bank would charge a higher interest

rate, generating financing costs that could be large enough to induce the firm to reduce its initial

debt burden and order quantity. This could lead to a value loss, with the firm’s expected profits

being lower than the maximum possible value of V fb.

Liquidation conflict and its associated agency costs shed light on why covenants may be useful.

When there is disagreement concerning the liquidation decision, an appropriately crafted covenant

11This is consistent with typical assumptions in the literature on incomplete contracts (see, e.g., Aghion and
Bolton 1992, Hart and Moore 1998), as well as with observed practice. Contracts that seek to prescribe actions or
payments for every possible contingency would be overly complex, and would also not be enforceable ex-post in a
court (Gârleanu and Zwiebel 2009, Hilson 2013, Tirole 2006).
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would offer the lender protection through the transfer of control rights. To see this, note that when

the firm’s order quantity q results in liquidation conflict, i.e., D 6= ∅, the inclusion of a financial

covenant with a cash flow threshold δ ∈ D would give the bank the right to force liquidation at

t = 1 whenever d1 ∈ (d(q), δ), an action that would be optimal for her, but not for the firm. This

added protection would enable the bank to lower the interest rate, and thus the agency costs of

debt could be reduced. Would overly tight covenants, warranting ever decreasing interest rates,

then fully alleviate agency costs? The answer is clearly no, as in that case the bank’s liquidation

preferences would be enforced, which we have also argued to be inefficient (Section 4.3).

This leads to the central question addressed in our paper: How effective are simple covenants

in mitigating agency costs, i.e., how much value can they restore?

Theoretically, state-contingent control transfer mechanisms such as covenants could conceivably

fully alleviate agency costs as long as they ensure that, in any state of the world, control rights

lie with a player who prefers to follow the first best action in that particular state. In our setting,

it is entirely unclear whether such a mechanism is possible, particularly when limiting attention

to the simple (financial or borrowing base) covenants encountered in practice. Worse, the players’

non-threshold policies might further undermine the effectiveness of such simple covenants.

To study these issues, we now formally define the agency costs of debt. To simplify contract

notation, we omit the interest rate R, as it is always determined endogenously as a function of all

other parameters and decisions, so that the bank breaks even.

For a contract κ, let VR(κ) denote the maximum expected profit achievable by the firm, i.e.,

VR(κ)
def
= maximize πR(q, κ)

subject to q ≥ 0

πB(q, κ) = 0.

(3)

The associated agency costs correspond to the relative value loss compared with the optimal ex-

tracted value under the first best actions, i.e.,

A(κ)
def
=

V fb − VR(κ)

V fb
. (4)

In equilibrium, when contracts are optimally chosen from a particular set K ∈ {K∅,KF,KB}, the

resulting agency costs are given by infκ∈KA(κ). The lower the equilibrium agency costs are, the

more effective the set of contracts K is in alleviating agency issues.

In the remainder of the analysis, let q? and `? denote the equilibrium quantity and liquidation

policy, respectively.
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5.1 Interest-Rate-Only Contracts

The following result confirms that interest-rate-only contracts generally fail to alleviate agency

issues, and lead to an equilibrium where firms with low capital under-order relative to first best.

Theorem 1. Under interest-rate-only contracts,

(i) if x0 ≥ x̃0, infκ∈K∅ A(κ) = 0. In particular, there are no agency costs, q? = qfb, and `? = `fb.

(ii) if x0 < x̃0, infκ∈K∅ A(κ) > 0. In particular, agency costs persist, q? < qfb, and `? = `R ≤ `fb.

Here, x̃0 is a threshold that is strictly lower than c qfb and depends only on the market param-

eters M , c, s, and F1 (for an explicit characterization, see the proof of the theorem). The result

confirms that, under interest-rate-only contracts, firms with low initial capital will always be faced

with agency costs, as their high leverage coupled with the inability to relinquish control rights will

always make them “too risky” for the lender. Put differently, such firms will always be unable to

harness the full benefits afforded by the flexibility of an intermediate liquidation option, because

lenders will fear that this flexibility could be used to shift risk.

5.2 Contracts With Covenants

Surprisingly, despite the complexity of the setting, a contract with a financial covenant is able

to completely alleviate agency costs and ensure that first best actions are always followed, in

equilibrium.

Theorem 2. Under contracts that include financial covenants,

inf
κ∈KF

A(κ) = 0, ∀x0 ≥ 0.

In particular, there are no agency costs, and q? = qfb, `? = `fb.

This result critically highlights the effectiveness of simple financial covenants at dealing with

agency issues that arise from dynamic inventory liquidation decisions. Financial covenants enable

firms to maximally exploit the potential of a business opportunity, irrespective of their initial

capital. In conjunction with Theorem 1, this result also implies that covenants are particularly

effective for firms with limited initial capital; this is in line with the empirical results in Bradley

and Roberts (2004), who find firms that are smaller or have fewer tangible assets to face more

covenants in their debt agreements.

A direct corollary of Theorem 2 is that borrowing base covenants, which subsume financial

covenants, KB ⊃ KF, also fully alleviate agency costs. More generally, covenants tied to the firm’s

cash flow appear to adequately reflect the operating flexibility provided by a liquidation option,

and are thus able to fully restore firm value. In the face of additional operating flexibility, e.g.,

through partial liquidations or replenishments (see Section 6), this will no longer be true.
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5.3 Optimal Covenant Design and Bankruptcy Risk

Our analysis also allows characterizing the optimal covenant term in equilibrium, highlighting its

dependence on market parameters.

Theorem 3. In equilibrium, the covenant cash flow threshold is given by δ? = 2sqfb

M+2s−1 . Moreover,

δ? is increasing in s and D1 in the usual stochastic order, and decreasing in c.

The comparative statics in Theorem 3 might initially seem surprising. Ceteris paribus, one

might expect markets with lower inventory depreciation rates (i.e., larger s), lower production

costs (i.e., lower c) or stronger demand (i.e., higher D1) to be more secure, and to thus warrant less

protection, in the form of less tight covenants. However, these conditions also lead to larger first

best order quantities, and hence larger debt levels and increased “risk.” We note that δ? has a non-

monotonic behavior in M . Intuitively, higher M also induces a larger debt through a larger order,

but this is primarily due to an increased second period cash flow. As such, it is unclear whether

increasing the first period required cash flow, i.e., δ?, would result in better risk protection.12

Finally, our analysis enables the characterization of precise conditions under which covenants

are necessary, connecting these with bankruptcy risk and the firm’s initial capital.

Theorem 4. In equilibrium, a covenant is necessarily included if and only if the firm’s initial

capital x0 is below the threshold x̃0. Furthermore, bankruptcy risk is:

(i) a necessary and sufficient condition for covenants to be included in a non-shrinking market,

(ii) a necessary (but not sufficient) condition for covenants to be included in a shrinking market.

Covenants are tantamount to bankruptcy risk in non-shrinking markets. Given that, in practice,

bankruptcy risk persists in a vast majority of debt agreements, this suggests that covenants should

also be ubiquitous. This is consistent with empirical findings: Bradley and Roberts (2004) find

a positive relation between the inclusion of covenants and bankruptcy risk (as measured through

credit spreads), and Roberts and Sufi (2009b) find that 97% of all loans contain at least one financial

covenant. It is also aligned with insights in the finance literature, which often informally equate13

the presence of covenants to bankruptcy risk (Myers 1977). In addition, our result also highlights a

distinction between bankruptcy and covenants in shrinking markets, where risky debt agreements

without covenants may be possible. To the best of our knowledge, this insight is new, and is

afforded exclusively by the more detailed operational model.

12It can be shown that δ? is decreasing in M when D1 is uniformly distributed. Our numerical simulations also
suggest that this is the case for a Gaussian or exponential distribution.

13For instance, in a summary of his insights, Myers (1977) states that “[...] a firm with risky debt outstanding, and
which acts in its stockholders’ interest, will follow a different decision rule than one which can issue risk-free debt or
which issues no debt at all.”
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6 Additional Flexibility: Partial Liquidation and Replenishment

We investigate the impact of additional inventory management flexibility on the effectiveness and

design of covenants, and on the players’ equilibrium actions. We study the following two extensions.

First, the model we considered so far allowed the two players a choice between continuation

and full liquidation at t = 1. In practice, operators may have additional flexibility, and be able to

conduct partial liquidations, e.g., by performing temporary promotional or clearance sales (Talluri

and Van Ryzin 2004), or by closing down only a number of underperforming stores. Similarly, upon

a covenant violation and the transfer of control rights, lenders may force firms to only partially

liquidate, thereby increasing cash holdings and being able to continue with a leaner business.

Second, our model offered a single opportunity of ordering inventory, at t = 0. In practical

settings where lead times are not excessively long compared to the selling season, operators may

have the flexibility to respond to strong sales by replenishing their stock.

We capture these realistic features by gradually enhancing the operator’s flexibility, first allowing

partial liquidation (Section 6.1) and then adding a replenishment option (Section 6.2). We further

enrich the model by extending the two-point distribution for the second period demand to a general

distribution, while preserving the correlation structure assumed thus far. Specifically, we relax

Assumptions 1 and 2, replacing them with

Assumption 3. The random variable Z that drives second period demand has non-negative sup-

port, with c.d.f. FZ and p.d.f. fZ .

We also implicitly assume second period demand to be unaffected by the firm’s inventory adjust-

ment,14 and retain all other assumptions and notation employed so far.

6.1 Partial Liquidation

When partial liquidation is possible, the main changes in the game between the two players occur

in the subgame S at the intermediate period. All definitions, such as first best actions and agency

costs of debt, extend naturally to this setting. For conciseness, we describe only the sequence of

actions and the outcome in the new subgame S.

At t = 1, the firm moves first, by observing the first period demand d1, and deciding what

fraction ` ∈ [0, 1] of the leftover inventory to liquidate. For example, under the firm’s action,

` · (q − d1)+ units would be liquidated, resulting in an additional cash flow of s · ` · (q − d1)+, and

a starting inventory level of (1− `) · (q − d1)+ for the second selling period.

In case the loan contract includes a covenant, the bank moves second, and evaluates the covenant

terms using the firm’s cash flow min(q, d1)+s ·` ·(q−d1)+ and remaining inventory (1−`) ·(q−d1)+

14For instance, this assumption would apply when liquidating geographically segregated stores or units of the same
business, or returning products to the manufacturer at less than the wholesale price. For other examples, see Talluri
and Van Ryzin (2004).
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after the firm’s actions. Upon a covenant breach, the bank gains control, and decides whether and

how much additional inventory should be liquidated. The outcome of the subgame is the total

fraction of inventory that was liquidated as a result of actions by both players.

We start our analysis with a comparison of the player’s liquidation preferences that highlights

the resulting agency conflict. Let `P : R × R → [0, 1] denote the optimal standalone policy for

player P ∈ {R,B}, in case the player were solely responsible for taking liquidation actions.

Lemma 6 (Standalone liquidation policies). The players’ optimal standalone policies at t = 1, in

case they were solely responsible for the liquidation actions, are such that `B(q, d) ≥ `R(q, d) for all

q and d. Agency conflict arises, i.e., `B(q, d) > `R(q, d), if d < dS
def
= Rw−sq

1−s .

Comparing the players’ standalone policies yields similar qualitative insights as our earlier

analysis. In particular, the firm prefers to carry a higher stock into the second period—shifting

risk—while the bank prefers lower stock so as not to expose the collateral to further potential de-

preciation. Conflict arises under poor first period demand, which results in large leftover inventory.

In fact, when d1 < dS, the firm is insolvent at t = 1, i.e., the cash flow d1 + s(q − d1) obtained by

liquidating all remaining inventory would be lower than its liabilities Rw.

Critically different from our earlier setup, however, is the fact that—in anticipation of the

additional liquidation forced by the bank—the firm might now use its operating flexibility to affect

and possibly avert a covenant violation, by boosting its cash flow at t = 1 through its liquidation

actions. Let `?R denote the firm’s equilibrium liquidation policy.

Lemma 7. In equilibrium, a financial covenant is never violated if the firm is solvent at t = 1.

More precisely, `?R(q, d) ≥ `C(q, d) ∀d ≥ dS, where `C(q, d)
def
= min

{
z ≥ 0 | d + s(q − d)+z ≥ δ

}
is

the minimum required liquidation so that the firm’s cash flow at t = 1 exactly covers the covenant.

The result has two key implications. First, it confirms that, in equilibrium, a leveraged firm that is

solvent but is faced with a covenant violation would always liquidate enough inventory to cover the

covenant, allowing it to retain full control rights. This complements the debt-covenant hypothesis

developed in the empirical accounting literature—which argues that managers pull accounting levers

to avoid a costly covenant breach—by showing how managers can also pull operational levers to

achieve the same result. This provides an alternative explanation for the empirical findings in

Dichev and Skinner (2002), who document that an unusually large number of firms have financial

metrics that are right at the covenant breach level. Furthermore, the policy predicted by our model

is surprisingly well aligned with the actions taken by L.A. Gear’s management in the aftermath

of its sale to Trefoil Capital Investment L.P., as alluded to in the quote in the Introduction (see

DeAngelo et al. 2002 for more details). The result also confirms and extends the intuition in Besbes

and Maglaras (2012), who study non-leveraged and non-strategic firms faced with (exogenous)

financial milestones, by arguing that, when feasible, it is optimal for leveraged, strategic firms to

conduct fire sales in order to exactly meet a financial covenant.

26



The second key implication of Lemma 7 is that financial covenants may not be effective in such

settings. In particular, when the firm liquidates exactly so as to avert a covenant violation, less

inventory is typically liquidated than what the lender would have preferred. Thus, agency conflict

persists, and financial covenants are no longer able to restore full firm value for sufficiently leveraged

firms, as formalized in the next result.

Theorem 5. Under contracts that include financial covenants,

inf
κ∈KF

A(κ) > 0, if x0 < x̄0. (5)

The threshold x̄0 depends on market parameters M , c, s, F1 and FZ—see the proof of the Theorem

for a characterization. To provide more intuition for their failure, note that financial covenants, by

exclusively relying on cash flow, are agnostic to the firm’s liquidation actions, and thus cannot dis-

tinguish “healthy sales” at full price from “fire sales.” This suggests that covenants with additional

“degrees of freedom”—reflective of the firm’s own increased operating flexibility—are needed. To

this end, we next assess the effectiveness of borrowing base covenants.

Theorem 6. Under contracts that include borrowing base covenants,

inf
κ∈KB

A(κ) = 0, ∀x0 ≥ 0. (6)

The equilibrium borrowing base covenant sets an inventory advance rate of α? = 1− 2(1−s)
s(M−1)F−1

Z (1−s) ,

and a threshold β? = sqfb.15 Moreover, α? is increasing in M and Z in the usual stochastic order;

β? is increasing in s, decreasing in c, increasing in M , and increasing in D1 and Z in the usual

stochastic order.

This result bears two important implications. First, it highlights the effectiveness of borrowing

base covenants when dealing with inventory-heavy firms. By applying a suitable advance rate to

the remaining inventory and optimally setting the minimum required borrowing base level, such

covenants are able to fully mitigate the agency conflict generated by the additional operating

flexibility and completely restore firm value. As an aside, since borrowing base covenants are

primarily used in secured loans (Hilson 2013, Roberts and Sufi 2009a), this result also provides

additional justification for inventory-heavy firms to collateralize their assets.

Second, our result suggests that advance rates against inventory collateral are critical contract

terms, which should be set to properly reflect future risk: the comparative statics of α? suggest that

stronger residual demand warrants less aggressive “hair cuts.”16 The comparative statics concerning

15As a technical remark, if 1− 2(1−s)
s(M−1)F−1

Z
(1−s) < 0, then α? = 0 and β? = sqfb − s

(
1− 2(1−s)

s(M−1)F−1
Z

(1−s)

)
(qfb − d1).

16It can be shown that α? is increasing in s when Z is uniformly distributed. Our numerical simulations also
suggest that this is the case for a Gaussian or exponential distribution.
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β? are consistent with our earlier findings in Section 5.3, confirming that lenders enforce tighter

covenants in the face of more secure markets.

Together with Theorem 5, these findings provide a theoretical rationale for several practices

and informal beliefs of banks lending against inventory. While borrowing base covenants and their

associated advance rates are routinely used in that context,17 typical contracts often include fewer

financial covenants, reflective of the practitioners’ view concerning their questionable effectiveness:

“[...] facilities are typically underwritten with a limited number of financial covenants;

the additional risk this poses to the bank is mitigated by conservative advance rates

against liquid collateral, strong collateral controls, and frequent monitoring.[...] Some

banks institute financial covenants to monitor retail borrowers, but the usefulness of

financial covenants is debatable, given (1) the overwhelming reliance on collateral liq-

uidity to repay the debt and (2) a firm’s tendency to experience seasonal losses. Excess

availability covenants, however, can help ensure an adequate collateral cushion in the

event of liquidation and provide current and meaningful measures of liquidity; [...]”

(Comptroller of the Currency, U.S. Treasury Department CH 2014)

Our results are also consistent with the empirical findings in Flannery and Wang (2011),

who document that secured loans that include borrowing base covenants involve fewer financial

covenants, and are particularly pertinent for smaller or riskier firms. This is the only paper we are

aware of in the empirical finance literature that examines borrowing-based lines of credit.

6.2 Partial Liquidation and Replenishment

We now consider the case in which both partial liquidation and replenishment are possible. That

is, the firm now also has the ability to place an additional order at t = 1 at per-unit cost c. We

model two ways the firm could finance such an order: either by borrowing more money or by

using cash it generated from first-period sales. To enable the latter, we relax the lockbox account’s

zero withdrawal limit assumption, as per term [T2], and append the following term to any of the

contracts we consider:

[T2]′ The firm is allowed to withdraw cash from the lockbox account at t = 1 up to a limit η,

provided it is solely used to order additional inventory that is added to the collateral base.

For simplicity, we retain our earlier notation for the various sets of contracts, e.g., KB denotes

contracts with borrowing base covenants (and term [T2]′ included).

In the new subgame, the firm observes the first period demand and decides whether it would

prefer to perform a partial liquidation—as outlined in the previous section—or to replenish its

17Roberts and Sufi (2009a) study both collateralized and non-collateralized loans, and document that 20% of
the contracts include borrowing base contingencies, with 98% of these calculated based on accounts receivable and
inventory, as in our model.
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inventory. The bank evaluates the covenant terms (if existent) using the firm’s remaining cash and

inventory after its actions. If breached, the bank gains control and decides whether and by how

much the inventory position should be further adjusted, either through liquidation or replenishment.

In case the firm wishes to borrow more money for replenishment, the bank extends the extra funds

needed and charges an interest rate so that the (new) loan remains competitively priced.

The ability to replenish inventory endows the firm with considerable flexibility to respond

to favorable market conditions. However, this may also act as an additional risk shifting lever,

exacerbating agency conflict with the lender due to the firm’s tendency to over-order once it is

leveraged (see, e.g., Buzacott and Zhang 2004). Fortunately, a contract with a borrowing base

covenant and a non-zero withdrawal limit is again able to fully alleviate agency issues and restore

optimality, as formalized in our next result.

Theorem 7. Under contracts that include borrowing base covenants,

inf
κ∈KB

A(κ) = 0, ∀x0 ≥ 0. (7)

In equilibrium, the borrowing base covenant sets an inventory advance rate of α? = 1− 2(1−s)
s(M−1)F−1

Z (1−s) ,

and a threshold β? = sqfb. The withdrawal limit from the lockbox account is η? = φb− cqfb, where

b
def
= min(q, d1) is the account balance, and φ = c

(
1 +

(M−1)F−1
Z (1−c)
2

)
.

The theorem reaffirms the efficiency of borrowing base covenants when dealing with inventory-

heavy firms. Despite the considerably more complex setting, such a covenant—coupled with a

suitable withdrawal limit—is able to complete the financial contract, and fully restore firm value.

It is worth noting that the advance rate α? and the minimum threshold β? are actually identical to

those derived in Section 6.1, suggesting that the primary role of the covenant is to alleviate agency

issues resulting from inefficient partial liquidation. In contrast, the withdrawal limit completely

mitigates conflict arising from inefficient investments, by preventing the firm from over-ordering.

As a technical remark, we note that maintaining a zero withdrawal limit and relying only on bor-

rowing more money for reordering would have achieved the same purpose here. However, reordering

with generated cash subject to a withdrawal limit is also natural: it is consistent with practice,

and with our earlier assumption concerning the role of the lockbox in limiting cash diversion (and

the associated agency conflict). Furthermore, allowing the withdrawal limit to depend on the cash

balance is also very natural. In practice, such limits are often imposed through reinvestment or

incurrence-based covenants, i.e., covenants that become active only when the borrower seeks to

issue new debt, and limit the new loan size depending on the pre-existing debt and cash funds (see,

e.g., Nini et al. (2009) and industry notes by Goodison (2011) and Morse (2014) for more details).

It is worth noting that η does not have a precise monotonicity in any of the parameters, reflective

of the ambivalent effects at play. For instance, a larger M warrants larger investments (and hence
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a larger withdrawal limit), but also reflects higher bankruptcy risk due to the larger leverage.

In summary, our findings in Section 6 send a clear and concrete message to inventory-heavy

firms and lenders alike. First, our results suggest that a cash-poor firm that is contemplating

operational changes to enhance its flexibility (such as the ability to liquidate some of its inventory

or a reduction in lead time to allow mid-season replenishments) should not hesitate to enter debt-

financing agreements of the type commonly employed in practice. When suitably designed, such

agreements would allow the firm to reap the full benefits of the extra flexibility, irrespective of its

actual leverage. However, the firm should also be willing to cede more control as the investments it

is contemplating yield more flexibility or upside, by, e.g., collateralizing its inventory and abiding by

more and/or tighter covenants. For lenders, our results confirm that secured loans may be extremely

effective for inventory-heavy firms, and that financial contracts underpinning such transactions are

better served by borrowing base covenants rather than (cash-flow-based) financial covenants.

7 Implications and Limitations

In this paper, we highlighted that a firm’s flexible operating capabilities can have unintended

consequences on its performance, due to the large agency costs induced under leverage through

the risk shifting potential. Given the indispensable role of both flexibility and debt in driving the

growth strategies of firms, we believe this is a topic of utmost importance that has received very

limited attention in the operations management (OM) literature. In particular, while OM research

has developed many insights concerning the benefits of flexibility, the magnitude of the associated

agency costs and the ability of common terms included in debt contracts to alleviate them are not

well understood.

The goal of the present paper was to make headway in this direction. We took the perspective

of an inventory-heavy firm (e.g., a firm or a manufacturer), and demonstrated that flexibility in

adjusting inventory levels could result in agency costs that erase significant firm value when debt

contracts only include competitively-priced interest rates. The inclusion of properly structured

financial or borrowing base covenants, routinely used in practice, proved to be remarkably effective

at addressing these agency issues and restoring firm value.

Our core findings give rise to a series of managerial implications and empirical predictions,

which we outline next, followed by a discussion of our work’s limitations.

7.1 Managerial Implications

Our work sheds light on a new dimension managers should consider when investing in increased

flexibility. While traditional wisdom suggests that the manager should trade off the technol-

ogy/infrastructure upgrade costs with the operational benefits of extra flexibility, this view ignores
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that flexibility could result in increased borrowing costs and/or reduced debt capacity. This lat-

ter component of the tradeoff calculation can be of substantial magnitude, and eventually be the

decisive factor driving the firm’s operating strategy.

In the context of inventory adjustment flexibility, we argue that borrowing costs should not

increase in practice, as simple covenants are effective in alleviating the associated agency issues.

These findings send a clear and concrete message to an inventory-heavy firm that contemplates

operational changes to enhance flexibility, such as lead time reduction to allow for a mid-season

replenishment or the addition of separate sales channels to allow for (partial) inventory liquidation.

Such a firm should not hesitate to finance its operations through debt: by suitably structuring its

debt contracts, it can reap the full benefits of the extra flexibility, irrespective of leverage.

To this end, our results show that it is in the firm’s best interest to ensure that the design

of debt contracts (and covenants) always adequately reflects its operating capabilities and mar-

ket conditions. Specifically, for inventory-heavy firms, we find that financial covenants reflect full

liquidation decisions (such as store closures or product discontinuations), while borrowing base

covenants are needed for partial liquidations and/or replenishment capabilities. Furthermore, we

show that covenants must be tighter under lower inventory depreciation rates, higher margins, or

stronger product demand. These findings have several core implications. First, they suggest that

firms with enhanced flexibility and/or operating in better markets should abide by more intense

and/or tight covenants. This may seem counterintuitive to an operator, as (i) the better markets

may seem more “secure,” and (ii) the covenants could restrict the firm’s operating flexibility. Sec-

ond, they suggest that suitably designed covenants would also allow operators to focus on their

core competency, i.e., running the firm’s operations without concern of the capital structure.

Our work also has several implications for circumstances under which financial frictions persist—

e.g., due to improperly designed contracts or monopolistic lending markets—where we show that

distortions may arise in both operating policies and information disclosure incentives. Specifically,

we argue that both the firm’s managers and its creditors may follow non-intuitive operating poli-

cies, concerning the discontinuation of product lines or store closures, that are not driven by simple

sales thresholds: they may prefer continuation for weak sales, and discontinuation for strong sales.

Furthermore, managers may also prefer to distort information disclosures, by under-reporting the

firm’s sales in order to avert creditor-imposed store closures. Finally, we also argue that monopo-

listic lenders use covenants so as to improve their returns and lower bankruptcy risk, exacerbating

operating distortions and leading to loss in firm value.

7.2 Empirical Predictions

Our results lead to several predictions that can be tested empirically, which we discuss next.

Prediction 1. Inventory-heavy firms with more operating flexibility have higher leverage and issue
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more bank debt.

In the finance literature, it is known that operating flexibility can have ambivalent effects on

a firm’s borrowing costs, decreasing them—when the ability to adapt to market conditions is used

to lower the risk of default (Mauer and Triantis 1994)—but also possibly increasing them, when

lenders believe the extra flexibility is used to shift risk (Myers 1977). In this context, MacKay

(2003) is the first paper to empirically examine which of the two effects is the dominant one,

concluding that it is the latter, so that firms with more production flexibility generally have lower

leverage, and issue less public debt. The implicit factor driving this result is that covenants or

other risk shifting mitigating mechanisms employed in practice do not prove effective. Our results

nuance and partially counter this prediction, while confirming more bank debt issuance. More

precisely, for inventory-heavy firms, Theorems 2, 6, and 7 suggest that simple financial contracts

(with covenants) can completely mitigate the risk shifting behavior, leaving only the positive aspect

of extra flexibility, and thus leading to larger leverage. At the same time, these results also show

that borrowing base covenants may become critical as operating flexibility increases, suggesting

that such firms are more likely to raise bank debt, which allows for asset collateralization and more

proactive monitoring by lenders. This also leads to the following associated prediction.

Prediction 2. For inventory-heavy firms, increased operating flexibility is positively related to (a)

the presence of borrowing base covenants (and collateralization), and (b) covenant intensity.

To the best of our knowledge, these predictions have not been previously formalized, and are

afforded by the more detailed operational model of an inventory-heavy firm. For a more detailed dis-

cussion and justification, we refer to Section 6.2. Our analytical results in Lemma 7 and Theorem 5

also suggest that inventory-heavy firms will use the partial inventory liquidation flexibility to avert

violations of financial (cash-flow-based) covenants, leading to the following empirical prediction.

Prediction 3. Inventory-heavy firms with increased operating flexibility that are only faced with

financial (cash-flow-based) covenants will tend to (a) engage in fire-sales and liquidations close to

reporting periods, and (b) report covenant ratios near the trigger points.

This is aligned with the empirical findings in Dichev and Skinner (2002), who document that

an unusually large number of firms have financial metrics that are right at the covenant breach

level, and also with the actions documented in the empirical case study on L.A. Gear (DeAngelo

et al. 2002). In a different (but related) sense, Theorems 5, 6, and 7 also suggest that for firms

with increased inventory-management flexibility, financial covenants may be of limited use, but

borrowing base covenants may be very effective. This is consistent with practice (CH 2014, Hilson

2013), and also with empirical findings in Flannery and Wang (2011), who document that secured

lending agreements that include borrowing base covenants involve fewer financial covenants, and

are particularly pertinent for smaller or riskier firms.
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Our comparative statics analysis also generates several predictions concerning the covenant

tightness, and its dependency on the firm’s operating characteristics and market conditions. More

precisely, Theorems 1, 3, 5, 6, and 7 generate the following prediction.

Prediction 4. Inventory-heavy firms will be faced with tighter covenants when they have (a) fewer

assets or (b) higher leverage, or when they operate in markets with (c) lower inventory depreciation

rates, (d) higher margins or (e) stronger demands.

To the best of our knowledge, while the empirical literature has focused extensively on (the de-

terminants of) covenant intensity, it has paid less attention to their tightness, and its dependence

on firm/market characteristics.18 Demiroglu and James (2010) find a positive relationship between

covenant tightness and (a) the riskiness of the borrowers, and (b) improvements in the covenant

variable. This is consistent with our prediction that better market conditions—which are typi-

cally positively related to improvements in the covenant variable—also warrant tighter covenants.

To the extent that covenant intensity is positively related to tightness, our predictions are also

very well aligned with Bradley and Roberts (2004) and Billett et al. (2007), who document that

firms that are smaller, have fewer tangible assets, or have greater growth opportunities face more

covenants. Furthermore, Billett et al. (2007) find that the presence of covenants significantly atten-

uates the negative relation between leverage and growth opportunities, consistent with our results

that covenants are effective in alleviating agency costs of debt for high-growth firms.

Finally, the results in Theorem 4 and 8 also lead to the following prediction.

Prediction 5. In less competitive lending markets, inventory-heavy firms face more intense covenants,

and have less financial leverage.

To the best of our knowledge, this has not been previously hypothesized, as the finance literature

is predominantly focused on competitive lending markets.

7.3 Limitations and Future Directions

In modeling flexibility-driven agency costs, we made a specific choice of operating capability, i.e.,

inventory liquidation and replenishment. In reality, there are several other capabilities one could

model, such as sourcing from multiple suppliers, switching between different products, dynamic

pricing, etc. The effectiveness of common covenants in alleviating agency issues in these alternate

settings is an open question, and in our view is an interesting new line of research for the operations

management community.

In the context of inventory flexibility, it may also be interesting to extend our model to an

arbitrary number of periods. While our intuition is that the qualitative insights we obtained will

18The most relevant paper we are aware of that studies tightness is Demiroglu and James (2010), who state
that “where covenant thresholds are established is an important but heretofore largely overlooked aspect of loan
contracting.”
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persist if the covenant monitoring points coincide with the firm’s decisions points, these results

may change in the absence of adequate monitoring frequency. Furthermore, a multi-period setting

would allow studying other interesting questions pertaining to the firm’s financial structure and its

interplay with operations. For instance, while it is known that the choice of debt maturity may act

as a substitute for covenants in other settings (Billett et al. 2007), it is unclear whether that would

persist for inventory-heavy firms.

Lastly, our study focused on the design of contracts that fully alleviated agency costs. An

interesting direction of future research is to quantify agency costs in case such contracts are not

used. Preliminary numerical studies for the case where interest-rate-only (financial-covenant only)

contracts are used for the flexvendor (with re-ordering) are included in Section A of the Appendix.

The studies suggest that (1) flexibility-driven agency costs have a first order effect on firm value

in the absence of covenants, and (2) covenants that are not fully aligned with the firm’s operating

flexibility are effective in mitigating agency costs, although the persisting costs are still non-trivial.
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Appendices

A Agency Costs Under Suboptimal Contracts: Numerical Studies

We study cases where contracts that are unable to fully alleviate agency costs are used and nu-

merically assess their effectiveness. We rely on the flexvendor model introduced in Section 2 and

extend the numerical experiments as follows. We vary the flexvendor’s unit cost c, the liquidation

value s and equity x0. All other model parameters retain their values. Tables 3 and 4 report the

agency costs (1) in the absence of a covenant, formally inf
κ∈K∅

A(κ), and (2) when only a financial

covenant is used, formally inf
κ∈KF

A(κ).

The findings suggest that, in the absence of covenants, flexibility-driven agency costs average

at 12.52%, while they can be as high as 41.9% (see Table 4). The inclusion of a financial covenant

reduces agency costs to an average of 2.74%, while persisting costs could be as high as 13%.

AC without covenant AC with financial covenant
inf
κ∈K∅

A(κ) (in %) inf
κ∈KF

A(κ) (in %)

min 0.00 0.00
average 12.52 2.74

max 41.93 12.99

Table 3: Minimum, average and maximum agency costs (AC) across all runs from Table 4.
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unit cost liq. price equity AC without cov. AC with fin. cov.
c s x0 inf

κ∈K∅
A(κ) (in %) inf

κ∈KF
A(κ) (in %)

0.2 0.1 0.1 0.62 0.00
0.2 0.1 0.2 0.49 0.07
0.2 0.1 0.4 0.24 0.00
0.2 0.1 0.8 0.00 0.00
0.4 0.1 0.1 6.73 0.96
0.4 0.1 0.2 6.20 0.62
0.4 0.1 0.4 5.52 0.52
0.4 0.1 0.8 3.64 0.38
0.4 0.3 0.1 1.47 0.22
0.4 0.3 0.2 0.71 0.00
0.4 0.3 0.4 0.65 0.22
0.4 0.3 0.8 0.00 0.00
0.6 0.1 0.1 22.63 5.73
0.6 0.1 0.2 21.15 4.59
0.6 0.1 0.4 18.28 3.41
0.6 0.1 0.8 13.52 1.93
0.6 0.3 0.1 14.23 2.98
0.6 0.3 0.2 12.70 2.84
0.6 0.3 0.4 10.37 2.32
0.6 0.3 0.8 6.23 0.58
0.6 0.5 0.1 4.22 0.59
0.6 0.5 0.2 3.42 1.08
0.6 0.5 0.4 1.68 0.59
0.6 0.5 0.8 0.07 0.00
0.8 0.1 0.4 31.21 11.58
0.8 0.1 0.8 20.51 8.33
0.8 0.3 0.2 30.34 12.99
0.8 0.3 0.4 24.79 9.09
0.8 0.3 0.8 15.49 3.58
0.8 0.5 0.1 23.11 6.83
0.8 0.5 0.2 26.43 7.50
0.8 0.5 0.4 20.19 6.84
0.8 0.5 0.8 11.13 2.35
0.8 0.7 0.1 41.93 0.00
0.8 0.7 0.2 37.01 1.52
0.8 0.7 0.4 23.40 1.14
0.8 0.7 0.8 2.80 0.00

Table 4: Agency costs (AC) incurred (in %) with and without a financial covenant.
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B Covenants Under Monopolistic Lending

We re-evaluate the effectiveness of covenants when the lender operates in a monopolistic market.

This may be relevant in cases where the collateral is highly specialized, and only a confined number

of lenders have the adequate expertise as far as valuation, assessment and potential liquidation are

concerned. Furthermore, several papers in the operations management literature have considered

this alternative setting, e.g., Buzacott and Zhang (2004), Dada and Hu (2008), and Boyabatlı and

Toktay (2011).

Under a monopolistic lending market, both players choose their actions to maximize their ex-

pected profits. We consider a Stackelberg game in the setting described in Section 3 (i.e., under

0/1 liquidation), with the bank leading by choosing the contract κ, and the firm choosing q solv-

ing (3). Let q?(κ) be its optimal order quantity, assumed unique to avoid unnecessary technical

complications. The sequence of events under this alternative game is illustrated in Figure 6.

t = 0 t = 1 t = 2
demand revealed &contract signed

B R
κ

D
L

...........................︸ ︷︷ ︸ .........................︸ ︷︷ ︸ ..........................︸ ︷︷ ︸

subgame S with
outcomes C or L

demand
revealed

C

d2
D

S

{πR;πB}

{πR;πB}

d1q

Figure 6: Game under a monopolistic lending market.

The bank’s choice of contract κ is now affected by certain trade-offs involving the firm’s response.

Ceteris paribus, as the bank increases the covenant tightness, her expected profit increases, while

the firm’s expected profit decreases. The latter fact might then induce the firm to adjust its order

quantity in order to mitigate its losses, a strategic response that may reduce the bank’s profit,

as well. Furthermore, the interaction of the covenant with other contract terms is potentially

unclear. One may speculate that the protection afforded by a covenant might be equivalent to an

interest rate increase, as far the lender’s expected profit is concerned. However, as highlighted in

the discussion in Section 4.4, covenants allow lenders to dynamically react as new information is

revealed, unlike interest rates.

The next result formalizes the conditions under which covenants persist in equilibrium under a

monopolistic lending market, connecting them with bankruptcy risk.

Theorem 8. In equilibrium,19 under a monopolistic lending market, a covenant is necessarily

19We assume that ∂2πR
∂q2
|q? < 0 holds. This technical condition is rather harmless in practice. It is only slightly

stronger than requiring q? to be a strict local optimum of πR.
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included if and only if there is liquidation conflict. Furthermore, in equilibrium, bankruptcy risk is

(i) a sufficient condition for covenants to be included in non-shrinking markets, and

(ii) neither sufficient, nor necessary for covenants to be included in shrinking markets.

In a certain sense, the results mirror the findings under a perfectly competitive lending market.

More precisely, under liquidation conflict, including covenants is always optimal for the lender,

despite the strategic response of the firm, so that covenants emerge as necessary terms in lending

agreements, non-substitutable by adjustments to interest rates and/or loan limits. Note that this

is in contrast with the relationship between the latter two terms: it is known that, in the absence

of other considerations, loan limits are substitutable by interest rates under monopolistic lending

markets (see, e.g., Buzacott and Zhang 2004, Dada and Hu 2008).

However, different from the results under perfect competition, the optimal covenant in a mo-

nopolistic setting does not necessarily restore first best. This is also supported by our extensive

numerical studies described below, and is not surprising (Dada and Hu 2008 find a similar insight

in a single-period newsvendor model, where lenders only optimize interest rates). Correspondingly,

the optimal covenant does not alleviate operational distortions, either—in particular, the surprising

non-threshold policies we found in Section 4 can persist in equilibrium (see Appendix C.2).

Interestingly, when compared with our earlier results in Theorem 4, bankruptcy is no longer a

necessary condition for covenants to exist in non-shrinking markets, but is still sufficient. Loosely

speaking, covenants are no longer synonymous with bankruptcy risk, but are just implied by it.

The reason behind this discrepancy is that, by using covenants, a monopolist bank may be able

to completely eliminate bankruptcy risk in some cases. In shrinking markets, bankruptcy risk is

no longer indicative for the presence of covenants. Specifically, it is possible that contracts include

convenants that in fact eliminate bankruptcy risk, as remarked above, or that there is bankruptcy

risk that does not necessarily result in liquidation conflict, and thus makes covenants superflu-

ous. It is interesting to note that Theorem 8, interpreted in a different light, also suggests that

covenants would be more prevalent under monopolistic settings compared to perfect competition

(after adjusting for bankruptcy risk).

To conclude this section, we note that although covenants emerge once again as critical con-

tractual terms in debt agreements, they play a different role under a monopolistic setting, serving

more as a value extraction mechanism for the lender, rather than a vehicle for restoring firm value.

C Robustness of Non-threshold Liquidation Policies

In this section, we confirm that our insights and results pertaining to non-threshold policies are

robust, and persist under more general demand distributions, as well as in equilibrium.
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C.1 General Demand Distribution

Our main treatment concerning the players’ liquidation policies was conducted under Assumption 1,

namely that the second period demand was following a discrete, two-point conditional distribution.

In this context, we showed that, under debt, any of the players may find it optimal to follow a non-

threshold liquidation policy (see Lemma 2 and Lemma 4). We show that these insights continue

to hold for much more general demand distributions.

Theorem 9. Suppose that, conditional on the first period demand, the second period demand dis-

tribution has a log-concave density function. Then, the firm may follow a non-threshold liquidation

policy. In particular, its liquidation policy has at most two switching points, i.e., there exist (not

necessarily identical) ξ1, ξ2 ∈ [0, q] with ξ1 ≤ ξ2, such that

`R(q, d) = 1{d ∈ (ξ1, ξ2)}.

Moreover, the bank also follows a liquidation policy with at most two switching points, and the result

is true for any second period demand distribution.

We note that log-concave distributions (i.e., with probability densities whose logarithm is a

concave function) have been studied extensively in operations management (they are also known

as Polya frequency of order 2—see, e.g., Porteus (2002) for an overview). It is known that many of

the common distributions are log-concave, for instance the exponential, the reflected exponential,

the uniform, the Erlang, the normal, and all truncations, translations and convolutions of such

distributions (Porteus 2002). In this sense, our assumption on the demand is not very limiting, and

is well aligned with standard assumptions made in operations management.

The result confirms that two types of liquidation policies are possible. A player either follows

a threshold policy, i.e., liquidating below a demand threshold and continuing above (where the

threshold can also be 0 or q), or follows a non-threshold policy, preferring continuation below a

threshold ξ1 and above a threshold ξ2 > ξ1, and preferring liquidation between ξ1 and ξ2. These

are exactly the two possible patterns encountered in our base model (see Lemma 2 and Lemma 4),

and, as such, our insights concerning the implication of non-threshold liquidation policies persist.

C.2 Non-threshold Policies in Equilibrium

We now confirm that, when the lender is monopolistic, non-threshold policies can persist in equilib-

rium, for either of the players. We provide both sufficient conditions, as well as particular instances.

Proposition 1. (a) [Firm] Suppose that s < c(M−1)
M−c , M < M̃ , and D1 ≥ x0

c− sM
M+s−1

> 0 almost

surely. Then, the firm always follows a non-threshold liquidation policy in equilibrium. One such

instance is given by s = 1
16 , c = 1

4 , x0 = 1 and M = 3
2 .
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(b) [Bank] Suppose that s < (M−1)c
2(M−c) and D1 ≥ (M−1+2s)x0

c(M−1+2s)−2Ms > 0 almost surely. Then, the bank

always follows a non-threshold liquidation policy in equilibrium. One such instance is given by

s = 1
16 , c = 1

4 , x0 = 1 and M = 2.

D Proofs

To simplify notation slightly, we sometimes omit showing the explicit dependency of some quantities

on q, d and/or δ, e.g., debt, revenues, profits, etc.

D.1 Liquidation Policies

We use the following notation for the two possible values of the critical quantity qD, see (2),

q1
D

def
=

Rx0

Rc− 2s
M−1+2s

, q2
D =

Rx0

Rc− sM
M+s−1

.

Proof of Lemma 1. Consider a fixed order quantity q ≤ x0
c . We seek the firm’s liquidation policy

as a function of the first period demand realization, D1 = d. If d ≥ q, the firm is out of stock, and

is indifferent between continuation and liquidation. As such, we consider d < q.

The revenues from a liquidation action are given by xR,L (q, d) = XR,L (q, d) = (1 − s)d + sq.

In view of Assumption 1, the expected revenues from continuation are given by

xR,C (q, d) = E
[

min(d+D2, q) |D1 = d
]

=




M+1

2 d, if d ≤ q
M

q+d
2 , if q

M < d ≤ q.

Note that xR,L (q, ·) is an affine function of d for d ∈ [0, q], with slope 1 − s. Also, xR,C (q, ·) is

continuous and piece-wise affine in d, with slope M+1
2 for d ∈ [0, qM ], and slope 1

2 for d ∈ ( q
M , q].

Furthermore, xR,L (q, 0) = sq > xR,C (q, 0) = 0, and xR,L (q, q) = xR,C (q, q). As such,

since s < 1
2 (by Assumption 2), we immediately have that: xR,C (q, d) > xR,L (q, d), ∀ d ∈

( q
M , q

)
;xR,L (q, d) > xR,C (q, d), ∀ d ∈ (0, ξ); and xR,L (q, d) < xR,C (q, d), ∀ d ∈

(
ξ, qM

)
, where

ξ = sq
M−1

2
+s

is the solution to the equation M+1
2 d = (1 − s)d + sq. It can be readily checked that

this exactly corresponds to the liquidation policy `fb(q, d) described in the lemma.

Proof of Lemma 2. Consider a fixed order quantity q > x0
c , resulting in a debt Rw(q) = cq−x0.

We seek to characterize the firm’s liquidation policy as a function of the realized demand D1 = d,

at the given order quantity q.

We first argue that the policy does not depend on whether the covenant is breached, i.e., it is

identical in the upper and lower nodes of subgame S at t = 1 (see Figure 4(b)). In the lower node
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of the subgame, when the covenant is not breached, the firm is the sole player responsible for the

liquidation/continuation decision, and obtains its optimal policy by solving the problem:

max
`∈{0,1}

` ·XR,L (q, d) + (1− `) · E
[
XR,C (q, d,D2) |D1 = d

]
.

We claim that this problem also yields an optimal policy in the upper node of the subgame, i.e.,

when there is a covenant breach. Here, the firm solves the following problem:

max
`∈{0,1}

[
`+ (1− `)`?B

]
·XR,L (q, d) + (1− `)

(
1− `?B

)
· E
[
XR,C (q, d,D2) |D1 = d

]
,

where `?B denotes the bank’s optimal response. Note that, if `?B = 1, the firm’s profits are indepen-

dent of its decision. When `?B = 0, the two problems above are equivalent.

The firm’s revenues from liquidation as a function of D1 = d are

xR,L (d) = XR,L (q, d) =





0, if d ≤ dS

(1− s)d+ sq −Rw, if dS < d ≤ q

q −Rw, if q < d.

(8)

Here, dS
def
= Rw−sq

1−s denotes the demand level for “accounting insolvency,” i.e., the demand such

that, by liquidating all remaining inventory, the firm is exactly able to replay the entire debt Rw.

As d raises just above dS, the firm’s revenues increase linearly, with a slope of 1 − s, and then

saturate upon stock-out, at d = q. Similarly, its expected revenues from continuation are

xR,C (d) = E
[
XR,C (q, d,D2) |D1 = d

]
= E

[
(min(d+D2, q)−Rw)+ |D1 = d

]
.

In view of Assumption 1, this expression simplifies to the following cases:

if Rw <
q

M
,

xR,C (d) =





0, if d ≤ Rw
M

Md−Rw
2 , if Rw

M < d ≤ Rw
M+1

2 d−Rw, if Rw < d ≤ q
M

d+q
2 −Rw, if q

M < d ≤ q
q −Rw, if q < d,

(9)

if Rw ≥ q

M
,

xR,C (d) =





0, if d ≤ Rw
M

Md−Rw
2 , if Rw

M < d ≤ q
M

q−Rw
2 , if q

M < d ≤ Rw
d+q
2 −Rw, if Rw < d ≤ q
q −Rw, if q < d.

(10)

By continuing, the firm’s revenues are exactly zero if d falls below Rw
M , and then increase in a

piece-wise linear fashion, initially with a slope of M
2 , before saturating upon stock-out, at d = q.

The firm’s liquidation decision exactly entails comparing xR,L (d) with xR,C (d), and liquidating
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(continuing) if the former (latter) is strictly larger. Several cases emerge, depending on whether

dS ≷ Rw
M and 1 − s ≷ M

2 . These are treated in Propositions 2 and 3, and are summarized below.

From Proposition 2, if M ≥ M̃ , an optimal liquidation policy for the firm is:

`R(q, d) =




1{d < dR(q)}, if s < s1

D and q > q1
D,

1{d < dfb(q)}, otherwise.
(11)

Furthermore, `R(q, d) ≤ `(q, d) always holds. From Proposition 3, if M < M̃ , an optimal liquidation

policy is:

`R(q, d) =




1
{
d ∈

[
0, Rw(q)

M

)
∪
(
dR(q), dfb(q)

)}
, if s < s2

D and q > q2
D,

1{d < dfb(q)}, otherwise.
(12)

Furthermore, `R(q, d) ≤ `fb(q, d) holds, unless s < min(s1
D, s

2
D) and q > max(q1

D, q
2
D).

By defining qD as in the statement of the lemma, it can be readily verified that these policies

exactly reduce to the desired ones.

Proof of Lemma 3. We first show that for M ≥ M̃ , q > qD holds if and only if dfb < Rw. To

see this, note that

Rw − dfb =
(s1

D − s)q
2(1−Rc)(M − 1 + 2s)

−Rx0 =
(s1

D − s)(q − q1
D)

2(1−Rc)(M − 1 + 2s)
. (13)

If q > qD holds, that implies that qD = q1
D < q, as well as s < s1

D. Combining these with (13), we

get that dfb < Rw. On the other hand, if s ≥ s1
D, then q ≤ qD = ∞ holds, and by (13) we also

have dfb > Rw. If s < s1
D and q ≤ qD = q1

D holds, we also have dfb ≥ Rw. Hence, dfb < Rw implies

q > qD.

We now prove the claim of the Lemma in case `R is followed. The proof in case `fb is followed is

similar and is omitted. Consider the case when q > qD. Then, forM ≥ M̃ , we argued that dfb < Rw.

However, `R(q, dfb) = 0, i.e., if the first period demand is equal to dfb, there is continuation which

would then lead to bankruptcy if the second period demand is zero. For M < M̃ , we have that

`R(q, RwM ) = 0, which again would lead to the same result. As such, q > qD is a sufficient condition

for bankruptcy risk.

To show that q > qD is also necessary for bankruptcy risk when M ≥ 3, let us suppose, for the

sake of contradiction, that q ≤ qD and that there is bankruptcy risk. First note that

(1− s)dS = Rw − sq < Rw − dfb ≤ 0,

where the first inequality holds since M ≥ 3, and the second since M ≥ M̃ and q ≤ qD. Since dS
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is negative, there is no bankruptcy risk at t = 1. Also, continuation occurs only if d ≥ dfb at t = 1

and cannot thus lead to bankruptcy.

Finally, to show that q > qD is not necessary for bankruptcy risk when M < 3, consider the

case when q = 27, c = 0.5, s = 7
16 , R = 13

8 , M = 5
4 and x0 = 1. Then, we get s1

D = 13
24 > s,

qD = q1
D = 46.8 > q, dS = 136

9 > 0 and dfb = 21 > dS. As such, for this example q ≤ qD, but there

is bankruptcy risk at t = 1, since 0 < dS < dfb.

Proof of Lemma 4. Consider a fixed order quantity q > x0
c , resulting in a debt Rw(q), and seek

to characterize the banks’s liquidation policy as a function of the realized demand D1 = d, at the

given order quantity q. In view of Assumption 1, the bank’s expected revenues from liquidation

(xB,L ) and continuation (xB,C ) as a function of D1 = d are respectively given by:

xB,L (d) = XB,L (q, d) =





(1− s)d+ sq, if d ≤ dS

Rw, if dS < d,
(14a)

xB,C (d) = E
[
XB,C (q,D1, D2 |D1 = d)

]
=





(M+1)d
2 , if d ≤ Rw

M

d+Rw
2 , if Rw

M < d ≤ Rw

Rw, if Rw < d,

(14b)

where dS
def
= Rw−sq

1−s . Note that the bank is indifferent if d ≥ Rw, since, in that case, the first period

sales alone are sufficient to cover the entire debt. As such, we focus the discussion of the liquidation

decision to cases where d < Rw.

It can be readily checked that xB,L and xB,C are both continuous and concave in d, with

xB,L (0) > xB,C (0) and xB,L (d) > xB,C (d), ∀ d ∈ (dS, Rw). As such, the bank strictly prefers

liquidation for “sufficiently low” or “sufficiently high” demands (i.e., larger than dS). In fact, by

comparing (14a) and (14b), it can be seen that two cases can arise:

Case 1: If xB,L
(
Rw
M

)
≥ xB,C

(
Rw
M

)
, then xB,L (d) ≥ xB,C (d), ∀ d ∈ [0, Rw), so that the optimal

liquidation policy for the bank is `B(q, d) = 1{d < dB(q)}.
Case 2: If xB,L

(
Rw
M

)
< xB,C

(
Rw
M

)
, then there exist two demand levels ξ1 ∈

(
0, RwM

]
and ξ2 ∈[

Rw
M , dS

)
, such that `B(q, d) = 1

{
d ∈ [0, ξ1) ∪ (ξ2, Rw)

}
. Here, ξ1 = sq

M−1
2

+s
= dfb(q) is the

solution of the equation (1 − s)d + sq = (M+1)d
2 , and ξ2 = Rw−2qs

1−2s is the solution to the equation

(1− s)d+ sq = d+Rw
2 .

Finally, note that xB,L
(
Rw
M

)
< xB,C

(
Rw
M

)
holds if and only if

(
M−1

2 + s
)
Rx0 <

[(
M−1

2 + s
)
Rc−

Ms
]
q. Since the left term is always strictly positive, the inequality either never holds (when the

term multiplying q is non-positive, which is equivalent to s ≥ sB), or results in a valid lower bound

on q, equal to qB (and valid only for s < sB). As such, Case 2 arises if and only if s < sB and

q > qB, which completes the proof.
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Proof of Lemma 5. The proof follows readily by unifying the cases from Lemma 2 and Lemma 4.

We omit it for space considerations.

D.1.1 Auxiliary Results

Proposition 2. For M ≥ M̃ def
= 2(1−s), an optimal liquidation policy for the firm is given by (11).

Furthermore, `R(q, d) ≤ `fb(q, d), for all q and d.

Proof. We follow the same notation as in the proof of Lemma 2. Several cases emerge.

Case 1: Rw
M < dS or {RwM ≤ dS and M < M̃}. By comparing (8) with (9) and (10), it can be readily

checked that xR,C (d) > xR,L (d), ∀ d ∈
(
Rw
M , qM

]
, since xR,C has slopes M

2 (or M+1
2 ), which are

larger than 1−s (strictly larger when M < M̃ , and at least as large, but with xR,C (dS) > xR,L (dS)

when M = M̃). Combining with Proposition 4, we can see that the optimal liquidation policy for

the firm becomes `R(d) = 1
{
d < Rw

M

}
. To check that this corresponds to (11), note from the

definition of dR and (15d) that in Case 1 we have dR(q) = Rw
M . Furthermore, (15b) and (15c)

imply that s < s1
D and q > q1

D holds, which concludes the proof of the case.

Case 2: M = 2(1− s) and Rw
M = dS. This is a degenerate case, where xR,C (d) = xR,L (d), ∀ d ∈

[
Rw
M ,min(Rw, qM )

]
, and xR,C (d) > xR,L (d), ∀ d ∈

(
min(Rw, qM ), q

)
. As such, any policy of the

form `R(d) = 1
{
d < ξ

}
, for some ξ ∈

[
Rw
M ,min(Rw, qM )

]
is optimal. Without loss, we can take

ξ = Rw
M , but also ξ = Rw. Note that, in this case, dR(q) = Rw(q)

M , and (15h) implies dfb(q) = Rw(q).

Therefore, both branches in (11) yield optimal policies.

Case 3: Rw
M > dS. It can be readily seen that xR,L (d) > xR,C (d), ∀ d ∈

(
dS,

Rw
M

]
. Furthermore,

by Proposition 4, xR,L (d) < xR,C (d), ∀ d ∈
( q
M , q

)
. Therefore, xR,L and xR,C must intersect for

some d ∈
(
Rw
M , qM

)
. We distinguish two sub-cases.

Case 3-A: Rw ≥ q
M . By (10), xR,L and xR,C are both affine functions on

(
Rw
M , qM

)
, with

slopes 1 − s and M
2 , respectively. We must also have M < M̃ (if M = M̃ , the two lines would be

parallel and there could be no intersection). In this case, the policy is given by:

xR,L (d) > xR,C (d), ∀ d ∈
[Rw
M

, ξ
)

and xR,L (d) < xR,C (d), ∀ d ∈
(
ξ,

q

M

)
,

where ξ = 2sq−Rw
M−M̃ is the solution to the equation Md−Rw

2 = (1− s)d+ sq −Rw.

To see that this exactly corresponds to (11), note first that, by (15d), ξ = dR(q), which proves

that, in Case 3-A, `R(q, d) = 1{d < dR(q)}. Then, (15c) implies that {s < s1
D and q > q1

D} must

hold, which concludes the proof.

Case 3-B: Rw < q
M . In this case, (9) implies that the (unique) demand level d where xR,L (d) =

xR,C (d) can occur for either d ∈ (RwM , Rw] or d ∈ [Rw, qM ). The former (latter) occurs if and only

if xR,C (Rw) is larger (smaller) than xR,L (Rw).

• If xR,C (Rw) > xR,L (Rw), the demand level satisfying xR,L (d) = xR,C (d) is the solution to
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the equation Md−Rw
2 = (1 − s)d + sq − Rw, identical to Case 3-A. As such, we again have

that `R(q, d) = 1{d < dR(q)}.

• If xR,C (Rw) ≤ xR,L (Rw), the demand level satisfying xR,L (d) = xR,C (d) is the solution to

the equation (M+1)d
2 = (1 − s)d + sq, which is exactly sq

M−1
2

+s
= dfb. As such, we conclude

that `R(q, d) = 1{d < dfb(q)}.

To see that this corresponds to (11), note that (15b) implies that xR,C (Rw) > xR,L (Rw) holds

if and only if {s < s1
D and q > q1

D}, which is exactly what is required for (11).

Finally, to see that `R(q, d) ≤ `fb(q, d) holds for all q and d, note that (15f) and (15g) imply

that dfb(q) < dR(q) can only hold if s < s1
D and q > q1

D. As such, (11) directly leads to the desired

conclusion.

Proposition 3. For M < M̃
def
= 2(1 − s), an optimal liquidation policy for the firm is given

by (12). Furthermore, the following modified policy ̂̀R(q, d) is also optimal for the firm, and

satisfies ̂̀R(q, d) ≤ `fb(q, d) for any q and any d:

̂̀R(q, d) =





0 if {M < M̃} and {s < min(s1
D, s

2
D)} and {q > max(q1

D, q
2
D)}

`R(q, d) otherwise.

Proof. We follow the same notation as in the proof of Lemma 2. Several cases emerge.

Case 1: Rw
M ≤ dS. In this case, we have that xR,C (dS) ≥ xR,L (dS) = 0, and (15a) also implies

that {s < s2
D} and q ≥ q2

D, i.e., we are in the first case of (12). Two sub-cases emerge.

Case 1-A: Rw ≥ q
M . In this case, (10) and Proposition 4 imply that xR,C (d) > xR,L (d), ∀ d ∈

(
Rw
M , q

)
. This is equivalent to the optimal liquidation policy `R(q, d) = 1

{
d < Rw(q)

M

}
. To see that

this is equivalent to (12), note that Case 1-A and (15c) imply that s < s1
D and q > q1

D, which,

by (15f), implies that dfb(q) ≤ dR(q), so that
(
dR(q), dfb(q)

)
= ∅.

Case 1-B: Rw < q
M . Here, we have xR,C (d) > xR,L (d), ∀ d ∈ (RwM , dS]∪ [ qM , q). In the interval

(dS,
q
M ), xR,C is piecewise-affine, with two pieces, and xR,L is affine. Two possibilities emerge:

• If xR,C (Rw) ≥ xR,L (Rw), then xR,C (d) ≥ xR,L (d), ∀ d ∈ (RwM , q), and xR,C and xR,L have

at most one point of tangency in (dS,
q
M ), so the liquidation policy becomes `R(q, d) = 1

{
d <

Rw(q)
M

}
. To see that this corresponds to (12), note that (15b) implies that {s < s1

D and q ≥ q1
D},

which, by (15f), implies that
(
dR(q), dfb(q)

)
= ∅.

• If xR,C (Rw) < xR,L (Rw), then xR,C and xR,L have two intersection points. One such

point is given by the solution to the equation Md−Rw
2 = (1 − s)d + sq − Rw, i.e., 2sq−Rw

M−2(1−s) .

By (15e), this is exactly dR(q). The other such point is the solution to the equation (M+1)d
2 =

(1− s)d+ sq, which is exactly sq
M−1

2
+s

= dfb. By (15b) and (15f), we also have dfb(q) > dR(q),
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so that the liquidation policy is `R(q, d) = 1
{
d ∈

[
0, Rw(q)

M

)
∪
(
dR(q), dfb(q)

)}
, which

exactly corresponds to (12).

Case 2: Rw
M > dS. In this case, we claim that Rw < q

M . To see this, note that Rw ≥ q
M and

xR,L (wRM ) > xR,C (wRM ) = 0 would imply, through (10), that xR,L ( q
M ) > xR,C ( q

M ), since the slope

of the liquidation profits (1 − s) is greater than the slope of the continuation profits (M2 ). The

latter would be in direct contradiction with Proposition 4. Since Rw < q
M , a similar reasoning to

the one above applied to the profits in (9) shows that xR,L (Rw) > xR,C (Rw), so that

xR,L (d) > xR,C (d), ∀ d ∈ (0, ξ) and xR,L (d) < xR,C (d), ∀ d ∈
(
ξ,

q

M

)
,

where ξ is the solution to the equation (M+1)d
2 = (1− s)d+ sq, which is exactly sq

M−1
2

+s
= dfb. As

such, `R(q, d) = 1{d < dfb(q)}. To see that this exactly corresponds to (12), note that Rw
M > dS

and (15a) imply that {s < s2
D and q > q2

D} cannot hold.

To see that the modified policy ̂̀R(q, d) satisfies ̂̀R(q, d) ≤ `fb(q, d), note from (12) that the

only case where `R(q, d) ≤ `fb(q, d) might not hold is when s < s2
D, q > q2

D, and dfb(q) < Rw
M ,

i.e., by (15g), s < s1
D, q > q1

D. In this case, `R(q, d) = 1{d < wR
M }. However, by (15a), note that

wR
M < dS, so that the firm is actually indifferent between liquidation and continuation, so that the

policy ̂̀R(q, d) is also optimal.

Proposition 4. xR,C (d) > xR,L (d), ∀ d ∈ [ qM , q), i.e., `R(q, d) = `fb(q, d) = 0, ∀ d ∈ [ qM , q).

Proof. The result trivially holds if q
M < dS, so we only consider the reverse case. We distinguish

two cases, depending on whether Rw ≷ q
M .

If Rw < q
M , note from (9) that xR,C and xR,L are affine in d ∈ [ qM , q], and xR,C (q) = xR,L (q).

Showing the main result is thus equivalent to arguing xR,C ( q
M ) > xR,L ( q

M ), which holds, since:

xR,C
( q
M

)
− xR,L

( q
M

)
=
q(M − 1)(1− 2s)

2M
> 0, since s <

1

2
and M > 1.

If Rw ≥ q
M , note from (10) that xR,C is constant for d ∈ [ qM , Rw], and affine, with slope 1

2 for

d ∈ (Rw, q]. Since xR,L is affine for d ∈ ( q
M , q], with slope 0 ≤ s < 1

2 , and xR,C (q) = xR,L (q), to

argue the result, it suffices to show that xR,C (Rw) > xR,L (Rw), which holds, since

xR,C (Rw)− xR,L (Rw) = (q −Rw)
(1

2
− s
)
> 0, since q > Rw and s <

1

2
.
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Proposition 5. We have:20

Rw

M

(<)

≤ dS ⇔ {s < s2
D and q

(>)

≥ q2
D} (15a)

If Rw <
q

M
, then xR,C (Rw)

(>)

≥ xR,L (Rw) ⇔ {s < s1
D and q

(>)

≥ q1
D} (15b)

Rw ≥ q

M
⇒ {s < s1

D and q > q1
D} (15c)

If M > 2(1− s), then dR(q) =
Rw(q)

M
⇔ Rw

M
≤ dS (15d)

If M < 2(1− s), then dR(q) =
Rw(q)

M
⇔ Rw

M
≥ dS (15e)

IfM < 2(1− s), dfb(q)
(<)

≤ 2sq −Rw
M − 2(1− s) ⇔ {s < s1

D and q
(>)

≥ q1
D} (15f)

dfb(q) ≤ Rw

M
⇒ {s < s1

D and q > q1
D} (15g)

{
M = 2(1− s) and

Rw

M
= dS

}
⇒ dfb(q) = Rw(q). (15h)

Proof. Throughout this proof, recall that 0 < Rc ≤ 1, M > 1, and s < 1
2 .

To prove (15a), note that Rw
M ≤ dS holds if and only if:

x0R(M + s− 1)

M(1− s) ≤
(cR− s

1− s −
cR

M

)
q.

Since the left term is always strictly positive, the inequality either never holds (when the term

multiplying q is non-positive, which is equivalent to s ≥ s2
D), or results in a valid lower bound on q

(equal to q2
D, and valid only for s < s2

D). The strict version of the inequality follows similarly.

To prove (15b), note that, by (9), xR,C (Rw) ≥ xR,L (Rw) holds if and only if:

M − 1 + 2s

2
Rx0 ≤

(M − 1 + 2s

2
Rc− s

)
q. (16)

Since the left term is always strictly positive, the inequality either never holds (when the term

multiplying q is non-positive, which is equivalent to s ≥ s1
D), or results in a valid lower bound on q

(equal to q1
D, and valid only for s < s1

D). The strict version of the inequality follows similarly.

To prove (15c), note first that Rw ≥ q
M is equivalent to

(MRc− 1)q ≥MRx0 ⇔
{
MRc > 1 and q ≥ MRx0

MRc− 1

}
. (17)

We first show that MRc > 1 implies s < s1
D. To this end, note that the latter is equivalent to

Rc > 2s
M+2s−1 . But MRc > 1 implies Rc > 1

M , and 1
M > 2s

M+2s−1 ⇔ M − 1 > 2s(M − 1) ⇔
20In order to save space, since we require both the strict and non-strict versions of the inequalities, we use a compact

notation that shows in parenthesis the alternate versions.
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s < 1
2 , which is always true. Therefore, s < s1

D, which implies, by (16), that q1
D > 0. To see that

q > q1
D, note that (17) also requires q > MRx0

MRc−1 , and we always have: MRx0
MRc−1 >

Rx0
Rc− 2s

M−1+2s

⇔
M − 1 + 2s > 2Ms ⇔ 1 > 2s.

To prove (15d) and (15e), note that dR = Rw
M holds if and only if Rw

M ≥ 2sq−Rw
M−2+2s . The latter

inequality is exactly equivalent to

(M + s− 1)Rx0 ≤
[
M(Rc− s)−Rc(1− s)

]
q if M > 2(1− s),

(M + s− 1)Rx0 ≥
[
M(Rc− s)−Rc(1− s)

]
q if M < 2(1− s).

The former condition is exactly equivalent to condition (17), i.e., to Rw
M ≤ dS. Similarly, the latter

is equivalent to Rw
M ≥ dS.

To prove (15f), note that the relation is equivalent, under M < 2(s− 1), to Rx0(M + 2s− 1) ≤
[
(M − 1)Rc − 2s(1 − Rc)

]
q, which is exactly (16). By the same arguments as in (15b), this is

equivalent to {s < s1
D and q ≥ q1

D}.
To prove (15g), note that the condition is equivalent to Rx0(M + 2s− 1) ≤

[
(M + 2s− 1)Rc−

2sM
]
q. Comparing this with (16), it can be seen that the left-hand-sides are identical, while the

term multiplying q here is smaller than in (16). As such, if the relation above holds, it must be

that s < s1
D and q > q1

D.

To prove (15h), note that dfb(q)−Rw becomes equal in this case to:

2sq

M + 2s− 1
−Rw = sq

[ 2

M + 2s− 1
− M

M + s− 1

]
= 0,

where the first equality follows by expressing Rw from the identity Rw = Rw−sq
1−s , and the second

follows by using M = 2(1− s).

D.2 Perfect Competition

To simplify the exposition, we introduce some notation. Let R : R → [1,∞) and δ : R → R+

be functions that map an order quantity to an interest rate and a covenant demand threshold

requirement. In this section, we denote a contract under these terms with κ = (R, δ), and the set

of all such competitively priced loans with K.

Consider also the following three particular competitively priced contracts of interest:

(a) κ0 = (R0, δ0), with δ0(q) ≡ 0;

(b) κ1 = (R1, δ1), with δ1(q) ≡ 2sq
M+2s−1 ;

(c) (Rfb, 0), offered to a firm following the first best actions, i.e., ordering qfb, and liquidating

according to `fb. Let qfb
D be as in Lemma 2, calculated using Rfb.

Finally, we derive the first order optimality conditions (FOC) that are necessary and sufficient
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for the first best order quantity qfb. Note that, using Lemma 1, we can express (1) as

V (q) =

∫ dfb

0
(sq + (1− s)u)f1(u)du+

1

2

∫ q
M

dfb
(M + 1)uf1(u)du

+
1

2

∫ q

q
M

(q + u)f1(u)du+

∫ ∞

q
qf1(u)du− cq, ∀q ≥ 0.

Thus, the FOC is: 1 + sF1(dfb) = 1
2F1(q/M) + 1

2F1(q) + c.

We present the proofs in the same order in which theorems appear in the next. However, the

proofs of Theorems 1 and 2 rely on the proof of Theorem 4.

Proof of Theorem 1. (i) If x0 ≥ x̃0, by Theorem 4(b) we have that qfb ≤ qfb
D . By Proposition 6,

the firm prefers κ0, which does not have covenants, orders qfb and follows `fb.

(ii) Suppose now that x0 < x̃0. Let g(q, x0) denote the threshold qD evaluated under the interest

rate R0(q) for a firm with initial capital of x0, i.e.,

g(q, x0)
def
=

R0(q)x0

R0(q)c− θ ,

where θ is defined as in the proof of Theorem 4. Arguing in precisely the same way as in (19),

since R0(q) and Rfb have the same monotonicity in x0, by Proposition 7, we have that g(qfb, x0) is

increasing in x0. Based on Theorem 4(b) and Proposition 6, g(qfb, x̃0) = qfb. By the monotonicity

of g(qfb, x0) with respect to x0, we then get that

qfb = g(qfb, x̃0) > g(qfb, x0). (18)

Suppose now that in equilibrium the firm orders q? and follows `fb. Then, by Lemma 2,

q? ≤ g(q?, x0).

Note also that g(q, x0) is decreasing in q. To see this,

∂g(q, x0)

∂q
=
∂g(q, x0)

∂R0

∂R0

∂w

∂w

∂q
< 0,

since the first multiplier above is negative, the second is positive by Proposition 7, and the third is

equal to c. If q? ≥ qfb, we get q? ≥ qfb > g(qfb, x0) > g(q?, x0), a contradiction. Hence, q? < qfb.

Finally, if the firm follows `R < `fb in equilibrium, then, since its expected profits are equal to

V when following `R, q? solves the FOC sF1(dR(q)) + 1 = 1
2F1(q) + 1

2F1

( q
M

)
+ c. Since qfb solves

the FOC for dfb > dR, and F1, dfb and dR are all increasing in q, we conclude that q? < qfb.

Proof of Theorem 2. The proof follows from Proposition 6.
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Proof of Theorem 3. By Proposition 6, when covenants are present, contract κ1 is optimal and

thus the corresponding covenant demand threshold is exactly equal to δ? = 2sqfb

M+2s−1 .

To prove the comparative statics, it can be readily checked that:

sgn
(∂δ?
∂s

)
= sgn

[
(M − 1)2qfb

︸ ︷︷ ︸
≥0

+ 2s(M + 2s− 1)︸ ︷︷ ︸
≥0

∂qfb

∂s

]

sgn
(∂δ?
∂c

)
= sgn

(∂qfb

∂c

)
.

Recall that qfb is the maximizer of V given by (1). It can be readily checked that:

∂2V

∂q∂s
= F1

( 2sq

M + 2s− 1

)
+ sf1

( 2sq

M + 2s− 1

)∂dfb

∂s
≥ 0,

since ∂dfb

∂s = 2q(M−1)
(M+2s−1)2

≥ 0. As such, V is supermodular in (q, s) on the lattice R2, so that qfb is

increasing in s (see, e.g., Topkis 1998). Similarly, it can be checked that ∂dfb

∂c ≤ 0, so that qfb is

decreasing in c.

Proof of Theorem 4. We start with the following useful intermediate result. We prove that

a covenant is necessarily included if and only if there is liquidation conflict. To this end, note

that Proposition 6 implies that, in equilibrium, the order quantity is always qfb, and the liquidation

policy followed is `fb. By definition (see Lemma 5), liquidation conflict exists if and only if qfb > qfb
D .

The proof is complete by invoking again Proposition 6.

To prove the dependence on x0, in view of Proposition 6, it is sufficient to show that if qfb > qfb
D

holds for some x̄0, it also holds for any x0 < x̄0. Since qfb does not depend on x0, it then suffices

to show that qfb
D is increasing in x0. Note that

sgn

(
dqfb

D
dx0

)
= sgn

[
d

dx0

(
Rfbx0

Rfbc− θ

)]
= sgn

[
Rfb(Rfbc− θ)− x0θ

∂Rfb

∂x0

]
, (19)

where θ is independent of x0 (see (2)). Thus, since Rfbc − θ > 0, and Rfb is decreasing in x0, by

Proposition 7, the proof is complete.

The connection with bankruptcy follows from the results of Proposition 6 and Lemma 3.

D.2.1 Auxiliary Results

Proposition 6. In equilibrium, the firm prefers κ0 (κ1) to any other κ ∈ K if qfb ≤ qfb
D (qfb > qfb

D ).

Moreover, in equilibrium, it orders qfb, and liquidates according to `fb.

Proof. Let πP(q; (R, δ)) be the expected profits of agent P ∈ {R,B} in equilibrium when the order

quantity is q and the contract offered has an interest rate R and a covenant of δ. Then, under

perfect competition πB(q; (Ri(q), δi(q))) = 0, for all q ≥ 0, i ∈ {0, 1}.
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Let x(q; `) be the net expected revenues at the end of the game, generated by sales and possible

liquidation of the inventory, under an order quantity q and a liquidation policy `. We can express

the firm’s profits as the net expected revenues minus inventory purchasing costs minus the bank’s

profits, that is, for any κ = (R, δ) ∈ K

πR(q; (R(q), δ(q))) = x(q; `κ,q)− cq − πB(q; (R(q), δ(q))) = x(q; `κ,q)− cq,

where `κ,q is the liquidation policy followed in equilibrium under quantity q and contract κ.

Let πκ?R be the firm’s optimal expected profits under contract κ ∈ K. Then,

πκ?R = max
q
πR(q; (R(q), δ(q))) = max

q
{x(q; `κ,q)− cq} .

Case 1: qfb ≤ qfb
D . We argue that R0(qfb) = Rfb. To see this, note that if the firm wishes to order

qfb and the bank offers the contract (Rfb, 0), then, since qfb ≤ qfb
D , the firm will follow `fb, according

to Lemma 2. Consequently, we also have `κ0,qfb = `fb, and

πκ0?R = max
q
{x(q; `κ0,q)− cq}

≥ x(qfb; `κ0,qfb)− cqfb

= x(qfb; `fb)− cqfb

≥ sup
κ∈K

max
q
{x(q; `κ,q)− cq}

= sup
κ∈K

πκ?R ≥ πκ0?R ,

where the second inequality follows from the optimality of ordering qfb and following `fb as first

best and the third inequality from the fact that κ0 ∈ K.

Case 2: qfb > qfb
D . Consider contract κ1. Then, by the choice of δ1(q), we have that δ1(q) = dfb(q).

According to Lemma 4, the bank will prefer liquidation for any d1 < dfb(q). Moreover, since

`R ≤ `fb (see Lemma 2), we have that `κ1,q = `fb. Hence,

πκ1?R = max
q
{x(q; `κ1,q)− cq}

= max
q

{
x(q; `fb)− cq

}

= x(qfb; `fb)− cqfb

≥ sup
κ∈K

πκ?R ≥ πκ1?R .

Proposition 7. For any fixed q, R0(q) is decreasing in x0. Similarly, Rfb is decreasing in x0.

Proof. We provide a unifying proof for both quantities. Let R below denote either R0(q) or Rfb.
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Let ζ denote the probability of bankruptcy, and xbr denote the expected channel revenues

conditional on bankruptcy. By definition, xbr < Rw. The bank’s expected profit can be written as

πB = Rw(1− ζ) + xbrζ − w ≡ 0.

As a side remark, this implicit equation yields the R that should be charged by the bank. Using

the implicit function theorem, this then yields:

R(1− ζ)− 1︸ ︷︷ ︸
≤0

− (Rw − xbr)︸ ︷︷ ︸
>0

∂ζ

∂w︸︷︷︸
≥0

+w(1− ζ)
∂R

∂w
= 0.

Above, the first term is negative due to the identity πB ≡ 0, and ∂ζ
∂w ≥ 0 since, ceteris paribus,

the probability of bankruptcy increases in the size of the principal. Since ∂R
∂x0

= −∂R
∂w , the proof is

complete.

D.3 Partial Liquidation and Replenishment

Let y1
def
= (q − d1)+ be the leftover inventory after the first-period sales and y be the inventory

position at the beginning of period t = 2, after the liquidation or replenishment actions. Let xP be

the expected cash flow of player P ∈ {R,B} at the end of period t = 2. We denote the conditional

c.d.f. (p.d.f.) of the second period demand with F2|d1 (f2|d1). According to Assumption 3 we get

that F2|d1(x) = FZ

(
2x

(M−1)d1

)
.

It is useful to characterize the corresponding first best inventory decision at t = 1. Let x =

xR + xB denote the net expected cash flow extracted. It is easy to check that

x =




d1 + s · (y1 − y) +

∫
min(u, y)f2|d1(u)du 0 ≤ y ≤ y1

d1 + c · (y1 − y) +
∫

min(u, y)f2|d1(u)du y > y1,

and thus

dx

dy
=





1− s− F2|d1(y) 0 ≤ y ≤ y1

1− c− F2|d1(y) y > y1.

The first best inventory decision is thus given by

yfb =





min
{
y1,

(M−1)d1
2 ys

}
under partial liq. only

max
[
min

{
y1,

(M−1)d1
2 ys

}
, (M−1)d1

2 yc

]
under partial liq. and replenishment,

where yj
def
= F−1

Z (1− j) for j = c, s.
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Proof of Lemma 6. Let yP be the standalone optimal inventory decision of player P ∈ {R,B}.
Note that `B ≥ (>)`R ⇔ yB ≤ (<)yR. We first show that yR ≥ yfb and yB ≤ yfb. We assume that

d1 < q throughout; for d1 ≥ q the firm stocks out and the players’ actions are trivial.

Firm. Note that xR = E
[
(d1 + s · (q − d1 − y) + min{y,D2} −Rw)+

∣∣D1 = d1

]
.

• For 0 ≤ d1 < dS, to break even at t = 2 the inventory y needs to exceed the minimum demand

threshold uB = (1− s)(dS − d1) + sy. Thus,

xR =





0 y ≤ dS − d1

∫∞
uB

(min{u, y} − uB)f2|d1(u)du dS − d1 < y ≤ y1,

and

dxR
dy

=





0 y ≤ dS − d1

dx
dy + sF2|d1(uB) dS − d1 < y ≤ y1.

Consequently, we get that

yR




> yfb yfb < y1

= yfb otherwise.

• For dS ≤ d1 < Rw, we have that uB ≤ y. However, for small y the threshold uB could become

negative, in which case there is no bankruptcy risk. In particular, we get that

xR =




x−Rw y ≤ 1−s

s (d1 − dS)
∫∞
uB

(min{u, y} − uB)f2|d1(u)du 1−s
s (d1 − dS) < y ≤ y1,

and

dxR
dy

=




dx
dy y ≤ 1−s

s (d1 − dS)

dx
dy + sF2|d1(uB) 1−s

s (d1 − dS) < y ≤ y1.

Consequently, we get that yR ≥ yfb.

• For d1 ≥ Rw, there is no bankruptcy risk. Hence, xR = x−Rw and yR = yfb.

Bank. Note that xB = E [min (d1 + s · (q − d1 − y) + min{y,D2}, Rw)|D1 = d1].

• For 0 ≤ d1 < dS, uB = (1− s)(dS − d1) + sy is positive for any feasible y. Thus,

xB =




x y ≤ dS − d1

Rw −
∫ uB

0 (uB − u)f2|d1(u)du dS − d1 < y ≤ y1,
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and

dxB
dy

=




dx
dy y ≤ dS − d1

−sF2|d1(uB) dS − d1 < y ≤ y1.

Consequently, we get that yB = min{dS − d1,
(M−1)d1

2 ys} ≤ yfb.

• For dS ≤ d1 < Rw, note first that if 1−s
s (d1 − dS) < y ≤ y1, we have dxB

dy = −sF2|d1(uB) ≤ 0,

so that yB ≤ 1−s
s (d1−dS) must hold. In the latter case, the threshold uB is negative, in which

case there is no bankruptcy risk, so without loss we have yB = 0 < yfb.

• For d1 ≥ Rw, there is no bankruptcy risk. Hence, without loss we again have yB = 0 < yfb.

To finish the proof, note that for d1 < dS, if yfb = y1 we have that yB ≤ dS − d1 < q − d1 =

y1 = yR. If yfb < y1, we have that yB ≤ yfb < yR.

Proof of Lemma 7. If `R ≥ `C, then the firm follows its standalone optimal policy and the

covenant does not get violated, `?R = `R ≥ `C.

If `R < `C, following the firm’s standalone optimal policy would lead to a covenant violation.

In such case, the bank will enforce her optimal decision. According to our analysis in the proof of

Lemma 6, for d ≥ dS we have yB = 0. Thus, the firm’s cash flow, in anticipation of the bank’s, will

be

xR =




xR 0 ≤ y ≤ yC

xR|y=0 y > yC,

where yC is the inventory position that corresponds to `C. According to our analysis in the proof

of Lemma 6, for d ≥ dS we also have that

dxR
dy

∣∣∣∣
y=0

=
dx

dy

∣∣∣∣
y=0

= 1− s > 0

Thus, the firm would always prefer an inventory position that does not violate the covenant and

yR ≤ yC, i.e., `?R ≥ `C. To conclude the proof, it is easy to check that yC ≥ 0 for d ≥ dS.

Proof of Theorem 5. We first characterize the threshold x̄0 by following similar steps as in the

proof of Theorem 4. Consider the corresponding interest rate Rfb defined as in Section D.2 and let

qfb
S

def
= Rfbx0

Rfbc−s ; this quantity plays the same role as qfb
D in the proof of Theorem 4. In particular, as

in (19), note that

sgn

(
dqfb

S

dx0

)
= sgn

[
d

dx0

(
Rfbx0

Rfbc− s

)]
= sgn

[
Rfb(Rfbc− s)− x0s

∂Rfb

∂x0

]
> 0

and thus qfb
S is increasing in x0. Let x̄0 be such that qfb > qfb

S if and only if x0 < x̄0.
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For the sake of contradiction, assume now that x0 < x̄0 and for some contract κ ∈ KF we have

that A(κ) = 0. Thus, the first best actions qfb and yfb are followed in equilibrium.

Since x0 < x̄0, we have that qfb > qfb
S , which implies that dS > 0. Consider now the problem that

the firm solves at t = 1 for a demand level d1 < dS such that dS−d1 <
(M−1)d1

2 ys < q−d1. Based on

our analysis in the proof of Lemma 6, we get that yB = dS − d1 <
(M−1)d1

2 ys = yfb. Thus, since yfb

is followed in equilibrium, we get that the covenant is not violated, d1 + s(q− d1− (M−1)d1
2 ys) ≤ δ.

Similarly, since yR > yfb, the equilibrium action also implies that the covenant is in fact binding,

d1 + s(q − d1 − (M−1)d1
2 ys) = δ.

Consider now the problem that the firm solves at t = 1 for a demand level d′1 = d1− ε, for ε > 0

small enough such that d′1 < dS and dS − d′1 <
(M−1)d′1

2 ys < q − d′1 still hold. All arguments made

above still hold. However, the covenant is not binding since

d′1 + s

(
q − d′1 −

(M − 1)d′1
2

ys

)
= d1 + s(q − d1 −

(M − 1)d1

2
ys)−

(
1− s− s(M − 1)

2
ys

)
ε 6= δ

a contradiction.

Proof of Theorem 6. We use notation consistent with the proof of Proposition 6. Let x(q; y)

be the net expected revenues at the end of the game, generated by sales and possible inventory

liquidation, under an order quantity q and an inventory liquidation policy y at t = 1. We can

express the firm’s profits as the net expected revenues minus inventory purchasing costs minus the

bank’s profits, that is, for any κ ∈ KB

πR(q, κ) = x(q; yκ,q)− cq − πB(q, κ) = x(q; yκ,q)− cq,

where yκ,q is the equilibrium inventory liquidation policy followed under quantity q and contract κ.

We first show that the equilibrium inventory liquidation policy under κ? = (α?, β?) ∈ KB is

first best, i.e., yκ?,q = yfb. If the firm stocks out at t = 1, i.e., d1 ≥ q, all policies are trivial. Thus,

we only consider the case of d1 < q. Note that the covenant condition is equivalent to

d1 + s(y1 − y)︸ ︷︷ ︸
cash

+α? sy︸︷︷︸
inventory

≥ β? ⇔ y ≤ (M − 1)d1

2
ys.

Based on our analysis in the proof of Lemma 6, we get that:

• For d1 < dS,

– for y1 ≤ (M−1)d1
2 ys, we get that yR = yfb = y1 and since the covenant does not get

violated for this policy, yκ?,q = yfb.

– for dS−d1 <
(M−1)d1

2 ys < y1, we get that yfb = (M−1)d1
2 ys < y1 and thus yR >

(M−1)d1
2 ys,

i.e., the covenant would get violated for yR. In that case, we have yB = dS − d1, which
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implies that the firm will be bankrupt if the covenant is violated. Thus, it would prefer

any 0 ≤ y ≤ yfb to avert violation. Since, dxRdy ≥ 0 for all such y, we get that yκ?,q = yfb.

– for (M−1)d1
2 ys ≤ dS− d1, the firm is bankrupt if y ≤ dS− d1 and the covenant is violated

otherwise. Hence, without loss the firm is indifferent and takes no action leading to a

covenant violation. Then, the bank’s policy is followed in equilibrium and yκ?,q = yB =
(M−1)d1

2 ys = yfb.

• For dS ≤ d1 ≤ Rw, a covenant violation would transfer control rights to the bank, in which

case yB = 0 would be followed. Specifically,

– for y1 ≤ (M−1)d1
2 ys, we get that dxR

dy ≥ 0 for all 0 ≤ y ≤ y1. Thus, yR = y1 and since the

covenant does not get violated for this policy, yκ?,q = y1 = yfb.

– for (M−1)d1
2 ys < y1, since dxR

dy ≥ 0 for all 0 ≤ y ≤ (M−1)d1
2 ys we get that yκ?,q =

(M−1)d1
2 ys = yfb.

• For d1 > Rw, we have that yR = yfb ≤ (M−1)d1
2 ys and since the covenant does not get violated

for this policy, yκ?,q = yfb.

We now have

VR(κ?) = max
q
{x(q; yκ?,q)− cq}

≥ x(qfb; yκ?,qfb)− cqfb

= x(qfb; yfb)− cqfb

= V fb

≥ sup
κ∈KB

VR(κ) = VR(κ?).

Thus,

min
κ∈KB

A(κ) ≤ A(κ?) =
V fb − VR(κ?)

V fb
=
V fb − V fb

V fb
= 0

which completes the first part of the proof.

The comparative statics results for α? = 1− 2(1−s)
s(M−1)F−1

Z (1−s) are immediate, since the denomina-

tor is increasing in M and in Z (in the usual stochastic order). Furthermore, since qfb is increasing

in s, M , D1 and Z (in the usual stochastic order), so is β? = sqfb.

Proof of Theorem 7. We first deal with the case where reordering is financed exclusively with

cash from the lockbox account. The proof uses a similar stream of arguments as the proof of

Theorem 6. Thus, if yκ,q is the equilibrium inventory adjustment policy followed under quantity
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q and contract κ, it suffices to show that the equilibrium inventory liquidation policy under κ? =

(α?, β?) ∈ KB is first best, i.e., yκ?,q = yfb.

Case 1: Suppose that yfb = min
{
y1,

(M−1)d1
2 ys

}
. Note that in that case we get that (M−1)d1

2 yc ≤
y1, so that y1 = q − d1 > 0. Then, the withdrawal limit of the firm at t = 1 also simplifies to

φb− cq =

(
(M − 1)d1

2
yc − y1

)
c ≤ 0,

so that no replenishment can take place. Hence, the firm follows an inventory adjustment policy

according to our analysis in Theorem 6 and yκ?,q = yfb.

Case 2: Suppose that yfb = (M−1)d1
2 yc. Thus, we have that y1 = q − d1 ≤ (M−1)d1

2 yc <
(M−1)d1

2 ys.

We first argue that the covenant is never violated in this case. In particular, by the withdrawal

limit, we get that c(y − y1) ≤ φb − cq =
(

(M−1)d1
2 yc − y1

)
c and thus y ≤ (M−1)d1

2 yc <
(M−1)d1

2 ys

and the covenant is never violated.

We next argue that no partial liquidation will be performed in equilibrium, yκ?,q ≥ y1. Based

on our analysis in the proof of Lemma 6, we get that dxR
dy ≥ 0 for all y ≤ y1, since y1 <

(M−1)d1
2 ys.

In conjuction with the covenant not being violated we get that yκ?,q ≥ y1.

By combining the two facts above, we conclude that the equilibrium policy will be dictated by

the firm, which would effectively act by maximizing its payoff xR over y1 ≤ y ≤ yfb. Similarly to

our analysis in the proof of Lemma 6, it can be checked that uB = Rw −min{q, d1} − c(y1 − y) is

the minimum second-period demand threshold for the firm to break even. For uB < 0, there is no

bankruptcy risk, xR = x−Rw and the firm follows yR = yfb. For uB ≥ 0, we get that

xR =

∫ y

uB

(u− uB)f2|d1(u)du+

∫ ∞

y
(y − uB)f2|d1(u)du,

and
dxR
dy

=
dx

dy
+ cF2|d1(uB) ≥ dx

dy
≥ 0, ∀y1 ≤ y ≤ yfb.

Consequently, yκ?,q = yfb.

Finally, we discuss the case where additional funds are required to place the order. In this case,

there will be no agency costs, since the firm will act as a newsvendor, who has no dynamic decisions

left. Thus, first best decisions will always be followed, and the proof is complete.

D.4 Monopoly

For the purposes of this section, it will help to think about the covenant in terms of a cash-flow-

to-debt ratio threshold γ
def
= δ

Rw , instead of the cash flow threshold δ. This is without loss (see

Section 3.3). We first introduce some simplifying notation. Let (R?, γ?) denote the optimal contract

offered by the bank in equilibrium, and let q?(γ) denote the firm’s optimal response to a contract
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(R?, γ), i.e., where only the covenant threshold is changing, and the interest rate is fixed to the

optimal value. For simplicity, also let q?(γ?) = q??.

Several quantities of interest in the proof depend on the interest rate R – for instance, the

threshold qD defined in (2), and the values d(q) and d(q), defined in Lemma 5. To avoid introducing

unnecessary notation, for all the proofs in the rest of the section, we use the implicit understanding

that any such quantity is calculated under R = R?, i.e., using the optimal interest rate for the bank

in equilibrium. This should not create any confusion, since all the arguments presented will not

rely on changing R. For simplicity, we also introduce γmin
def
= d(q??)

R?(cq??−x0) and γmax
def
= d(q??)

R?(cq??−x0) .

We let ∆XP(q, d1)
def
= XP,L (q, d1)− E

[
XP,C (q, d1, D2)

∣∣D1 = d1

]
denote the expected revenue

difference between liquidation and continuation of player P ∈ {R,B}, when the bank contract is

(R?, γ), and the firm orders a generic q. If q results in liquidation conflict, note that

∆XR(q, d(q)) = 0, (20)

by the definition of d(q) (see Lemma 5).

Proof of Theorem 8. It suffices to show this result for financial covenants, as borrowing base

covenants subsume these as special cases in our setting.

When there is no liquidation conflict, by Lemma 5, the disagreement region is empty, and the

equilibrium liquidation policy followed is `R(q??, d), according to Lemma 2. As such, a contract

(R?, 0) would result in exactly the same liquidation policy in equilibrium, and would also yield

q?(0) = q??. Without loss, then, no covenant is needed in equilibrium.

For the converse, it suffices to show that, when there is liquidation conflict, γ? > 0. For the

purposes of deriving a contradiction, assume that γ? = 0. Then, q?(0) is given by the first-order

optimality condition (FOC) of πR.

We first argue for cases where the bank follows a threshold policy (see Lemma 4). By the

implicit function theorem applied to the derivative of the FOC with respect to γ, we get that

∂2πR
∂q∂γ

∣∣∣∣
q?(γ)

+
∂2πR
∂q2

∣∣∣∣
q?(γ)

dq?(γ)

dγ
= 0. (21)

We now evaluate the terms above at
(
q?(γmin), γmin

)
. Recall that q?(γmin) = q?(0). By our

standing assumption,
∂2πR
∂q2

∣∣∣∣
q?(γmin)

=
∂2πR
∂q2

∣∣∣∣
q?(0)

< 0. (22)

To evaluate the mixed derivative above, we express the firm’s expected profits, for q > qD

and γmin ≤ γ ≤ γmax, as πR(q, γ) = πR(q, 0) +
∫ δ
d(q) ∆XR(q, u)f1(u)du, where δ is the covenant

demand threshold. To see this, note that in the disagreement region where the covenant is breached,

(d(q), δ), the firm would have otherwise continued for γ = 0, whereas it faces liquidation for γ. We
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then have

∂2πR
∂q∂γ

∣∣∣∣∣ q?(γmin),
γmin

=

[(
∂

∂q
∆XR(q, δ)

)
f1(δ)

∂δ

∂γ

] ∣∣∣∣∣ q?(γmin),
γmin

+

[
∆XR(q, δ)

∂

∂q

(
f1(δ)

∂δ

∂γ

)] ∣∣∣∣∣ q?(γmin),
γmin

.

Note that δ evaluated at (q?(γmin), γmin) is equal to d(q?(γmin)). Therefore, by equation (20), the

second term above is zero.

To determine the sign of the first term, note that δ is increasing in γ, and f1 is positive. Thus,

at the point (q?(γmin), γmin), the sign of ∂2πR
∂q∂γ is the same as the sign of ∂∆XR(q,δ)

∂q . To evaluate the

latter, we apply the implicit function theorem to equation (20) to obtain:

∂∆XR
∂q

∣∣∣∣∣ q?(γmin)
d(q?(γmin))

=− ∂d(q)

∂q

∣∣∣∣∣
q?(γmin)

∂∆XR
∂d

∣∣∣∣∣ q?(γmin)
γmin

.

Since d is increasing in q (see Lemma 5), the sign of the first multiplier in the right-hand side is

positive. By Proposition 8, the sign of the second multiplier in the right-hand side is negative. We

conclude that the sign of ∂2πR
∂q∂γ at (q?(γmin), γmin) is positive.

By combining the above fact with (21) and (22), we get that

dq?(γ)

dγ

∣∣∣
γmin

≥ 0. (23)

We now focus on the bank’s expected profits. For q > qD and γmin ≤ γ ≤ γmax, we can express

them as πB(q, γ) = πB(q, 0) +
∫ δ
d(q) ∆XB(q, u)f1(u)du. Thus, ∂πB(q,γ)

∂γ = R?(cq− x0)∆XB(q, δ)f1(δ).

By the implicit function theorem we also get dπB(q?(γ),γ)
dγ = ∂πB(q,γ)

∂γ

∣∣∣
q?(γ)

+ dq?(γ)
dγ

∂πB(q,γ)
∂q

∣∣∣
q?(γ)

. Thus,

by combining the two equations above, we get

dπB(q?(γ), γ)

dγ

∣∣∣
γmin

= R?(cq?(0)− x0)∆XB
(
q?(0), δmin

)
f1(δmin)︸ ︷︷ ︸

>0

+
dq?(γ)

dγ

∣∣∣
γmin︸ ︷︷ ︸

≥0

∂πB(q, γ)

∂q︸ ︷︷ ︸
≥0

∣∣∣
q?(0)

> 0,

Note that the first term above is strictly positive due to the existence of liquidation conflict (also see

Proof of Lemma 2). The second term is positive by (23). To argue that the third term is positive,

assume for the sake of contradiction that it is negative. Then, the bank can strictly increase its

profit by slightly increasing the interest rate R? (as the firm’s quantity would slightly decrease as a

result), thus contradicting optimality of the contract (R?, 0). This shows that the assumed contract

(R?, 0) is suboptimal for the bank, since she can increase her profits by including a covenant.

We now argue for the case when the bank does not follow a threshold policy, i.e., when q?(0) >

qB, s < sB. By using our results from Lemma 2 and Lemma 4, note that for d < dfb, it is optimal

for the firm to either liquidate or continue, and for the bank to liquidate. Thus, in equilibrium,
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δ? ≥ dfb > 0, which implies that a covenant is needed.

Finally, as in Lemma 3, one can show that when the optimal liquidation policy of the bank

is followed, sufficient leverage (or, equivalently, liquidation conflict) is a necessary condition for

bankruptcy risk in non-shrinking markets, and neither necessary, nor sufficient in shrinking markets.

D.4.1 Auxiliary Results

Proposition 8. When there is liquidation conflict and the bank is following a threshold policy,
∂∆XR
∂d evaluated at

(
q?(γmin), d(q?(γmin))

)
is negative.

Proof. For simplicity of notation, we denote q?(γmin) with a generic q. We distinguish two cases.

For M ≥ M̃ , since the bank follows a non-threshold liquidation policy, d(q) = dR(q) (see Lemma 5).

Since the firm always prefers continuation for d ≥ q
M (see Proposition 4), and prefers liquidation

for d < dfb(q), we must have d(q) < q
M . Therefore, xR,C (q, d) = 1

2(Md− wR). By combining this

with the liquidation payoffs given by (8), we have that

∆XR(q, d) =




−1

2(Md− wR), if d < dS

sq + (1− s)d− wR− 1
2(Md− wR), otherwise.

As such, ∂∆XR
∂d is equal to −M

2 or M̃−M
2 , and is therefore negative.

For M < M̃ , d(q) = wR
M < q

M . As such, the liquidation and continuation profits are exactly the

same as above. Note, however, that d(q) < dS, by (15e) in Lemma 5. Thus, ∂∆XR
∂d is equal to −M

2 ,

and the proof is complete.

D.5 Robustness of Non-Threshold Policies

Proof of Theorem 9. Since q is fixed, we no longer explicitly show the dependency of the various

functions on q. When the first period demand is D1 = d, the firm’s expected liquidation and

continuation payoffs are respectively given by:

xR,L (d) = XR,L (q, d) =





0, if d ≤ dS

(1− s)d+ sq −Rw, if dS < d ≤ q

q −Rw, if q < d.

xR,C (d) = ED2|D1=d

[
XR,C (q, d,D2)

]
= ED2|D1=d

[
(min(d+D2, q)−Rw)+ ].

Consider the function g(y)
def
= (min(y, q)−Rw)+. Since Rw ≤ q, note that g is identically zero for

y ≤ Rw, then increases linearly, with a slope of 1, and then becomes constant, equal to q−Rw, for
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y ≥ q. In particular, g(y) is convex-concave,21 and increasing. Since xR,C (d) = E g(d + D2), and

D2 has a distribution with log-concave density, the function xR,C (d) will also be convex-concave

and increasing in d (Porteus 2002).

Consider the two functions xR,L (d) and xR,C (d). Both are positive and increasing on [0, q),

and satisfy xR,L (d) = xR,C (d) = q − Rw, ∀ d ≥ q. It can be readily checked that these functions

can have at most two intersection points on (0, q), based on the convex-concave structure of xR,C .

Furthermore, if there exists 0 < ξ < q such that xR,L (ξ−) > xR,C (ξ−) and xR,L (ξ+) < xR,C (ξ+),

then xR,L (d) < xR,C (d), ∀ d ∈ (ξ, q). The conclusion of the theorem concerning the firm follows.

The proof for the bank follows in a similar fashion, by recognizing that the expected profits

from liquidation and continuation, i.e.,

xB,L (d) = XB,L (d) = min
{
Rw(q), min(d, q) + s(q − d)+

}
,

xB,C (q, d) = E
[
XB,C (q, d,D2)

]
= E

[
min

{
Rw(q), min(d+D2, q)

}]
,

are concave increasing on d ∈ (0, Rw), and can have at most two intersection points on this interval.

Note that the PF2 requirement is not needed, since the bank’s profits from continuation are always

concave increasing, for any second period demand distribution.

Proof of Proposition 1. (a) Note first that, since D1 > x0
c− sM

M+s−1

≥ x0
c holds almost surely,

the firm will prefer to be leveraged, and to order a quantity q > x0
c− sM

M+s−1

, for any interest rate

R ≤ 1
c . In particular, since the equilibrium interest rate always satisfies this inequality, we have

q? > x0
c− sM

M+s−1

.

Recall that s2
D = Rc(M−1)

M−Rc , q2
D = Rx0

Rc− sM
M+s−1

. As such, the conditions in the proposition ensure

that s < s2
D and q2

D > 0 holds at R ≥ 1. Since s2
D is increasing in R, and q2

D is decreasing in R, we

immediately see that s < s2
D and q? > q2

D must hold in equilibrium. Since M < M̃ , this implies that

the firm will always be sufficiently leveraged in equilibrium, and will follow non-threshold policies

(see Lemma 2).

(b) As above, we must have that, in equilibrium, the firm prefers to be leveraged, and q? >
(M−1+2s)x0

c(M−1+2s)−2Ms >
x0
c > 0.

Recall that sB = (M−1)cR
2(M−cR) and qB = R(M−1+2s)x0

cR(M−1+2s)−2Ms . The conditions in the proposition ensure

that s < sB and q? > qB holds for R = 1. Since sB is increasing in R, and qB is decreasing in R, we

have that s < sB and q? > qB must also hold for the optimal interest rate, proving that the bank

will always follow non-threshold policies in equilibrium (see Lemma 4).

21Following standard terminology, we call a function g : R → R convex-concave if it is convex on (−∞, a) and
convex on (a,∞), for some a ∈ R (see, e.g., Porteus (2002)).
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