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Do I Follow My Friends or the Crowd? Information Cascades in Online
Movie Ratings

Abstract
Online product ratings are widely available on the Internet and are known to influence prospective buyers. An
emerging literature has started to look at how ratings are generated and, in particular, how they are influenced
by prior ratings. We study the social influence of prior ratings and, in particular, investigate any differential
impact of prior ratings by strangers (“crowd”) versus friends. We find evidence of both herding and
differentiation behavior in crowd ratings wherein users’ ratings are influenced positively or negatively by prior
ratings depending on movie popularity. In contrast, friends’ ratings always induce herding. Further, the
presence of social networking reduces the likelihood of herding on prior ratings by the crowd. Finally, we find
that an increase in the number of friends who can potentially observe a user’s rating (“audience size”) has a
positive impact on ratings. These findings raise questions about the reliability of ratings as unbiased indicators
of quality and advocate the need for techniques to debias rating systems.
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Abstract 

Online product review as a form of online Word of Mouth (WOM) and User-Generated Content (UGC) 

has attracted much attention recently. While there are many studies relating online reviews and product 

sales, the interesting and important problems regarding user review generation processes have been 

largely ignored. This study analyzes how online movie user ratings are generated through a complex 

interrelationship between product information, marketing effort, and social influences. In particular, we 

examine the effects of comparable observational learning from the crowd or friends on user ratings. This 

study exploits sequential user movie ratings in an online community with user and movie level 

information, and constructs plausible latent variables for users’ perceived movie quality and the 

heterogeneity at movie and user levels. Our analysis indicates that, on average, higher predecessors’ 

ratings increase the likelihood of a subsequent user providing a high rating; in other words, herding 

occurs. On the other hand, the degree of herding behavior by prior friend ratings becomes relatively 

smaller. More interestingly, the impact of predecessors’ ratings becomes weaker as the volume of friend 

ratings increases. This study contributes to the understanding of how social imitation and learning affect 

user rating generation and how online social interactions moderate inefficiency in product quality 

information created by online users. 

 

Keywords: Online Word of Mouth, Informational Cascades, Observational Learning, Herding, Latent 

Variables, Multilevel Model, Movies 
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1. Introduction 

Online user generated reviews, as a reliable source for quality information about experiential products, 

can significantly enhance the “Buzz” effect surrounding the products. In recent years, firms have 

deployed new services and business models to leverage user-generated reviews. In March 2009, Netflix 

integrated its web application with Facebook to let users link their accounts at the two sites and share 

movie user ratings (Tirrell 2009). Under this scheme, movie ratings on Facebook will be linked back to 

the corresponding movie pages on Netflix, so other members can easily discover movies and add them to 

their own queues. Similarly, some startups have been developing new recommendation services by 

aggregating scattered user generated reviews across various online communities. For example, 

Nanocrowd analyzes user generated reviews and ratings data from various sources on the Internet and 

creates a list of customized movie recommendations for users (Glockner 2009).  

Existing work in this area has analyzed the design and performance of eBay and Amazon-like online 

recommendation systems (for example, see a survey in Dellarocas 2003). Specifically, most studies on 

online reviews focus on the ex-post valence and dispersion of online reviews and their relationship with 

sales. There are mixed findings in the literature on how online user reviews of a product influence its 

subsequent sales (Godes and Mayzlin 2004, Chevalier and Mayzlin 2006, Duan et al. 2009, Dellarocas et 

al. 2007). The positive impact of user reviews on book sales for online retailers such as Amazon.com or 

BarnesandNoble.com has been empirically tested (Chevalier and Mayzlin 2006, Li and Hitt 2008). Chen 

et al. (2004), however, reports no impact of user ratings on sales from a similar data source of 

Amazon.com. Duan et al. (2005) and Liu (2006) examine the positive impact of online review volume on 

sales. Recently, Li and Hitt (2008) analyze how idiosyncratic preferences of early buyers can affect long-

term consumer purchase behavior through online review systems, and show that altering marketing 

strategy to encourage consumers to generate positive reviews to self-select into the market early could be 

beneficial for new products. Forman et al. (2008) find the stronger association between reviews and sales 

in the presence of reviewer identity disclosure. Under informational cascades, Duan et al. (2009) look 

specifically at the impact of user ratings on software adoption and find that user ratings have no 

significant impact on the adoption of popular software. 

Another research stream is related to the motivation for users to generate reviews on the Internet. 

Social psychologists have for long been studying emotional sharing. People share their opinions shortly 

after an event occurs, with over 50% even on the same day. The majority tends to share recurrently with 

multiple people. There are a few differences in the extent of sharing with regard to age, gender and 

culture (for reviews, see Rimé et al. 1991, 1992, 1998). Peer recognition is a positive motivator since 

people value such recognition (Jeppesen and Fredericksen 2006). The work on online reputation systems 

has primarily focused on the consequence of peer recognition (Resnick et al. 2000). Self-verification is 
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another important driver of online contribution. People wish to feel connected to others in social groups 

and receive identity-affirming feedback from others in the group (Jones and Pittman 1982, Swann 1983, 

Brewer 1991, Baumeister and Leary 1995, Tyler et al. 1996, Hornsey and Jetten 2004). Regardless of the 

motivations of user generated reviews and their relationship with product sales, intuitively, positive online 

review posts encourage other consumers to adopt products whereas negative opinions discourage them 

(Dellarocas et al. 2007).  

These studies do not, however, directly analyze how online user reviews are generated and whether 

they effectively convey and move information about quality through large-scale consumer networks. In 

addition to directly observable product information and surrounding environmental characteristics such as 

competition and advertising, we consider two major influential factors to examine online user review 

generation and quality information flow. First, the opinions created by preceding users (other reviews) 

may affect the current user’s perception on quality. Especially, the components of social influence such as 

word of mouth, product information diffusion, network effects, and informational cascades, are 

intermingled and it is difficult to clearly identify each component (Duan at al. 2009). People frequently 

engage in “observational learning,” drawing quality inferences from observing peer choices (Zhang 2010). 

It is possible that the observation of choices often coexists with other sources of quality information such 

as word of mouth communication (Ellison and Fudenberg 1995, Godes and Mayzlin 2004, Mayzlin 2006), 

network externalities (Nelson 1970, Erdem and Keane 1996, Camerer and Ho 1999, Villas-Boas 2004, 

Hitsch 2006, Narayanan et al. 2007), and firms’ marketing mix variables (Moorthy and Srinivasan 1995, 

Wernerfelt 1995, Desai 2000, Anderson and Simester 2001, Guo and Zhao 2009, Zhang 2010). People 

may overreact towards more positive (negative) reviews or be disgruntled by other reviews, but the 

communication or discussion between friends (via social networks, e.g., online friends are acquainted 

with each other in an online or offline community) may lead to private information flow. If a consumer 

can clearly identify her friend as a very conservative person in rating after communication, this friend’s 

rating could provide different quality representation. Also, people may or may not be attracted by 

intensive advertising and it is unclear how online user ratings are related to the advertising effort by firms. 

As such, it remains unknown how and to what extent prior reviews transfer information and private 

opinions about the product to subsequent adopters (or reviewers) under a variety of observable product 

quality measures. This becomes more complicated when each review is summarized into a numerical 

value and its underlying tone or reason cannot be easily revealed. In addition, manipulation of ratings by 

firms and reviewer self-selection bias can distort information from observable online user ratings (Li and 

Hitt 2008). Therefore, online reviewers encounter a problem of rating decision under imperfect 

information from prior user reviews and their own private signals. 
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Second, users’ different tastes or preferences can be fundamental identifiers when online reviews are 

generated. The complexity and difficulties in this research is mainly attributed to the unobservable 

consumer preference of product and motivation of reviews. Different preferences will provide different 

thresholds to consumers in product adoption and even evaluation decisions. This problem becomes more 

sophisticated when the thresholds are affected by others’ decisions or similarity in social systems. For 

example, individuals in the same reference group may tend to behave similarly in a common 

environment. Hence, it is difficult to distinguish real social effects from correlated effects, known as the 

reflection problem (Manski 1993, Bramoullé et al. 2009). In order to correctly examine the generation of 

online user reviews, another challenge is laid on isolating social influence from consumer heterogeneity, 

homophily (McPherson et al. 2001), and other relevant information such as product characteristics and 

firms’ marketing mix variables.  

In this study, we characterize user product evaluation behavior in online movie review generation 

and examine observational learning in sequentially generated ratings. In particular, we use publicly 

available data from an online movie social networking community website—Flixter.com (Flixster). Other 

data such as movie characteristics, performance, and marketing spending are collected from various 

sources to meet the challenges described above. Flixster is the largest and fastest-growing online movie 

community. It has over 20 million unique users who use its website and Facebook application each month 

and about 2 billion movie reviews created by users. Flixster provides its web and mobile applications 

across a wide network of popular online platforms like Facebook, MySpace, Bebo and iPhone. This 

facilitates users to share their thoughts and opinions with friends instantly as well (Dobuzinskis 2009). It 

is ideal to examine observational learning in this online movie community for the following reasons. First, 

user ratings are time-stamped, and the sequence of user ratings is easily identified. Second, a unique user 

name associated with each rating and the user’s friendship in the community clearly separate observable 

ratings by the crowd and friends. The enhanced features of Flixster’s web or mobile applications not only 

increase the visibility of friends’ ratings and sharing opinions but also make it very easy to read the 

corresponding text reviews (See Figure 1). Meanwhile, the likelihood of within-crowd communication is 

minimized but the possibility to communicate between online friends is maximized. Hence, the identified 

ratings in friendship network among users may mimic true online WOM and distinguish observational 

learning without and with online communication, which in turn enables us to investigate comparable 

information-motivated herding (Banerjee 1992, Bikhchandani et al. 1992) in online movie ratings. Hence, 

online user reviews and ratings are quality information indicated by prior reviewers, which may drive 

later reviewers to generate similar ratings (Li and Hitt 2008). Third, similar to Zhang (2010)’s evidence of 

observational learning in patients’ sequential decisions of kidney transplant, online users are unlikely 

influenced by other primary mechanisms behind uniform social behavior, such as sanctions of deviants, 
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preferences for social identification (Kuksov 2007), and network effects (Yang and Allenby 2003, Nair et 

al. 2004, Sun et al. 2004). In particular, online users’ rating choices do not usually contain public 

appearance value that professorial critics mostly concern about. Online reviewers do not usually derive 

additional benefit from generating reviews and, hence, there is no apparent positive externality existing in 

product adoption (Katz and Shapiro 1985). The U.S kidney market in Zhang (2010) presents that the 

awareness of transplant kidneys does not play a significant role due to the limited number of donors and 

patients. However, movie information diffusion may be an alternative factor that possibly leads to herding 

behavior (Duan et al. 2009) in online rating participation and choices. For example, the likelihood of 

sharing opinions and participating in online reviews increase with the number of previous online reviews; 

this is similar to the traditional product information diffusion (Bass 1969), regardless of the overall 

valence of ratings. 

  
A. Movie and User’s profile page B. Rating Page 

 
Figure 1. Screen shots of a user profile and movie webpage in Flixster.com 

 
Our analysis is designed to examine observational learning and herding behavior in online movie 

user ratings, as suggested by the informational cascades theory (Banerjee 1992, Bikhchandani et al. 1992, 

1998). While all moviegoers can observe public movie related information (e.g., genre, MPAA rating, 

box-office rank and sales, critics’ reviews, advertising, and etc.), each audience creates perceived quality 

about a movie (e.g., private quality signals (Zhang 2010)) after watching it. If an online user wants to 

share her opinion about a movie at an online community, she may observe others’ prior opinions before or 
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after watching the movie (e.g., ratings by other prior users or friends) in the community. Although each 

prior user’s rating is virtually observable, the vast amount of reviews available on the community has 

created information overload among online users (Shapiro and Varian 1999, Brynjolfsson and Smith 2000, 

Jones et al. 2004). An online user may infer the quality of a movie only collectively by the average prior 

rating for the movie (Li and Hitt 2008). In particular, while the average rating is a measure without any 

interaction with other users (i.e., observational learning from others in rating is enabled as illustrated in 

Figure 1-A), the quality signal from prior ratings by her friends may present a different characteristic, 

having both the friends’ ratings and private reasoning (e.g., text reviews corresponding to numerical 

ratings or online chatting with the friends, See Figure 1-B), therefore the friends’ ratings and text reviews 

are more similar with offline WOMs. As a result, a user’s rating decision depends possibly on others’ 

rating decisions as well as her private quality information.  

In the observational learning literature, it is proved theoretically that an individual can rationally 

follow the behavior of preceding individuals without regard to her own information, having observed the 

actions of those ahead of her—informational cascades (Bikhchandani et al. 1992, p. 994). Herding 

describes a phenomenon in which individuals converge to a uniform social behavior (Banerjee 1992, 

Bikhchandani et al. 1998). Several empirically oriented studies (e.g., Anderson and Holt 1997, Çelen and 

Kariv 2004a) demonstrate the convergence in individuals’ actions in experimental environments. In this 

paper, the time series of user ratings help to identify observational learning in online user rating from the 

different sources (the crowd or friends) of prior ratings since the time position of a user’s rating indicates 

the amount of observational learning the user is exposed to (Zhang 2010). As a result, instead of testing 

user rating convergence, we are able to examine the impact of observational learning on user rating by 

applying latent response approach at the individual level. In particular, we explore the presence and 

implications of comparable observational learning in online user rating by addressing the following 

research questions: 

• Does observational learning exist in online user rating even when a user has already created 

private quality information? 

• Is a user influenced by others’ ratings differently based on the type of observational source when 

making a rating choice?  

• How does the observational learning relate to social interactions among users? 

• How do online user characteristics (e.g., age, centrality in a social network, the amount of online 

activity, visibility to others, etc.) affect rating behavior? 

• How should firms and recommendation system designers adjust their strategies to account for 

possible user behavior in online rating? 



6 

 

The extant studies (Chevalier and Mayzlin 2006, Li and Hitt 2008) have found the evidence of 

positive impact of online user rating on online book sales while the impact is insignificant in popular 

software adoption (Dual et al. 2009). To gauge the strength of our results in observational learning in user 

rating generation, it is critical to show that online user movie rating is positively linked to subsequent 

box-office sales. Hence, our sales model is exclusively designed to test this economic evidence after we 

analyze observational learning. Actual box-office sales of population-level movies in 2007 and their 

advertising expenditures are used to estimate our sales model. This differentiates our study from the 

extant studies that have used a subset of products or sales channels, and proxies for promotions (Chevalier 

and Mayzlin 2006, Li and Hitt 2008). In particular, we examine the impact of online user rating on 

weekend box-office sales by addressing the following two questions: 

• If we are able to separate average online user rating for a movie into a component from all other 

factors, how does it affect the long-term weekend box office sales of the movie? 

• How is the impact of online user rating different between all movies and relatively popular ones? 

By applying several estimation methods to address heterogeneity in user and movie levels and 

possible homophily, our findings suggest that, on average, higher predecessors’ ratings increase the 

likelihood of a subsequent user to provide a higher rating; in other words, herding occurs. We also show 

that the degree of herding can be significantly different across movies due to movie level heterogeneity. 

On the other hand, the degree of herding due to prior friend ratings becomes relatively smaller. More 

interestingly, the impact of predecessor’s ratings becomes weaker as the volume of friend ratings 

increases. Hence, this study contributes to the understanding of social imitation and learning in online 

user product recommendation and how online social interactions moderate inefficiency in product quality 

information created by online users. Finally, in a separate analysis, we find strong evidence of positive 

impact of average user rating on the long-term box-office sales and compare it to the effect of advertising 

to highlight the significance of online user rating and the implication of observational learning in the user 

rating generation process. Therefore, our findings provide useful managerial implications for social media 

marketing and recommendation-system design as well. 

We organize the rest of the paper as follows: First, we introduce research background and formulate 

the hypotheses. Second, we describe the data. Third, we examine user rating generation behavior and 

social influences by several estimation techniques. Fourth, the empirical evidence of positive relationship 

between online user rating and long-term box-office sales is presented with robust econometric 

methodology. Finally, we discuss the implications and offer directions for future research. 

2. Research Context and Hypotheses Development 

Our study is established on the user rating generating process of the sequential choices of users who 

interact with other users primarily in an online movie community, Flixster. Flixster presents an ideal 
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environment for this study. Virtually, all movies’ (e.g., upcoming and current in theaters and DVDs) basic 

information is available at Flixster by simple search. On each movie page, users are presented with a wide 

array of movie information: synopsis, actors, directors, running times, release date, MPAA rating, and etc. 

In addition, several types of movie recommendation are available on each movie page at Flixster: 

information on average user rating, average critic rating, and each friend’s rating with an attached text 

review, and total number of reviews for a movie (See Figure 1). A user can recommend any movie link 

directly to her friends and forward a friend’s review easily to other friends in Flixster and even via other 

Web applications (e.g., Facebook and Twitter). For information on user ratings and reviews, Flixster 

updates the cumulative number of ratings and friend rating associations with individual users (e.g., friend 

ratings will be presented separately and immediately) for each movie every day. Like other popular social 

networking websites (e.g., Facebook and MySpace), each user can create her own profile webpage in 

Flixster. A user can manage her online friendship and other users can visit her online profile webpage 

(e.g., name, gender, location, membership duration, the number of views by others, total number of 

friends, the number of generated ratings, the number of generated text reviews, and etc. See Figure 1-A).  

In addition, public movie quality information should be controlled for. First, the time series of movie 

performance information reflects the total number of adopters (audience in theaters) and the extent of 

product diffusion (Bass 1969) at a given time. Box-office sales and ranking of each movie at a given time 

are publicly available at movie information websites such as BoxOfficeMojo.com and Numbers.com. 

Second, another piece of public movie quality information is critics’ rating. Unlike sales and ranking, 

movie critics’ ratings (e.g., Metacritic.com) are usually presented at the beginning period of a movie’s 

release, therefore average critic’s rating is time-invariant in our study. Third, potential audience (even 

after watching) can be exposed to subjective quality information from firms. The advertising effort is 

intense right before the movie release day. However, firms can allocate marketing budget even after 

movie release (Dellarocas et al. 2007). This alternative quality inference from advertising should be 

controlled for as well. Hence, we have collected weekly advertising spending for each movie from TNS 

Media Intelligence. Our rich data sources combine all possibly observable explanations of user quality 

inference and distinguish our study in identifying observational learning from the extant informational 

cascades literature.  

2.1 Informational Cascades in User Ratings 

Generally, a user watches a movie in theater if her expected quality of the movie is greater than its ticket 

price. Then, the users may want to express and share opinions online about the movie. That is, a user’s 

movie rating choice involves several phases of quality inferences (See Figure 2). For example, based on 

all prior quality inferences before watching a movie (by ads, own valuation, peer and expert reviews), 

only users who have expected utility greater than about $10 would watch the movie. Though the expected 
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quality of a user would be updated into her perceived quality after watching a movie, she still faces 

another decision to choose a rating value (e.g., one of numerical values or stars in a 1 to 5 or 10 scales). 

As a result, the user has two sources of information in generating a review online for the movie. One is 

her own information based on the perceived quality of the movie. Although the information can be more 

certain than the expected quality before watching the movie, she can still be uncertain about the true 

rating value. The other is the information derived from rating choices by others (Duan et al. 2009) – two 

comparable ratings from the crowd and friends in our study. Others’ prior ratings can still possibly affect 

not only a user’s decision to watch a movie (Li and Hitt 2008) but also her rating decision. She then 

combines the two sources of information (e.g., self-perceived quality and prior other ratings) to make her 

rating choice about the movie. Consequently, we propose one following hypothesis to evaluate our 

assumption that a subsequent user is influenced by other users’ ratings when she generates a rating even 

after watching a movie.  

HYPOTHESIS 1 (H1): Herding Behavior in User Rating. The higher the average rating by prior 

users is, the more likely a subsequent user is to choose a high rating versus a low rating.  

 
Figure 2. A time line of a user j to rate a movie i 

 
Underlying observational learning from the two comparable ratings of the crowd and friends may 

send different quality signals although the observations (e.g., rating valences) are the same. While both 

ratings are regarded as the actions (or choices) of others which may trigger observational learning, they 

represent quality differently in the context of WOM to impact subsequent users’ actions (Katz and 

Lazarsfeld 1955, Coleman et al. 1966, Gladwell 2000). Online community (Sproull 2003) resembles 

offline community not just in the way of communication activities (e.g., email, blog, and instant 

messaging) but also social activities (e.g., making friends, establishing self-recognition or social status in 

social networking sites). Hence, WOM flows in online community similarly as in offline world. Also, 
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online WOM is not created or consumed equally and its impact depends on who is talking to whom 

(Godes and Mayzlin 2004). Unlike ratings from the crowd, the observed ratings from friends can have 

embedded WOM effect due to online communication and interactions among people which is 

fundamental in the notion of WOM (Arndt 1967). WOM effect is a different social force to impact 

consumer action compared to informational cascading in which users rationally ignore, or weigh less on, 

their private information (any quality inference) and generate similar actions of others (Bikhchandani et al. 

1992; Vives 2008 ). Hence, the choice behavior in rating can be influenced by a reviewer’s own taste and 

the tastes of others (Yang and Allenby 2003).  

Our study posits to identify the difference, if any, between the two comparable types of observational 

learning – the collective information about other users’ ratings and the information about friends’ ratings 

which embed WOM effect and bounded memory. The latter is considered “smooth” nature of learning 

rather than “discrete” nature which leads eventually to herding behavior (Vives 2008). When a user 

comes to the website, she usually can see the average rating by previous users about a movie without 

detailed information about how each predecessor has rated the movie. In contrast, the underlying reasons 

of friends’ ratings are more visible by associated text reviews and other means of communication since 

the design of social networking sites typically makes it easier for a user to see what her friends do and 

change within the site. When a user rates a movie, her decision would be that of choosing one rating 

category over other rating categories. In this setup, rather than testing rating convergence towards the end 

of queues, it is important to see the evidence of observational learning from other ratings with and without 

sharing private information among users. For example, there may be a higher probability that a user 

chooses a high rating than a low rating if the observed ratings of the crowd are high when other 

explanations of quality inference are fixed. On the other hand, based on the informational cascades theory 

(Banerjee 1992, Bikhchandani et al. 1992, 1998), the probability should become relatively lower with 

friends’ ratings due to information sharing. In other words, herding behavior is moderated due to sharing 

the underlying reasons of friends’ ratings, which may reflect the likelihood of convergence to an efficient 

quality information level (Zhang 2010). In our paper, we separate the average ratings of precedent users 

(CROWDRA) and precedent friends (FRWOM) since each would form different quality information 

delivery in the aggregate statistics as described earlier. We therefore propose: 

HYPOTHESIS 2A (H2A): CROWDRA, all else equal, leads to a higher degree of herding behavior 

in a subsequent user’s rating than the average friend rating 

HYPOTHESIS 2B (H2B): Due to the amount of information sharing among friends, a subsequent 

user’s herding behavior by CROWDRA is reduced by the volume of friends who rated the same movie. 

There are two challenges in this study as described earlier. First, individual heterogeneity in terms of 

taste, preference, and perceived quality cannot be observed. Second, other possible social effect such as 
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homophily should be controlled for. In our context, if there were homophily effect, it would cause a 

reflection problem (Manski 1993, Bramoullé et al. 2009). We address these issues in the following 

sections. 

2.2 Other Public Quality Information: Marketing Eff orts and Critics’ Ratings 

Beside others’ rating choices, public quality information about movies may have a significant role in user 

rating generation. Users may end up with similar rating choices due to common context factors such as 

firms’ marketing efforts and critics’ ratings. Hence, testing observational learning in user rating might be 

spuriously attributed to social contagions without accounting for these variables (Zhang 2010). Many 

studies in recommender system literatures (e.g., Ba and Pavlou 2002, Bajari and Hortacsu 2003, 

Chevalier and Mayzlin 2006, etc.) have found that user feedback significantly affects the future 

performances (price and sales) of products across several industries. However, they have overlooked how 

the feedback is influenced by marketing efforts, expert reviews, and interactions among users. Hence, we 

also include observed advertising expenditure and the average ratings of movie critics of each movie as 

the proxies for public quality information in our framework. Potential moviegoers may usually consume 

these measures for adoption decision (e.g., buying a movie ticket). After watching movies, these measures 

are not very new anymore to moviegoers. As a result, an audience’s perceived quality can be created by 

mostly actual film experience, rather than advertising information which is used for expected quality 

(Kirmani and Wright 1989). Since advertising is not complementary to any rating information that rating 

users can mimic, its informational impact on a user’s rating decision problem should be minimized in our 

study. Therefore, we propose: 

HYPOTHESIS 3A (H3A): A total advertising effort, all else equal, is not correlated with a user’s 

rating.  

In contrast to advertising, although users consume critics’ ratings for their expected movie quality 

similarly as advertising, critics’ ratings are comparable to user ratings. That is, critics’ ratings may 

become an easy reference for rating users. However, critics’ ratings should not be included in user rating 

decision queues since movie experts have generated the ratings before or at the beginning period of movie 

release rather than across time. The low correlations in Table 2 (0.22 between average user and critic 

ratings; 0.063 between individual user ratings and average critic ratings) may support our argument that 

critics’ ratings are not positively or negatively related to sequentially generated user ratings. Therefore, 

we propose: 

HYPOTHESIS 3B (H3B): The average rating of critics, all else equal, is not related with a user’s 

rating. 
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2.3 Impact of User Rating on Box-Office Sales 

We test the evidence of relationship between average user rating and following weekend box-office sales. 

This may emphasize the impact of observational learning in online user rating on long-term sales. In other 

words, increasing the valence of user ratings in the earlier period of movie screening may be an optimal 

strategy for movie distributors. Therefore, we test: 

HYPOTHESIS 4A (H4A): Weekend box-office sales of a movie, all else equal, are positively 

related with its prior average user rating.  

HYPOTHESIS 4B (H4B): The impact of average user rating on weekend box-office sales of more 

relatively popular movies is greater than the average movies. 

Since our observational learning study uses a subset of population level of movies and sales in 2007 

and the subset includes relatively popular movies based on the volume of user reviews in 2007, H4B will 

further validate the importance of our main analysis.  

3. Data Collection 

Our dataset contains movie-level characteristics and performance, and individual online user review-level 

information. First, using software agents, we collected movie-level data from several public websites (See 

Table 1 for data sources) and sampled all movies released in theaters in 2007. In addition, the data 

includes weekly advertising spending for each movie from Ad$pender, which is a part of TNS media 

Intelligence/CMR. Second, we collected user-review level data from Flixster.com based on the movies 

(See Table 1). All observable information of each user (who has generated at least one movie rating for 

the movies) is downloaded from her profile page in Flixster. Flixster provides the information of 

friendship among users. Hence, it enables us not only to collect individual specific information such as 

gender, age, the number of generated ratings and reviews, and profile status (the number of profile viewed 

by other users and membership duration) in the website but also to partially observe friendship networks 

among users on the movies. We first considered the intersections of our movie-level and user-level review 

datasets. Then, for our main analysis, we selected a subset of the movies in which each movie have more 

than 1,000 numbers of user reviews within the first four months of the release in order to capture enough 

variations across rating users (See Table 2).  

The 17 sample of the movies are relatively popular ones in 2007. Although the proportion of the 

sample movies is about 5% of all the movies in 2007, they correspond to about 25% of all user reviews 

for all the movies, while in theaters, in 2007 (See Table 3). They account for about 36% of the total 

weekend gross sales of all movies in our dataset. Table 3 provides a summary of user ratings for all 

movies and the 17 sample movies. While the average number of user rating for the sample is five times 

greater than that for all the movies, the average and variation of user ratings in the sample is not very 

different. Hence, the 17 sample movie dataset provides a good subset to examine observational learning 
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due to a larger number of ratings per each movie and screening week. Most reviews were generated 

within the first 12 weeks after the movies were released as shown in Figure 3. As a result, our final 

dataset for individual user level analysis contains 20,473 individual users who reviewed and rated at least 

one of the 17 movies (as shown in Table 4) and 30,628 rating observations. 

Table 1. Online Users & Movies Released in 2007  

Data Level Dimension Data Sources 

Movie Level  
- 395 Movies in 2007 
- 178,958 user ratings in 

Flixster.com during showing 
periods of the movies in 
theaters 

Movie characteristics  BoxOfficemojo.com / ImDb.com/ 
Numbers.com /Metacritic.com  

Weekly advertising  Ad$pender  
(TNS Media Intelligence)  

Weekly performance  BoxOfficemojo.com  
Flixster.com (Ratings and Reviews)  

Online Movie Reviewer Level  
- 63,764 individuals in 2007 

Demographic & Online Profile 
Friendship   

Flixster.com  

 Rating & Text Review   

 

 
Table 3. Summary Statistics for Number of Ratings and Average Ratings in Our Data Set 

 Total Movie(371)*  Selected Movies(17) for first 16 weeks 

 Number of Ratings 
per movie 

Average Rating 
per movie 

 Number of Ratings 
per movie 

Average Rating 
per movie 

Mean 431.76 7.02  2193.24 7.81 
Standard Deviation 896.80 1.05  1524.10 0.63 

Percentile (%)      
1 1 4.24  984 6.95 
5 2 5.17  993 6.97 
10 4 5.57  1014 6.99 
25 15 6.50  1069 7.30 
50 92 7.14  1455 7.95 
75 492 7.77  3694 8.38 
90 1153 8.29  4252 8.56 
95 1758 8.50  5028 8.62 
99 6037 9.00  5546 8.74 

 *24 movies are removed  since they have less than 5 user reviews 

Table 2. The Sample of  17 Movies and Average User and Critic Ratings 

ID Title Users Critics ID Title Users Critics 
1 Bourne Ultimatum 8.46 8.5 10 Hairspray 8.77 8.1 
2 Fantastic Four (2007) 6.95 4.5 11 I Am Legend 7.38 6.5 
3 Harry Potter (2007) 7.99 7.1 12 Ocean's Thirteen 7.31 6.2 
4 Knocked up 7.75 8.5 13 Pirates of the Caribbean (2007) 8.26 5.0 
5 Shrek the Third 7.00 5.8 14 Simpsons Movie, The 7.95 8.0 
6 1408 7.30 6.4 15 Spider-Man 3 7.15 5.9 
7 300 8.54 5.1 16 Sweeney Todd (2007) 8.38 8.3 
8 Disturbia 8.06 6.2 17 Transformers 8.59 6.1 
9 Ghost Rider 6.98 3.5 - 
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Figure 3. Online user rating trends after movies are released for 4 sample movies in our data set 

 

Figure  3. Individual Movie Trends in Ratings Over Time for Four Sample Movies  of Sample 17 Movies in Our Data Set  
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Table 4. Data Descriptive Statistics 
Dimension Variable Description Mean Min Max 
User Level 
(20,473 users) 

R Rating for  movie i 7.89 1 10 
GENDER*  Dummy for gender (Female = 0) 0.45 0 1 
AGE*  Age 24.92 13 108 
MEMFOR Membership days in Flixster 682.47 237 1286 
PRFV Number of profile viewed by others 483.81 1 258,795 
NUMF Number of friends in Flixster 45.02 0 830 
NUMRA Number of ratings in Flixster 1029.43 1 68,310 
NUMRE Number of text reviews in Flixster 164.73 1 55,667 

CROWDRA 
Average prior rating by other users for movie i since it 
was released until time t-1 

8.09 6.99 9.17 

FRWOM Average prior rating by friends (6,846 obs.) 8.01 1 10 
NUMFRA Number of prior friend ratings (6,846 obs.) 2.95 1 114 

Movie Level 
(17 movies) 
 

CR Metacritic.com’s average critic rating 6.13 3.5 8.5 

NR 
Number of movie reviews posted on Flixster.com for 
movie i since it was released at time t-1 

377.06 6 1312 

ADSPEND 
Advertising spending for movie i until time t in 
$ million 

12.70 4.03 22.73 

TOTBOXSALES Total Gross of Box Office Sales at time t in $ million 179.4 9.30 336.53 
RD MPAA Rating Dummy (Rated -R) 0.11 0 1 
PGD MPAA Rating Dummy (Rated –PG) 0.72 0 1 
PG-13D MPAA Rating Dummy(Rated-PG-13) 0.16 0 1 

 
WEEKS 

Movie Playing Week in Theaters for movie i since it 
was released 

4.39 1 16 

*Since there is 8% of missing gender values in our sample individuals, we exclude the individuals of missing gender. 
However, 25% of included individuals have still the missing values of age. Therefore we imputed missing age values by 
organizing the cases by patterns of missing data so that the missing-value regressions can be conducted on other individual 
level variables. 

 

3.1 Dependent Variable 

The key dependent variable in our individual level analysis is an online user’s choice of movie rating. 

Besides text reviews, users usually choose one of predefined numerical rating values to report satisfaction, 

recommendation, or feeling about a movie. However, the fixed scale nature of user rating does not fully 

represent the true degree of consumer self-reporting feedback due to discretization. Therefore, a user’s 

internal thresholds of rating categories act as cutoff values in her rating for continuous true evaluation for 

a movie. On our data, each user rating contains a time-stamp of when the rating is created. This gives a 

great advantage to keep track of each user’s rating sequential order across time. While the cumulative 

average user rating trends of our sample movies are very similar to the trends on online book user ratings 

in Amazon.com in Li and Hitt (2008)’s study (e.g., visually discernable patterns of declining and rising 

across times), weekly average user rating (non-cumulative) of each movie in our sample presents an up 

and down pattern across weeks, as shown in Figure 3. It is not clear whether the patterns are totally 

random or show any positive or negative relationships dynamically. Clearly, the patterns do not provide 

any rating convergence over time. However, we can examine statistically the evidence of observational 
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learning in user rating with respect to herding behavior. The average rating for the sample (17 movies) is 

7.81 out of 10, which is similar to the population means reported by Chevalier and Mayzlin (2006) and 

the sample means by Li and Hitt (2008) which utilize aggregate level data on books. 

3.2 Independent Variables: Quality Measures and User Characteristics 

Our independent variables of the most interest include observable quality measures that a user can infer 

and individual user characteristics. The valence and volume of ratings by preceding users and friends are 

the most interesting variables to identify observational learning. CROWDRA is the average rating of all 

others (including online friends) who have rated the same movie. Similarly, FRWOM is the average rating 

by a corresponding user’s online friends in Flixster. Therefore, zero FRWOM or NUMFRA (the number of 

friend ratings) indicates that a user does not have her friend rating for the same movie that she would rate. 

While CROWDRA presents the aggregate level of other user ratings without underlying information, 

FRWOM gives a user the hybrid of friend rating valence and private information (WOM) as we described 

earlier.  Since only 22% of user rating observations have FRWOM, NUMFRA is used as an indicator of 

existence of friend rating when we test our hypotheses by using all observations. Hence, the interaction 

term, CROWDRA x NUMFRA, between CROWDRA and NUMFRA explains how the impact of 

CROWDRA changes when a user observes her friends rating(s). We also include a user’s sequential order 

(RSEQ) in a movie rating queue. For example, a user’s RSEQ is 1 if she is the first reviewer for a movie. 

The second user’s RSEQ is 2, and so on. To compare the effects of CROWDRA and FRWOM directly, we 

perform a separate estimation using only the 22% observations in our sample dataset (6,845 observations) 

in which all users have prior friend ratings.  

Alternative product quality information such as marketing effort, box-office sales, average critic 

rating, and weekly number of reviews are included. Rating users could be already informed or 

continuously exposed to some degree of quality by advertising. Therefore, cumulative advertising 

spending (ADSPEND) is more relevant than weekly spending. Gross box-office sales for a movie 

(TOTBOXSALES) at a given week are used for movie performance. Weekly number of reviews (NR) is 

included to control for a movie’s surrounding popularity level at a given week. Average critic rating (CR) 

is included as one of objective quality information. MPAA RATING Dummies are used to control for 

audience restriction. However, movie dummies are only used when factor loadings are estimated to see 

any movie specific weight on user rating. As shown similarly in Dellarocas et al. (2006), the correlations 

among CROWDRA, FRWOM, and CR in our dataset are low.1 Variance Information Factor (VIF) is less 

than 3 in our models, therefore multicollinearity is not an issue.  

                                                           
1 Correlations between CROWDRA and CR = 0.22, between FRWOM and CR = 0.09, and between CROWDRA and 
FRWOM = 0.34 when FRWOM is not zero. 
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Our independent variable set includes several important variables such as an online user’s partial 

demographic feature, online characteristics, visibility and partial social networks in Flixster, e.g., Gender 

and AGE , membership duration (MEMFOR), the number of generated ratings (NUMR) and text-reviews 

(NUMRE), the number of profile viewed by others (PRFV), the number of friends (NUMF). Table 4 

summarizes the independent variables. 

4. Observational Learning from Other Users’ Movie Ratings 

Ideally, our dependent variable would be a continuous value of a user’s satisfaction or recommendation 

about a movie. However, such observation is unavailable. Instead, we consider observed user ratings in 

item response approach with latent variables. This is appropriate since in our case, rating is a user’s 

decision making of choosing one among ten values for each movie. Latent variables can represent 

continuous variables underlying observed ‘coarsened’ responses such as dichotomous or ordinal 

responses (Skrondal and Rabe-Hesketh 2004). A user can rate multiple movies. Individual ratings are 

nested in a movie’s playing weeks since the movie is released. This structure of user movie ratings over 

time creates several benefits to our study. First, we can manage the differences between movies. Second, 

we can explain the variability in the response variable (rating) in terms of variability in observed 

covariates and unobserved heterogeneity at individual level. The third level, time of movie showing week, 

gives us an idea about how rating behavior would change over time based on a variety of movie quality 

information.  

Hence, our first model to estimate the impact of the crowd and friend ratings on user movie rating is 

grounded on an ordered logistic model to relate latent observations to user’s ordinal response variable 

(rating category). Let the latent response R*
i,j,t be a true rating for movie i by reviewer j at time t for the 

error-prone observed rating Ri,j,t due to various noise factors that a reviewer has and the restrictive scale of 

ratings. We model the true rating as: *
, , , , , , , ,i j t i j i j t i t i j tR X Z Mβ γ δ ε= + + + . X is a set of individual user 

specific variables such as gender, age, and online profiles in Flixster. Z is a set of precedent users’ rating 

information, average ratings of the crowd and friends, and the volume of friend ratings. M is a set of 

movie specific variables such as advertising spending and performance. Let s be a rating category (from 1 

to 10). The observed rating responses are generated by applying thresholds κs as follows: 
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Here we assume that  κs, s = 1, …, S are the same for all movies.2 

Under the assumptions that the error εi,j,t has an extreme value distribution and the coefficients are 

the same for all values of s (proportional odds assumption), we model the probability that user j chooses 

her rating smaller than or equal to s for movie i at time t is 

, , ,*
, , , ,

, , ,

exp( )
( ) ( ) , 1,2,...,9

1 [exp( )]
s j i j t i t

i j t i j t s
s j i j t i t

X Z M
P R s P R s

X Z M

κ β γ δ
κ

κ β γ δ

− − −
≤ = ≤ == =

+ − − −
. 

This parallel model becomes equivalent to a series of binary logistic regressions where rating categories 

are combined (e.g. for s = 1 category, rating value 1 is contrasted with rating from 2 to 10; for s = 2, the 

contrast is between rating 1 and 2 versus rating from 3 to 10; and for s = 9, rating from 1 to 9 versus 

rating 10. Williams 2006). Specifically, the true user rating R*
i,j,t can be written as  

*
, , 1 2 3 4

5 6 7 8 , ,

1 , , 2 , , 3 , ,

2
1 , 2 , 3

og[ ] og[ ]

og[ ] og[ ] og[ ]

[ADSPEND ] [ADSPEND ] [

i j t j j j j

j j j i j t

i j t i j t i j t

i t i t

R GENDER AGE L MEMFOR L PRFV

L NUMF L NUMRA L NUMRE RSEQ
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+ + + , 4

5 , 6 8 , , ,

] [ ]

[ ]
i t i

i t i i t i j t

R Log CR

Log TOTBOXSALES MPAADUMMIES WEEKS

δ

δ δ δ ε

+

+ + + +

 (1)

 

We first assume that CROWDRA, NUMFRA, FRWOM and public information about a movie may 

directly affect a user’s rating response. Table 5 presents rating distribution for the sample of 17 movies. 

Table 5. User Rating Distribution for 17 movies 
 Frequency Percentage 

1 386 1.26% 
2 356 1.16% 
3 526 1.72% 
4 953 3.11% 
5 1,435 4.69% 
6 3,154 10.3% 
7 4,077 13.32% 
8 5,812 18.98% 
9 5,172 16.89% 
10 8,743 28.56% 

Total 30614 100% 

 

4.1 User Rating Behavior  

The Role of User Characteristics in Movie Rating. Table 6 shows the results of ordered logistic 

regression estimation using (1) for latent rating response. The column of Model 1-1 in Table 6 runs the 

regression based on all observations and the column of Model 1-2 is the results with individual rating 

observations which have friend ratings (FRWOM) as well as CROWDRA. Therefore, NUMFRA in Model 

1-1 is an indicator whether a user has at least one prior friend rating.  

                                                           
2 Rating scheme is fixed for all movies and therefore each threshold is homogenous in the sense that reviewers 
choose the thresholds in the fixed values for every movie - equivalent parameterization (Williams 2006). 
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Overall, males tend to generate lower ratings than females. Younger users choose higher ratings. 

More interestingly, the intensity of a user’s online activity in Flixster is negatively related to her rating 

response. For example, if a user has longer membership duration (MEMFOR) or a larger number of rating 

(NUMRA) or text review (NUMRE) history in Flixster, she is more likely to choose a lower rating (the 

estimates of β1, β2, β3, β6, and β7 are negative and significant at 0.1% level in Model 1-1). In contrast, a 

user’s visibility measured by the number of her profile page viewed by others (PRFV) and the number of 

friends in Flixster (NUMF) increases the likelihood of choosing higher rating categories (the estimates of 

β4 and β5 are positive and significant at 0.1% level in Model 1-1). A later user in a movie’s rating 

sequential queue tends to lower her rating (the estimate of β8 < 0). The results in Model 1-2 column using 

only user rating observations which has prior friend ratings show the similar behavior except for PRFV.  

Table 6. Ordered Logistic Regression (1) 

 Model 1-1  Model 1-2 
Variables    
β1 [GENDER] -0.535 ***  (0.021)  -0.586 ***  (0.046) 
β2 [AGE] -0.014 ***  (0.001)  -0.011 ***  (0.003) 
β3 LOG[MEMFOR] -0.333 ***  (0.048)  -0.448 ***  (0.100) 
β4 LOG [PRFV] 0.069 ***  (0.001)  -0.056 *  (0.023) 
β5 LOG [NUMF] 0.102 ***  (0.012)  0.277 ***  (0.029) 
β6 LOG [NUMRA] -0.063 ***  (0.010)  -0.029  (0.021) 
β7 LOG [NUMRE] -0.125 ***  (0.009)  -0.135 ***  (0.022) 
β8 [RSEQ] -0.002 ***  (0.000)  0.000  (0.001) 

γ1 [CROWDRA] 1.065 ***  (0.022)  0.766 ***  (0.050) 
γ2 [CROWDRA*NUMFRA] -0.001 *  (0.001)  0.000  (0.001) 
γ3 [FRWOM] -  -  0.289 ***  (0.015) 
δ1 LOG[ADSPEND] -0.203 ***  (0.055)  0.029  (0.115) 
δ2 LOG [ADSPEND2] 0.053  (0.059)  0.041  (0.135) 
δ3 LOG[NR] -0.086 ***  (0.024)  -0.025  (0.047) 
δ4 [CR] -0.064 ***  (0.010)  -0.003  (0.021) 
δ5 LOG[TOTBOXSALES] 0.097 **  (0.033)  -0.023  (0.069) 
δ6 [RD] 0.125 **  (0.046)  0.100  (0.107) 
δ7 [PG13D] 0.058  (0.036)  -0.006  (0.091) 
δ8 [WEEKS]  0.006  (0.007)  -0.001  (0.013) 

Log-likelihood -55871.63  -12099.30 
Number of obs. 30614  6845 
VIF 2.75  2.52 

Note. Standard errors in parentheses. *** p<0.001, ** p<0.01, *p<0.05.  
The estimates of thresholds (k’s) omitted but are available upon request from the authors. 

 

The Role of Movie Specific Information in Movie Rating. δ's in Table 6 are the estimated 

parameters of movie specific variables. Except for TOTBOXSALES and RD (Dummy for an R-rated 

movie), other movie specific variables in Model 1-1 are negatively related with a user rating. This may 

indicate that the higher values of advertising spending, weekly number of reviews, and average critics 



19 

 

rating (CR) for a movie can lead a user to choose a lower rating category. This demonstrates that a user 

may be somewhat disgruntled after seeing a movie when the movie’s public quality measures become 

greater.  

Observational Learning in Movie Rating. In our model, observational learning in user movie 

rating is measured by three factors (e.g. estimated γ’s in Table 6): CROWDRA, FRWOM and NUMFRA. If 

everything else is fixed and these variables are orthogonal to the error term (εi,j,t), in the results of Model 

1-1 in Table 6, we find that a one unit change in the crowd rating (CROWDRA) results in three times as 

large the odds of choosing higher rating categories than lower rating categories (the estimate of γ2=1.065 

and at 0.1% significant level).3 By observing a higher average user rating only, a user is more likely to 

choose a higher rating than a lower rating. The effect is positive and significant in Model 1-2 column in 

Table 6. However, the effect is relatively smaller when a user can see at least one prior rating by her 

friends (the estimate of γ2=0.766 and at 0.1% significant level).  

Comparable Effects of Crowd and Friend Ratings. In contrast to the effect of average user rating, 

we find that the comparable effect of friend rating becomes much smaller. Estimates of γ1 and γ3 in Model 

1-2 in Table 6 are positive and significant (the estimates are 0.766 and 0.289 respectively at 0.1% 

significant level). The estimates are directly comparable since the scales of CROWDRA and FRWOM are 

the same. The difference is mainly attributed to intrinsic social interactions embedded in ratings by others, 

as described earlier. Furthermore, the volume of friend ratings (NUMFRA) that a user can observe 

moderates the effect of crowd rating in Model 1-1 in Table 6. NUMFRA not only indicates the presence of 

friend rating but also measures the amount. Therefore, the estimate of γ1 (-0.001 and significant at 5% 

level) in Model 1-1 in Table 6 shows that herding behavior becomes weaker with respect to the volume of 

friend ratings. This is the evidence of moderating effect by social interactions when we consider a social 

network among users within a movie boundary. For instance, NUMFRA is an in-degree measure 

(Wasserman and Faust 2007) for a user within a movie’s social network in our study.  

In contrast, a user’s total number of friends4 (NUMF) in Flixster has a positive effect on her rating 

response consistently across different models in our analysis (e.g., the estimate of β5=0.102 in Model 1-1 

and 0.277 in Model 2-1 at 0.1% significant level, and similar results can be observed without the parallel 

line assumption). The result still holds when we test the models again including the interaction term 

between CROWDRA and NUMF. Hence, visibility and social interactions of users in a movie specific 

social network demonstrate different roles in terms of observational learning in our study.  

                                                           
3 The effect over movie running weeks is almost the same and highly significant when we run the model within each 
movie screening week. 
4 NUMF is a proxy for a user’s degree centrality in the entire social network in Flixster while NUMFRA is 
considered as in-degree measure in a sub-network for a specific movie in Flixster. 
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Varying Effects of Independent Variables. We re-estimated the models using generalized ordered 

logistic regression, which relaxes the parallel line assumption of ordered logistic regression model.5 

Therefore, it allows the parameters to vary according to rating categories by a series of binary logistic 

regressions. Brant test6  indicates that some user characteristic variables violate the parallel line 

assumption. The strongest negative effects of gender, age and membership duration are found with the 

most extreme review attitude. In other words, male’s (female’s) negative (positive) rating attitudes 

become greater when they contrast the rating values below 9 with above 9 (or 1 with above 1). However, 

the strongest negative effect of rating history is found in the extremely positive rating attitude. 

The effect of CR becomes positive or negative depending on rating categories (See Figure 4). For 

example, a higher CR leads a user to choose lower rating when she contrasts extremely positive rating 

with other ratings (e.g., contrasting above 9 with below 9, 1 to 8 versus 9 and 10, and 1 to 9 versus 10). 

However, there is a positive effect of CR when a user contrasts extremely negative rating with other 

ratings (e.g., contrasting 1 with above 10). Figure 4 depicts how the effect changes according to the rating 

categories (therefore, H3A and H3B are not supported). 

 
Figure 4. Varying Effects of Critic Rating on User Rating 

 

                                                           
5 Non-parallel line assumption fit the models in order to verify the effects of the variables are different across rating 
categories in our models. Therefore, it also test whether there is excess variability between rating categories 
(Williams 2006) 
6 After testing parallel line assumption using the 5% level of significance, we find that the estimated coefficients of 
GENDER, AGE, MEMFOR, NUMRA, and NUMRE vary between rating categories. The testing results and estimates 
for these variables are omitted to save space but are available from the authors upon request. 
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The estimated parameters of γ1 and γ3 under non-parallel line assumption are shown in Figure 5 

graphically. The effect of crowd rating becomes stronger when a user contrasts rating values in extremely 

favorable rating categories. Hence, a higher average user rating may drive a subsequent user to choose a 

higher rating category even more strongly when she contrasts ratings in a positive value range such as 

from 8 to 10.  In Table 7, the moderating effect (γ2) by social interactions becomes only significant when 

a user contrast relatively neutral rating values (e.g., rating 6 and 7). Therefore, the effect may rely on 

which rating categories a user contrasts even though the overall effect is negative in Table 6. Also, 

generalized ordered logistic regression fits the models better according to the improved log-likelihood 

from Table 6 to Table 7. 

 
Figure 5. Varying Effects of CROWDRA and FRWOM on User Rating 

 
4.2. Heterogeneity and Self-Perceived Quality 

One major issue in our estimation is the unobserved individual heterogeneity. Individuals differ from each 

other in many aspects. Their ways of thinking, expressing, and participating in generating reviews would 

be attributed to their own tastes and preferences. Some relevant variables in the user level may not be 

observed and this leads to unobserved heterogeneity. Without considering this, explaining online user 

rating behavior on other factors can be biased and misleading. Hence, the latent feature of response and 

hypothetical development of unobserved variables such as individual self-perceived quality and 

heterogeneity using latent variables attempts to address this issue.  
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Table 7. Generalized Ordered Logistic Regression of Model (1) 

  Model 1-1  Model 1-2 
Rating 1 
γ1 [CROWDRA]  0.589***  (0.092)  -0.186 (0.233) 
γ 2 [CROWDRA*NUMFRA]  0.008 (0.005)  0.011 (0.008) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 2 
γ1 [CROWDRA]  0.648***  (0.068)  -0.243 (0.166) 
γ 2 [CROWDRA*NUMFRA]  0.005 (0.003)  0.003 (0.004) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 3       
γ1 [CROWDRA]  0.763***  (0.054)  0.160 (0.122) 
γ 2 [CROWDRA*NUMFRA]  0.002 (0.002)  0.002 (0.002) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 4       
γ1 [CROWDRA]  0.835***  (0.043)  0.407***  (0.093) 
γ 2 [CROWDRA*NUMFRA]  -0.001 (0.001)  -0.002 (0.001) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 5       
γ1 [CROWDRA]  0.908***  (0.035)  0.550***  (0.076) 
γ 2 [CROWDRA*NUMFRA]  -0.001 (0.001)  -0.001 (0.001) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 6       
γ1 [CROWDRA]  0.984***  (0.029)  0.688***  (0.063) 
γ 2 [CROWDRA*NUMFRA]  -0.002**  (0.001)  -0.002* (0.001) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 7       
γ1 [CROWDRA]  1.038***  (0.026)  0.740***  (0.057) 
γ 2 [CROWDRA*NUMFRA]  -0.002***  (0.005)  -0.002* (0.001) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 8       
γ1 [CROWDRA]  1.132***  (0.025)  0.887***  (0.058) 
γ 2 [CROWDRA*NUMFRA]  0.000 (0.001)  0.001 (0.001) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Rating 9       
γ1 [CROWDRA]  1.098***  (0.028)  0.809***  (0.065) 
γ 2 [CROWDRA*NUMFRA]  -0.001 (0.001)  0.000 (0.001) 
γ 3 [FRWOM]  - -  0.284***  (0.015) 
Number of Obs.  30614  6845 
Log-Likelihood  -55528.26  -11955.07 
Note.  
Standard errors in parentheses. ***p<0.001, **p<0.01, *p<0.05. VIF = 2.75 
All other estimates omitted but are available upon request from the authors. 

 

 Since causal processes operate at the individual level and not the aggregate level of user ratings, it 

follows that investigation of causality requires individual-specific effects (Rabe-Hesketh et al. 2004a). 

From (1) with the assumption of direct impact of other users’ ratings, we include two random intercepts to 

explain individual heterogeneity and time related variation. This yields a model with three different levels 
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of movie, individual user, and time component. Therefore user j’s rating response for movie i in movie 

screening week t is modeled as: 

* (2) (3)
, , , , , , , ,i j t j i j t i t j t i j tR X Z Mβ γ δ ζ ζ ε= + + + + +  (2) 

where ζ(2)
j is an individual-level random intercept, ζ(3)

t is a movie screening week specific random 

intercept, and εi,j,t has a logistic distribution. We further assume ζ
(2)

j ~ N(0,ψ(2)) and ζ(3)
t ~ N(0,ψ(3)).  

As mentioned earlier, we can only observe reviewer’s rating in a fixed scale and therefore observed 

rating, Ri,j,t, are generated by the threshold model, and we assume that κs’s (s = 1, …,10) are the same for 

all movies.7 We implement generalized linear latent variable and mixed models (GLLAMM)8 to estimate 

our parameters. This allows maximizing the likelihood of the conditional density of the response variable 

given the latent and explanatory variables with the prior density of the latent variables with adaptive 

quadrature (see the appendix for detailed estimation procedure). 

Table 8. Regression Results for the Variances of Random Intercepts 
  Single Level  Two Level  Three Level 
Parameters  Est. (SE)  Est. (SE)  Est. (SE) 
User-level          
ψ

(2)   - -  2.356***  (0.104)  2.355***  (0.214) 
Time-level          
ψ

(3)    - -  - -  0.004 (0.003) 
Thresholds          
κ1  -4.467 (0.057)  -5.640 (0.074)  -5.625 (0.114) 
κ2  -3.799 (0.044)  -4.917 (0.063)  -4.894 (0.102) 
κ3  -3.241 (0.037)  -4.292 (0.056)  -4.259 (0.092) 
κ4  -2.637 (0.032)  -3.589 (0.050)  -3.542 (0.081) 
κ5  -2.070 (0.030)  -2.899 (0.045)  -2.836 (0.070) 
κ6  -1.287 (0.027)  -1.894 (0.040)  -1.810 (0.055) 
κ7  -0.582 (0.026)  -0.945 (0.036)  -0.843 (0.044) 
κ8  0.266 (0.026)  0.232 (0.034)  0.346 (0.040) 
κ9  1.062 (0.027)  1.341 (0.036)  1.457 (0.050) 
Log-Likelihood  -56679.912  -55768.037  -56513.934 

Note. Standard errors in parentheses. *** p<0.001, ** p<0.01, *p<0.05. 
All other estimates omitted but are available upon request from the authors 

 
Empirical Evidence of Unobserved Heterogeneity. In order to verify the unobserved heterogeneity 

in each level, between users and between weeks, first, we estimate the variances of random intercepts of 

users and weeks, ψ(2) and ψ(3)  respectively with a simpler model (2) which only includes the interaction 

terms of movie dummies and CROWDRA. Table 8 shows the results of three different specifications. 

Single-level represents a single-level ordinal response model without any random effect; two-level 

                                                           
7  Rating scheme is fixed for all movies and therefore each threshold is homogenous in the sense that users choose 
the thresholds in fixed values for every movie. 
8 GLLAMMs are a class of multilevel latent variable models for (multivariate) responses of mixed type including 
continuous responses, counts, duration/survival data, dichotomous, ordered and unordered categorical responses and 
rankings (see Skrondal and Rabe-Hesketh 2004). 
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includes only user specific random intercept; and three-level contains both random intercepts of users and 

time component. In addition to the variances estimated for the clusters, the estimates of 9 cut-points, κ1, 

…, κ9, appear at the bottom of Table 8. 

Table 9. Generalized Latent Linear Mixed Regression (2) 
 Model 2-1  Model 2-2  
Variables     
β1 [GENDER] -0.649 ***  (0.021)  -0.732 ***  (0.046)  
β2 [AGE] -0.020 ***  (0.001)  -0.021 ***  (0.003)  
β3 LOG[MEMFOR] -0.350 ***  (0.048)  -0.527 ***  (0.100)  
β4 LOG [PRFV] 0.123 ***  (0.001)  0.009  (0.023)  
β5 LOG [NUMF] 0.105 ***  (0.012)  0.317 ***  (0.029)  
β6 LOG [NUMRA] -0.099 ***  (0.010)  -0.083 *  (0.021)  
β7 LOG [NUMRE] -0.140 ***  (0.009)  -0.192 ***  (0.022)  
β8 [RSEQ] -0.003 ***  (0.000)  -0.002  (0.001)  
γ1[CROWDRA] 1.386 ***  (0.022)  1.050 ***  (0.050)  
γ2 [CROWDRA*NUMFRA] -0.001  (0.001)  0.000  (0.001)  
γ3 [FRWOM] -  -  0.318 ***  (0.015)  
δ1 LOG[ADSPEND] -0.247 ***  (0.055)  0.000  (0.115)  
δ2 LOG [ADSPEND2] 0.079  (0.059)  0.053  (0.135)  
δ3 LOG[NR] -0.093 ***  (0.024)  -0.010  (0.047)  
δ4 [CR] -0.079 ***  (0.010)  0.001  (0.021)  
δ5 LOG[TOTBOXSALES] 0.143 ***  (0.033)  0.043  (0.069)  
δ6 [RD] 0.235 ***  (0.046)  0.234 - (0.107)  
δ7 [PG13D] 0.097 *  (0.036)  0.007  (0.091)  
δ8 [WEEKS] 0.012  (0.007)  0.001  (0.013)  
Variance (ψ(2)) 0.701 ***  (0.158)  0.634 - (0.326)  
Factor Loadings         
λ1[Movie1] 1    1  (Fixed)  
λ2[Movie2] 1.444 ***  (0.183)  2.001 ***  (0.546)  
λ3[Movie3] 1.532 ***  (0.181)  1.618 ***  (0.432)  
λ4[Movie4] 1.259 ***  (0.188)  0.832 ***  (0.350)  
λ5[Movie5] 1.480 ***  (0.187)  1.622 ***  (0.477)  
λ6[Movie6] 1.265 ***  (0.182)  1.354 ***  (0.412)  
λ7[Movie7] 2.063 ***  (0.241)  2.323 ***  (0.612)  
λ8[Movie8] 2.026 ***  (0.257)  2.379 ***  (0.692)  
λ9[Movie9] 2.217 ***  (0.268)  2.613 ***  (0.724)  
λ10[Movie10] 1.912 ***  (0.255)  1.769 ***  (0.566)  
λ11[Movie11] 1.246 ***  (0.161)  1.444 ***  (0.396)  
λ12[Movie12] 1.191 ***  (0.171)  0.551 - (0.285)  
λ13[Movie13] 2.060 ***  (0.234)  2.362 ***  (0.614)  
λ14[Movie14] 1.454 ***  (0.184)  1.623 ***  (0.446)  
λ15[Movie15] 1.847 ***  (0.211)  2.215 ***  (0.576)  
λ16[Movie16] 1.317 ***  (0.192)  1.402 ***  (0.422)  
λ17[Movie17] 2.010 ***  (0.234)  2.529 ***  (0.653)  
Log-likelihood -55060.10  -11835.80  
Number of obs. 30614  6845  

Note. Standard errors in parentheses. *** p<0.001, ** p<0.01, *p<0.05., -p<0.1 
The estimates of thresholds (κ’s) omitted but are available upon request from the 
authors. 
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The two-level model shows the unobserved heterogeneity between users with a variance estimated as 

2.356 which is significant at 0.1% level. Furthermore, the log-likelihood of the two-level model increases 

from the single-level. However, the estimated variance component for time is nearly zero and does not 

appear to be significant in three-level specification,9 and the log-likelihood of this specification decreases. 

Therefore, we conclude that we should consider the unobserved heterogeneity in users in our further 

estimation but the random effect of time component can be ignorable. Nevertheless, we keep a time 

variable (WEEKS) in the models in order to keep track of the direct effect of movie screening week. 

Hence, our model (2) accounting for the user level heterogeneity becomes 

* (2)
, , , , , , ,i j t j i j t i t i j i j tR X Z Mβ γ δ λζ ε= + + + +  

and we add factor loading (λi) to account for movie specific difference in rating response as well. Table 9 

reports the estimation results of two different specifications. Both models in Table 9 fit significantly 

better than the corresponding single level models in Table 6 based on log-likelihood. The variance of user 

specific random intercept is significant in both models in Table 9 (the estimate of ψ(2) = 0.701 at 0.1% 

significant level in Model 2-1 and 0.634 in Model 2-2 at 10% significant level).  

The results in Table 9 are consistent with those in Table 8 with respect to the signs. In addition, the 

estimated factor loadings10 report users’ relative weight on a specific movie in rating response. For 

example, Movie 9 (Ghost Rider) has the greatest factor loading (λ9). Interestingly, this movie is the lowest 

rated movie by critics among our sample movies. It can be observed that the factor loading becomes 

relatively greater as the gap between average user rating and critics rating increases in Table 2. This may 

explain users’ opposite reaction in rating response to critic rating for some movies. We find a stronger 

effect of CROWDRA than FRWOM on user rating, similarly as before. However, the moderating effect 

(CROWDRA x NUMFRA) becomes insignificant in the column of Model 2-1 and we examine this again 

after accounting for other issues. 

Self-Perceived Quality. A user’s self-perceived quality after watching a movie cannot be observed 

but may be influenced by others’ online opinions. Since the perceived quality can be related to user rating 

response, we construct a hypothetical variable for self-perceived quality of user j in (2): 

* (2)
, , , , , ,i j t j i t i i j i j tR X Mβ δ λη ε= + + +  (3) 

where (2)
,i jη  is user j’s self-perceived quality for movie i at time t and iλ is a factor loading for movie i, and 

it can be modeled as a structural equation as, 

(2) (2)
, , ,i j i j t jZη γ ζ= +  (3.1) 

                                                           
9  We also re-run model (2) in Table 8 using different variable sets and the results are not significantly different. 
10 The scale of the factor is identified through the constraint that the first factor loading (λ1) equals 1.  
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where ζ(2)
j  is an individual level random intercept and Zi,j,t contains social influence variables: CROWDRA, 

FRWOM, and NUMFRA. Hence, we examine how ratings by others affect users’ rating responses 

indirectly. The estimation procedure is the same as that of (2), and the results are reported in Table 9-1.  

This model assumes that others’ ratings affect a subsequent users’ rating only through the latent 

perceived quality (2)
,i jη , i.e., the effect of CROWDRA on the movie i is to increase the latent rating response 

by 0.482*λi, and the effect of CROWDRA x NUMFRA is to reduce by −0.001*0.482*λi, in Model 3-1 of 

Table 9-1. Hence, the herding behavior and moderating effect by the volume of friend ratings still hold 

when we assume that observational learning and social interactions indirectly affect a user’ rating 

response through unobserved factors such as user perceived quality. The effects vary according to factor 

loading (λi). In Model 3-2 of Table 9-1, we can compare directly the effects of two types of observational 

ratings by others (CROWDRA and FRWOM) for only those who have both observational sources. 

Interestingly, the relative effect of FRWOM becomes greater than CROWDRA even though both effects 

are still positive and significant. Therefore, we conclude that users may weigh more on FRWOM than 

CROWDRA when they update their private quality measures which indirectly affect their rating responses.   

Table 9-1. GLLAMM with a Structural Eq. for Perceiv ed Quality (3) 
 Model 3-1  Model 3-2 

Variables CROWDRA 
CROWDRA 
*NUMFRA  

 CROWDRA FRWOM  

Indirect Effect λi*  γ1 λi*  γ1  λi*  γ1 λi*  γ1 
Movie1 0.482 -0.001  0.121 0.243 
Movie2 0.565 -0.002  0.152 0.306 
Movie3 0.539 -0.002  0.139 0.279 
Movie3 0.386 -0.001  0.089 0.178 
Movie3 0.487 -0.001  0.115 0.230 
Movie3 0.467 -0.001  0.118 0.236 
Movie7 0.723 -0.002  0.197 0.396 
Movie8 0.542 -0.002  0.152 0.304 
Movie9 0.695 -0.002  0.174 0.349 
Movie10 0.469 -0.001  0.141 0.283 
Movie11 0.498 -0.001  0.125 0.250 
Movie12 0.518 -0.002  0.131 0.263 
Movie13 0.727 -0.002  0.196 0.394 
Movie14 0.462 -0.001  0.114 0.229 
Movie15 0.567 -0.002  0.146 0.294 
Movie16 0.427 -0.001  0.100 0.200 
Movie17 0.672 -0.002  0.187 0.375 

Variance (ψ(2)) 1.392  1.441 
Log-likelihood -55075.90  -11848.60 
Number of obs. 30614  6845 

Note. All estimates are significant at less than 5% level. 
All other estimates omitted but are available upon request from the authors. 
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4.3. Reflection Problem 

The other key issue in studies attempting to identify the effect of social influence is the reflection problem 

(Manski 1993). The reflection problem in our context would mean that users choose similar ratings for a 

movie not because of the influence of observing others’ rating outcomes but that she is in the same 

reference group with others. Users tend to behave similarly because they are alike or face a common 

environment. Thus, the relationship between observational learning and individual rating outcome could 

be spurious. The parameter estimates for observational learning variables are biased by endogeneity 

stemming from this problem.  

Following Bramoullé et al (2009) in which they suggest the ways by which the true effect of social 

influence can be identified by accounting for the reflection problem, we first introduce unobservable 

variables common to the individuals that belong to the same social network structure for a movie. A 

network specific unobservable, αi, captures unobserved variables that have common effects on the rating 

outcomes of all users within movie i’s specific network (e.g., individuals’ similar preferences of watching 

and reviewing the movie). Then, user j’s rating response model becomes

, , , ,i j i i j i j i i jR X Z Mα β γ δ ε= + + + + . The other user j−1 has a same rating equation if she belongs to the 

same social network for movie i, explicitly, , 1 , 1 , 1 , 1 , 1i j i i j i j i j i jR X Z Mα β γ δ ε− − − − −= + + + + . Differencing 

these two equations gives: 

, , , , ,i j i j i j i j i jR X Z Mβ γ δ ε∆ = ∆ + ∆ + ∆ + ∆ , (4) 

where , , , 1i j i j i jy y y −∆ = − , for y = X, Z, M. Now, network fixed effects (αi) potentially correlated with 

observational influence variables (Z) is cancelled out. Therefore, the model generates internal conditions 

that ensure identification of social effects in spite of serial correlation of ,i jε∆ (Bramoullé et al. 2009). 

However, the differencing also excludes movie specific variable set, M, due to multicollinearity and time-

invariance. After we plot ∆Ri,j, it appears normally distributed.  

We run (4) by OLS for model specification (1), GLLAM for model specification (2), and GLLAM 

for model specification (3) and γ’s are estimated in Table 10 with other parameters. The column of OLS 

(1)11 in Model 4-1 in Table 10 reports the results of our initial model (1). The effect of CROWDRA 

becomes slightly smaller than that in previous analyses but is still significant. The moderating effect by 

social interactions (CROWDRA x NUMFRA) becomes greater after accounting for potential movie 

specific homophily. All other estimates remain the same except the effect of RESQ which becomes 

insignificant. Similarly, the previous results for the effects of individual specific variables hold in 

                                                           
11 We have run a Tobit model with censoring minimum and maximum outcomes (e.g., -9 and 9). The results are 
qualitatively similar. 
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GLLAM (2) and (3) in Model 4-1 in Table 10. The direct moderation effect, γ2, in GLLAM (2) is 

significant after accounting for individual heterogeneity. The indirect effect of CROWDRA still exists but 

the magnitude decreases greatly, and the indirect effect of CROWDRA x NUMFRA becomes insignificant 

in GLLAM (3).  

Most results of Model 4-2, reported in Table 10, are very similar to those of previous analyses. This 

suggests that the impact of crowd rating is greater than friend rating in terms of observational learning. 

However, the overall effect of CROWDRA on the ratings by users who have at least one friend rating is 

less than those who have no friend rating. Therefore, the presence of friend rating always moderates 

herding behavior in online user rating. Interestingly, the indirect effect of crowd rating becomes 

insignificant and only friend rating indirectly affect a user’s rating decision. This might explain that 

individual perceived quality may increase if her friends like the same movie.  

5. Empirical Evidence: Impact of User Rating on Movie Performance 

We next investigate whether time varying online average user rating (CROWDRA) is correlated to 

subsequent weekend box-office sales (WKSALES): H4A and H4B. It is critical in our study to find the 

theory of positive impact of user rating on consumers’ purchasing decisions still holds in the movie 

market. That is, consumers can compensate for possibly biased user ratings by observational learning to 

make rational purchase decisions. Therefore, our result may support the finding that strategic 

manipulation of user ratings (Dellarocas 2006) in terms of herding behavior in online user rating may be 

optimal for firms. 

Our approach is based on prior work (e.g., Chevalier and Mayzlin 2006, Li and Hitt 2008), except 

that we consider population, rather than sample, sales of movies in 2007. Importantly, movie ticket price 

is usually fixed and its temporal impact on sales can be ruled out in our pooled multiple movies.12 Our 

direct measure of weekly advertising spending does not need to proxy ongoing promotions of movies. To 

account for possible nonlinear relationship of advertising, we add its square term (WeeklyADSPEND2). 

We control for weekly number of reviews (NR) which may capture other idiosyncratic aspects of movie 

demand not otherwise covered in our model. Relative performance and competition of a movie in its 

market can be captured by public ranking information (RANK) in that week of WKSALES. We include a 

time-trend variable (WEEKS) which captures the number of weeks since release, to ensure that we are not 

confounding our temporal review measure with a simple time trend. Table 11 provides the description of 

our measures in sales model. 

                                                           
12 However, µi captures any movie fixed effects potentially correlated with average user rating and the number of 
weekly reviews in our sales model (5). 
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Table 10. Network Fixed Effect Estimation 

 Model 4-1  Model 4-2  

Variables OLS(1) GLLAM(2) GLLAM(3)  OLS(1) GLLAMM (2) GLLAM(3)  
β1 [∆GENDER] -0.516 ***  (0.023) -0.495***  (0.023) -0.496 ***  (0.024) -0.563 ***  (0.045) -0.535***  (0.046) -0.531 ***  (0.046)  
β2 [∆AGE] -0.014 ***  (0.001) -0.015***  (0.001) -0.015 ***  (0.001) -0.008 ***  (0.002) -0.011***  (0.002) -0.010 ***  (0.002)  
β3 ∆LOG[MEMFOR] -0.267 ***  (0.052) -0.262***  (0.052) -0.253 ***  (0.053) -0.346 ***  (0.099) -0.359***  (0.099) -0.355 ***  (0.100)  
β4 ∆LOG [PRFV] 0.071 ***  (0.011) 0.070***  (0.011) 0.073 ***  (0.011) -0.046 *  (0.022) -0.032 (0.023) -0.033  (0.023)  
β5 ∆LOG [NUMF] 0.116 ***  (0.013) 0.108***  (0.013) 0.107 ***  (0.014) 0.224 ***  (0.028) 0.210***  (0.029) 0.220 ***  (0.029)  
β6 ∆LOG [NUMRA] -0.067 ***  (0.011) -0.060***  (0.011) -0.060 ***  (0.011) 0.015  (0.021) 0.004 (0.021) 0.007  (0.021)  
β7 ∆LOG [NUMRE] -0.104 ***  (0.010) -0.103***  (0.010) -0.105 ***  (0.010) -0.128 ***  (0.022) -0.128***  (0.022) -0.130 ***  (0.022)  
β8 ∆ [RSEQ] -0.000  (0.001) -0.001 (0.001) -0.001  (0.001) 0.000  (0.001) 0.000 (0.001) 0.000  (0.001)  

γ1 ∆[CROWDRA] 0.912 
*** 

(0.124) 0.868
***  (0.091) - 0.408 

* 
(0.194) 0.512

*  
(0.261) -    

γ2 ∆[CROWDRA*NUMFRA] -0.002 ***  (0.001) -0.002**  (0.001) - -0.000  (0.001) 0.000 (0.038) -    
γ3 ∆[FRWOM] - - - 0.267 ***  (0.014) 0.250***  (0.014) -    
Structural Model                

 γ1 ∆[CROWDRA] - - 0.170 - (0.087)  - - 0.230 (0.158)  

 γ2∆[CROWDRA*NUMFRA] - - -0.001  (0.000)  - - -0.000 (0.045)  
γ3∆[FRWOM] - - -  - - 0.144 **  (0.048)  
Variance               
ψ

(1) - 6.109 ***  (0.072) 6.106 ***  (0.072)  - 4..994***  (0.121) 4.989 ***  (0.122)  
ψ

(2) - 0.045  (0.054) 0.049 ***  (0.058)  - 0.126 (0.193) 0.399 (0.264)  
Number of obs. 30583 30583 30583  6827 6827 6827 
Log-Likelihood - -73551.55 -73553.61  - -15804.75 -15803.89  
R-Squared 0.043  -   -   0.116  -   -   
Note. Standard errors in parentheses. *** p<0.001, ** p<0.01, *p<0.05. –p<0.10 
All movie specific variables are dropped after differencing. The estimates of factor loadings and thresholds omitted and are available upon request from the authors 
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Overall, this yields the following estimating equation:  
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2
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[ ] [ ]
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i t i i t i t

i t i t

i t i t i t

Log WKSALES CROWDRA Log NR

WeeklyADSPEND WeeklyADSPEND
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µ π π π

θ θ

θ θ ε

= + + +

+ +

+ + +

 (5) 

Our sales model is estimated first using the weekend sales dataset of all movies (269 movies) in 2007 

which had at least two screening weeks in theaters and observed advertising spending information. 

Second, we run the same model for the sample of 17 movies which were used to test observational 

learning in the previous section. The pooled movie set consists of 2,385 observations for 269 movies and 

the sampled movie set has 256 observations for 17 movies (See Table 11); both datasets, therefore, are 

unbalanced panel data. After checking for potential endogeneity stemming from the fixed effects (µi) by 

Hausman specification test (χ2 statistic = 42.80, degree of freedom = 6, and p<0.000), we run model (5) 

by fixed effect estimation. This estimation is insensitive to the problems of having inadequate controls for 

time-invariant difference across movies. However, our testing result for heteroskedasticity using Wald 

test rejects the constant variance assumption in the model (χ2 statistic = 310.75, degree of freedom= 269, 

and p<0.000). To fix this, we have computed robust standard errors to control for heteroskedasticity in 

fixed effect estimation.  

Table 11. Description of Our Measures Used in Sales Model 

 All movies 17 movies 
Measures Description Mean Min Max Mean Min Max 

WKSALESi,t Weekend sales for movie i at 
time t  in $thousand 

23.78 0.001 1511.17 81.02 0.06 1511.17 

CROWDRAi,t Average rating  of all reviews 
posted for movie i since it was 
release until time t 

7.55 2 10 7.92 6.99 9.06 

NRi,t Number of movie reviews 
posted on Flixster.com for 
movie i since it was released at 
time t 

28.30 1 1608 136.50 5 1608 

Weekly 
ADSPENDi,t 

Weekly advertising spending for 
movie i at time t in $million 0.34 0 7.14 0.5 0 6.20 

RANK i,t Number of weeks for movie i 
since it was released 

36.80 1 138 20.56 1 90 

WEEKSi,t movie i’s screening week 8.30 1 44 8.95 1 22 

  

The estimates in Fixed Effect columns for both datasets in Table 12 are consistent with our 

expectation. However, the estimate for CROWDRA in our sample movies dataset becomes insignificant. 

We have checked for serial correlation using Lagrange Multiplier test and found that our datasets have 

first-order autocorrelation (F(1, 195) = 496.96, p<0.000). To fix this, we use first-differencing approach 

and this changes our sales model as: 
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where , , , 1[ ] [ ] [ ]i t i t i tLog WKSALES Log WKSALES Log WKSALES−∆ = −  and other variables are generated in 

the same manner.13 Then, the results by ordinary least square estimation of (5-1), as presented in Table 12, 

are unbiased and efficient after accounting for all possible estimation issues described above. 

Table 12. Fixed Effect and First Differencing estimations of Weekend Box Office Sales Model 
 All Movies (269)  Sample Movies (17) 

Dependent Variable Fixed Effect 
First 

Differencing 
 Fixed Effect 

First 
Differencing 

LOG[WKSALESi,t]        

Variable          

π1CROWDRAi,t 0.199***  (0.060)   0.185* (0.074)     0.430 (0.590)     0.959* (0.406) 

π2LOG[NRi,t] 0.291***  (0.015) 0.096***  (0.015)     0.157* (0.060)     0.118* (0.049) 

θ1[WeeklyADSPENDi,t] 0.786***  (0.031) 0.357***  (0.032)  0.657***  (0.091)  0.302***  (0.057) 

θ2[WeeklyADSPENDi,t]
2 -0.110***  (0.008) -0.038***  (0.008)    -0.078**  (0.022)   -0.025**  (0.009) 

θ3RANK i,t -0.061***  (0.001) -0.061***  (0.001)  -0.058***  (0.007) -0.054***  (0.007) 

θ4WEEKSi,t -0.043***  (0.003) -  -0.123***  (0.026) - 

π0    1.172**  (0.456) -0.116***  (0.021)       0.377 (4.582) -0.170***  (0.037) 

Number of Obs. 2385 2116  256 239 

R2-overall 0.9506 0.7429  0.9580 0.531 

Auto Correlation Test F(1, 195) = 496.96 F(1, 184) = 0.589  F(1, 195) = 24.89 F(1, 184) = 2.097 

Hausman Test χ
2(6) = 42.80 -  χ

2 (6) = 10.17 - 

Heteroskedasticity Test χ
2(269) = 310.75 -  χ

2 (17) = 123.20 - 

VIF 2.73 2.20  5.04 1.99 

Note. Robust Standard Errors in parentheses; *p<0.05, ** p<0.01, *** p<0.001 
 

On average, weekend box-office sales decreases with RANK and WEEKS, and increases with the 

number of reviews (NR) and advertising (weeklyADSPEND). Consistent with prior work on online book 

sales (Chevalier and Mayzlin 2006, Li and Hitt 2008), average user rating (CROWDRA) is positively 

correlated with sales (π1=0.185, p<0.05). This supports H4A of the positive impact of user rating on 

weekend box-office sales (H4B is supported for popular movie sets as well in Table 12, π1=0.959, 

p<0.05). For example, a 0.5 (in a 1 to 10 scale) increase in average user rating can increase weekend box-

office sale by 10%, which is close to the result on book sales in Amazon.com (Li and Hitt 2008). More 

interestingly, a 0.5 increase in CRWODRA is equal to the effect of $0.12 million increase in weekly 

advertising spending to increase weekend box-office sales by 10%. The effect of average user rating 

becomes even greater with popular movies. A 0.5 increase in average user rating increases the sales by 62% 

                                                           
13 WEEKS is dropped since the lag difference created ∆WEEKS =1 for all observations. 
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and is equivalent to $1.6 million increase in weekly advertising. The sample movies generate a relatively 

large amount of user reviews (see Table 3) and attract much more advertising budget than average movies 

(e.g., average ad spending after release is $14 million for the sample movies and $7.5 for all movies in 

2007). Hence, average user ratings in popular movies are relatively harder to increase across weeks and 

therefore the relative impact of user rating is much greater on the box office performance of popular 

movies.   

Hence, by supporting H4A and H4B, our results of observational learning in user rating are very 

significant to firms. If a movie begins to generate higher user ratings in its beginning period of screening 

in theaters, its average user rating is more likely to move towards positive direction rather than negative 

direction by herding behavior of user ratings. Consequently, this will positively impact long term box 

office sales. 

6. Conclusion and Discussion  

This paper studies how online user rating is generated based on observational learning from others’ rating 

decisions and product information. Existing research has focused on the relationship between user 

reviews and sales. However, understanding the social drivers of a user’s rating can help managerial 

practices such as tailored marketing strategy and reliable design of recommender system. 

Our analysis suggests that observational learning by others’ ratings can trigger herding behavior 

when a subsequent generates movie rating. Consequently, aggregate level of consumer-generated product 

rating information (e.g., average user rating) may not be an unbiased indication of unobserved quality (Li 

and Hitt 2008). The herding behavior can evolve positively or negatively since the probability that a user 

choose a high or low rating depends on the valence of prior user reviews. Based on our sales model 

analysis, positive herding in online user movie rating will increase box office sales, while negative 

herding may hurts sales. Our analysis shows an equivalent effect of average user rating to advertising 

spending. Thus, firms can benefit by tailoring their marketing strategies more effectively to take into 

account this consumer behavior in generating online reviews.  

On the other hand, the presence of observational learning in online user rating lowers quality 

information created by users since each user rating would be associated with some degree of bias due to 

herding behavior. From theory of informational cascades (Banerjee 1992, Bikhchandani et al. 1992, 1998) 

and our empirical results, we can provide the ways of investing to alleviate this bias to review systems or 

recommend system designers to increase the integrity of quality information created by users online. 

When users generate reviews, minimizing influence by aggregate information such as average user rating 

or any numerical summary can be conducive to increase quality of online user reviews. Second, 

maximizing the opportunity for users to share their product experiences can moderate herding behavior. 

However, information overloads and online anonymity make information flow difficult. Hence, 
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increasing social interactions among online friends can be an effective solution to flow private quality 

smoothly in a large-scale consumer network. Increasing the visibility of friend recommendation is another 

effective way to prevent this bias in online user reviews since our result shows that friend rating is less 

influenced in terms of observational learning in user rating decision.  

This study can be extended in a few directions. If we can capture private information along with user 

ratings, we would be able to fully explain how user ratings deviate from each other and the underlying 

reason for that in population and socially local groups. Hence, one possible extension to this paper is to 

include private information from text review to test whether its role is different with discrete rating in 

recommendation system. Second, most recommender systems use both numerical rating and text review 

together at one unit review level. Some people write overall positive attitude for products in text reviews 

while generating relatively lower product ratings or vice versa. This discrepancy between text review and 

rating may be attributed to not only individuals’ different preferences and but also the influence of other 

reviews or public product quality information. However, it is not clear how these two review devices are 

different in terms of the informativeness of product quality and to what extent each of them affects 

consumer behavior with respect to generating online reviews and product performance. Finally, our 

model can be extended to examine the influence of online user rating on the DVD market in order to 

account for the long tail phenomenon (Anderson 2006) in movies. 
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Appendix. GLLAM Estimation Procedure 

We follow, mostly, the estimation techniques described in Rabe-Hesketh et al. (2004a) and their 

Generalized Linear Latent and Mixed Models (GLLAMM) program in STATA (2004b). When latent 

variables are treated as random and parameters as fixed, the inference is usually based on the marginal 

likelihood – the likelihood of the data given the latent variables integrated over the latent distribution. The 

models in GLLAMM include latent or unobserved variables represented by the elements of a vector η  

and can be interpretable as random effects. In addition, the model is hierarchical to describe the position 

of a unit of observation. In our case, level-1 is movie units are nested in level-2 units which are online 
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users.14 We next explain the GLLAMM estimation procedure in details for Equation (2) in which we 

assume the random intercept as self-perceived quality, but the same procedure can be applied to other 

equations with or without the structural equation.  

In our model (2), latent true users rating can be written as *
, , , , , , ,i j t i j t i j tR ν ε= + where 

(2)
, , , , , , ,i j t i j t i j t i j tv X β δ λη′ ′= + Α +  where the S observed user rating categories , 1,...,sa s S= are generated by 

applying thresholds , 1,..., 1s s Sκ = −  to *
, ,i j tR as follows in our case15: 
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where the thresholds sκ  do not vary between movies. If the cumulative density function of , ,i j tε is F , the 

cumulative probability sτ that the response takes on any value up to and including sa  (conditional on the 

latent and observed explanatory variables) is 

(2)
, , , , , , , , ,( | , , ) ( ), 1,...,s i j t s i j t i j t j t s i j tP R a X F s Sτ η κ ν= ≤ Α = − =  

where 1κ = −∞  and Sκ =∞ . The probability of the s-th response category is simply then 

(2) *
, , , , , , , , , 1 , , , , 1 , ,( | , , ) ( ) ( ) ( ) ( )i j t s i j t i j t j t i j t s s i j t s s i j t s i j tf R a X P R a P R F Fη κ κ κ ν κ ν− −= Α = = = < ≤ = − − −  

We can equivalently write the conditional distribution of user ratings as a cumulative model 

, , , ,( ( ))i j t s s i j tg P R a κ ν< = −  

where 1g F−=  is the link function.   

Then, the model is specified via a family and a link function. If the error εi,j,t of the latent rating R*
i,j,t 

is assumed to have a logistic distribution, 

, ,*
, , , ,
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and we have a proportional odds model since the log odds that , ,i j t sR a≤ (conditional on the latent and 

observed explanatory variables) are 
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14 Third level was time but it was ignored after testing of its significance.  
15 We multiplied observed user rating by 2 to make it be integer in estimation and therefore 1a =1,… 10a =10. 
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so that the odds that the response category is less than or equal to sa for a rating for movie i is a constant 

multiple of the odds for another rating for the movie i′ with odds ratio equal to , , , ,exp( )i j t i j tν ν ′− for all s. 

The likelihood of the observed data is the likelihood marginal to all latent variables. Let θ be the vector of 

all parameters including the regression coefficients β, δ,  ψ(2), the threshold parameters κs, and  the factor 

loadings λi, i=1,…17 , in our model . The number of free parameters in θ will be reduced if constraints are 

imposed.  

Then, we can specify the likelihood function as  

(2) (2) (2)
, , , , , , , , ,( | , , ; ) ( )i j t i j t i j t j t j t j t

j i

f R X g dη η η
 

Α 
 

∏ ∏∫ θ  

where g(η(2)
,j,t) is the prior density of the latent variables. We assume it has a normal distribution with zero 

mean and variance ψ(2). The GLLAMM program in STATA maximizes the numerically integrated 

marginal log-likelihood using a Newton-Raphson algorithm.  
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