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Optimal Design of Social Comparison Effects: Setting Reference Groups
and Reference Points

Abstract
In this paper, we study how social planners should exploit social comparisons to pursue their objectives. We
consider two modes of social comparison, referred to as behind-averse and ahead-seeking behaviors, depending
on whether individuals experience a utility loss from underperforming or a utility gain from overperforming
relative to their peers. Modeling social comparison as a game between players, we find that ahead-seeking
behavior leads to output polarization, whereas behind-averse behavior leads to output clustering. A social
planner can mitigate these effects in two ways: (i) by providing the full reference distribution of outputs
instead of an aggregate reference point based on the average output and (ii) by assigning players into uniform
rather than diverse reference groups. Social planners may thus need to tailor the reference structure to the
predominant mode of social comparison and their objective. A performance-focused social planner may set
the reference structure so as to maximize the output of either the top or the bottom player depending on
whether she puts greater marginal weight to larger or smaller outputs. When the social planner also cares
about utility, she faces a dilemma because performance optimization may not be aligned with utility
maximization. Inevitably, the social planner will have to confront equity issues because better performance
may not reflect greater effort or greater ability.
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In this paper, we study how social planners should exploit social comparisons to pursue their objectives.

We consider two modes of social comparison, referred to as behind-averse and ahead-seeking behaviors,

depending on whether individuals experience a utility loss from under-performing or a utility gain from over-

performing relative to their peers. Modeling social comparison as a game between players, we find that ahead-

seeking behavior leads to output polarization whereas behind-averse behavior leads to output clustering.

A social planner can mitigate these effects in two ways, (i) by providing the full reference distribution of

outputs instead of an aggregate reference point based on the average output, and (ii) by assigning players

into uniform rather than diverse reference groups. Social planners may thus need to tailor the reference

structure to the predominant mode of social comparison and their objective. A performance-focused social

planner may set the reference structure so as to maximize the output of either the top or the bottom

player depending on whether she puts greater marginal weight to larger or smaller outputs. When the social

planner also cares about utility, she faces a dilemma because performance-optimization may not be aligned

with utility-maximization. Inevitably, the social planner will have to confront equity issues because better

performance may not reflect greater effort or greater ability.

Key words : social comparisons, reference points, behavioral operations, non-cooperative game theory

History :

1. Introduction

In many social contexts, people exhibit a natural tendency to compare themselves against their

peers. Furthermore, the amount of effort individuals put into an activity may be driven by anal-

ogous investments made by their peers. For example, disclosing relative pay information has a

significant impact on workers’ economic output (Blanes i Vidal and Nossol 2011, Netessine and

Yakubovich 2012), providing relative performance feedback influences the academic performance

of high school students (Azmat and Iriberri 2008), and reporting households’ relative energy usage

has a significant effect on energy consumption rates (Schultz et al. 2007). As a consequence, social

comparisons can have a profound impact on outcomes.

1
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Figure 1 Social comparisons to induce energy conservancy.

Note. http://blog.ucsusa.org/smiley-faces-vs-vampires-knowledge-about-power-is-power/. Retrieved on

January 10, 2013.

When making comparisons to others, people may focus on those who perform better (e.g.,

Collins 1996) or those who perform worse (e.g., Wills 1981). In this paper, we distinguish between

two contrasting modes of social comparison. On one hand, people may enjoy utility from over-

performing relative to others, and on the other, people may face disutility from under-performing

relative to others. By our terminology, people may be ahead-seeking or behind-averse. Depending

on the contextual, cultural, or institutional environment, each mode of social comparison may

dominate. For example, in some educational systems, students strive to be at the top of their class

(Stevenson et al., 1990). A student who achieved a perfect score on a test may derive pleasure out

of doing better than other students who scored less; the same perfect score yields less utility if

the entire class has the same achievement. On the contrary, social comparisons induced to reduce

alcohol consumption on college campuses (Lewis and Neighbors 2008) appeal to students’ behind-

averse behavior since it is unlikely that any student would enjoy utility gains purely from drinking

less alcohol than reported statistics. In our analysis below, we demonstrate that ahead-seeking

behavior and behind-averse behavior influence outcomes in significantly different ways.

Central to any social comparison process is the reference structure, which consists of a particular

reference group and specific pieces of information about that group. For example, Figure 1 depicts

an energy bill that benchmarks a customer’s energy consumption to its neighbors. Comparisons

could be made across all houses of the neighborhood, or only across houses of similar size. We say

that the reference group is diverse in the former alternative and uniform in the latter alternative.

Diverse reference groups may exert pressure on larger households to conserve as much energy as

smaller households, while uniform reference groups may maintain competitive pressure by placing

everyone on equal footing. Furthermore, notice from Figure 1 that the customer has two reference

points: energy consumption of all its neighbors and of its most efficient neighbors. In general,

the information provided may range from a brief summary statistic such as the group average to

detailed information about every individual in the reference group. We refer to the former as an
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aggregate reference point and the latter as the full reference distribution. A single aggregate statistic

channels each customer’s attention onto whether he is more or less efficient relative to the statistic,

whereas the full reference distribution allows for more nuanced comparisons with others who are

more efficient as well as others who are less efficient. Therefore, the diversity of reference groups

(i.e., diverse or uniform) and the granularity of reference points (i.e., aggregate or full) are two key

features that shape the impact of social comparison effects. Our goal in this paper is to understand

how to design the reference structure, defined as a combination of the two features above.

Careful design of the reference structure allows the social planner to influence individual choices.

People are free to choose, but in the spirit of libertarian paternalism, the social planner plays

the role of a “choice architect” and may seek to align individual choices with social objectives

(Thaler and Sunstein 2008).1In general, we adopt a broad perspective on the notion of a social

planner, which includes service providers, employers, and policy makers. The social planner may

have different goals. First, a common objective is to optimize the overall performance of the group.

For instance, a utility company may want households to lower energy consumption, or a firm

may seek high worker productivity. Alternatively, a social planner may wish to “develop stars.”

This certainly applies to Ph.D. programs that seek student placement records at top academic

institutions. In contrast, for early-stage education (e.g., levels K-12), governments may opt for the

“no child left behind” ideology and focus on the other end of the distribution; similar sentiments

may prevail in health care services. Aside from performance considerations, a social planner, such

as a service provider (e.g., a yoga teacher), may also care about individual utilities, especially in

settings where customer retention is a direct function of their satisfaction. Finally, fairness concerns

may also matter. For instance, outcomes should be commensurate with ability and effort. Ideally,

the social planner would like to maintain equity and maximize everyone’s utility while optimizing

performance.

To explore the ideas above, we develop a static game-theoretic model with complete information

in which each player chooses an output level (e.g., test score). Higher outputs are valuable but

costly to each individual player. Instead of individual decision problems, we have to consider a

noncooperative game between the players because with social comparisons, players’ utilities depend

on others’ outputs. We undertake a systematic analysis by considering all four combinations of

reference structures, i.e., with an aggregate reference point (based on the group’s average output)

or the full reference distribution, and with diverse or uniform reference groups.

1 What people think is best for themselves may diverge from what is objectively best. Examples of time inconsistency
and self-control problems abound in health maintenance (DellaVigna and Malmendier 2006) and retirement planning
(Thaler and Benartzi 2004).
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Our results offer guidelines for social planners depending on their objectives and on whether social

comparisons manifest through ahead-seeking or behind-averse behavior. Specifically, our analysis

yields three main results. First, we find that social comparison creates incentives for players to

cluster their outputs together in behind-averse environments and to choose polar extremes (i.e.,

either very high or very low outputs) in ahead-seeking environments. We refer to these effects as

clustering and polarization of outputs.

Second, we show that a social planner can mitigate these social comparison effects by providing

the full reference distribution and/or using more uniform reference groups. The polarization effect

characterizing ahead-seeking environments stimulates over-achievers to perform better but leads

to a worse performance from the under-achievers. In contrast, the clustering effect characterizing

behind-averse environments encourages under-performers to work harder at the expense of the high-

performers shirking in complacency. Depending on whether the social planner seeks to “develop

stars” or to “leave no one behind,” it may be more desirable to foster or mitigate those polarization

and clustering effects. In particular, we find that a social planner who gives greater marginal

weight to larger (smaller) outputs may focus her attention on the top- (bottom-)performing player.

Therefore, the social planner needs to tailor the reference structure to her objective and to the

predominant mode of social comparison.

Third, our results caution that it is never possible to attain perfection on the dimension of

“customer satisfaction.” In ahead-seeking environments, measures adopted to stimulate player

output also increase player utility, so there may be complaints against “favoritism” by the players

who derive the least utility and also perform the worst. In behind-averse environments, increases in

equilibrium outputs are accompanied by lower utilities, so players who perform well may not even

be happy in the social planner’s “boot camps.” In addition, outcomes may be perceived as unfair

and unjust: some players may perform better than others who work harder or others with higher

intrinsic “abilities.” Therefore, there are many scenarios in which some players will be dissatisfied,

and the social planner should be aware of such possibilities.

The rest of this paper is organized as follows. Section 2 provides a literature review. Section

3 describes our model and §4 derives the equilibrium outcomes. Sections 5 and 6 discuss output-

oriented and utility-oriented strategies in manipulating reference points. Section 7 considers the

impact of noisy observations of output. Finally, §8 concludes. All proofs appear in Appendix A

and in an electronic companion.

2. Literature Review

Social comparisons have been studied in many domains, such as social psychology, behavioral

economics, and operations management. We next review these streams of literature.
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In a seminal paper, Festinger (1954) proposes that people engage in social comparisons to fulfill

their desire for self-evaluation: in the absence of objective standards, people compare themselves

with others to evaluate their own opinions and abilities. Although Festinger’s initial theory postu-

lates that people tend to compare themselves with similar others, there is a large body of work on

upward comparisons with others who are better off (e.g., Collins 1996) and downward comparisons

with others who are worse off (e.g., Wills 1981). Both upward and downward comparisons may

generate positive or negative emotions (Buunk et al. 1990). People may focus on similarities or

differences (Brewer and Weber 1994) and may try to identify with targets of upward comparison

but contrast against targets of downward comparisons (Lockwood et al. 2002). Social compar-

isons are in fact important drivers of one’s happiness (Baucells and Sarin 2012). In this paper, we

attempt to capture the above aspects of social comparison processes. By considering ahead-seeking

and behind-averse preferences, we incorporate both upward and downward social comparisons and

accommodate both positive and negative effects on utility. A comprehensive introduction to the

literature on social comparisons can be found in Wood (1989) and Suls and Wheeler (2000).

In behavioral economics, there is a large body of work on social preferences. People exhibit

social preferences when they care not only about material self-interest, but also about the economic

outcomes of others. One prominent area of research on social preferences is in fairness and inequity

aversion. People view disparities as unfair and seek to minimize them. This can be modeled using

utility functions that penalize agents when their outcomes deviate from others’ (e.g., Fehr and

Schmidt 1999, Charness and Rabin 2002) or when their shares of the total pie deviate from the equal

allocation benchmark (e.g., Bolton and Ockenfels 2000). Our model corresponds to the above in

behind-averse environments, where agents who are behind aim to minimize disparities from others

who are better; however, in ahead-seeking environments, agents who are ahead aim to increase

differences by being further ahead. Another broad type of social preferences arises when people’s

well-being depend directly on others’ payoffs. This dependence may be positive for altruists or

negative for spiteful or envious individuals (see Andreoni 1990, Levine 1998). Consistent with

spiteful behavior but contrary to altruistic behavior, our utility model implies that one is never

better off when others’ outcomes are improved; however, our results carry distinct interpretations

from the behavioral underpinnings of altruism and spite. Nevertheless, we adopt a reference-based

approach (Kahneman and Tversky 1979), similar to many models above, in which everyone else in

the group serves as a separate and endogenous reference point.

Social comparisons lead individuals to benchmark their performance to their peers. Kandel

and Lazear (1992) develop a general model of peer pressure and show that peer effects improve

performance in partnerships, consistent with Festinger’s idea that “a person who runs more slowly

than others with whom he compares himself ... may spend considerable time practising running.
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In a similar situation where the ability in question is intelligence, the person may study harder”

(Festinger 1954, p. 126). There is a stream of literature that provides empirical evidence for peer

effects on labor productivity. In a laboratory experiment, Falk and Ichino (2006) show that peer

effects increase productivity even when subjects were paid independently of their work output. Mas

and Moretti (2009) use high-frequency scanner data to show that the productivity of supermarket

cashiers increases when highly productive personnel is introduced into the same shift. Blanes i

Vidal and Nossol (2011) report an increase in productivity after workers who were paid piece rates

receive information about their own rank in the distribution of pay (and thus productivity). In

a field experiment with a Dutch retail chain, Delfgaauw et al. (2012) find that merely providing

rank information about relative sales performance at the store level led to an approximately 5%

increase in sales growth; interestingly, adding monetary incentives did not generate any further

improvement. Consistent with the above findings, we consider a model in which social comparisons

lead to increased performance.

However, there is some evidence that social comparisons may also lead to decreased performance.

For example, Bandiera et al. (2012) find that the productivity of teams of fruit pickers declines when

team rankings are revealed. The negative impact arises because the introduction of rank incentives

induced individuals to team up with partners of similar abilities, thereby skewing the distribution of

team performance. Similarly, Barankay (2012) reports that rank feedback is associated with lower

performance among furniture salespeople. Here, the negative effect is primarily due to agents’ lack

of knowledge about how much effort is required to achieve a certain rank, leading to demoralization

in case one’s performance is lower than expected. The effects above are arguably the most prominent

in ordinal comparisons since differences in ranks are not representative of the magnitude of the

difference in outputs. However, in this paper, we focus on cardinal rather than ordinal comparisons.

Incentive mechanisms based on relative performance evaluation have been widely studied. In

labor economics, Lazear and Rosen (1981) show that rank-order tournaments are a useful alterna-

tive to piece-rate contracts when output cannot be directly or efficiently measured. Rosen (1986)

extend these ideas to multiple rounds of elimination tournaments and show that in order to main-

tain performance incentives for survivors at every round, prizes for top ranks need to be very

large, akin to CEO salaries. In operations management, Siemsen et al. (2007) show that relative

performance evaluations are desirable when the outcomes of different tasks assigned to different

agents are linked. In behavioral economics, Blanes i Vidal and Nossol (2011) study rank feedback

in the absence of explicit financial incentives, noting that this is akin to tournaments without prizes

where workers compete for relative position and the resulting productivity gain is achieved at no

cost to the firm. In a similar vein, we do not consider financial incentives in this paper.
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There is abundant evidence on the impact of social comparisons in a wide range of application

areas, including academic performance (Blanton et al. 1999, Azmat and Iriberri 2010), energy

conservancy (Schultz et al. 2007, Ayres et al. 2012, Delmas and Lessem 2012), curbside recycling

(Schultz 1998), and binge drinking (Lewis and Neighbors 2008); see Thaler and Sunstein (2008)

for other applications. By and large, the studies above are concerned about the aggregate effect

of social comparisons. In contrast, by identifying the clustering and polarization effects of social

comparisons, we focus on the dispersion (or variance) of outcomes across individuals. Furthermore,

the reference structure considered in existing papers is often study-specific and fixed at the outset.

For instance, in energy conservancy programs, Schultz et al. (2007) report only the aggregate energy

usage and do not appear to control for house size, whereas Ayres et al. (2012) provide electricity

use statistics of “efficient neighbors” and “comparable neighbors.” Taking a different approach, we

consider a variety of reference structures and study their effect on output dispersion.

Notably, our research question differs by considering social comparisons as a mechanism that

must be designed, or engineered. Social comparisons act in reference to some benchmark, and we

posit that a social planner may have some flexibility regarding how to set that benchmark. The

importance of framing reference points has been well documented both in laboratory experiments

(Kahneman and Tversky 1979) and in natural experiments (Hossain and List 2012). Similarly, the

mechanism design question in our paper can be viewed as setting up the appropriate reference

points for social comparison. To our knowledge, this theme has been explored by two papers. First,

in a laboratory setting, Kuhnen and Tymula (2012) find that organizations can improve employee

productivity by providing feedback about relative rankings. Moreover, people with high ranks work

harder over time but people at the bottom do not improve as much, suggesting that the latter

should be assigned to new reference groups. The authors conjecture that there exists an optimal

feedback policy but do not characterize it; we take on this task in this paper. Second, Carrell et al.

(2013) conduct a field experiment with entering freshmen at the United States Air Force Academy.

Using an assignment algorithm that was intended to maximize academic achievement, low-ability

students were placed into squadrons with a high fraction of high-ability students. However, endoge-

nous sorting of low and high ability students into separate social networks resulted in decreased

performance relative to the control where students were randomly assigned. Although the outcome

was negative, the results point to the importance of designing an optimal mechanism to reap the full

benefits of peer effects. In this paper, we develop a theoretical framework to facilitate mechanism

design for social comparisons.

In operations management, there is a handful of papers on the theme of social comparisons. Loch

and Wu (2008) use laboratory experiments with human subjects to show that profit comparisons
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between a retailer and a manufacturer in a supply chain can lead them to deviate from profit-

maximizing decisions, and surprisingly, Cui et al. (2007) show that when such comparisons are

in effect, the simple wholesale price contract can coordinate the supply chain. Recently, Avcı

et al. (2012) studied the effect of social comparisons between two newsvendors and established

results analogous to our clustering and polarization effects. So far, this literature has studied

social comparisons between a pair of players, and our paper takes a step toward exploring social

comparisons within a group of players. In group environments, there is more than one possible

target of comparison, and we study how the social planner should actively influence the reference

structure through an appropriate choice of reference groups and reference points.

In line with the recent interest in modeling consumer behavior (e.g., Shen and Su 2007; Netessine

and Tang 2009), there are several papers that study how comparative effects between consumers

can drive operational practices. Tereyagoglu and Veeraraghavan (2012) analyze production deci-

sions when consumers engaging in conspicuous consumption value exclusivity (i.e., when others

are excluded from consumption), while Veeraraghavan and Debo (2011) study the queueing impli-

cations of herding behavior (i.e., when others also join in consumption). Similar to the above, our

paper joins the operations management literature and explores the impact of social comparisons.

Finally, a stream of research in operations management studies reference effects that arise when

people look back at past outcomes. In particular, Popescu and Wu (2007) and Nasiry and Popescu

(2011) study dynamic pricing strategies with reference effects, respectively when the reference

price smoothly “acclimates” to price changes and when it is based on the “peak-end” history of

prices. Aflaki and Popescu (2010) study how to manage long-term relationships when customers’

satisfaction adapts to past service experiences, and Caro and Martinez-de-Albeniz (2012) consider

pricing and product design decisions with satiation effects. In contrast to these studies, we focus on

social contexts where reference points are endogenously determined by the actions of other players.

3. Model

Let us first consider an individual player i who must choose a particular output xi. Higher out-

puts are valuable but come at a cost. For example, students can learn the course material better

by working harder, and athletes can attain a higher level of proficiency by training harder. We

summarize all costs and benefits using a strictly concave (net) value function Vi(xi), so there is a

unique output level that maximizes net value.

Next, let us consider a group of n players. Players have a tendency to compare their outputs

relative to others.2 Let x0 be some reference output. We consider two modes of social comparisons.

2 Alternatively, players may compare other performance metrics x̃i such as rewards or costs increasing in the output
xi. We can adapt our model to this case by assuming that players choose x̃i directly. The same analysis applies as
long as players’ net value is concave in x̃i.
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First, each player i may face disutility from achieving a lower output compared to x0. In this case,

we model the utility function of player i following Fehr and Schmidt (1999) as

Ui(xi) = Vi(xi)−β0[x0 −xi]
+,

in which [x]+ ≡max(x,0). For every unit of output that player i is behind the reference point, the

corresponding disutility is β0 ≥ 0. In this case, we refer to the term β0[x0 −xi]
+ as the behind-loss

and we say that player i is behind-averse. Alternatively, player i may enjoy increased utility from

achieving a higher output compared to x0. The corresponding utility function of player i is

Ui(xi) = Vi(xi)+α0[xi −x0]
+.

Similar to above, player i enjoys utility of α0 ≥ 0 for every unit of output higher than the reference

point. Here, we refer to the term α0[xi−x0]
+ as the ahead-gain and we say that player i is ahead-

seeking. Without loss of generality, we assume that each player is either purely ahead-seeking or

purely behind-averse.3 In this model, utility gains or losses on top of the net value function Vi(xi)

are brought about by social comparisons relative to a reference point x0.

The social planner can actively influence the reference point x0 for social comparisons. A natural

candidate for x0 is the average output of the group x̄ ≡
∑

j xj/n. This is commonly observed in

many applications (e.g., Figure 1). We model this case by using x0 = x̄ and setting α0 = nα,β0 = nβ

to reflect the fact that this aggregate reference point is based on the choices of all n players. In

other words, the utility functions for ahead-seeking and behind-averse players are respectively

U
(αa)
i (xi;x−i) = Vi(xi)+nα · [xi − x̄]+ and U

(βa)
i (xi;x−i) = Vi(xi)−nβ · [x̄−xi]

+,

where we write Ui(xi;x−i) to emphasize the dependence on player i’s utility on others’ outputs

and its superscript refers to whether players are ahead-seeking (‘α’) or behind-averse (‘β’) and to

the fact that they receive an aggregate reference point (‘a’).

Alternatively, the social planner can stimulate social comparisons relative to a full reference

distribution (‘f ’) by making the individual outputs of each player readily available. We model

this case by assuming that each individual output is a separate reference point and the associated

parameters are α0 = α,β0 = β. In other words, the utility functions are, respectively for ahead-

seeking and behind-averse players,

U
(αf)
i (xi;x−i) = Vi(xi)+α

∑
j

[xi −xj]
+ and U

(βf)
i (xi;x−i) = Vi(xi)−β

∑
j

[xj −xi]
+.

3 Although ahead-seeking and behind-averse behaviors are distinct psychological phenomena, this framework can
potentially model individuals as having both ahead-seeking (α0 > 0) and behind-averse (β0 > 0) preferences. Any
player with α0 >β0 can be modeled as purely ahead-seeking, and vice versa.
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Our analysis will study how the granularity of reference points interacts with social comparisons

by contrasting these two extreme cases.

At a higher level, the social planner can influence the composition of the reference group. Should

the reference group be diverse or uniform? To address this question, we consider two player types,

θ=A,B.4 All type-θ players have identical preferences and possess the value function Vθ(·). Further,
we assume that V ′

A(x+k) = V ′
B(x). Given the same marginal value, a type-A player is thus naturally

predisposed to achieve k more units of output than a type-B player. For brevity, we drop the

subscript and write VB(x)≡ V (x). The utility of a type-θ player i is denoted by Uθ,i(xi;x−i). Let nθ

denote the number of players of type θ in a reference group of size n, so nA+nB = n. We say that

a group is uniform if all members are of the same type and diverse otherwise. In our equilibrium

characterization, we consider diverse groups with arbitrary values of nA > 0 and nB > 0. However

in §5, in order to study the impact of group diversity while keeping group size constant,5 we will

contrast the following two setups: (i) two diverse reference groups, each consisting of nA = n/2

type-A and nB = n/2 type-B players, and (ii) two uniform reference groups, one with n type-A

players and another with n type-B players. In either setup, the social planner serves two sections of

n players and there are n players of each type. For instance, a professor could teach two sections of

the same class to a hybrid population of master and undergraduate students, or teach one section

to master students and one section to undergraduate students. Customers make social comparisons

within their group but not across groups, so we analyze the player-game separately for each group.

Our analysis considers two different environments: in ahead-seeking environments, all players are

ahead-seeking, while in behind-averse environments, all players are behind-averse.6 The parameter

α≥ 0 in an ahead-seeking environment or β ≥ 0 in a behind-averse environment is common across

every player and represents the strength of the social comparison effects in the particular context.

In summary, we consider eight different game configurations, depending on whether players are

ahead-seeking or behind-averse, whether they have an aggregate reference point or a full reference

distribution, and whether their reference group is uniform or diverse. For each configuration, we

formulate a static game with complete information.7 In this game, all players i= 1, . . . , n simulta-

neously choose an output xi, following which all outputs are observed and players receive payoffs

4 The denomination of types has been chosen in reference to the letter grades in academic contexts given the prevalence
of social comparisons in education (Blanton et al. 1999, Azmat and Iriberri 2010).

5 The effect of group size on social comparisons is in general indeterminate. For instance, Bond (2005) concludes from
a meta-analysis that the effect of majority size on conformity can be either positive or negative.

6 There may be situations with both ahead-seeking and behind-averse players in the same reference group. We
characterize the equilibrium arising from such a situation in Appendix B.1 and show that the fundamental insights
obtained with the extreme cases remain preserved.

7 Our one-shot game is a simplification that ignores dynamic reference effects. For example, people may change their
behavior in response to how they compared to peers in the past or to achieve more favorable relative standings in the
future. In steady state, where everyone has full information (or rational expectations) about other’s outputs, these
dynamic considerations collapse into the static comparisons in our model.
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according to the utility functions Ui(xi;x−i) specified above. We solve for the pure-strategy Nash

equilibrium x∗ such that x∗
i = argmaxxi Ui(xi;x

∗
−i). These equilibrium outputs reflect how players

will behave in the presence of social comparison effects.

Without loss of generality, we restrict the strategy sets of each type-θ player to an interval

[Lθ,Rθ]. To see this, consider an ahead-seeking (resp. behind-averse) type-θ player i and suppose

that there are ñi other players with lower (resp. higher) outputs. Let us denote player i’s best

response by Cα
θ (ñi) (resp. Cβ

θ (ñi)), which is increasing in ñi. For instance with the full reference

distribution, an ahead-seeking player i’s best response solves V ′
θ (xi)+ ñiα= 0 (i.e., the first-order

condition). Since there are n players in the reference group, ñi must be between 0 and n − 1.

Therefore, the best response of any ahead-seeking player must lie between Lα
θ ≡Cα

θ (0) and Rα
θ ≡

Cα
θ (n− 1) and that of any behind-averse player must lie between Lβ

θ ≡Cβ
θ (0) and Rβ

θ ≡Cβ
θ (n− 1).

For brevity, we omit the superscripts and write Lθ,Rθ. We furthermore assume that the strategy

sets of type-A and type-B players do not overlap, i.e., the difference between player types (k) is so

large that RB <LA.
8 Here, the interpretation is that players of different types exhibit large innate

differences whereas players with small differences can be pooled into the same type.

Finally, we introduce some notation. We write player outputs in vector notation x= (xB,xA),

in which xθ = (xθ,1, . . . , xθ,nθ
) for θ=A,B and each xθ is sorted in ascending order. We use bars to

denote averages, as in x̄=
∑n

i=1 xi/n. In the event that all type-θ players choose the same output,

we use xθ as a shorthand for their output, i.e., we write xθ = x instead of xθ = (x, . . . , x). Finally,

we use the standard notations [x]+ ≡max(x,0) and 1[x>0] = 1 if x> 0 and zero otherwise.

4. Equilibrium Characterization

In this section, we characterize the pure-strategy Nash equilibrium outputs x∗ in the game.

To illustrate the following results, consider a cohort with nA = 3 type-A players and nB =

4 type-B players, with value function VB(x) = VA(x + 15) = 100x − x2. All players are either

ahead-seeking or behind-averse with α = β = 5. Under these parameters, type-B players choose

their outputs between LB = 50 and RB = 65, and type-A players choose them between

LA = 70 and RA = 85. When players are ahead-seeking, the equilibrium outcome is x(αa) =

(50,50,50,50,85,85,85) with an aggregate reference point and x(αf) = (50,52.5,55,57.5,80,82.5,85)

with the full reference distribution. When players are behind-averse, the equilibrium outcome is

x(βa) = (65,65,65,65,70,70,70) with an aggregate reference point and one possible equilibrium

outcome is x(βf) = (62.6,62.5,62.5,62.5,73.75,73.75,73.75) with the full reference distribution.

In this example, the equilibrium output is distributed on two points, except when players are

ahead-seeking and receive the full reference distribution, in which case no pair of players chooses

8 We relax this assumption in Appendix B.2. The basic analysis in the main text remains qualitatively unchanged.
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the same output. Moreover, the outcome tends to be more clustered when players are behind-averse

and more polarized when they are ahead-seeking, and this clustering or polarization effect is more

heavily pronounced when players have an aggregate reference point than when they have the full

reference distribution. As we show next, these observations tend to hold true in general.

We characterize the equilibrium structure first for a behind-averse environment and then for

an ahead-seeking environment. In each environment, we first consider the case where the social

planner sets an aggregate reference point and then the case where the social planner provides the

full reference distribution. Our results hold for general group compositions (with nA type-A players

and nB type-B players) and can be applied to both diverse reference groups (i.e., nA, nB > 0) and

uniform reference groups (either nA = 0 or nB = 0).

Mathematically, the game is supermodular, i.e., outputs are strategic complements, when players

are behind-averse and submodular, i.e., outputs are strategic substitutes, when they are ahead-

seeking. Intuitively, behind-averse players tend to seek “safety in numbers” because they can avoid

falling behind by staying close to their peers’ output level. In contrast, ahead-seeking players want

to pull ahead of their peers to enjoy ahead-gains.

We first consider the case with behind-averse players. We present our results in two separate

propositions, first with an aggregate reference point and then with the full reference distribution.

Proposition 1. Suppose players are behind-averse and have an aggregate reference point.

(i) If nA ≥ 1 and nB ≥ 1, there is a unique pure-strategy Nash equilibrium with x∗
A =LA, x

∗
B =RB.

(ii) If nθ = n, then for any zθ ∈ [Cβ
θ (0),C

β
θ (n− 1)], x∗

θ = zθ is a Nash equilibrium.

When players are behind-averse and have an aggregate reference point, they thus choose their

outputs at the inner boundaries of their action spaces when the group is diverse. Referring back

to the introductory numerical example, x(βa) = (65,65,65,65,70,70,70).

Proposition 2. Suppose players are behind-averse and have the full reference distribution. For

any zA ∈ [Cβ
A(0),C

β
A(nA−1)] and zB ∈ [Cβ

B(nA),C
β
B(n−1)], x∗

A = zA, x
∗
B = zB is a Nash equilibrium.

In Propositions 1(ii) and 2 above, there are multiple equilibria. For such cases, we shall

use standard risk-dominance arguments to focus on one particular equilibrium.9 Specifically,

the selected equilibrium in Proposition 1(ii) satisfies V ′
θ (xθ) + β(n − 1)/2 = 0; and the

selected equilibrium in Proposition 2 satisfies V ′
A(xA) + β(nA − 1)/2 = 0 and V ′

B(xB) + βnA +

9 When the state space is restricted to be discrete, the proposed equilibrium turns out to be 1/2-dominant (Kajii and
Morris 1997) and, if nA = 0, the unique u-dominant equilibrium (Kojima 2006). These dominance concepts extend the
risk-dominance concept to n-player games with m> 2 actions and share some of its axiomatic foundations axiomatic
(Harsanyi and Selten 1988) and stability properties (Kojima 2006). In §7, we also show that, when performance
metrics are noisy, the equilibrium converges to this selected equilibrium as the noise tends to zero.
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β(nB − 1)/2 = 0. In the introductory numerical example, that selected equilibrium is x(βf) =

(62.6,62.5,62.5,62.5,73.75,73.75,73.75).

Now, we turn to ahead-seeking players. Although existence of a pure-strategy Nash equilibrium

is in general not guaranteed in submodular games (Vives 1999), we establish its existence in our

model. Similar to above, we consider first the case with an aggregate reference point and then the

case with the full reference distribution.

The next proposition shows that, with an aggregate reference point, the equilibrium outputs

of ahead-seeking players are polarized at the two extreme ends: Lθ and Rθ. In the introductory

numerical example, x(αa) = (50,50,50,50,85,85,85).

Proposition 3. Suppose players are ahead-seeking and have an aggregate reference point. There

is a unique pure-strategy Nash equilibrium, in which mθ type-θ players choose Lθ and nθ −mθ

of the remaining type-θ players choose Rθ, for θ = A,B. There exist constants l ∈ [LB,RB] and

r ∈ [LA,RB] (so LB < l <RB <LA < r <RA) such that:

(i) If nARA+nBLB
n

∈ [LB, l), then mA = 0 and mB ∈ [1, nB − 1].

(ii) If nARA+nBLB
n

∈ (l, r), then mA = 0 and mB = nB.

(iii) If nARA+nBLB
n

∈ (r,RA], then mA ∈ [1, nA − 1] and mB = nB.

In particular when the reference group consists of an equal number of each type of players (i.e.,

when nA = nB = n/2), Proposition 3(ii) shows that all type-A players choose RA and all type-B

players choose LB in equilibrium. There is thus polarization of outputs at the two extremes. This

phenomenon persists even when the reference group is uniform. For example, when nB = n and

nA = 0, Proposition 3(i) shows that polarization occurs within the action set of the representative

type because some players choose the lowest possible output (LB) while the remaining players

choose the highest possible output (RB).

Next, we consider the case in which social comparisons are based on the full reference distribution.

In that case, it turns out that no pair of players chooses the same output (see Lemma A-4 in

Appendix A). In the introductory numerical example, x(αf) = (50,52.5,55,57.5,80,82.5,85). The

intuition is as follows: Suppose that it is optimal for a player to choose output z and be ahead of

ℓ other players. Then, it is not optimal for any other player to choose the same output z and also

be ahead of ℓ players since choosing an infinitesimally smaller output would increase her utility by

increasing her value (since V ′(z)< 0) while remaining ahead of ℓ players.

Proposition 4. Suppose players are ahead-seeking and have the full reference distribution.

There is a unique pure-strategy Nash equilibrium x∗ satisfying V ′
A(x

∗
A,i) + (nB + i − 1)α = 0 for

i= 1, . . . , nA, and V ′
B(x

∗
B,i)+ (i− 1)α= 0 for i= 1, . . . , nB.
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Figure 2 Equilibrium outputs in a behind-averse environment.
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Ahead-seeking players thus tend to spread their outputs with the full reference distribution.

Whereas type-B players tend to choose outputs near the lower boundary of their strategy space

(LB), type-A players choose outputs near the upper boundary of their strategy space (RA). Within

a given type, players tend to spread their outputs uniformly.

The results of Propositions 1-4 are illustrated in Figures 2 and 3, respectively for the cases of

behind-averse and ahead-seeking players. We consider two sections of size n. With diverse reference

groups, each section consists of an equal number of type-A and type-B players (i.e., nA = nB = n/2).

With uniform reference groups, section 1 consists of n type-A players and section 2 consists of n

type-B players. Each plot shows a histogram of the players’ outputs in equilibrium: Each circle

represents a single player’s output choice. Circles are stacked on top of one another when multiple

players choose the same output. When players choose different outputs, circles are spread apart

horizontally. Equilibrium choices are shown relative to the bounds Lθ and Rθ.

Comparing Figures 2 and 3 reveals that outputs tend to be clustered together in behind-averse

environments and polarized in ahead-seeking environments, consistent with the super- or submod-

ular nature of the corresponding game. In Appendix B, we show that these equilibrium structural

results remain valid when the reference group consists of both ahead-seeking and behind-averse

types, and when the strategy sets of type-A and type-B players overlap. Specifically, we find that

behind-averse players tend to cluster together; and if the strategy sets of type-A and type-B play-

ers overlap, all behind-averse players across all types choose the same output. We also find that

ahead-seeking players always choose polarized outputs generally anchored at the upper boundary

of the action set for type-A players and the lower boundary of the action set for type-B players,

with or without dispersion depending on whether they have the full reference distribution or an
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Figure 3 Equilibrium outputs in an ahead-seeking environment.
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aggregate reference point. Hence, the insights obtained with our base model carry over to more

complex settings.

In addition, the figures reveal that the clustering effect when players are behind-averse and the

polarization effect when they are ahead-seeking are the strongest when comparisons are based

on an aggregate reference point obtained from a diverse reference group (i.e., top-left corner of

each figure). This setting corresponds, in a way, to the simplest setting for the social planner. In

comparison, the other settings require more effort from the social planner, such as classifying players

according to their types to create uniform reference groups, or publishing the full vector of outputs

to provide a full reference distribution. By taking these additional measures, the social planner can

mitigate the clustering and polarization effects induced by social comparison. Henceforth, we use

the term reference structure to refer to each of the four settings shown in Figures 2 and 3.

5. Output-Focused Strategies

Which reference structure should the social planner choose if she is concerned about players’

outputs? The answer depends on her objective function. In this section, we assume that the social

planner’s objective is increasing and additively separable in output. Formally, we denote the social

planner’s objective as
∑n

i=1W (xi), in which W (x) is nondecreasing. We first consider the case

where W (x) is linear, i.e., the social planner maximizes the total output, assuming a quadratic

value function V (x).10

10 In Appendix B.3.2, a numerical study shows that the equilibrium structures described in Propositions 1-4 remain
valid for a wide range of value functions V (x). In the subsequent analysis, we sometimes focus, for the sake of
tractability, on the representative case of a quadratic value function.
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Proposition 5 (Total Output). Suppose that the value function is quadratic. Then, the social

planner, maximizing the total output (
∑nA

i=1 xA,i+
∑nB

i=1 xB,i), should provide an aggregate reference

point in ahead-seeking environments and provide the full reference distribution in behind-averse

environments if and only if nA ≥ nB; and, she is indifferent about the level of diversity of the

reference group.

The above proposition shows that by manipulating the reference point granularity, the social

planner can influence total output in groups. On the other hand, the composition of the reference

group does not matter.

We can compare the equilibrium outputs of individual players using the results from Propositions

1-4. We find that in ahead-seeking environments, the outputs of type-A (type-B) players are higher

(lower) with an aggregate reference point than with the full reference distribution, and with diverse

reference groups than with uniform reference groups; the above results are reversed in behind-

averse environments. See Figures 2 and 3 for an illustration. Therefore, the reference structure

has a different impact on the outputs of each player type, as summarized in Table 1. (Details

are provided in Lemmas A-5 and A-6 in Appendix A.) Observe that the level of granularity of

information that maximizes total output is the same as the one that maximizes the outputs of

players who are in majority. For instance, in ahead-seeking environments, setting an aggregate

reference point maximizes the total output when nA ≥ nB and it also maximizes the output of

type-A players. Hence, majority rules.

Table 1 Reference structures that maximize the output of type-θ players

Objective Ahead-seeking environment Behind-averse environment

To increase xA: diverse ref. group, aggregate ref. point uniform ref. group, full ref. distribution
To increase xB: uniform ref. group, full ref. distribution diverse ref. group, aggregate ref. point

To illustrate that result, consider a charity that wants to encourage donations. Consistent with

the “warm glow effect” (Andreoni 1990), the predominant mode of social comparison is ahead-

seeking. Moreover, the charity faces more median-income (type-B) than high-income (type-A)

potential donors, by the Pareto law of wealth distribution. According to Proposition 5, the charity

should provide finely-grained information about the distribution of donations (while respecting

donors’ privacy) such as categorizing donations into tiers (McCardle et al. 2009).

Apart from equally considering all players’ outputs, the social planner could pursue other objec-

tives and give more weight to either the highest or the lowest outputs. In particular, the social

planner may care more about the extremes, such as the upper or lower tails of the distribution of

player outputs. We model such considerations using either a convex objective function W (x), which
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emphasizes the importance of the right tail, or a concave objective functionW (x), which emphasizes

the importance of the left tail. When W (x) is convex, the social planner (e.g., a tennis academy)

benefits more from developing a few “stars” (e.g., tennis champions) than from marginally raising

the output level of a large pool of low-performing players. By contrast when W (x) is concave, the

social planner (e.g., a public school) benefits more from leaving no one behind, making sure that all

players (e.g., pupils) achieve a minimum level of output (e.g., basic level on a standardized test).

The next proposition shows that, despite pursuing a global objective over all outputs, i.e.,∑
iW (xi), the planner can focus her attention on one type of players only.

Proposition 6 (Tail-End Outputs). Suppose the value function is quadratic and nA = nB.

Further, suppose the social planner maximizes
∑nA

i=1W (xA,i)+
∑nB

i=1W (xB,i).

(i) If W (x) is convex, the social planner should provide aggregate reference points from diverse

reference groups in ahead-seeking environments and provide the full reference distributions from

uniform reference groups in behind-averse environments.

(ii) If W (x) is concave, the social planner should provide aggregate reference points from diverse

reference groups in behind-averse environments and provide the full reference distributions from

uniform reference groups in ahead-seeking environments.

The social planner will thus choose the reference structure in a way that maximizes the outputs

of type-A players when her payoff function is convex; and in a way that maximizes the outputs

of type-B players when her payoff function is concave (cf. Table 1). Effectively, the social planner

can focus on maximizing the output of the best player (maxmaxi xi), i.e., on “developing a star,”

or on maximizing the output of the worst player (maxmini xi), i.e., on “leaving no one behind,”

without consideration of the other players’ outputs depending on whether her objective function

W (x) is convex or concave.

As an illustration of Proposition 6, let us consider the social comparisons prevailing in elementary

education in Asia and in the United States. The notorious competitiveness in Asian cultures is

more consistent with the ahead-seeking behavior whereas Americans tend to be afraid of falling

into the traps of “unhealthy competition,” making children unduly anxious, consistent with the

behind-averse behavior.11 The objective of the social planner (i.e., the school or the government) is

however likely to be concave under either system given the early stage of elementary education.12

11 Stevenson et al. (1990, p. 79) report that “having their child near the mean was sufficient for the American mothers
to be satisfied; having a child above the mean was more often a requirement for mothers in Taipei and Sendai.”

12 In particular, Stevenson et al. (1990, p. 25) argue that in developed countries such as the U.S., China, and especially
Japan, “the goal of [elementary] education is to reduce individual differences among children.” By contrast, Duflo et
al. (2011) argue that for such developing countries as Kenya, the teachers’ objective function may be convex in the
students’ performance.



Roels and Su: Optimal Design of Social Comparison Effects
18 Article submitted to ; manuscript no.

Hence, the way a social planner should set the reference structure should be adapted to the mode of

social comparison. Asian classes indeed tend to be streamed by “student quality,” fostering greater

group uniformity, and grades are usually fully revealed to all; whereas, U.S. classes are seldom

streamed until much later, keeping them diverse, and grades are not typically publicized. These

observations appear consistent with the recommendations of Proposition 6.

6. Utility-Focused Strategies

Instead of (or in addition to) caring about output, social planners could care about the players’

well-being. In this section, we adopt the perspective of the players and assess their satisfaction

under the different game settings. In contrast to the previous section, which demonstrated an

alignment between the social planner’s objective and the outputs of one type of players, maximizing

player satisfaction is not without tensions.

We first study the impact of reference points on individual utilities. As shown in Lemma A-7

in Appendix A, type-A players prefer diverse reference groups and type-B players prefer uniform

reference groups irrespective of whether they are behind-averse or ahead-seeking. Intuitively, type-

A players prefer being part of a diverse group to affirm their superiority whereas type-B players

prefer being part of a uniform group to avoid being compared to players with greater innate ability.

The impact of reference point granularity on player utility is more ambiguous. Specifically,

Lemma A-8 in Appendix A shows that when the value function is quadratic and nA = n/2, type-

A players always prefer aggregate reference points. By contrast, type-B players prefer aggregate

reference points when they are behind-averse and full reference distributions otherwise.

Table 2 Reference structures that maximize the utilities of type-θ players when nA = nB and when the value

function is quadratic

Objective Ahead-seeking environment Behind-averse environment

To increase UA: diverse ref. group, aggregate ref. point diverse ref. group, aggregate ref. point
To increase UB: uniform ref. group, full ref. distribution uniform ref. group, aggregate ref. point

These results, summarized in Table 2, reveal that the preferences of type-A and type-B players

are often misaligned. For example, a social planner seeking to please type-A players in an ahead-

seeking environment would set aggregate reference points obtained from a diverse reference group,

although type-B players would prefer full reference distributions based on uniform reference groups.

Comparing Tables 1 and 2 reveals that the alignment between output maximization and utility

maximization depends on the mode of social comparison at work. In an ahead-seeking environment,

the reference structure that maximizes the output of a particular type of players is the same as

the one that maximizes their utility. Consequently, this reference structure will allow one type of
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players to enjoy both high output and high utility, whereas the other type of players will achieve

low performance and experience low utility. In this way, ahead-seeking behavior leads to favoritism.

By contrast when players are behind-averse, output maximization is not aligned with utility

maximization. When maximizing the output of one particular type of players, the social planner

may encounter dissatisfaction from that same type of players. Such environments may resemble

boot camps, where high output is accompanied by poor satisfaction.

Instead of focusing on one particular type of players, the social planner could aim at maximizing

the total utility. The following proposition shows that total utility is higher with diverse reference

groups when players are ahead-seeking and with uniform reference groups otherwise.

Proposition 7 (Total Utility). Suppose that the value function is quadratic. Then, the social

planner, maximizing total utility (
∑nA

i=1UA,i +
∑nB

i=1UB,i), should use diverse reference groups in

ahead-seeking environments and uniform reference groups in behind-averse environments; with

these optimal reference groups, she is indifferent about the level of granularity of the reference point.

Is total utility maximization consistent with total output maximization? Comparing Propositions

5 and 7 reveals that reference group diversity affects total utility, but not total output, whereas

reference point granularity affects total output, but not total utility (at least when reference groups

are optimally chosen). Consequently, it is possible for the social planner to simultaneously max-

imize total output and total utility, by adopting the appropriate combination of reference point

granularity and group diversity. Although “the best of both worlds” is a theoretical possibility, we

caution that the social planner may end up with a reference structure that displeases all players

in some way. For example, in ahead-seeking environments with a majority of type-B players, the

social planner could choose diverse reference groups (which type-B players dislike) to maximize

total utility and disclose individual performance (which type-A players dislike) to maximize total

output. Preferences are so misaligned that neither type of players is satisfied with the choice of

reference structure, even though it jointly maximizes total utility and total output. Worse than

not pleasing everyone, the social planner may thus end up not pleasing anyone.

Is total utility maximization consistent with the goals of a social planner who wishes to “develop

stars” or “leave no one behind”? By comparing Propositions 6 and 7, we observe that maximizing

total utility is aligned with the social planner’s objective if it is convex but not when it is concave.

It is indeed ironic that, when the social planner wants to leave no one behind, her most preferred

reference structure may in fact generate the least total utility.

Finally, another important determinant of player satisfaction is equity. Customers do not like to

be treated unfairly. How do we measure or even define equity? We do not attempt to answer this
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question in this paper. Instead, we restrict our discussion to two “equity principles,” which provide

precise guidelines for what we believe constitutes fair treatment of players.

Equity Principle 1 Higher output should reflect greater effort.

The first principle states that output should reflect the amount of effort put in. Since players

differ in their intrinsic abilities, their outputs may not correspond to how hard they work. In our

model, the output of type-B players is identical to their effort; however, type-A players need only

to put in x− k units of effort to get output x. This equity principle thus abstracts away from

differences in ability and states that any output variation should reflect differences in effort.

Although the output of type-A players is always (weakly) greater than the output of type-B

players in our model, it appears from the equilibrium conditions that type-B players exert higher

effort when players are behind-averse (xB ≥ xA − k) and that the opposite holds true when they

are ahead-seeking (xB,i ≤ xA,j − k for all i = 1, . . . , nB and j = 1, . . . , nA). Hence, the first equity

principle is satisfied in ahead-seeking environments and violated in behind-averse environments.

While the first principle above requires output to correspond to effort, our second principle of

equity requires output to correspond to ability.

Equity Principle 2 Higher output should reflect greater ability.

The second principle states that type-A players, given their greater innate ability, should get

higher output. Moreover, among players of the same type, output should be the same. When all

players share the same type, any output dispersion would indeed not reflect their common ability

and could therefore be considered as artificial.

From Propositions 1-4, it appears that ahead-seeking behavior leads to an artificial dispersion

of outputs since players of the same type end up having different outputs. However, behind-averse

behavior ensures that all players of the same type have the same output. Hence, our second equity

principle is satisfied in behind-averse environments and violated in ahead-seeking environments.

In sum, it will be impossible to simultaneously satisfy both equity principles. In addition to

being unable to please everyone, a social planner will thus have to live with the facts that output

may not reflect effort when players are behind-averse and that output may not reflect ability when

players are ahead-seeking.13 The violation of these equity principles will be exacerbated when the

social planner measures performance inaccurately, which we examine in the following section.

13 Interestingly, Stevenson et al. (1990, p. 66) report that in elementary education, Asian mothers, who are arguably
more ahead-seeking, tend to associate academic performance with effort whereas American mothers, who are arguably
more behind-averse, tend to associate academic performance with ability. Hence, the mothers’ beliefs about academic
performance tend to be biased towards satisfying our two equity principles.
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7. Noisy Performance Metrics

We have assumed so far that the players’ outputs were perfectly observable. However in practice,

performance metrics may inaccurately reflect output. For instance in education, a score on the final

exam may inaccurately reflect the amount of learning. In this section, we generalize our model to

account for inaccurate performance metrics yi(xi).

Let yi(xi) denote the performance metric of player i’s output. For simplicity, we consider additive

noise; that is, yi(xi) = xi + ϵi, with ϵi being normally distributed with mean zero (i.e., E [ϵi] = 0)

and standard deviation σ, and independent of ϵj, j ̸= i. Let ϕ(x) be the probability density function

of the standard normal distribution and Φ(x) be its cumulative distribution function. Because

outputs are unobservable, social comparisons bear on the performance metrics.

Similar to §3, the social planner can set the reference point for social comparisons on the average

performance of the group, ȳ(x)≡
∑

j yj(xj)/n, thereby creating an aggregate reference point. In

that case, the utility functions for ahead-seeking or behind-averse players are respectively:

U
(αa)
i (xi;x−i) = Vi(xi)+nα ·E[yi(xi)− ȳ(x)]+ and U

(βa)
i (xi;x−i) = Vi(xi)−nβ ·E[ȳ(x)− yi(xi)]

+.

Alternatively, the social planner can provide the full reference distribution so as to induce social

comparisons on individual performances. In that case, the utility functions are, respectively for

ahead-seeking and behind-averse players,

U
(αf)
i (xi;x−i) = Vi(xi)+α

∑
j

E[yi(xi)−yj(xj)]
+ and U

(βf)
i (xi;x−i) = Vi(xi)−β

∑
j

E[yj(xj)−yi(xi)]
+.

When players are behind-averse, there is a unique equilibrium (see Proposition A-1 in Appendix

A). Moreover when σ→ 0, the equilibrium coincides with the selected equilibrium in §§5-6.14

By contrast when players are ahead-seeking, establishing the existence of an equilibrium turns out

to be more complicated because the game is submodular, for which little theory exists (Vives 1999).

Existence of an equilibrium can be however guaranteed with an aggregate reference point since the

game is in that case aggregative (Kukushkin 2004). Moreover, Proposition A-2 in Appendix A shows

that (i) when σ→ 0, there exists a unique pure-strategy Nash equilibrium and that equilibrium is

identical to the equilibria presented in Propositions 3 and 4; and, (ii) when σ is large, there exists

a Nash equilibrium in which all players of the same type choose the same output.

The model with noisy performance metrics thus naturally reduces to our base model presented

in §3 when the noise (σ) tends to zero. More interestingly, when the noise is very large, the effect of

social comparison persists, both when players are behind-averse and when they are ahead-seeking,

14 The noisy performance framework provides another justification for selecting that particular equilibrium in §§5-6
beyond risk dominance and stochastic stability.
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Figure 4 Equilibrium outputs when players are ahead-seeking and belong to a diverse reference group
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Note. The equilibria are reached through a sequential tâtonnement process, starting from xθ = (V ′
θ )

−1
(−α(n− 1)/2),

θ=A,B. The parameters are: VB(x) = 100x−x2, VA(x+k) = VB(x), k= 6, α= 2, nA = nB = 3. Type-A and type-B

players are respectively represented with a ‘+’ and a ‘×’ markers. The size of each marker is proportional to the

number of players choosing that particular output.

in the sense that the equilibrium output exceeds the maximizer of Vθ(x). However, the dispersion

in outputs among players of the same type completely vanishes when the performance metric is

very noisy. Intuitively, the performance metric is so noisy that there is a high chance that any over-

investment in output will not translate into higher performance, therefore making such investment

unattractive.

Figure 4 illustrates the evolution of the equilibrium outcomes with ahead-seeking players as σ

increases. For a range of small values of σ, the equilibrium outcomes are identical to the ones char-

acterized in §4 for the case of accurate performance metrics. As σ further increases, the equilibrium

changes to gradually converge to the equilibrium characterized in Proposition A-2(ii) in Appendix

A. Throughout that process, the structure of the equilibrium remains stable, the outputs being

accumulated in a two-point distribution with an aggregate reference point and being more evenly

spread within players of the same type with the full reference distribution.

With only one uniform reference group, some structural results can be obtained for the inter-

mediate values of σ. (The proofs are omitted for brevity.) With an aggregate reference point,

one can show the existence of an equilibrium when n is even and V (x) is quadratic such that

x1 = . . .= xn
2
and xn

2 +1 = . . .= xn. That is, we expect the two-point nature of the output distri-

bution to be preserved, but the two points to get closer to each other as σ increases. With the

full reference distribution, one can show the existence of an equilibrium x∗ when n= 3 and V (x)

is quadratic, such that x2 = (x1 + x3)/2 when σV ′′(x)/α ≥ −0.3182 and such that x1 = x2 ≤ x3

when σV ′′(x)/α≤−0.5658. That is, we expect gradual bunching of outputs as σ increases. Figure

5 illustrates the evolution of equilibrium outputs in a uniform reference group as σ increases.
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Figure 5 Equilibrium outputs when players are ahead-seeking and belong to a uniform reference group
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8. Conclusion

In this paper, we study how social planners can manipulate reference points and reference groups

to make full use of social comparison effects. We conclude that the optimal reference structure

depends critically on the mode of social comparison effect at work: our recommendations for ahead-

seeking environments (where players derive pleasure from being ahead of others) and behind-averse

environments (where players dislike being behind others) can be starkly different. Specifically, we

find that the polarization effect induced by ahead-seeking behavior and the clustering effect induced

by behind-averse behavior are the strongest when the planner uses diverse reference groups with an

aggregate reference point, but can be mitigated with uniform reference groups and/or full reference

distributions. Our analysis provides precise answers that depend on the social planner’s objectives.

However, we caution that player dissatisfaction often arises because it is seldom possible to please

everyone or to treat everyone equitably.

Although considered fixed in our paper, the mode of social comparisons can sometimes be manip-

ulated by the social planner. By publicly recognizing winners or losers, the social planner can

accentuate the ahead-seeking or behind-averse character of the comparisons. The social planner

may try to elicit ahead-seeking sentiments in high-performing players (so they strive to be even

better) and behind-averse sentiments in low-performance players (so they try to keep up). In addi-

tion, the social planner can try to amplify the strength of social comparison effects, e.g., by adding

injunctive messages (e.g., sad or smiley faces; see Schultz et al. 2007) to descriptive messages.

Social comparisons can be ordinal rather than cardinal. For example, a social planner could

provide information about relative ranks, such as categorical feedback (e.g., course grades), without

disclosing the absolute performances. With ordinal comparisons, the player game in our model may

resemble a Bertrand game, potentially leading to no pure-strategy equilibrium or, in the words of

Festinger (1954), no “state of social quiescence.”
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Table A-1 Equilibrium first-order conditions.

Environment Ref. pt. granularity Diverse group of size n= nA +nB Uniform group of size nθ, θ=A,B

Behind-averse
Aggregate point

V ′
A

(
x
(βa2)
A

)
= 0 V ′

A

(
x
(βa1)
A

)
+β nA−1

2
= 0

V ′
B

(
x
(βa2)
B

)
+β(n− 1) = 0 V ′

B

(
x
(βa1)
B

)
+β nB−1

2
= 0

Full distribution
V ′
A

(
x
(βf2)
A

)
+β nA−1

2
= 0 V ′

A

(
x
(βf1)
A

)
+β nA−1

2
= 0

V ′
B

(
x
(βf2)
B

)
+βnA +β nB−1

2
= 0 V ′

B

(
x
(βf1)
B

)
+β nB−1

2
= 0

Ahead-seeking
Aggregate point

V ′
A

(
x
(αa2)
A

)
+α(n− 1) = 0 V ′

A

(
x
(αa1)
A,i

)
+α(nA − 1)1[i>mA] = 0

V ′
B

(
x
(αa2)
B

)
= 0 V ′

B

(
x
(αa1)
B,i

)
+α(nB − 1)1[i>mB ] = 0

Full distribution
V ′
A

(
x
(αf2)
A,i

)
+α(nB + i− 1) = 0 V ′

A

(
x
(αf1)
A,i

)
+α(i− 1) = 0

V ′
B

(
x
(αf2)
B,i

)
+α(i− 1) = 0 V ′

B

(
x
(αf1)
B,i

)
+α(i− 1) = 0

Note:mθ is such that U
(αa1)
θ,i (Lα

θ ; x̄−i)≥U
(αa1)
θ,i (Rα

θ ; x̄−i) when x̄−i = ((mθ−1)Lθ+(nθ−mθ)Rθ)/(nθ−1) and U
(αa1)
θ,i (Rα

θ ; x̄−i)≥
U

(αa1)
θ,i (Lα

θ ; x̄−i) when x̄−i = (mθLθ +(nθ −mθ − 1)Rθ)/(nθ − 1).

Finally, group performance can be enhanced through other social mechanisms, such as comple-

mentarities in production (e.g., classroom case discussion) and peer pressure (e.g., weight watcher

programs). We hope that this paper will generate further research interest in these group dynamics.

Appendix

A. Proofs and Supplementary Results

Notations. We use the following notation for each of our eight game configurations, depending on whether

players are ahead-seeking or behind-averse (α or β), whether they receive an aggregate reference point or the

full reference distribution (a or f), and whether their reference group is uniform or diverse, i.e., comprising

1 or 2 player types (1 or 2). For instance, x
(αf1)
Ai refers to the equilibrium strategy played by player i of type

A when players are ahead-seeking, and have the full reference distribution from a uniform reference group,

all players being of type A; and U
(αf1)
Ai refers to his utility. For ξ = α,β and r= a, f , we denote x[ξr2] as the

output of two diverse sections of size n, each consisting of n/2 players of each type, and x[ξr1] as the output

of two uniform sections, with one section consisting of n type-A players and the other section consisting of

n type-B players. Table A-1 provides a summary of the equilibrium conditions from Propositions 1-4.

Lemma A-1. Suppose players are behind-averse. Then, in any pure-strategy Nash equilibrium, all players

of the same type must choose the same output.

Proof. Suppose there is a pure-strategy Nash equilibrium x∗ such that x∗
i < x∗

j with both i, j of

type θ. Note that x∗
−j ≤ x∗

−i componentwise, so U ′
θ(x;x

∗
−j) ≤ U ′

θ(x;x
∗
−i) for all x. Thus, we must have

argmaxUθ(x;x
∗
−j)≤ argmaxUθ(x;x

∗
−i), which implies x∗

j ≤ x∗
i , a contradiction. �

Proof of Proposition 1. By Lemma A-1 in appendix, xθ,i = xθ for all i. Given that n[x̄−xi]
+ = [

∑
j ̸=i

xj−

(n− 1)xi]
+ = (n− 1)[x̄−i −xi]

+, the utility functions and first derivatives can be expressed as:

Uθ(xi;x−i) = Vθ(xi)− (n− 1)β · [x̄−i −xi]
+ and U ′

θ(xi;x−i) = V ′
θ (xi)+ (n− 1)β ·1[x̄−i≥xi].
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Given any x−i, U
′
θ(xi;x−i) is strictly decreasing in xi, so Uθ is strictly concave and has a unique maximum.

(i) Suppose nA ≥ 1 and nB ≥ 1. In any equilibrium, we must have xθ ∈ [Lθ,Rθ], and since LA >RB, it follows

that xA > x̄−i >xB. Using the first-order condition, we must have V ′
A(x

∗
A) = 0 and V ′

B(x
∗
B)+ (n−1)β = 0, so

x∗
A =LA and x∗

B =RB.

(ii) Now, suppose all players are of type-θ (i.e., nθ = n). Any equilibrium must have xθ ∈ [Cβ
θ (0),C

β
θ (n−1)].

This is indeed an equilibrium because for any small ϵ > 0, U ′
θ(xθ − ϵ;x−i) = V ′

θ (xθ − ϵ)+ (n− 1)β > V ′
θ (xθ)+

(n− 1)β ≥ V ′
θ (C

β
θ (n− 1))+ (n− 1)β = 0 and similarly U ′

θ(xθ + ϵ;x−i)< 0, so xθ is a best response. �
Proof of Proposition 2. The utility functions and first derivatives can be expressed as:

Uθ(xi;x−i) = Vθ(xi)−β
∑
j ̸=i

[xj −xi]
+ and U ′

θ(xi;x−i) = V ′
θ (xi)+β

∑
j ̸=i

1[xj≥xi].

Given any x−i, U
′
θ(xi;x−i) is strictly decreasing in xi, so Uθ is strictly concave and has a unique maximum.

Since xθ ∈ [Lθ,Rθ] and LA > RB, we must have that xA > xB. Therefore, any type-A player is behind

between 0 and nA − 1 other players, and any type-B player is behind between nA and n− 1 other players.

Thus, any equilibrium must have xA ∈ [Cβ
A(0),C

β
A(nA − 1)] and xB ∈ [Cβ

B(nA),C
β
B(n − 1)]. It remains to

show that such a strategy profile is indeed an equilibrium. For any small ϵ > 0, note that U ′
B(xB − ϵ;x−i) =

V ′
B(xB − ϵ)+(n−1)β > V ′

B(xB)+(n−1)β ≥ V ′
B(C

β
B(n−1))+(n−1)β = 0 and similarly U ′

B(xB + ϵ;x−i)< 0,

so xB is a best response. Similarly xA is a best response. �

Lemma A-2. Suppose players are ahead-seeking and have an aggregate reference point. Then, in any pure-

strategy Nash equilibrium, the output of each type-θ player must be either Lθ or Rθ.

Proof. Depending on whether xi is larger or smaller than x−i, we know U ′
θ(xi; x̄−i) is either V ′

θ (xi) or

V ′
θ (xi)+ (n− 1)α. Therefore, the only choices that satisfy the first-order conditions are Lθ and Rθ. �

Lemma A-3. Suppose players are ahead-seeking and have an aggregate reference point. There is a unique

point cθ =Rθ − Vθ(Lθ)−Vθ(Rθ)

(n−1)α
∈ [Lθ,Rθ] such that Uθ(Lθ;x−i)≥Uθ(Rθ;x−i) when x̄−i ≥ cθ and Uθ(Lθ;x−i)≤

Uθ(Rθ;x−i) when x̄−i ≤ cθ.

Proof of Lemma A-3. Given that n[xi − x̄]+ = [(n − 1)xi −
∑

j ̸=i
xj ]

+ = (n − 1)[xi − x̄−i]
+, the utility

functions and first derivatives can be expressed as:

Uθ(xi;x−i) = Vθ(xi)+ (n− 1)α · [xi − x̄−i]
+ and U ′

θ(xi;x−i) = V ′
θ (xi)+ (n− 1)α ·1[xi≥x̄−i].

By Lemma A-2, each player chooses either Lθ or Rθ. When x̄−i ≤Lθ, we have Uθ(Lθ;x−i)≤Uθ(Rθ;x−i) since

Rθ maximizes utility for a player ahead of the mean. When x̄−i ≥ Rθ, we have Uθ(Lθ;x−i) ≥ Uθ(Rθ;x−i)

since Lθ maximizes utility for a player behind the mean. As x̄−i increases from Lθ to Rθ, Uθ(Lθ;x−i) remains

constant and equal to Vθ(Lθ) whereas Uθ(Rθ;x−i) decreases. Finally, we obtain the expression for cθ using

Uθ(Lθ;x−i) =Uθ(Rθ;x−i) when x̄−i = cθ, i.e., Vθ(Lθ) = Vθ(Rθ)+ (n− 1)α · (Rθ − cθ). �
Proof of Proposition 3. The proof uses Lemmas A-2 and A-3 in the appendix. Define l= (n−1)cB+LB

n
and

r= (n−1)cA+RA

n
, where cA, cB are as defined in Lemma A-3. Consider case (ii) of what we need to prove, so we

have nARA+nBLB

n
< r, which implies (nA−1)RA+nBRB

n−1
< cA. Suppose we have an equilibrium in which player i

of type-A chooses LA. Since the largest choices of all other players are Rθ, we have x̄−i ≤ (nA−1)RA+nBRB

n−1
< cA,
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which by Lemma A-3 implies that the best response of player i is RA instead, so we have a contradiction.

In other words, all type-A players must choose RA in equilibrium. Similarly, all type-B players must choose

LB in equilibrium. Thus, we have a unique equilibrium with mA = 0 and mB = nB.

Next, consider case (i). Since nARA+nBLB

n
< l < r, the same argument as the one above shows that all type-

A players must choose RA in equilibrium. Further, nARA+nBLB

n
< l implies nARA+(nB−1)LB

n−1
< cB. Thus, there

is a unique mB ∈ [1, nB−1] such that nARA+(mB−1)LB+(nB−mB)RB

n−1
> cB and nARA+mBLB+(nB−mB−1)RB

n−1
< cB.

By Lemma A-3, both these inequalities must be satisfied if it is an equilibrium for exactly mB type-B players

to choose LB. Therefore, we have a unique equilibrium with mB as defined above. The proof for case (iii) is

similar. �

Lemma A-4. Suppose players are ahead-seeking and have the full reference distribution. Then, in any

pure-strategy Nash equilibrium, no pair of players choose the same output.

Proof. Suppose there is a Nash equilibrium x∗ in which player i (of type θ) chooses xi = z, k ≥ 1

other players also choose z, and exactly k′ players choose output strictly less than z. Then, for any small

ϵ > 0, U ′
θ(z − ϵ;x) = V ′

θ (z − ϵ) + k′α and U ′
θ(z + ϵ;x−i) = V ′

θ (z + ϵ) + (k + k′)α. Since k ≥ 1, we must have

U ′
θ(z− ϵ;x−i)<U ′

θ(z+ ϵ;x−i). Thus, xi = z cannot be a best response and we have a contradiction. �
Proof of Proposition 4. The utility functions and first derivatives can be expressed as:

Uθ(xi;x−i) = Vθ(xi)+α
∑
j ̸=i

[xi −xj ]
+ and U ′

θ(xi;x−i) = V ′
θ (xi)+α

∑
j ̸=i

1[xi≥xj].

By Lemma A-4, all output choices are distinct. Since LA > RB, the lowest nB outputs come from type-B

players. By the first-order condition, the ith lowest output must satisfy V ′
B(xi)+ (i− 1)α= 0, leading to the

same vector x∗ as in the proposition. It remains to verify that x∗ is indeed an equilibrium. Consider player i

of type θ who chooses x∗
θ,i that is greater than or equal to exactly ñi elements of x∗. Based on the first-order

condition for x∗
θ,i, we have U

′
θ(xi;x

∗
−i) = V ′

θ (xi)+ ñiα= 0 at xi = x∗
θ,i and U ′

θ(xi;x
∗
−i)> 0 for xi ∈ [x∗

θ,i−1, x
∗
θ,i).

Next, based on the first-order condition for x∗
θ,i−1, we have U

′
θ(xi;x

∗
−i)> 0 for xi ∈ [x∗

θ,i−2, x
∗
θ,i−1). Continuing

in this way, we have U ′
θ(xi;x

∗
−i)> 0 for every xi ∈ [Lθ, x

∗
θ,i). Similarly, we can show U ′

θ(xi;x
∗
−i)< 0 for every

xi ∈ (x∗
θ,i,Rθ]. Therefore, x

∗
θ,i is a best response and we have a Nash equilibrium. �

Lemma A-5. 1. x
[αf2]
A,i ≥ x

[αf1]
A,i and x

[αf2]
B,i ≤ x

[αf1]
B,i ; x

[αa2]
A,i ≥ x

[αa1]
A,i and x

[αa2]
B,i ≤ x

[αa1]
B,i ;

2. x
[βf2]
A ≤ x

[βf1]
A and x

[βf2]
B ≥ x

[βf1]
B ; x

[βa2]
A ≤ x

[βa1]
A and x

[βa2]
B ≥ x

[βa1]
B .

Proof. The proof follows from comparing the respective entries in Table A-1 after making the following

substitutions for all ξ = α,β, r = a, f , and i= 1, . . . ,2n: (i) x
[ξr2]
θ,i = x

(ξr2)

θ,⌈ i
2
⌉ with nA = n/2 and nB = n/2 and

(ii) x
[ξr1]
θ,i = x

(ξr1)
θ,i with nA = n and nB = n. For any i= 1, . . . ,2n:

1. V ′
A(x

[αf1]
A,i )+α(i− 1) = 0 = V ′

A(x
[αf2]
A,i )+α(n/2+ ⌈ i

2
⌉− 1)≥ V ′

A(x
[αf2]
A,i )+α(i− 1). Hence, x

[αf1]
A,i ≤ x

[αf2]
A,i .

And, V ′
B(x

[αf2]
B,i )+α(⌈ i

2
⌉−1) = 0= V ′

B(x
[αf1]
B,i )+α(i−1)≥ V ′

B(x
[αf1]
B,i )+α(⌈ i

2
⌉−1). Hence, x

[αf2]
B,i ≤ x

[αf1]
B,i . And,

V ′
A(x

[αa1]
A,i )+α(n−1)1[i>mA] = 0= V ′

A(x
[αa2]
A )+α(n−1)≥ V ′

A(x
[αa2]
A )+α(n−1)1[i>mA]. Hence, x

[αa1]
A,i ≤ x

[αa2]
A,i .

And, V ′
B(x

[αa2]
B ) = 0= V ′

B(x
[αa1]
B,i )+α(n− 1)1[i>mB ] ≥ V ′

B(x
[αa1]
B,i ). Hence, x

[αa2]
B,i ≤ x

[αa1]
B,i .
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2. V ′
A(x

[βf2]
A ) + β n/2−1

2
= 0 = V ′

A(x
[βf1]
A ) + β n−1

2
≥ V ′

A(x
[βf1]
A ) + β n/2−1

2
. Hence, x

[βf2]
A ≤ x

[βf1]
A . And,

V ′
B(x

[βf1]
B ) + β n−1

2
= 0 = V ′

B(x
[βf2]
B ) + βn/2 + β n/2−1

2
≥ V ′

B(x
[βf2]
B ) + β n−1

2
. Hence, x

[βf1]
B ≤ x

[βf2]
B . And,

V ′
A(x

[βa2]
A ) = 0 = V ′

A(x
[βa1]
A ) + β n−1

2
≥ V ′

A(x
[βa1]
A ). Hence, x

[βa2]
A ≤ x

[βa1]
A . And, V ′

B(x
[βa1]
B ) + β n−1

2
= 0 =

V ′
B(x

[βa2]
B )+β(n− 1)≥ V ′

B(x
[βa2]
B )+β n−1

2
. Hence, x

[βa1]
B ≤ x

[βa2]
B . �

Lemma A-6. 1. x
(αa2)
A,i ≥ x

(αf2)
A,i and x

(αa2)
B,i ≤ x

(αf2)
B,i ;

2. x
(βa2)
A,i ≤ x

(βf2)
A,i and x

(βa2)
B,i ≥ x

(βf2)
B,i .

Proof. From Table A-1, we obtain:

1. For i= 1, . . . , nA, V
′
A(x

(αf2)
A,i )+α(nB+ i−1) = 0= V ′

A(x
(αa2)
A )+α(n−1)≥ V ′

A(x
(αa2)
A )+α(nB+ i−1); i.e.,

x
(αf2)
A,i ≤ x

(αa2)
A . For i= 1, . . . , nB, V

′
B(x

(αa2)
B ) = 0= V ′

B(x
(αf2)
B,i )+α(i− 1)≥ V ′

B(x
(αf2)
B,i ); i.e., x

(αa2)
B,i ≤ x

(αf2)
B .

2. For i = 1, . . . , nA, V ′
A(x

(βa2)
A ) = 0 = V ′

A(x
(βf2)
A ) + β nA−1

2
≥ V ′

A(x
(βf2)
A ); i.e., x

(βa2)
A ≤ x

(βf2)
A . For i =

1, . . . , nB, V
′
B(x

(βf2)
B ) + βnA + β nB−1

2
= 0 = V ′

B(x
(βa2)
B ) + β(n− 1)≥ V ′

B(x
(βa2)
B ) + βnA + β nB−1

2
; i.e., x

(βf2)
B ≤

x
(βa2)
B . �
Proof of Proposition 5. In Lemma EC.1 in the electronic companion, we show that

∑nA

i=1 x
(αa2)
A,i +∑nB

i=1 x
(αa2)
B,i ≤

∑nA

i=1 x
(αf2)
A,i +

∑nB

i=1 x
(αf2)
B,i and

∑nA

i=1 x
(βa2)
A,i +

∑nB

i=1 x
(βa2)
B,i ≥

∑nA

i=1 x
(βf2)
A,i +

∑nB

i=1 x
(βf2)
B,i if

and only if nA ≤ nB. And, that
∑2n

i=1 x
[αa2]
i =

∑2n
i=1 x

[αa1]
i =

∑2n
i=1 x

[αf2]
i =

∑2n
i=1 x

[αf1]
i and

∑2n
i=1 x

[βa2]
i =∑2n

i=1 x
[βa1]
i =

∑2n
i=1 x

[βf2]
i =

∑2n
i=1 x

[βf1]
i . �

Proof of Proposition 6. When nA = nB,
∑nA

i=1 x
(ξr2)
A,i +

∑nB

i=1 x
(ξr2)
B,i is constant across all r = a, f by

Proposition 5, for any ξ = α,β. Note that x(ξr2) = (x
(ξr2)
B ,x

(ξr2)
A ) is sorted in ascending order for

any ξ = α,β, and r = a, f . For all ξ = α,β and r = a, f , define s
(ξr2)
l =

∑l

i=1 x
(ξr2)
i , l = 1, . . . , n. In

Lemma EC.2 in the electronic companion, we show that s
(αa2)
l ≤ s

(αf2)
l and s

(βf2)
l ≤ s

(βa2)
l for all l ≤

n. Hence, the sorted output vectors x(ξr2) can be ordered according to majorization (Hardy et al.

1952, p. 45): −x(αa2) ≻ −x(αf2) and −x(βf2) ≻ −x(βa2). From Theorem 108 in Hardy et al. (1952), we

obtain that
∑nA

i=1W (x
(αa2)
A,i ) +

∑nB

i=1W (x
(αa2)
B,i )≥

∑nA

i=1W (x
(αf2)
A,i ) +

∑nB

i=1W (x
(αf2)
B,i ) and

∑nA

i=1W (x
(βf2)
A,i ) +∑nB

i=1W (x
(βf2)
B,i )≥

∑nA

i=1W (x
(βa2)
A,i )+

∑nB

i=1W (x
(βa2)
B,i ) if and only if W (x) is convex.

Fix ξ = α,β and r = a, f . By Proposition 5,
∑2n

i=1 x
[ξr1]
i =

∑2n
i=1 x

[ξr2]
i . Note that x[ξr1] =

(
x
[ξr1]
B ,x

[ξr1]
A

)
is sorted in ascending order, and so is x[ξr2]. Let us define s

(ξr1)
l =

∑l

i=1 x
[ξr1]
i , l = 1, . . . ,2n. In Lemma

EC.3 in the electronic companion, we show that s
(βr1)
l ≤

∑l

i=1 x
[βr2]
i and s

(αr1)
l ≥

∑l

i=1 x
[αr2]
i for all l ≤

2n, for any r = a, f . Therefore, −x[αr1] ≺ −x[αr2] and −x[βr1] ≻ −x[βr2], for r = a, f . From Theorem

108 in Hardy et al. (1952), we then obtain that
∑2n

i=1W
(
x
[αf2]
i

)
≥
∑2n

i=1W
(
x
[αf1]
i

)
,
∑2n

i=1W
(
x
[αa2]
i

)
≥∑2n

i=1W
(
x
[αa1]
i

)
,
∑2n

i=1W
(
x
[βf2]
i

)
≤
∑2n

i=1W
(
x
[βf1]
i

)
, and

∑2n
i=1W

(
x
[βa2]
i

)
≤
∑2n

i=1W
(
x
[βa1]
i

)
if and only

if W (x) is convex. �

Lemma A-7. 1. When V (x) is quadratic, U
[αf2]
A,i ≥U

[αf1]
A,i and U

[αf2]
B,i ≤U

[αf1]
B,i ; When V (x) is quadratic,

U
[αa2]
A,i ≥U

[αa1]
A,i and U

[αa2]
B,i ≤U

[αa1]
B,i ;

2. U
[βf2]
A ≥U

[βf1]
A and U

[βf2]
B ≤U

[βf1]
B ; U

[βa2]
A ≥U

[βa1]
A and U

[βa2]
B ≤U

[βa1]
B .

Proof. The first result follows from Lemma EC.4 in the electronic companion.

Fix r= a, f . Because x
[βr2]
A,i = x

[βr2]
A and x

[βr1]
A,i = x

[βr1]
A for all i, U

[βr2]
A = VA

(
x
[βr2]
A

)
and U

[βr1]
A = VA

(
x
[βr1]
A

)
.

Because x
[βr2]
A ≤ x

[βr1]
A by Lemma A-5, U

[βr2]
A ≥U

[βr1]
A since V ′

A(x)≤ 0 for any x≥LA.
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We have U
[βf2]
B = VB

(
x
[βf2]
B

)
− βnA

[
x
[βf2]
A −x

[βf2]
B

]+
≤ VB

(
x
[βf2]
B

)
and U

[βa2]
B,i = VB

(
x
[βa2]
B

)
− β(n −

1)
[
x̄
[βa2]
−i −x

[βa2]
B

]+
≤ VB

(
x
[βa2]
B

)
, whereas U

[βf1]
B = VB

(
x
[βf1]
B

)
and U

[βa1]
B = VB

(
x
[βa1]
B

)
. Fix r = a, f .

Because x
[βr2]
B ≥ x

[βr1]
B by Lemma A-5, VB

(
x
[βr2]
B

)
≤ VB

(
x
[βr1]
B

)
by concavity. Hence, U

[βr1]
B ≥U

[βr2]
B . �

Lemma A-8. 1. U
(αa2)
B,i ≤U

(αf2)
B,i for all i; when V (x) is quadratic, U

(αa2)
A,i ≥U

(αf2)
A,i for all i if nA ≤ n/2;

2. U
(βa2)
A,i ≥U

(βf2)
A,i for all i; when V (x) is quadratic, U

(βa2)
B,i ≥U

(βf2)
B,i for all i if nA ≥ n/2.

Proof. From Table A-1, x
(αa2)
B = Lα

B; therefore, U
(αa2)
B = V (Lα

B). On the other hand, U
(αf2)
B,i =

V
(
x
(αf2)
B,i

)
+α

∑
j ̸=i

[
x
(αf2)
B,i −x

(αf2)
B,j

]+
≥ V (Lα

B) given that Lα
B is feasible. Hence, U

(αf2)
B,i ≥U

(αa2)
B,i for all i.

From Table A-1, x
(βa2)
A =Lβ

A ≥ x
(βa2)
B ; hence, U

(βa2)
A = V

(
Lβ

A

)
. Since Lβ

A maximizes V (x), U
(βa2)
A ≥U

(βf2)
A .

The remaining two results follow from Lemma EC.5 in the electronic companion. �
Proof of Proposition 7. Lemma EC.6 in the electronic companion shows that

∑nA

i=1U
[αf2]
A,i +

∑nB

i=1U
[αf2]
B,i =∑nA

i=1U
[αa2]
A,i +

∑nB

i=1U
[αa2]
B,i ≥

∑nA

i=1U
[αf1]
A,i +

∑nB

i=1U
[αf1]
B,i =

∑nA

i=1U
[αa1]
A,i +

∑nB

i=1U
[αa1]
B,i and

∑nA

i=1U
[βa1]
A,i +∑nB

i=1U
[βa1]
B,i =

∑nA

i=1U
[βf1]
A,i +

∑nB

i=1U
[βf1]
B,i ≥

∑nA

i=1U
[βa2]
A,i +

∑nB

i=1U
[βa2]
B,i ≥

∑nA

i=1U
[βf2]
A,i +

∑nB

i=1U
[βf2]
B,i . �

Proposition A-1. With behind-averse players and noisy performance metrics, there exists a unique pure-

strategy Nash equilibrium x∗ such that x∗
θ,i = x∗

θ for i= 1, . . . , nθ, θ=A,B, in which (x∗
B, x

∗
A) solve

(i) V ′
θ (x

∗
θ)+β(n− 1)Φ

(
n−θ(x

∗
−θ−x∗

θ)

σ
√

n(n−1)

)
= 0 for θ=A,B with an aggregate reference point, and

(ii) V ′
θ (x

∗
θ)+β (nθ−1)

2
+βn−θΦ

(
x∗
−θ−x∗

θ

σ
√
2

)
= 0 for θ=A,B with the full reference distribution.

Proof. In both cases, existence is guaranteed given that Ui(xi;x−i) is strictly concave for all i (Fudenberg

and Tirole 2000, Theorem 1.2). The game between all players of the same type is symmetric since they have

the same utility functions and same action spaces. Moreover, the action spaces are completely ordered (since

they are intervals) and the utility functions are strictly supermodular since

∂2U
(βa)
i (xi;x−i)

∂xj∂xi

= β(n− 1)ϕ

(
xi − x̄−i√

n
n−1

σ

)
1√

n(n− 1)σ
> 0 and

∂2U
(βf)
i (xi;x−i)

∂xj∂xi

= βϕ

(
xi −xj√

2σ

)
1√
2σ

> 0.

As a result for any x−θ, the equilibrium between all type-θ players must be unique (Vives 1999). Therefore,

xθ,i = xθ for all i= 1, . . . , nθ. This yields the equilibrium conditions.

Uniqueness follows from the global univalence theorem (Gale and Nikaidô 1965) by showing that the

Jacobian matrix obtained from the equilibrium conditions is diagonally-dominant:∣∣∣∣∣∂2U
(βa)
θ,i (xi;x−i)

∂x2
i

∣∣∣∣∣ = −V ′′
θ (xi)+β

(n− 1)√
n

n−1
σ
ϕ

(
xi − x̄∗

−i√
n

n−1
σ

)
>
∑
j ̸=i

∣∣∣∣∣∂2U
(βa)
θ,i (xi;x−i)

∂xj∂xi

∣∣∣∣∣ ,∣∣∣∣∣∂2U
(βf)
θ,i (xi;x−i)

∂x2
i

∣∣∣∣∣ = −V ′′
θ (xi)+β

∑
j ̸=i

ϕ

(
xi −x∗

j√
2σ

)
1√
2σ

>
∑
j ̸=i

∣∣∣∣∣∂2U
(βf)
θ,i (xi;x−i)

∂xj∂xi

∣∣∣∣∣ . �

Proposition A-2. With ahead-seeking players and noisy performance metrics,

(i) When σ → 0, there exists a unique pure-strategy Nash equilibrium that is identical to the equilibria pre-

sented in Propositions 3 and 4.

(ii) When σ ≥ − ϕ(0)α(n−1)

maxx V ′′(x)
√

n
n−1

, there exists a pure-strategy Nash equilibrium x∗ such that x∗
θ,i = x∗

θ for

i= 1, . . . , nθ, θ=A,B, in which (x∗
B, x

∗
A) solve

(ii.a) V ′
θ (x

∗
θ)+α(n− 1)Φ

(
n−θ(x

∗
θ−x∗

−θ)

σ
√

n(n−1)

)
= 0 for θ=A,B with an aggregate reference point, and

(ii.b) V ′
θ (x

∗
θ)+α (nθ−1)

2
+αn−θΦ

(
x∗
θ−x∗

−θ√
2σ

)
= 0 for θ=A,B, with the full reference distribution.
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Proof. (i) Consider first the case with the full reference distribution. Similar to Lemma A-4, one can show

that xi ̸= xj in every equilibrium. Moreover, we obtain by L’Hospital’s rule that limσ→0 ϕ
(

xi−xj√
2σ

)
1
σ
= 0 for

any xi ̸= xj , i.e., limσ→0U
′′
θ,i(xi;x−i) = V ′′

θ (xi)< 0. The first-order condition then yield V ′
θ (xj)+α(j− 1) = 0

for all j. The rest of the proof then consists in showing, similar to the proof of Proposition 4, that setting

xi ∈ [xj , xj+1] is never a best response exploiting the fact Ui(xi;x−i) is strictly concave on that interval. The

proof of the case with an aggregate reference point follows a similar argument.

(ii) Consider the case with an aggregate reference point. For any xi, x−i,

U ′′
θ,i(xi;x−i) = V ′′

θ (x)+α(n− 1)ϕ

(
xi − x̄−i√

n
n−1

σ

)
1√
n

n−1
σ
≤max

x
V ′′
θ (x)+α(n− 1)ϕ (0)

1√
n

n−1
σ
≤ 0

by assumption on σ. Accordingly, Uθ,i(x;x−i) is concave everywhere. As a result, there exists a pure-strategy

Nash equilibrium (Fudenberg and Tirole 2000, Theorem 1.2). The argument for the case with the full reference

distribution is identical. The first-order optimality conditions are, respectively with an aggregate reference

point and the full reference distribution: V ′
θ (x

∗
i )+α(n−1)Φ

(
x∗
i −x̄−i√

n
n−1

σ

)
= 0 and V ′

θ (x
∗
i )+α

∑
j ̸=i

Φ
(

x∗
i −x∗

j√
2σ

)
=

0. Setting x∗
θ,i = x∗

θ for i= 1, . . . , nθ in those equilibrium conditions yields the result. �

B. Model Extensions

B.1. Reference groups with both ahead-seeking and behind-averse players

In this section, we characterize the equilibrium when the reference group consists of both ahead-seeking and

behind-averse players. An illustration is provided in Appendix B.3.1. Let us respectively denote with nα
θ

and nβ
θ the number of ahead-seeking and behind-averse type-θ players, with nα

θ +nβ
θ = nθ. Denote output as

x= (xα
B,x

β
B,x

α
A,x

β
A). Suppose that n > nβ

A, n
β
B for otherwise, the setting would be identical to Propositions

1, 2, 3, or 4. As before, we assume non-overlapping strategy sets across types, i.e., max{Rα
B,R

β
B}<LA.

Because Lemma A-1 and Lemmas A-2-A-4 continue to hold, the equilibrium here with an aggregate

reference point superimposes the equilibria obtained in Propositions 1 and 3.

Proposition B-1. Suppose players have an aggregate reference point. There is a unique pure-strategy

Nash equilibrium, in which all nβ
θ type-θ behind-averse players choose zθ, m

α
θ type-θ ahead-seeking players

choose Lα
θ and nα

θ −mα
θ of the remaining type-θ ahead-seeking players choose Rα

θ , for θ=A,B. There exist

constants l ∈ [Lα
B,R

α
B] and r ∈ [Lα

A,R
α
B] (so Lα

B < l <Rα
B <Lα

A < r <Rα
A) such that:

(i) If
nα
ARα

A+n
β
A
L

β
A
+n

β
B
R

β
B
+nα

BLα
B

n
∈ [Lα

B, l), then mα
A = 0, zA = Lα

A, zB =

min{Rβ
B,

mα
BLα

B+(nα
B−mα

B)Rα
B+n

β
A
L

β
A
+nα

ARα
A

n−n
β
B

}, and mα
B ∈ [1, nα

B − 1].

(ii) If
nα
ARα

A+n
β
A
L

β
A
+n

β
B
R

β
B
+nα

BLα
B

n
∈ (l, r), then mα

A = 0, zA =Lα
A, zB =Rβ

B, and mα
B = nα

B.

(iii)
nα
ARα

A+n
β
A
L

β
A
+n

β
B
R

β
B
+nα

BLα
B

n
∈ (r,Rα

A], then mα
A ∈ [1, nα

A−1], zA =min{Rβ
A,

nα
BLα

B+n
β
B
R

β
B
+mα

ALα
A+(nα

A−mα
A)Rα

A

n−n
β
A

},

zB =Rβ
B, and mα

B = nα
B.

Hence, the introduction of ahead-seeking players in the reference group makes behind-averse players stabilize

on one equilibrium, unlike Proposition 2, which established existence of multiple equilibria.

Similarly, the equilibrium with both ahead-seeking and behind-averse players with the full reference dis-

tribution superimposes the equilibria obtained in Propositions 2 and 4.
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Proposition B-2. Suppose players have the full reference distribution. For any mα
B ∈ {0, . . . , nα

B}, mα
A ∈

{0, . . . , nα
A}, zB ∈ [max{Cβ

B(n
α
B −mα

B + nA),C
α
B(m

α
B − 1)},min{Cβ

B(n− 1−mα
B),C

α
B(m

α
B + nβ

B)}], and zA ∈

[max{Cβ
A(n

α
A−mα

A),C
α
A(nB +mα

A−1)},min{Cβ
A(nA−mα

A−1),Cα
A(nB +mα

A+nβ
A)], x

∗ is a Nash equilibrium,

defined as x∗
i =Cα

B(i− 1) for i= 1, . . . ,mα
B, x

∗
i =Cα

B(n
β
B + i− 1) for i=mα

B +1, . . . , nα
B, x

∗
i = zB for i= nα

B +

1, . . . , nB, x
∗
i =Cα

A(i−1)α for i= nB +1, . . . , nB +mα
A, x

∗
i =Cα

A(n
β
A+ i−1) for i= nB +mα

A+1, . . . , nB +nα
A,

and x∗
i = zA for i= nB +nα

A +1, . . . , n.

It can be checked that a Nash equilibrium always exists since the value of zB that satisfies Cβ
B(n

α
B −mα

B +

nA) = Cα
B(m

α
B − 1) is smaller than the allowed upper bound, min{Cβ

B(n − 1 −mα
B),C

α
B(m

α
B + nβ

B)} when

nβ
B ≥ 1, and similarly for zA. Moreover, the set of possible Nash equilibria is convex since the lower and

upper bounds on zθ are respectively convex and concave functions of mα
θ , for θ=A,B.

B.2. Overlapping Strategy Sets

In this appendix, we consider overlapping strategy sets, i.e., we allow for the difference between the two

player types to be so small that LA <RB. The next four propositions list the equilibrium results, analogous

to Propositions 1 to 4. Illustrations are provided in Appendix B.3.

We first consider behind-averse players. With overlapping strategy sets, it is now possible for all players to

choose the same output in equilibrium, in contrast to our basic analysis, in which the players’ choices cluster

at one end of the strategy set (i.e., at the low end for type-A and at the high end for type-B players), but

they do not coincide. Now, the choices of both types converge to the same point, which as before is nearer

the upper end of type-B’s strategy set and nearer the lower end of type-A’s strategy set.

Proposition B-3. Suppose players are behind-averse and have an aggregate reference point. For any

z∗ ∈ [LA,RB], x
∗
A = x∗

B = z∗ is a Nash equilibrium.

Proposition B-4. Suppose players are behind-averse and have the full reference distribution.

(i) For any z∗ ∈ [LA,RB], x
∗
A = x∗

B = z∗ is a Nash equilibrium.

(ii) For any zA ∈ [Cβ
A(0),C

β
A(nA − 1)] and zB ∈ [Cβ

B(nA),C
β
B(n− 1)] such that zA > zB, x

∗
A = zA, x

∗
B = zB is a

Nash equilibrium.

We next consider ahead-seeking players. We show that the equilibria have the same structure as in our

basic analysis with non-overlapping strategy sets. With aggregate reference points, choices are polarized at

either the lowest or the highest end of each type’s strategy set. With the full reference distribution, choices

are spread out along the strategy set such that no pair chooses the same output. These observations are

incredibly robust. However, with overlapping strategy sets, there is a multitude of equilibria, in contrast to

our basic analysis of non-overlapping strategy sets, which had a unique Nash equilibrium.

Proposition B-5. Suppose players are ahead-seeking and have an aggregate reference point. Consider a

strategy profile x in which mθ type-θ players choose Lθ and nθ −mθ of the remaining type-θ players choose

Rθ, for θ=A,B. Let x̄ be the average choice of all players. There exists constants l, l′ ∈ [LB,RB] satisfying

LB < l′ < l <RB and r, r′ ∈ [LA,RA] satisfying LA < r < r′ <RA such that:

(i) If l′ < x̄< l < r and mA = 0, then x is a Nash equilibrium.
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(ii) If l < x̄< r and mA = 0 and mB = nB, then x is a Nash equilibrium.

(iii) If l < r < x̄< r′ and mB = nB, then x is a Nash equilibrium.

(iv) If l′ < x̄< r < l and mA = 0, then x is a Nash equilibrium.

(v) If r < x̄< l, then x is a Nash equilibrium.

(vi) If r < l < x̄< r′ and mB = nB, then x is a Nash equilibrium.

Proposition B-6. Suppose players are ahead-seeking and have the full reference distribution. Consider

a strategy profile x in which no two players of the same type choose the same output. Further, suppose

V ′
A(xA,i)+αρA,i = 0 for i= 1, . . . , nA, and V ′

B(xB,i)+αρB,i = 0 for i= 1, . . . , nB, where ρθ,i is the number of

players choosing a smaller output than the i-th type-θ player. Then x is a Nash equilibrium.

B.3. Numerical Examples

In this section, we present a series of numerical examples. In all cases, the equilibria are reached through a

sequential tâtonnement process, starting from xθ =Lθ, θ=A,B. In each figure, type-A and type-B players

are respectively represented with a ‘+’ and a ‘×’ markers. The size of each marker is proportional to the

number of players choosing that particular output. The dotted curves show the bounds LA,RA within which

outputs of type-A players must lie, and the solid curves show analogous bounds LB,RB for type-B players.

Ahead-seeking and behind-averse players are respectively displayed in grey and black. Ahead-seeking players

tend to choose outputs near the outside boundaries Lα
B and Rα

A and behind-averse players tend to choose

outputs near the inside boundaries Rα
B and Lα

A.

B.3.1. Heterogeneous Groups and Overlapping Strategy Sets. We first present numerical exam-

ples of equilibrium outputs when (i) the reference group consist of both ahead-seeking and behind-averse

players and (ii) strategy sets of type-A and type-B players overlap, thereby stress-testing our results in

Propositions 1-4 to those assumptions and illustrating the analytical developments from Appendices B.1-B.2.

Figures B-1 and B-2 consider the case with individual references points whereas Figures B-3 and B-4

consider the cases with aggregate reference points. The parameters are: VB(x) = 100x−x2, VA(x+k) = VB(x),

nA = nB = 6. Moreover, α = 3 and β = 2 in Figures B-1 and B-3 and α = 2 and β = 3 in Figures B-2 and

B-4. We moreover consider asymmetric configurations of reference groups with nα
A = nα

B = 2 ahead-seeking

players in the left figures and nα
A = nα

B = 4 ahead-seeking players in the right figures.

Overall, all figures exhibit clustering behavior of behind-averse players and dispersion of ahead-seeking

players, either very polarized at the outer boundaries of the strategy sets (aggregate reference point), or

more uniformly distributed, but still anchored at the outer boundaries of the strategy sets (full reference

distribution). Overall, the insights obtained in Propositions 1-4, with non-overlapping strategy sets and

common kind of social comparison at work, appear to be very robust to those assumptions.

B.3.2. Value Function and Overlapping Strategy Sets. We finally display in Figure B-5 the equi-

librium outputs when V (x) = 100x−xp for various values of p. The purpose of this study is to show that the

equilibrium outcomes obtained with a quadratic value function (p= 2) are representative of the outcomes

obtained with other value functions, and therefore, that the results that have been obtained for the quadratic

case are robust (Propositions 5-7 and Lemmas A-7 and A-8 which lie behind Table 2). A byproduct of this
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Figure B-1 Equilibrium outputs with the full reference distribution and diverse reference groups, consisting of

both ahead-seeking and behind-averse players with α= 3 and β = 2.
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Figure B-2 Equilibrium outputs with the full reference distribution and diverse reference groups, consisting of

both ahead-seeking and behind-averse players with α= 2 and β = 3.
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Figure B-3 Equilibrium outputs with an aggregate reference point and diverse reference groups, consisting of

both ahead-seeking and behind-averse players with α= 3 and β = 2.
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numerical analysis is to demonstrate the robustness of Propositions 1-4 with respect to the assumption that

the strategy sets do not overlap, similar to Appendix B.2.

Because the equilibrium outputs may vary widely (e.g., [LB,RB] = [11.7,12.5] and [LA,RA] = [17.7,18.5]

when p= 2.5 and [LB,RB] = [4444,5378] and [LA,RA] = [4450,5384] when p= 1.5), we linearly normalize all

quantities between LB and RA for comparison purposes. Note that the action sets [LB,RB] and [LA,RA] are

overlapping when p≤ 1.75 and become clustered near LB and RA as p increases.
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Figure B-4 Equilibrium outputs with an aggregate reference point and diverse reference groups, consisting of

both ahead-seeking and behind-averse players with α= 2 and β = 3.
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Figure B-5 Equilibrium outputs x∗ for different value functions V (x) = 100x−xp.
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We make the following observations from Figure B-5. For large values of p, the numerical solutions are

similar to the top plots from Figures 2 and 3 with diverse reference groups. For small values of p, our

numerical results look like the bottom plots from Figures 2 and 3 with uniform reference groups, focusing on

only one section. Indeed when p is very small, the strategy sets [LB,RB] and [LA,RA] overlap, mimicking a

scenario with one uniform type. This numerical study suggests that the structure of our equilibria described

in Propositions 1-4 remains valid for a wide range of value functions and that the equilibrium outcomes

obtained with a quadratic value function are representative of those obtained with other value functions.
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Hardy, G., J. E. Littlewood, G. Pólya. 1952. Inequalities. 2nd ed. Cambridge University Press, New York,

NY.

Harsanyi, J. C., R. Selten. 1988. A General Theory of Equilibrium Selection in Games. MIT Press, Cam-

bridge, MA.

Hossain, T., J. A. List. 2012. The behavioralist visits the factory: Increasing productivity using simple

manipulations. Management Sci. 58(12) 2151–2167.

Kahneman, D., A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47(2)

263–292.

Kajii, A., S. Morris. 1997. The robustness of equilibria to incomplete information. Econometrica 65(6)

1283–1309.

Kandel, E., E. P. Lazear. 1992. Peer pressure and partnerships. J. Political Econ. 100(4) 801–817.



Roels and Su: Optimal Design of Social Comparison Effects
36 Article submitted to ; manuscript no.

Kojima, F. 2006. Risk-dominance and perfect foresight dynamics in n-player games. J. Econ. Theory 128(1)

255–273.

Kuhnen, C. M., A. Tymula. 2012. Feedback, self-esteem, and performance in organizations. Management

Sci. 58(1) 94–113.

Kukushkin, N. S. 2004. A fixed point theorem for decreasing mappings. Econ. Lett. 46(1) 23–26.

Lazear, E. P., S. Rosen. 1981. Rank-order tournaments as optimum labor contracts. J. Political Econ. 89(5)

841–864.

Levine, D. K. 1998. Modeling altruism and spitefulness in experiments. Rev. Econ. Dynam. 1(3) 593–622.

Lewis, M. A., C. Neighbors. 2008. Social norms approaches using descriptive drinking norms education: A

review of the research on personalized normative feedback. J. Amer. Coll. Health 54(4) 213–218.

Loch, C. H., Y. Wu. 2008. Social preferences and supply chain performance: An experimental study. Man-

agement Sci. 54(11) 1835–1849.

Lockwood, P., C. H. Jordan, Z. Kunda. 2002. Motivation by positive or negative role models: Regulatory

focus determines who will best inspire us. J. Pers. Soc. Psychol. 83(4) 854–864.

Mas, A., E. Moretti. 2009. Peers at work. Amer. Econ. Rev. 99(1) 112–145.

McCardle, K. F., K. Rajaram, C. S. Tang. 2009. A decision analysis tool for evaluating fundraising tiers.

Decision Anal. 6(1) 4–13.

Nasiry, J., I. Popescu. 2011. Dynamic pricing with loss-averse consumers and peak-end anchoring. Oper.

Res. 59(6) 1361–1368.

Netessine, S., C. S. Tang. 2009. Operations Management Models with Consumer-Driven Demand . Springer

International Series in Operations Research & Management Science, Springer.

Netessine, S., V. Yakubovich. 2012. The Darwinian workplace. Harvard Bus. Rev. 1–4May.

Popescu, I, Y. Wu. 2007. Dynamic pricing strategies with reference effects. Oper. Res. 55(3) 413–429.

Rosen, S. 1986. Prizes and incentives in elimination tournaments. Amer. Econ. Rev. 76(4) 701–715.

Schultz, P. W. 1998. Changing behavior with normative feedback interventions: A field experiment on

curbside recycling. Basic Appl. Soc. Psych. 21(1) 25–36.

Schultz, P. W., J. M. Nolan, R. B. Cialdini, N. J. Goldstein, V. Griskevicius. 2007. The constructive,

destructive, and reconstructive power of social norms. Psychol. Sci. 18(5) 429–434.

Shen, Z. J., X. Su. 2007. Customer behavior modeling in revenue management and auctions: A review and

new research opportunities. Prod. & Oper. Management 16(6) 713–728.

Siemsen, E., S. Balasubramanian, A. Roth. 2007. Incentives that induce task-related effort, helping and

knowledge sharing in workgroups. Management Sci. 53(10) 1533–1550.



Roels and Su: Optimal Design of Social Comparison Effects
Article submitted to ; manuscript no. 37

Stevenson, H. W., S. Y. Lee, C. Chen, J. W. Stigler, C. C. Hsu, S. Kitamura, G. Hatano. 1990. Context of

achievements: A study of American, Chinese, and Japanese students. Monographs of the Society for

Research in Child Development 55(1-2) 1–119.

Suls, J., L. Wheeler. 2000. Handbook of Social Comparison: Theory and Research. The Springer Series in

Social Clinical Psychology, Springer.

Tereyagoglu, N., S. Veeraraghavan. 2012. Selling to conspicuous consumers: Pricing, production and sourcing

decisions. Management Sci. 58(12) 2168–2189.

Thaler, R. H., S. Benartzi. 2004. Save more tomorrow: Using behavioral economics to increase employee

saving. J. Political Econ. 112(S1) pp. S164–S187.

Thaler, R. H., C. R. Sunstein. 2008. Nudge. Improving Decisions about Health, Wealth, and Happiness. Yale

University Press.

Veeraraghavan, S., L. Debo. 2011. Herding in queues with waiting costs: Rationality and regret. Manufac-

turing & Service Oper. Management 13(3) 329–346.

Vives, X. 1999. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge, MA.

Wills, T. A. 1981. Downward comparison principles in social psychology. Psychol. Bull. 90(2) 245–271.

Wood, J. V. 1989. Theory and research concerning social comparisons of personal attributes. Psychol. Bull.

106(2) 231–248.



Submitted to
manuscript

Electronic Companion for
Optimal Design of Social Comparison Effects:

Setting Reference Groups and Reference Points

Guillaume Roels
UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA 90095, USA, groels@anderson.ucla.edu

Xuanming Su
The Wharton School, University of Pennsylvania, 3730 Walnut Street, Philadelphia, PA 19104, USA,

xuanming@wharton.upenn.edu

1



e-companion to Author: Optimal Design of Social Comparison Effects ec1

Table EC.1 Outputs and utilities with quadratic value functions VA(x+ k) = rA + px− qx2/2 and VB(x) = rB + px− qx2/2, with q > 0 when
Lα

A =Lβ
A ≥max{Rα

B ,Rβ
B}.

Game Type Heterogeneous group of size n= nA +nB Homogeneous group of size nθ, θ=A,B

βf
A

x
(βf2)
A = k+ p

q
+ β

q

(
nA−1

2

)
x
(βf1)
A = k+ p

q
+ β

q

(
nA−1

2

)
U

(βf2)
A = rA + p2

2q
− β2

2q

(
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2

)2
U
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2q
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2q
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q
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q
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q
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nB−1

2
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q
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Note: mθ = nθ/2 if nθ is even and can be equal to either (nθ − 1)/2 or (nθ +1)/2 if nθ is odd.

Additional Results for Quadratic Value Functions

Table EC.1 displays the equilibrium outputs and utilities for all games and all player types

when the value function V (x) is quadratic, obtained from Table A-1 in the appendix of the paper.

Specifically, we assume that VA(x + k) = rA + px − qx2/2 and VB(x) = rB + px − qx2/2, with

q > 0. Accordingly, Lα
A = Lβ

A = p/q + k, Lα
B = Lβ

B = p/q, Rα
A(n) = p/q + α(n− 1)/q + k, Rα

B(n) =

p/q+α(n− 1)/q, Rβ
A(n) = p/q+ β(n− 1)/q+ k, and Rβ

B(n) = p/q+ β(n− 1)/q. With a quadratic

value function, the condition that strategy sets do not overlap is equivalent to requiring that

k≥max{α,β}(n− 1)/q.

Lemma EC.1 (Total Output). When V (x) is quadratic,
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Proof. For all ξ = α,β, r= a, f , define s(ξr2) =
∑nA

i=1 x
(ξr2)
A,i +

∑nB
i=1 x

(ξr2)
B,i . From Table EC.1, we

obtain that s(βf2) = np
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α
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(n− 1). Comparing these sums yields the first result.

Next, define s
(ξr1)
θ =

∑n

i=1 x
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θ,i for all ξ = α,β, r= a, f , θ=A,B. From Table EC.1, after replac-

ing nA and nB with n, we obtain s
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q
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q
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for θ =A,B, with kA = k and kB = 0. Comparing 2s(ξr2), with nA and nB

replaced with n/2, to s
(ξr1)
A + s

(ξr1)
B for all ξ = α,β and r= a, f yields the second result. �

Lemma EC.2. When V (x) is quadratic and nA = nB = n/2, s
(αa2)
l ≤ s

(αf2)
l and s

(βf2)
l ≤ s

(βa2)
l

for all l≤ n, in which s
(ξr2)
l =

∑l

i=1 x
(ξr2)
i for all ξ = α,β, r= a, f , and l= 1, . . . , n.

Proof. Note that x(ξr2) = (x
(ξr2)
B ,x

(ξr2)
A ) is sorted in ascending order for any ξ = α,β, and r =

a, f . From Table EC.1, we obtain:

• s
(βf2)
l =

∑l

i=1

(
p
q
+ β

q

(
n
2
+ n/2−1

2

))
= l p

q
+ l β

q

(
3n
4
− 1

2

)
if l≤ n/2

• s
(βf2)
l = s

(βf2)

n/2 +
∑l−n/2

i=1

(
k+ p

q
+ β

q

(
n/2−1

2

))
= (l− n

2
)k+ l p

q
+ β

q
n2

4
+ l β

q

(
n
4
− 1

2

)
if n/2< l≤ n

• s
(βa2)
l =

∑l

i=1

(
p
q
+ β

q
(n− 1)

)
= l p

q
+ l β

q
(n− 1) if l≤ n/2

• s
(βa2)
l = s

(βa2)

n/2 +
∑l−n/2

i=1

(
k+ p

q

)
= (l− n

2
)k+ l p

q
+ n

2
β
q
(n− 1) if n/2< l≤ n

• s
(αf2)
l =

∑l

i=1

(
p
q
+ α

q
(i− 1)

)
= l p

q
+ l

2
α
q
(l− 1) if l≤ n/2

• s
(αf2)
l = s

(αf2)

n/2 +
∑l−n/2

i=1

(
k+ p

q
+ α

q
(n
2
+ i− 1)

)
= (l− n

2
)k+ l p

q
+ l

2
α
q
(l− 1) if n/2< l≤ n

• s
(αa2)
l =

∑l

i=1
p
q
= l p

q
if l≤ n/2

• s
(αa2)
l = s

(αa2)

n/2 +
∑l−n/2

i=1

(
k+ p

q
+ α

q
(n− 1)

)
= (l− n

2
)k+ l p

q
+ α

q
(l− n

2
)(n− 1) if n/2< l≤ n.

We then find that s
(αa2)
l ≤ s

(αf2)
l if and only if 0≤ l

2
α
q
(l− 1) when l≤ n/2, which is always true.

And if and only if α
q
(l− n

2
)(n− 1)≤ l

2
α
q
(l− 1) when l > n/2, i.e., if and only if l2/2− l(n− 1/2)+

n(n− 1)/2≥ 0. The right-hand side is a quadratic equation in l, with roots at n and n− 1. Since l

is integer, this condition is satisfied for all l. Hence, s
(αa2)
l ≤ s

(αf2)
l for all l≤ n.

Moreover, we find that s
(βf2)
l ≤ s

(βa2)
l if and only if l β

q

(
3n
4
− 1

2

)
≤ l β

q
(n− 1) when l≤ n/2, which is

always true given that n≥ 2. And if and only if β
q
n2

4
+ l β

q

(
n
4
− 1

2

)
≤ n

2
β
q
(n− 1) when l > n/2, which

is always true given that l≤ n. Hence, s
(βf2)
l ≤ s

(βa2)
l for all l. This shows the desired result. �

Lemma EC.3. When V (x) is quadratic,
∑l

i=1 x
[βr1]
i ≤

∑l

i=1 x
[βr2]
i and

∑l

i=1 x
[αr1]
i ≥

∑l

i=1 x
[αr2]
i

for all l≤ 2n, for any r= a, f .

Proof. Fix ξ = α,β and r = a, f . Define s
(ξr1)
l =

∑l

i=1 x
[ξr1]
i , l = 1, . . . ,2n. Closed-form expres-

sions for x
[ξr1]
θ,i and x

[ξr2]
θ,i can be obtained from Table EC.1, with θ=A,B, by making the following

transformations: (i) x
[ξr2]
θ,i = x

(ξr2)

θ,⌈ i
2 ⌉

with nA = n/2 and nB = n/2 and (ii) x
[ξr1]
θ,i = x

(ξr1)
θ,i with nA = n

and nB = n. Note that x[ξr1] =
(
x
[ξr1]
B ,x

[ξr1]
A

)
is sorted in ascending order, and so is x[ξr2]. From

Table EC.1, we obtain:
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• s
(βf1)
l =

∑l

i=1

(
p
q
+ β

q

(
n−1
2

))
= l p

q
+ l β

2q
(n− 1) if l≤ n

• s
(βf1)
l = s(βf1)n +

∑l−n

i=1

(
k+ p

q
+ β

q

(
n−1
2

))
= (l−n)k+ l p

q
+ l

2
β
q
(n− 1) if n< l≤ 2n

• s
(βa1)
l =

∑l

i=1

(
p
q
+ β

q

(
n−1
2

))
= l p

q
+ l β

2q
(n− 1) if l≤ n

• s
(βa1)
l = s(βa1)n +

∑l−n

i=1

(
k+ p

q
+ β

q

(
n−1
2

))
= (l−n)k+ l p

q
+ l

2
β
q
(n− 1) if n< l≤ 2n

• s
(αf1)
l =

∑l

i=1

(
p
q
+ α

q
(i− 1)

)
= l p

q
+ l

2
α
q
(l− 1) if l≤ n

• s
(αf1)
l = s(αf1)n +

∑l−n

i=1

(
k+ p

q
+ α

q
(i− 1)

)
= (l − n)k + l p

q
+ n

2
α
q
(n − 1) + (l−n)

2
α
q
(l − n − 1) if

n< l≤ 2n

• s
(αa1)
l =

∑l

i=1

(
p
q
+ α

q
(n− 1)1[i>n

2 ]

)
= l p

q
+
(
l− n

2

)+ α
q
(n− 1) if l≤ n

• s
(αa1)
l = s(αa1)n +

∑l−n

i=1

(
k+ p

q
+ α

q
(n− 1)1[i>n

2 ]

)
= (l−n)k+ l p

q
+ n

2
α
q
(n−1)+

(
l− 3n

2

)+ α
q
(n−1)

if n< l≤ 2n.

We obtain that s
(βf1)
l ≤

∑l

i=1 x
[βf2]
i because (i) when l≤ n, l β

2q
(n− 1)≤ l β

q

(
3n
4
− 1

2

)
and (ii) when

n < l ≤ 2n, l
2
β
q
(n− 1) ≤ β

2q
n2 + l β

2q

(
n
2
− 1
)
. Similarly, s

(βa1)
l ≤

∑l

i=1 x
[βa2]
i because (i) when l ≤ n,

l β
2q
(n− 1)≤ l β

q
(n− 1) and (ii) when n< l≤ 2n, l

2
β
q
(n− 1)≤ nβ

q
(n− 1).

On the other hand, s
(αf1)
l ≥

∑l

i=1 x
[αf2]
i because (i) when l≤ n, l

2
α
q
(l−1)≥ α

q
⌊ l
2
⌋
(
⌊ l
2
⌋− 1)

)
+(l−

2⌊ l
2
⌋)α

q
⌊ l
2
⌋ and (ii) when n< l≤ 2n, n

2
α
q
(n−1)+ (l−n)

2
α
q
(l−n−1)≥ α

q
⌊ l
2
⌋
(
⌊ l
2
⌋− 1)

)
+(l−2⌊ l

2
⌋)α

q
⌊ l
2
⌋.

Finally, s
(αa1)
l ≥

∑l

i=1 x
[αa2]
i because (i) when l≤ n,

(
l− n

2

)+ α
q
(n− 1)≥ 0 and (ii) when n< l≤ 2n,

n
2
α
q
(n− 1)+

(
l− 3n

2

)+ α
q
(n− 1)≥ α

q
(l−n)(n− 1). �

Lemma EC.4. When V (x) is quadratic,

1. U
[αf2]
A,i ≥U

[αf1]
A,i and U

[αf2]
B,i ≤U

[αf1]
B,i ;

2. U
[αa2]
A,i ≥U

[αa1]
A,i and U

[αa2]
B,i ≤U

[αa1]
B,i .

Proof. The results follow by comparing the respective entries in Table EC.1 after making the

following substitutions: (i) U
[ξr2]
θ,i =U

(ξr2)

θ,⌈ i
2 ⌉

with nA = n/2 and nB = n/2 and (ii) U
[ξr1]
θ,i =U

(ξr1)
θ,i with

nA = n and nB = n, for ξ = α,β and r= f, p, and i= 1, . . . ,2n:

1. U
[αf2]
A,i ≥ U

[αf1]
A,i ⇔ α2

2q
(n
2
+ ⌈ i

2
⌉ − 1) + αn

2
k ≥ α2

2q
(i− 1), which holds true for all i ≤ n. And,

U
[αf2]
B,i ≤U

[αf1]
B,i ⇔ α2

2q
(⌈ i

2
⌉− 1)≤ α2

2q
(i− 1), which is always true.

2. U
[αa2]
A,i ≥U

[αa1]
A,i ⇔ α2

q
(n−1)

(
n
2
− n−1

2

)
+αn

2
k≥ α2

q
(n− 1)

(
n
2
− n−1

2

)
1[i>n

2 ]
, which is always true.

And, U
[αa2]
B,i ≤U

[αa1]
B,i ⇔ 0≤ α2

q
(n− 1)

(
n
2
− n−1

2

)
1[i>n

2 ]
, which is always true. �

Lemma EC.5. When V (x) is quadratic,

1. U
(αa2)
A,i ≥U

(αf2)
A,i for all i if nA ≤ n/2;

2. U
(βa2)
B,i ≥U

(βf2)
B,i for all i if nA ≥ n/2.

Proof. 1. From Table EC.1, we obtain that U
(αa2)
A ≥U

(αf2)
A,nA

if and only if (n−1)
(
nB − n−1

2

)
≥

(n− 1)/2 or equivalently, if and only if nA ≤ n/2.
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2. From Table EC.1, we obtain that U
(βa2)
B ≥ U

(βf2)
B if and only if −(n− 1)2/2 + nA(n− 1) ≥

−(n+nA−1)2/8+nAn/2 or equivalently, if and only if n2
A+2nA(3n−5)−3(n−1)2 ≥ 0. The right-

hand side is a quadratic equation in nA, equal to −3(n−2)2 < 0 when nA = 1 and to n2/4+n−3≥ 0

when nA = n/2. Hence, there exists a root n̂ between 0 and n/2. �

Lemma EC.6. When V (x) is quadratic,

nA∑
i=1

U
[αf2]
A,i +

nB∑
i=1

U
[αf2]
B,i =

nA∑
i=1

U
[αa2]
A,i +

nB∑
i=1

U
[αa2]
B,i ≥

nA∑
i=1

U
[αf1]
A,i +

nB∑
i=1

U
[αf1]
B,i =

nA∑
i=1

U
[αa1]
A,i +

nB∑
i=1

U
[αa1]
B,i

nA∑
i=1

U
[βa1]
A,i +

nB∑
i=1

U
[βa1]
B,i =

nA∑
i=1

U
[βf1]
A,i +

nB∑
i=1

U
[βf1]
B,i ≥

nA∑
i=1

U
[βa2]
A,i +

nB∑
i=1

U
[βa2]
B,i ≥

nA∑
i=1

U
[βf2]
A,i +

nB∑
i=1

U
[βf2]
B,i .

Proof. The result follows from comparing the respective entries in Table EC.1 after making

the following substitutions: (i) U
[ξr2]
θ,i = U

(ξr2)

θ,⌈ i
2 ⌉

with nA = n/2 and nB = n/2 and (ii) U
[ξr1]
θ,i = U

(ξr1)
θ,i

with nA = n and nB = n, for any ξ = α,β and r= f, p, and i= 1, . . . ,2n. We then obtain:

nA∑
i=1

U
[βf2]
A,i +

nB∑
i=1

U
[βf2]
B,i = n

(
rA +

p2

2q
− β2

2q

( n
2
− 1

2

)2
)
+n

(
rB +

p2

2q
− β2

2q

( 3n
2
− 1

2

)2

−β
n

2

(
k− β

q

n

2

))
nA∑
i=1

U
[βf1]
A,i +

nB∑
i=1

U
[βf1]
B,i = n

(
rA +

p2

2q
− β2

2q

(
n− 1

2

)2
)
+n

(
rB +

p2

2q
− β2

2q

(
n− 1

2

)2
)

nA∑
i=1

U
[βa2]
A,i +

nB∑
i=1

U
[βa2]
B,i = n

(
rA +

p2

2q

)
+n

(
rB +

p2

2q
− β2

2q
(n− 1)

2 −β
n

2

(
k− β

q
(n− 1)

))
nA∑
i=1

U
[βa1]
A,i +

nB∑
i=1

U
[βa1]
B,i = n

(
rA +

p2

2q
− β2

2q

(
n− 1

2

)2
)
+n

(
rB +

p2

2q
− β2

2q

(
n− 1

2

)2
)

nA∑
i=1

U
[αf2]
A,i +

nB∑
i=1

U
[αf2]
B,i = n

(
rA +

p2

2q
+

α2

2q

(
n

2
+

1

2
(
n

2
− 1)

)
+α

n

2
k

)
+n

(
rB +

p2

2q
+

α2

2q

1

2
(
n

2
− 1)

)
nA∑
i=1

U
[αf1]
A,i +

nB∑
i=1

U
[αf1]
B,i = n

(
rA +

p2

2q
+

α2

2q

(n− 1)

2

)
+n

(
rB +

p2

2q
+

α2

2q

(n− 1)

2

)
nA∑
i=1

U
[αa2]
A,i +

nB∑
i=1

U
[αa2]
B,i = n

(
rA +

p2

2q
+

α2

q
(n− 1)

(
n

2
− n− 1

2

)
+α

n

2
k

)
+n

(
rB +

p2

2q

)
nA∑
i=1

U
[αa1]
A,i +

nB∑
i=1

U
[αa1]
B,i = n

(
rA +

p2

2q
+

α2

q

(n− 1)

4

)
+n

(
rB +

p2

2q
+

α2

q

(n− 1)

4

)
It is easy to check that

∑nA
i=1U

[αf2]
A,i +

∑nB
i=1U

[αf2]
B,i =

∑nA
i=1U

[αa2]
A,i +

∑nB
i=1U

[αa2]
B,i , that

∑nA
i=1U

[αf1]
A,i +∑nB

i=1U
[αf1]
B,i =

∑nA
i=1U

[αa1]
A,i +

∑nB
i=1U

[αa1]
B,i and that

∑nA
i=1U

[βa1]
A,i +

∑nB
i=1U

[βa1]
B,i =

∑nA
i=1U

[βf1]
A,i +∑nB

i=1U
[βf1]
B,i . We find that

∑nA
i=1U

[βa2]
A,i +

∑nB
i=1U

[βa2]
B,i ≥

∑nA
i=1U

[βf2]
A,i +

∑nB
i=1U

[βf2]
B,i if and only if

β2(n−1)/(2q)≥ β2(n−n2/8−1/2)/(2q), which always holds true when n≥ 2. Also,
∑nA

i=1U
[βa1]
A,i +∑nB

i=1U
[βa1]
B,i ≥

∑nA
i=1U

[βa2]
A,i +

∑nB
i=1U

[βa2]
B,i if and only if −β2(n− 1)2/(4q)≥ β2(n− 1)/(2q)− kβn/2,



e-companion to Author: Optimal Design of Social Comparison Effects ec5

which always holds true given that k≥ β(n−1)/q. Finally,
∑nA

i=1U
[αa2]
A,i +

∑nB
i=1U

[αa2]
B,i ≥

∑nA
i=1U

[αa1]
A,i +∑nB

i=1U
[αa1]
B,i if and only if α2(n− 1)/(2q)+αnk/2≥ α2(n− 1)/(2q), which is true for all k≥ 0. �
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