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Abstract

The density, size and location of stores in a retailer’s network influences

both the retailer’s and the consumers’ costs - with stores few and far be-

tween, consumers must travel a long distance to shop, whereas shopping

trips are shorter with a dense network of stores. The layout of the retail

supply chain is of interest to retailers who have emission reduction targets

and urban planners concerned with sprawl - are small local shops preferred

over large, “big-box”, retailers? A model of the retail supply chain is pre-

sented that includes operating costs (such as fuel and rent for floor space) as

well as a cost for environmental externalities associated with carbon emis-

sions. It is found that that a focus on minimizing exclusively operating

costs may substantially increase emissions (by 67% in one scenario) rela-

tive to the minimum level of emissions. A price on carbon is an ineffective

mechanism for reducing emissions. The most attractive option is to improve

consumer fuel efficiency - doubling fuel efficiency of cars reduces long run

emissions by about one third - while an improvement in truck fuel efficiency

has a marginal impact on total emissions.

Keywords: Sustainability, k-median, traveling salesman problem, carbon

tax, cap-and-trade
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1 Introduction

The combustion of fossil fuels is believed to contribute to climate change by adding carbon diox-

ide and other greenhouse gases to the atmosphere (IPCC 2007). Electric power generation and

transportation are two major sources of these emissions - electric power accounts for 39%, and

transportation accounts for 31% of 2 emissions in the U.S. in 2009 (EPA 2011). Among trans-

portation induced emissions, about 65% is due to the consumption of gasoline by personal vehicle

use (EPA 2011).

Factors that influence the emissions generated by a supply chain network include the size of

its facilities, the fuel efficiency of the vehicles used, the weight of the loads they carry, and the

distance they travel. This paper focuses on the downstream supply chain - the portion that includes

inbound replenishments to retail stores, the stores themselves and the “final mile” segment between

the retail stores and consumers’ homes. As the number of stores increases, thereby creating a dense

network, stores shrink in size and consumers find themselves closer to some store, so they need not

travel far to make their purchases. However, with more stores, the retailer must travel farther to

replenish its stores and its total floor space grows as inventory productivity falls.

The density of retail stores is of interest to urban planners. One concern, among others, is that

large retail stores contribute to a car culture that encourages consumers to drive further than what

they would drive if smaller store formats were available closer to where they live (Owen 2009; Duany

and Speck, 2010; Glaeser 2011; Shoup 2011). As an increase in vehicle miles traveled by consumers

leads to additional emissions, environmentalists have been critical of “big-box” stores. The issue

of retail store density is also relevant for a retailer’s strategic planning. For one, a retailer’s store

density influences its desirability to consumers - all else equal, a consumer favors the convenience

of a nearby store over a more distant store. For example, Pancras, Sriram and Kumar (2012)

estimate in the context of a fast food retailer that consumers behave as if each mile of travel costs

$0.60. Second, the density decision is also important to retailers with emission reduction targets.

For example, Walmart has pledged that it will remove 20 million metric tons of 2 from its

supply chain by 2015. These reductions can occur from the supply chain it directly controls (e.g.,

reductions in its fuel consumption), which are often called “scope 1” emissions. Alternatively,

reductions can come from further down the supply chain (e.g., reductions in its consumer’s fuel

consumption), which are part of what is called “scope 3” emissions. While it is probably too costly

to make major modifications to store density to achieve short term emission reduction targets, the

size and location of stores can be substantially modified over a long run horizon of five or more

years. For example, from 2006 to 2010, Walmart decreased the number of discount stores in the
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U.S. by a third (1209 to 803), increased the number of its larger supercenters by 60% (1713 to

2747) while also expanding its small store format, Neighborhood Markets, by nearly 60% (100 to

158) (Source: 2010 10k filing.)

In this paper a model is developed in which a retailer chooses the size, location and number of

stores to serve a region of customers. The retailer incurs costs for its physical space as well as

costs that are proportional to the distance it travels to replenish its stores. Consumers also incur

transportation costs that are proportional to the distance they must travel to shop at the nearest

store to their home. While the retailer uses a truck for its replenishments and consumers use

passenger vehicles (i.e., cars), both of their transportation costs are divided into three components:

a variable operating cost (e.g., wear and tear on brakes and tires), a fuel consumption cost and

an emissions cost (due to the consumption of fuel). Similarly, the retailer’s space cost has three

components: a variable operating cost (e.g., rent), an energy consumption cost (e.g., electricity

and natural gas) and an emissions cost. Given a set of  stores, a durable goods inventory

model is developed to determine the amount of physical space the retailer needs. The retailer’s

transportation cost can be modeled by the well studied Traveling Salesman Problem (TSP). The

consumer’s transportation problem is equivalent to the continuous version of the well studied -

median problem. Thus, the retail store density problem combines an inventory model with the

TSP and the -median problem.

An optimal retail supply chain design is presented for three different objectives. The first

ignores the cost of emissions and instead minimizes just the explicit operating costs incurred by

the retailer and consumers, such as wear-and-tear on vehicles, fuel usage, rent and electricity

consumption. This roughly represents that status quo in the United States in which there are

no required taxes on carbon emissions. Alternatively, a supply chain design could be chosen to

minimize total emissions. This objective avoids the debate as to the true cost of the externalities

caused by emissions (e.g., Cline, 1992; Shelling 1992; Stern 2007; Arrow 2007; Weitzman 2007) by

merely acting as if that cost is quite large. Comparing the supply chain that minimizes operating

costs with the one that minimizes emissions allows for a measure of the consequence of choosing

one objective over the other. For example, one can ask by how much emissions increase if operating

costs are minimized, or by how much operating costs increase if emissions are minimized.

Between the two extremes of just minimizing operating costs or just minimizing emissions,

a retail supply chain design is developed that minimizes total costs given an explicit price for

carbon emissions. Naturally, if the price of carbon is assumed to be low, this objective leads to a

supply chain that resembles the one that minimizes operating costs, whereas if the price of carbon

is assumed to be high, it recommends a supply chain that is similar to the one that minimizes
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emissions. This model addresses the question of how high that price needs to be for the system

to approximately minimize emissions.

There are several reasons to believe that failing to account for the cost of emissions leads to a

poor retail supply chain design. The emission of carbon is an example of a negative production

externality (Varian 1984) - the action of one reduces the utility of others. In this setting all agents

emit carbon through their actions, and therefore they all contribute to this negative externality.

It has been well established that self-interested agents tend to do "too much" of their action when

there is a negative externality, i.e., they drive too much and use too much electricity and natural

gas (Varian 1984). Of course, the importance of the distortion in actions from the socially optimal

ones depends on the intensity of the externality.

In the context of the downstream supply chain, it is reasonable to conjecture that the negative

effects of the carbon externality are substantial. For one, as already mentioned, it is possible that

the true cost of emitting carbon is high due to its potential to have numerous negative consequences

on our environment, such as climate change, ocean acidification, sea-level rise, and others. Next,

it is already understood in the context of transportation that a retail truck is substantially more

efficient at hauling goods than a passenger vehicle. A commonly used metric is the "cost per

tonne-kilometer" - the cost to transport one tonne of goods the distance of one kilometer. In

terms of this metric, a truck can be several orders of magnitude better than a car. Hence, in

a product’s journey from source to consumer home, it has been argued that costs and emissions

can be reduced considerably by replacing one kilometer of car transport with a kilometer of truck

transport (McKinnon and Woodburn, 1994). Given this reasoning, the downstream supply chain

emissions are probably minimized if the retailer builds many small stores close to consumers.

Finally, a retailer faces a tradeoff between store size and inventory productivity. Large stores that

serve large market areas require less space per unit of product than small stores. Consequently,

the energy intensity of small stores is higher. If retailers and consumers are not explicitly charged

for the cost of carbon, it is plausible that a retailer will chose store locations and sizes that will

lead to an undesirable level of emissions.

2 The Retail Store Density Problem

The retail store density problem focuses on the downstream supply chain. The retailer’s task is

to decide (i) the number, , and location of its stores in a single (polygon) region of area , (ii)

the size of the stores, (iii) how to route replenishment deliveries to these stores, (iv) the quantity

and timing of deliveries to the stores, and (v) the shape of the region.
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Consumers live uniformly throughout the region and they travel a straight line (i.e., the Euclid-

ian norm, 2) with their cars to shop at the nearest store from their home. The mean and standard

deviation of demand per unit of time for the entire region are  and  respectively. Demand is in-

dependent across time and areas. Consumers incur a cost  per unit of distance travelled per unit

of product purchased. (The subscript “” refers to the consumers’ “cars”.) Let  be the average

round-trip distance a consumer travels to a store. Thus, the average travel cost per consumer per

unit purchased is  All consumers purchase from the nearest store.

The retailer directly incurs two types of costs, one due to the transportation needed to replenish

its stores and the other due to the operation of retail floor space. In terms of transportation, the

retailer has a single warehouse where it receives goods from an outside supplier. The warehouse

is collocated with one of the  stores. The retailer has a single truck that is used to transport

goods from the warehouse to the stores - all deliveries must start at the warehouse and end at the

warehouse. Furthermore, the truck travels in straight lines between stores, delivers to all  stores

on each route, and completes its route instantly (i.e., fast enough such that transit time is not a

major issue). The retailer incurs a cost of  per unit of product delivered per unit of distance the

truck travels. (As with  the “” in  refers to the type of vehicle used.)  is a commonly used

measure of transportation efficiency - it is analogous to “$ per tonne-km”. Let  be the length

of the truck’s route, so the retailer’s transportation cost per unit sold is 

Several components are included in the transportation costs ($ −1 −1) of vehicle type 

 ∈ { }:

 =
 +  ( + )




where  is the non-fuel variable cost to transport the vehicle per unit of distance (e.g., $ 
−1); 

is the amount of fuel used to transport the vehicle per unit of distance (e.g.,  −1);  is the cost

of fuel per unit of fuel (e.g., $ −1);  is the amount of emission released by the consumption of one

unit of fuel (e.g.,  2 
−1);  is the cost of emissions per unit released (e.g., $ 2 −1); and

 is the load carried by the vehicle (e.g., ). The variable cost,   includes depreciation on the

vehicle, maintenance (such as tire replacement) and other costs that can be linked to the distance

the vehicle is driven. Fuel usage for the truck,  is measured at the average load of the truck,

which yields an accurate measure of true fuel usage when fuel usage is linear in the truck’s load

(which is approximately true), the truck always carries the same amount per trip, the truck makes

deliveries at a constant rate (e.g., the stores on the route are equally distant from each other), and

the truck travels at the same speed during the trip (Kellner and Igl 2012). Fuel usage for the

car,  is insensitive to the load carried as the load for a car is generally a small fraction of the
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vehicle’s total weight. The truck’s load,  is taken to be the legal carrying capacity for the truck,

whereas the size of the car’s load, , reflects shopping habits more than a physical constraint.

The cost of emissions,  is assumed to be independent of the source of the emissions, which is

accurate given the focus on carbon emissions: a kilogram of 2 has the same impact if emitted

by a car or a truck. We refer to  as the “price of carbon”. This cost is interpreted as the true

cost of emissions including all externalities from other emitted gases or polutants. (See Currie

and Walker (2011) for a discussion of other polutants due to vehicle traffic.) Depending on which

objective is used to design the supply chain, it may or may not be included in the analysis.

It is useful to divide  into two categories. The operating costs include variable costs and fuel

consumption, i.e., ( + )   Emissions refers to the quantity of carbon emissions,  

and emissions costs include the price of carbon,  

Retail space is proportional to the amount of inventory the retailer holds in each store - doubling

the amount of inventory doubles the needed foot print area of a store (holding the storage height

constant). Thus, space costs are related to inventory quantities. Let  be the retailer’s space

costs per unit per unit of time the unit is held in the store’s inventory and let  be the average

time a unit spends in inventory at a store. (The subscript “” refers to retail “space” throughout.)

Hence, the retailer’s cost of space per unit sold is  Neither the cost of inbound deliveries to

the retailer nor warehouse space costs are considered in this analysis. The retailer sells durable

goods, so the cost for spoilage or waste is not considered.

The space cost of inventory ($ −1 −1) is also divided into several components:

 =
 +  ( + )




where  is the variable cost per unit of retail space per unit of time,  is the amount of energy

needed to maintain one unit of space for one unit of time,  is the per unit price of energy,  is

the carbon emissions from each unit of energy and  in the number of units of product stored per

unit of retail space. The variable cost  primarily includes the cost of rent (which is generally

quoted as a cost per unit of area per unit of time, such as $ −2 −1) but it could also include

the opportunity cost of capital or inventory obsolescence costs. The retailer uses energy primarily

from two source: electricity for lighting, cooling and operating office equipment; and natural gas for

heating. Thus, ,  and  are taken to be averages weighted by the relative usage of electricity

and natural gas. This does not restrict other measures of energy which could be appropriate

given the context. As before, operating costs include the variable and fuel consumption costs, and

emissions are proportional to fuel consumption.

Let  be the the average cost per unit sold ($ −1), which includes the average cost to transport
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a unit from the retailer’s warehouse to a consumer’s home as well as the cost of the space needed

for the retail stores:

 =  +  + 

If  is the correct price of carbon and included in   and  then minimizing  minimizes

society’s total cost. Minimizing  is also an appropriate objective for the retailer when the

retailer must compensate consumers for their travel costs. Pancras, Sriram and Kumar (2012)

provide evidence that consumers do account for travel costs in their shopping decisions. The

retailer provides this compensation to consumers by modifying its price - with a dense network

of many stores the retailer charges a higher price because consumers are offered the convenience

of a store near their home, but with a sparse network of few stores, the retailer charges a lower

price to motivate consumers to travel the longer distance. In this formulation the price reduction

is exactly one-for-one with any additional transportation costs incurred by the consumers, leaving

aggregate demand constant.

If carbon is not charged, i.e.,  = 0 the the objective to “minimize ” is equivalent to

“minimize operating costs”. Alternatively a “minimize emissions” objective could be adopted,

which is equivalent to “minimize ” under the assumption of a very high price for carbon (e.g., as

 →∞)
Parts of the retail store density problem are familiar. Given a set of  stores, the routing sub-

problem is the well-known Traveling Salesman Problem (TSP) - find a route through  locations,

starting and ending at the same location, and visiting each location exactly once so as to minimize

the total transportation cost. There exists an extensive literature on heuristics and solutions to the

TSP (see Bramel and Simchi-Levi 1997; Lawler, Lenstra, Rinnooy Kan and Shmoys 1985). More

generally, there is a considerable literature on vehicle routing, such as when a fleet of vehicles (as

opposed to a single vehicle) must be used to make deliveries to a set of known points in a region

so as to minimize travel distances (e.g., Dantzig and Ramser 1959; Daganzo 1984; Haimovich

and Rinnooy Kan 1985). This literature is further extended by work that includes inventory

management along with vehicle routing (e.g., Federgruen and Zipkin 1984; Burns, Hall, Blumenfeld,

Daganzo 1985; Gallego and Simchi-Levi 1990). The key differences between this supply chain design

problem and the TSP and its extensions are (i) the retailer can choose the location of the stores

and (ii) the retailer accounts for the consumers’ transportation costs (i.e., the “final mile” of the

supply chain is not ignored).

Focusing on just the consumers’ transportation costs, the problem is analogous to the well

known −median problem (which is also referred to as the −median problem or multi-source

Weber problem or location-allocation problem). In the −median problem there exists a set of
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demand locations. The objective is to choose  locations - call them stores - to minimize the total

transportation cost from the demand locations to their nearest store. The  - median problem is

generally studied in its discrete form (i.e., a finite number of possible demand and store locations)

but there has also been some work on the continuous  −median problem, which is the retailer’s
supply chain design problem when the retailer’s transportation and space costs are ignored (see

Papadimitriou, 1981). Work on the −median problem has focused on good solution procedures,

rather than on the structure of the solution. See Daskin (1995) for an overview of the −median
problem. Brimberg, Hansen, Mladenovíc, Taillard (2000) study numerous solution algorithms

for the discrete −median problem and Fekete, Mitchell and Beurer (2005) do the same for the

continuous version of the problem.

This combination of the TSP and the −median problem has not been previously studied

(with or without considering inventory/space). It extends the traditional boundary of supply

chain analysis, which typically incorporates just the firm, to include the final leg of transportation

performed by consumers.

There is some work on the interaction between operational decisions and emissions. Hoen, Tan,

Fransoo and van Houtum (2010) analyze a single location inventory model in which the firm can

select from a set of transportation modes that vary in their per unit delivery cost, level of emission

and replenishment lead time. Benjaafar, Li and Daskin (2010) analyze a single location model in

which inventory management decisions (the timing and quantity of orders) influence supply chain

holding costs, backorder costs and emissions which include the following: (i) a fixed amount per

unit held on average in inventory; (ii) a fixed amount per unit sold and (iii) a fixed amount per

delivery. Unlike those two papers, this model has multiple locations. Unlike Hoen, Tan, Fransoo

and van Houtum (2010), the retailer in this model has a single mode of transportation - the focus

is on distances travelled rather than lead time. Unlike Benjaafar, Li and Daskin (2010), this model

does not include a fixed amount of emissions per unit sold (this would not influence the decisions

considered), and the amount of emissions per delivery is not fixed (it depends on the number of

stores and their locations). Similar to Hoen, Tan, Fransoo and van Houtum (2010), this model

finds that charging an explicit price for carbon emissions, unless unreasonably high, is unlikely to

influence decisions enough to reduce emissions substantially. Gillerlain, Fry and Magazine (2011)

also study a model in which a retailer and consumers incur transportation costs and emission costs

based on distances. They too evaluate the cost minimizing number of stores, but they impose a

different spacial geometry - in their model, stores and consumers are located on the boundary of a

circle. They find that imposing a constraint on a retailer that limits its emissions may actually lead

to an increase in total emissions (because the constraint on the retailer leads to higher consumer
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emissions). These papers consider the effectiveness of different methods for providing incentives

to reduce emissions (e.g., taxes or constraints) but they do not measure the impact for failing to

provide incentives.

Caro, Corbett, Tan and Zuidwijk (2011) consider a supply chain in which firms have the oppor-

tunity to make investments to reduce emissions. They do not explicitly consider store locations,

replenishment routes or inventory. Instead, they study how different methods for allocating carbon

emissions to various processes influences the amount of investment in emission reductions. Keskin

and Plambeck (2011) also study carbon allocation rules and find that a poorly chosen rule may

lead self interested firms to decisions that raise overall emissions. Ata, Lee and Tongarlak (2012)

study the upstream structure of the fresh produce supply chain, holding the downstream structure

(the number and location of stores) fixed.

There is a large literature on facility location problems (see Daskin 1995 and Snyder and Shen

2011) that generally focuses on the fixed cost of opening facilities and the transportation cost of

serving a set of customers from the opened facilities. Mak and Shen (2010) review a number

of studies that include inventory costs in the facility location problem: e.g., Shen, Coullard, and

Daskin (2003); Shu, Teo, Shen (2005); and Shen and Qi (2007). A key insight from these mod-

els is that there exists is a tradeoff between location and economies of scale in inventory - fewer

warehouses are more inventory efficient but that approach increases transportation costs because

the warehouses are also further away from customers. The same well-known tradeoff regarding

inventory and economies of scale exists in this model with retail stores - the more stores, the less

inventory efficient they are as they capture less demand. However, this model is also different

than those papers in several ways: whereas they allow the decision maker to assign a demand

source to the non-closest warehouse (thereby allowing demand to be aggregated, but resulting in a

combinatorial optimization problem), in this model customers (the demand sources) always choose

the nearest store, so this option for aggregation is not available; they have a single level of trans-

portation in the supply chain (between warehouses and stores), whereas this model considers the

interaction between two transportation levels of the supply chain (inbound to stores and inbound

to consumers’ homes); and most importantly, they do not focus on the consequences for failing to

consider critical costs within the supply chain (as in the consequence of ignoring emissions costs).

3 Analysis

The retail store density problem involves a number of related decisions, primarily store locations,

replenishment routes and store sizing. This analysis first considers transportation costs and then
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Figure 1: Voronoi diagram depicting the service regions for a six store configuration.

Figure 2: Two possible delivery routes through a configuration of six stores.

evaluates space costs.

Given a set of  store locations, the region of customers over area  can be partitioned into 

sub-regions that represent the stores’ “service areas”, i.e., the store is closer to all customers in its

service area than any other store. This partitioning is also called a Voronoi diagram. Figure 1

displays one possible partitioning: In addition to store locations, the retailer must choose a TSP

route to minimize its transportation costs. Figure 2 presents two possible routes in the Figure 1

partitioning.

The optimal locations for stores in the retail density problem is unknown and may involve a

complex geometry. Figure 3 displays a tiling with equilateral triangles. There are two other fea-

sible tilings that consist of a single regular polygon, one with squares and the other with hexagons.

This paper assumes one of the these three tilings is implemented. Therefore, the resulting Voronoi

diagram is a tessellation of a single regular polygon and all service regions have the same area.

Carlsson (2012) considers additional tilings and finds that total transportation costs can be reduced

with an Archimedean spiral relative to the three considered here. If the retailer’s transportation

and space costs are sufficiently low (so it is desirable to have many facilities) then he shows that the

Archimedean spiral can reduce transportation costs relative to the triangle tiling by approximately

7%.
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Figure 3: Triangle tessellation of stores

Within a store’s service area, consumers have an average round trip distance of

 = 
−12 (1)

where  depends only on which tiling is selected and the area of the region, . ( is proportional

to
√
) The retailer’s distance to deliver to all of the stores is

 = 
12 (2)

where  also depends only on which tiling is selected and the area . ( is proportional to
√
)

See the Appendix for the derivation of the above relationships. The consumer’s travel distance

equation assumes that all consumers in a store’s service area indeed purchase from the store, i.e.,

the market is fully “covered”. Market coverage can be relaxed without changing the qualitative

insights of the model - market coverage is often optimal, and even if not, it is generally optimal to

have near market coverage.

Now turn to the cost of retail space. Given that retail space is directly proportional to the

amount of inventory held, an inventory model is needed. In this context the optimal policy to

choose quantities and dispatches is unknown and likely complex. Heuristic policies in similar

situations are developed by Cachon (2001) and Gürbüz, Moinzadeh and Zhou (2007), but their

results do not provide closed form estimates of inventory levels. Hence, the approach taken here

is to develop a tractable approximation of this inventory system.

Assume the retailer’s truck is dispatched with  units every  units of time, which is called

a "period". Each store places an order every period and receives a replenishment with a zero lead

time (or the lead time is sufficiently small relative to the period length that it can be effectively

ignored). Each store operates with a base stock policy: order enough inventory to ensure that the

store has  units immediately after a delivery. For store  let  be its demand in period  ,

and let  be its inventory at the end of period   There are no lost sales (i.e., demand can be

backordered), so   0 is possible. As the retailer sells durable goods, there is also no spoilage.
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Furthermore, the offered product variety is held constant. It follows that

+1 =  +
¡
( −  )

+ + +
¢+ − +1

where  is an adjustment to store ’s order to ensure a full truck load delivery:

X
=1

+1 =  −
X

=1

( −  )
+ 

For example, if the sum of the orders from the stores is less than a truckload, additional inventory

is sent to fill the truck, and if orders exceed the truck’s capacity, then some stores receive less than

their order. This inventory policy is difficult to analyze primarily because the adjustment  may

cause a delivery in one period to be more or less than demand in the previous period. However,

if the store operates such that stockouts are rare and stores rarely start a period with more than

 units of inventory, then

[ ] ≈  +[ ]−[ ]

≈  −[ ]

because on-average the average adjustment is zero, [ ] = 0. If demand is taken to be normally

distributed, then  = [ ] +  , where  is the standard deviation of a store’s demand in one

period and  is a constant chosen by the firm to influence the service level (i.e., the probability of

being in-stock at the end of a period). Thus,

[ ] = 

is an estimate of a store’s inventory. Each store services an area (1) of the total region and

each period has  length of time, so

 =

r
1



r



 =

r





(Recall,  and  are the mean and standard deviation of demand per unit of time.) The average

time a unit spends in the retail store,  is [ ] so the average space cost per unit sold is

 = 
[ ]


= 

12 (3)

where

 = 

r




³


´


There are three terms in the  constant: inventory increases as the retailer chooses a higher

service level () or if deliveries become less frequent (
p
 increases) or if demand becomes more

variable (the coefficient of variation of aggregate demand,  increases).
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From (3), the inventory cost per unit grows proportional to 12 : as more stores are added units

stay in the store longer, thereby incurring greater space costs. This reflects the notion that there

are statistical economies of scale in managing inventory: stores with larger service areas have higher

inventory productivity because they experience demand with a lower coefficient of variation.

Combining the retail space costs, (3), with the transportation distances, (1) and (2), the supply

chain cost function is

 () = 
−12 + ( + )

12 (4)

Considering only the transportation costs, the cost function () is consistent with several studies

of probabilistic versions of the k-median and TSP problems. For example, Fisher and Hochbaum

(1980) consider the k-median problem of selecting  store locations from a set of randomly chosen

sites to minimize the total distance consumers must travel to the closest of the  stores. They find

that the value of the optimal cost grows proportional to
p
1, as in (4). For the TSP, Beardwood,

Halton and Hammersley (1959) show that the shortest distance through  randomly selected points

in an unit area is asymptotically proportional to
√
, again, as in (4).

Table 1 summarizes the transportation constants in the cost function.

Table 1: Distance coefficients for different tessellations for  = 1

tessellation    
triangle 0807293 0877383 0708 0920

square 0765196 1000000 0765 0765

hexagon 0754393 1074570 0811 0702

For a given number of stores () and a fixed region size, consumers prefer hexagons because

the hexagon pattern has the lowest . (Others have observed that the “honeycomb” pattern is

effective for the −median problem - Papadimitriou, 1981). The firm, on the other hand, travels

the farthest with the hexagon tessellation. In all cases, consumers on average travel a shorter

distance than the retailer (  ) despite the fact that some consumers must travel farther (e.g.,

as much as twice as far with the triangle tessellation). Consequently, if it were equally costly for

consumers and the retailer to transport goods, then one would expect the optimal tessellation to

have few stores, forcing consumers to drive long distances.

If  is allowed to be non-integer, minimization of () is straightforward, given that it is

quasi-convex in  Let ∗ be the cost minimizing number of stores:

∗ =


 + 
 (5)

From Table 1,   1 so 
∗  2 only if    which is likely because the load carried by a

truck is substantially larger than the load carried by a car,    Section 4 provides specific

estimates to confirm that   .
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The minimum cost is

 (∗) = 2 ()
12 ( + )

12 

If the cost of retail space is low (or ignored), then the triangle tessellation is best no matter

the relative transportation costs, because, according to Table 1, that minimizes .
1 In fact,

the transportation cost with the triangle tessellation is about 7% lower than with hexagons (1-p
07080811). It is also possible to show that for a single polygon of  sides,  is decreasing

for all  ≥ 3 suggesting that the triangle tessellation may perform well even with tessellations that
include more than one regular polygon. However, if the retailer’s transportation costs are low (or

ignored) relative to space costs, then the hexagon tessellation is best, as it minimizes  In fact,

when the retailer’s transportation cost is ignored, for a fixed area of customers served, the optimal

configuration has each store with a circular service area of customers - for a fixed area of uniformly

distributed consumers, a circle minimizes the average distance consumers travel.

The distances  and  are measured by the Euclidian norm, 2 Another common norm is

1 which is sometime referred to as the "Manhattan" norm or the "city-block" norm in which

the distance between points {1 1} and {2 2} is taken to be |2 − 1| + |2 − 1|  i.e., travel
occurs along a square grid. It is possible to show that for consumers, even with the 1 norm, their

round-trip distance to the nearest store is proportional to −12 With the 1 norm, the retailer’s

travel distance is easiest to estimate with the square tessellation, and in that case the distance

continues to be proportional to 12 Hence, these results do not appear to be sensitive to how

distance is measured.

The solution ∗ minimizes total supply chain costs, only if the price of carbon,  is fully charged

to the retailer and consumers. There are a number of reasons why this may not incur, including

the fact that a precise measure of  is difficult to obtain. Hence, it is worthwhile to consider two

alternative approaches for selecting a design for the downstream chain design. The first minimizes

total emissions while ignoring explicit operating costs. In that case a design is chosen as if the

cost of emissions is extremely high relative to operating costs (i.e., operating costs are dwarfed by

emissions costs, so they can be effectively ignored). The second minimizes explicit operating costs

while ignoring emission costs. That case is relevant if one believes emissions externalities are small

or there is no explicit means in place that charges for carbon emissions. This can be taken to be

the current status quo.

1 When exact values of the TSP are utilized (and retail space costs are ignored), then triangles

are best (among the three) for  = 2 and  ≥ 5 hexagons are best for  = 3 and squares are best
for  = 4.
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Let  () be total emissions per unit,

 () = 


−12 + (


 + 


)

12

and () be total operating costs per unit,

 () = 


−12 + (


 + 


)

12

where, for  ∈ {  }
 =






and

 =
 + 




Note that () is not actually a cost, as it is total emissions, but for notational consistency it is

represented with a “” nevertheless.

As with () both () and () are quasi-convex and a cost minimizing  can be found:

 = argmin


() =







 + 




 and  = argmin


() =







 + 






As one would expect, as carbon becomes expensive, the optimal design approaches the emissions

minimizing design, and as carbon becomes cheap, the optimal design approaches the operating cost

minimizing design:

lim
→∞

∗ =  and lim
→0

∗ = 

Further, the optimal design falls somewhere between the two extreme designs: min{ } ≤ ∗ ≤
max { } 
Whether the emissions minimizing design is dense with stores (  ) or sparse with stores

(  ) depends on the parameter values of the technologies. In particular, if   1 then the

emissions minimizing design is dense with stores (because if   1 then ∗  0), where for

 ∈ {  }

 =



+

 +


+


  =


 + 
=




 and  =

 ( + )



The parameters  and  are introduced for notational convenience and are referred to as the

emissions to operating cost ratios - they are the ratio of emissions to operating cost for one vehicle

or unit of space for one unit of time, independent of the amount of product carried or stored

(i.e., independent of ). For example, it is the emissions to move a car one  relative to

the operating cost to move the car one  To summarize, minimizing emissions surely requires

a denser network with more stores when   max{ } but minimizing emissions does not
always involve a denser network - when   min { }  the emissions minimizing supply chain
may have few stores because the consumers’ cars have low emissions relative to their operating
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costs. This result contrasts with the intuition that because trucks are considerably more efficient

at hauling goods than cars (on a $ per  per  basis), the emissions minimizing supply chain

should surely be dense with stores (McKinnon and Woodburn 1994). That intuition is based on

the assumption that each additional  driven by the truck replaces a  driven by a car. That

is correct if consumers and stores are located exclusively on a line. In a linear world, moving a

store closer to a consumer might swap one car  for a truck , thereby producing a substantial

efficiency gain. But in a two dimensional world this one-for-one swapping is not possible - as the

number of stores increases, each additional  traveled by truck replaces a smaller and smaller

distance traveled by car.

Now consider the supply chain’s emissions, operating costs and total costs with these different

designs. Define the operating cost penalty for minimizing emissions as ()()− 1 - this is
the percentage increase in operating costs that a supply chain incurs when the emissions minimizing

design is chosen. This provides a measure of the explicit cost to adopt a "minimize emissions"

objective. Some algebra yields,

()

()
− 1 = 1

2

³
12 + −12

´
− 1 = 1

2

Ãµ




¶12
+

µ




¶−12!
− 1

If  = 1 minimizing emissions also minimizes operating costs. This could occur in the unlikely

case in which  =  =  Otherwise, there generally is a penalty. The magnitude of this

penalty can be bounded:

()

()
≤ 1
2
max

(µ



¶12
+

µ



¶−12


µ



¶12
+

µ



¶−12)
− 1 (6)

The bound provides intuition for when the penalty is small and when it might be large. In

particular, if  and  are sufficiently close to 1, the emissions penalty is small. However,

the emissions penalty can be large if there is a large discrepancy between either  and  or

between  and 

Define the emissions penalty for minimizing operating costs as ()() This penalty is

identical to the previous one considered, and shares the same penalty bound, (6):

()

()
=
1

2

³
12 + −12

´
− 1 = 1

2

Ãµ




¶12
+

µ




¶−12!
− 1

Hence, if there is a small emissions penalty, then there is a small operating cost penalty and a large

emissions penalty is always matched with a large operating cost penalty.

The next two penalties reflect the total cost penalty for adopting one of the extreme approaches

of either minimizing just emissions or just operating costs:

∗()
∗(∗)

=
1

2

Ãµ


∗

¶12
+

µ


∗

¶−12!
− 1 and

∗()
∗(∗)

=
1

2

Ãµ


∗

¶12
+

µ


∗

¶−12!
− 1
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Refer to these as the total cost penalties. If the cost of carbon is extremely high or extremely low,

then these total cost penalties approach the emissions and operating cost penalties:

lim
→∞

∗()
∗(∗)

= lim
→0

∗()
∗(∗)

=
()

()
=

()

()


4 Parameter Estimates

This section provides estimates for the parameters in the retail store density problem. The first

objective is to determine if the emissions minimizing design has a denser network of smaller stores

relative to the operating cost minimizing design (i.e., if   ) The second objective is to

determine the magnitude of the various penalties. Baseline estimates are given as well as several

scenarios that indicate plausible ranges. The section ends with a discussion of options for reducing

emissions.

Begin with the transportation parameters. The average mileage of passenger vehicles in the

U.S. (in 2009) is 211 −1 or 8.97  −1 (EPA 2009). Fuel consumption is then  = 1897

= 0111  −1 A typical retailer truck travels 6 miles per gallon of diesel, which yields a fuel

consumption of  = 0392  
−12

From EPA (2005), 8.8  of 2 are emitted per gallon of gasoline, or  = 2325  2

−1. From the same report 10.1  of 2 are emitted per gallon of diesel, or  = 2669  2

−1. On May 21, 2012 the national average price per gallon of gasoline and diesel, respectively,

were  = 098 $ −1 and  = 105 $ −1 (http://www.eia.gov/petroleum/gasdiesel/). For the

variable operating cost of a car, Barnes and Langworthy (2003, Table 4.2) provide an estimate

of $00644 −1 in 2003 dollars. Adjusting for inflation of 2.5% per year, yields a 2012 estimate

of  = $00804 −13 For trucks, the comparable estimates in Barnes and Langworthy (2003)

2 The Bureau of Transportation Statistics (2011) Table 4-14 reports that truck fuel con-

sumption in the United States was 5.9 in 2004 but dropped to 5.4 by 2008. Bonney (2009) re-

ports that Walmart’s fuel efficiency in 2005 was 5.9 miles per gallon, which increased to

7.1 miles per gallon by 2008.

3 The American Automobile Association (2011) suggests  = $00621 −1 : the average

cost per kilometer to drive a sedan includes $0.0278 for maintenance, $0.006 for tires, and

$0.0283 for distance related depreciation (in $ −1) (Three observations are provided for

the annual depreciation cost {10000,$3471}, {15000,$3728} and {20000,$3924}, where the first

term is the miles driven during the year and the second is the total depreciation cost. A

linear regression through these observations yields a slope of $0.0453 per mile, or $0.0283 −1)
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are $0.1375 −1 in 2003 dollars and the 2012 estimate of $0172 −1 which does not include

driver wages. If driver wages are included, at $50,000 per year and 100,000 miles, their estimate is

 = $0484 
−1

McKinnon and Woodburn (1994) report that the average consumer in a survey carried  = 18

 of goods with each shopping trip. A retail truck can carry up to 45,000 lbs in the U.S.,

which is about  = 20 000  Even if consumers carried 40 kgs per shopping visit, the retailer’s

truck carries a load that is 500 times greater. In terms of variable operating costs, the car incurs

+  = $0189 
−1 or $0.30 per mile, and the truck incurs +  = $0896 

−1 or $1.43

per mile. Given that a truck has a variable operating costs per  that is less than 5 times that of

a car, but carries at least 500 times more product, it follows that    : if the price of carbon is

ignored ( = 0) and  = 18 and  = 20 000 then  = $00105 
−1 and  = $0000045 

−1

yielding a ratio of  = 235 Table 2 summarizes the transportation parameters.

Table 2: Baseline transportation parameters

    
Consumer cars ( = “”) 0.111 2.325 0.0804 0.98 18

Retailer truck ( =“”) 0.392 2.669 0.484 1.05 20,000

Units are  =  −1;  =  2 
−1;  = $ −1;  = $ −1;  = 

To consider alternative scenarios, it is not necessary to vary the emissions per liter for gasoline

and diesel,  and  because these are estimated with little error. It is possible that future fuel

efficiency could change. For example, current U.S. standards require that automobile manufac-

turers achieve 54.5 miles per gallon among the cars in their fleet by 2025 (Vlasic 2011), which

would represent a 158% improvement over the 2009 level. Three additional scenarios can be con-

structed in which consumer fuel efficiency doubles, retail fuel efficiency doubles, or both double.

Increasing fuel efficiency (decreasing ) is analogous to increasing variable operating costs (be-

cause  =  ( + )  cutting fuel usage in half is the same as doubling variable operating

costs). The final parameters are the cost of gasoline,  and diesel,  Substantial asymmetries

in these two prices have not occurred historically, but they do vary considerably. Suppose both

could increase by a factor of 2:  = 196 and  = 210 Table 3 lists the emissions to operating

cost ratios for five scenarios.

The estimate  = $00837 −1 is comparable. The AAA focuses on the first five years

of vehicle life, so it is expected to underestimate the variable cost of operating the existing

fleet, which has an average age of approximately 10.8 years (Meier 2012).
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Table 3: Transportation emissions to operating cost ratios,  and 
∗

Scenario  
Baseline 1.364 1.168

High consumer (car) fuel efficiency: 2 0.957 1.168

High retailer (truck) fuel efficiency: 2 1.364 0.758

High consumer and retailer fuel efficiency: 2, 2 0.957 0.758

High fuel prices: 2 2 0.866 0.800
∗
Fuel efficiency scenarios double fuel efficiency and the high fuel scenario doubles the price of gasoline and diesel

Now consider the retail space parameters:    and  The cost of retail space,  varies

considerably by the quality and type of the location - according to loopnet.com, among the top 20

metropolitan areas in the United States, in March 2012, the average retail lease space was $19.8

per square foot per year, with a low of $12.26 (Detroit) and a high of $36.46 (San Francisco).

Retail space in a successful shopping mall, can be considerably higher, as in $50 per square foot

per year (Whitaker 2012). For the baseline scenario, take $198 per square foot per year, which is

 = $21285 
−2 −1

Table 4 provides electricity and natural gas usage by type of retailer in the United States. The

average February 2012 price of electricity to commercial customers in the U.S. was $0.101 −1

(Table 5.6.A. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by

State, February 2012 and 2011). The price of natural gas for commercial firms has ranged from

$5 to $15 per 1000 cubic feet over the period of 1984-2012, with a February 2012 average of

$7.97 (http://www.eia.gov/dnav/ng/hist/n3020us3m.htm). For the baseline scenario, combine

these prices with the average mercantile consumption levels reported in Table 4 to yield  =

2066× 0101 + 2489× 000797 = $2285 −2 −1.

Table 4: Electricity and natural gas usage by retail type

Mercantile

Non-mall Mall All Food Sales

Electricity ( −2 −1) 154.2 240.0 206.6 522.8

Natural gas (3 −2 −1) 222.4 264.0 248.9 327.9

Source: Energy Information Administration, 2003 Commerical Buildings Energy Consumption
Survey: Table C1A

From eGRID2012 Version (1.0) (year 2009 data), average U.S. emissions is 055  2 −1

The lowest emissions region has 0.23  2 −1(Upstate NY) and the highest has 0.83  2

−1 (Rockies). Natural gas emits 005  2 −3 (EPA emissions calculator 2012). For

the baseline scenario, combine the U.S. average electricity emissions and the natural gas emissions

with the average mercantile consumption levels reported in Table 4 to yield  = 2066× 055 +
2489× 005 = 1261  2 

−2 −1

Table 5 provides baseline and alternative scenarios for the parameters relevant to  In all
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cases, natural gas emissions are taken to be 005  2 
−3 the price of electricity is $0.101

−1 and the price of natural gas is $7.97 per 1000 cubic feet. The “low electricity emissions”

scenarios corresponds to the emissions of the lowest emissions region in the U.S. (023  2

−1) and the “high electricity emissions” scenario corresponds to the highest emissions region

(083  2 −1). Clean energy could be produced locally by the retailer, as in roof solar

panels, or more distant renewable power, as in hydro-electric production. Clean electricity could

also be produced by carbon capture and storage technology - see İ̧slegen and Reichelstein (2011).

The “high rent” scenarios double the cost to rent per square meter per year relative to the baseline

(to approximately $40 per square foot per year). The “high fuel usage” scenarios correspond to

the usage of Food Sales retailers (i.e., groceries), which are higher in large part due to the need for

product refrigeration.

Table 5: Retail space baseline and alternative scenarios for parameters that yield 

Scenarios    
Baseline 212.8 126.1 22.9 0.535

Low electricity emissions intensity 212.8 60.0 22.9 0.254

High electricity emissions intensity 212.8 183.9 22.9 0.780

High rent 425.7 126.1 22.9 0.281

Low electricity emissions intensity and high rent 425.7 60.0 22.9 0.134

High fuel usage 212.8 304.0 55.4 1.133

High fuel usage and high rent 425.7 304.0 55.4 0.632

 =$ 
−2 −1;  =  2 

−2 −1;  =$ −2 −1;  = 2 $
−1

“Low electricity emissions intensity” corresponds to 0.23 kg CO2 per kWh. “High electricity emissions intensity”
corresponds to 0.83 kg CO2 per kWh. “High rent” doubles the rent per square meter per year. “High fuel usage”
corresponds to the usage of Food Sales retailers listed in Table 4.

The remaining parameters to estimate are part of  and  As the cost per  due to trucking is

considerably less than the cost of car transportation or physical space, assume a hexagon tessellation

is adopted. (The qualitative results presented are the same for the triangle or square tessellations.)

As distances are measured in kilometers, let  = 10 000 2: the retailer serves a region that is of

the order of magnitude of 100  by 100  It follows that  = 754 and  = 1075 To evaluate

 use  = 25 (which corresponds to a 99.4% in-stock probability),  = 7 ×   −1 (which

implies one delivery per day) and  = 01 (which is the coefficient of variations for total demand

in the region over one week) :  = 25×
p
17 × 01 = 00945  is a challenging parameter to

estimate as it is the  of product per 2 Using 2011 data from Walmart,  = 141  −24.

Hence, using baseline estimates for  and  yields  = 016 which is 33 times larger than 

4 In 2011, Walmart’s annual inventory turns were 8.75. U.S. sales revenue was $309B. Hence,

U.S. inventory (in sales $s) was $309B/8.75 = $35.3B. U.S. square footage of retail space

was 698M, so Walmart held $35.3B / 698M = $50.59 of inventory per square foot. From
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It seems reasonable to conclude, even with some substantial estimation error in  and the other

parameters, that   

The first issue to address is whether the emissions minimizing supply chain is more dense with

smaller stores than the operating cost minimizing supply chain, i.e., is   ? Taking   

this occurs if    Comparing Tables 3 and 5, that holds for the baseline scenarios, and

occurs for most combinations of scenarios with the exception of high consumer fuel efficiency

( = 0957) and high retailer space fuel usage ( = 113) Thus, the emissions minimizing

supply chain generally has more stores, located closer to consumers, than the supply chain that

minimizes operating costs. This is particularly true if the retailer has lower electricity emissions

and high rent ( = 0133) In those cases, a retailer that minimize operating costs builds large

stores that are far from customers (to economize on its high rent costs) whereas a retailer that

minimizes emissions builds many small stores close to customers (to exploit its clean electricity).

Table 6 indicates that the emissions minimizing supply chain may have many more stores, upwards

of nine times more, than the operating cost minimizing supply chain

Table 6: Ratio of the number of stores that minimize emissions to number that minimize

operating costs, 

Scenarios Baseline 2 2 2 2 2 2
Baseline 2.5 1.7 2.5 1.8 1.6

Low electricity emissions intensity 4.8 3.4 5.1 3.6 3.1

High electricity emissions intensity 1.7 1.2 1.7 1.2 1.1

High rent 4.6 3.2 4.8 3.3 3.0

Low electricity emissions intensity and

high rent

9.1 6.4 9.7 6.8 5.8

High fuel usage 1.2 0.8 1.2 0.9 0.8

High fuel usage and high rent 2.1 1.5 2.2 1.5 1.4

Now turn to the evaluation of the penalty bound, (6). Considering just the transportation

parameters,  and  the bound for the baseline scenario is remarkably small, about 03%:

1

2

Ãµ
1364

1168

¶12
+

µ
1364

1168

¶−12!
− 1 = 0003

Recall, this applies to the operating cost penalty for minimizing emissions, the emissions penalty for

minimizing operating costs and the total cost penalty. This penalty with respect to transportation

costs is small because cars and trucks have similar emissions to operating cost ratios:  = 1364

their website, they report that they made 4M deliveries to their stores, which implies $309B / 4M

= $77,250 per delivery. Given 20,000  per delivery implies $77,250 / 20,000  = $3.86

−1Walmart then has $50.59 −1$386 −1 = 13.1  −1With 10.76  −2 there

is 10.76 x 13.1 = 141  −2
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for cars and  = 1168 for trucks. There is a larger discrepancy between these ratios in the

other transportation scenarios described in Table 3, but even in the scenario with the largest

discrepancy (high retailer fuel efficiency), the bound is still only 4.3%. Thus, from the perspective

of transportation costs, the supply chain design is remarkably robust given reasonable parameters.

If emissions are minimized while operating costs are ignored, operating costs will nevertheless

not increase by much (e.g., by 0.3% in the baseline scenario). Similarly, if operating costs are

minimized while emissions costs are ignored, total emissions increase by the same relatively small

amount. The same finding is observed even if consumers can choose their shopping frequency (see

the Appendix for details).

It is important to note that this robustness result does not occur for all parameters. According

to the penalty bound, (6), there is a substantial penalty whenever there is an asymmetry in the

emissions to operating cost ratios. It happens to be that those ratios are similar for cars and

trucks. Furthermore, the substantial difference in loads carried, which one might presume would

create an asymmetry that leads to a large penalty, has no role in the penalty bound - the substantial

difference in the loads carried is accounted for no matter which objective is selected, and thus they

do not factor into the penalty bound.

The transportation robustness result is reminiscent of the well-known robustness result for the

EOQ problem. In the EOQ problem, costs are the sum of two terms, one linearly increasing in

the decision variable, call it  and the other decreasing in the inverse of  (i.e., it is 1) In

the retail store density problem, costs are again the sum of two terms, but now one is linearly

increasing in
√
 and the other decreasing in the inverse of

√
 It has been established that the

EOQ problem has a flat objective function (see Dobson 1988, Porteus 2002), but it follows that

the objective function in the retail store density problem is even flatter. Nevertheless, even with

a relatively flat function, a poorly chosen decision can lead to a substantial increase in costs. In

particular, in the EOQ problem, if one parameter is grossly misestimated, then the cost penalty

can essentially be unlimited. In the retail store density problem this does not occur - the penalty

bound is finite, and can be small, even if the true cost of carbon is enormous yet ignored in the

decision. The reason is that erring in the cost of carbon causes errors in multiple parameters. For

example, if the cost of emissions from gasoline are ignored, so is the cost of emissions from diesel.

Given that the emissions to operating cost ratios for cars and trucks are similar, these errors can

net out, thereby leading to nearly optimal decisions for the system.

Considering the retailer’s space cost, Table 7 evaluates the penalty bounds for each scenario

and Table 8 reports that actual penalties. A comparison between Tables 7 and 8 reveals that

the bound is reasonably tight and corresponds well to the actual penalty. We observe a somewhat
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substantial penalty, 103% for the baseline scenario. This is due to the asymmetry in the emissions

to operating cost ratios for cars,  = 136 and for retailer space,  = 0534 The penalties in the

other scenarios vary considerably, depending on how the  and  parameters change relative to

each other. The highest penalty with the baseline transportation parameters (and the 2nd highest

in the sample of 35 scenarios), 67.4%, occurs when the retailer uses electricity from a low emissions

source (nearly comparable to renewable energy) and operates in an environment with high retail

space costs. Hence, in this situation outcomes are considerably different depending on the selected

objective. If operating costs are minimizing while ignoring emissions, then emissions are 67.4%

higher than their minimal level. Similarly, if emissions are minimizing while ignoring operating

costs, then operating costs are 67.4% higher than their lowest level. In this scenario there is a clear

tension between environmental and financial preferences - as long as there is no explicit charge for

carbon (so that carbon costs are not part of minimizing operating costs), one cannot have both

low operating costs and low emissions. To put a 67.4% emissions penalty in perspective, it would

represent for Walmart about 24 million metric tonne 2 per year, which exceeds their current

target of reducing their annual emissions in their supply chain by 20 million metric tonnes.5

Table 7: Emissions and operating cost penalty bounds

Scenarios Baseline 2 2 2 2 2 2
Baseline 11.2% 4.3% 11.2% 4.3% 2.9%

Low electricity emissions intensity 37.4% 22.8% 37.4% 22.8% 19.4%

High electricity emissions intensity 3.9% 0.5% 4.3% 0.7% 0.1%

High rent 32.8% 19.4% 32.8% 19.4% 16.3%

Low electricity emissions intensity and

high rent

75.4% 52.5% 75.4% 52.5% 46.9%

High fuel usage 0.4% 0.5% 4.3% 0.7% 0.9%

High fuel usage and high rent 7.5% 2.2% 7.5% 2.2% 1.2%

5 With the baseline transportation parameters and the "low electricity emissions intensity

and high rent" scenario for retail space, the operating cost minimizing supply chain emits

075  2 per  of product sold, whereas the emissions minimizing supply chain emits 045 

2 per  of product sold. Walmart is estimated to sell in the United States 20,000 

per delivery x 4M deliveries per year = 80B  per year. A savings of 0.3  2 per  x 80B 

= 24Mmetric tonnes of 2. If the baseline scenario is taken for retail space, there is a potential

reduction of 006  2 per  of product sold, which would be 52M metric tonnes of 2
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Table 8: Operating cost and emissions penalties

Scenarios Baseline 2 2 2 2 2 2
Baseline 10.3% 3.8% 10.9% 4.1% 2.7%

Low electricity emissions intensity 32.8% 19.3% 35.3% 21.2% 16.6%

High electricity emissions intensity 3.7% 0.5% 3.9% 0.5% 0.1%

High rent 30.8% 17.8% 32.0% 18.7% 15.1%

Low electricity emissions intensity and

high rent

67.4% 46.1% 71.5% 49.4% 41.3%

High fuel usage 0.4% 0.4% 0.5% 0.3% 0.8%

High fuel usage and high rent 7.3%% 2.0% 7.5% 2.1% 1.2%

Given the potential tension between financial and environmental preferences, a natural solution

is to include an explicit charge for carbon emissions into the financial objective function - with an

explicit price for carbon, i.e.,   0 the negative externalities associated with carbon emissions

can be properly accounted for in the supply chain design that minimizes operating costs (which

now include a portion of the cost of carbon emissions). Estimates of  vary considerably, but

generally fall in the range between $20 and $1000 per metric tonne (see Tol 2008). How large does

 have to be to induce substantial reductions in emissions in the context of the retail store density

problem? Ideally, a small fee for carbon would induce a sufficiently dramatic shift in the supply

chain that a large portion of the potential emissions reduction can be achieved. Unfortunately, this

does not appear to be the case. To explain, define the emissions gap reduction as the percentage

of the potential emissions reduction that is achieved when carbon is explicitly priced, i.e., when

  0. In particular, the emissions gap reduction is

()− (∗ ())
()− ()

:

the denominator is the reduction in emissions that occurs with a switch from minimizing operating

costs to minimizing emissions, and the numerator is the amount of carbon reduced as the price

of carbon is increased from zero to  Figure 4 plots the emissions gap reduction curve for two

scenarios: in the first the baseline parameters are used for both transportation and space, whereas in

the second the baseline parameters for transportation are paired with the "low electricity emissions

intensity and high rent" scenario for retail space. In the first case the maximum reduction in carbon

emissions is 10.3% whereas in the second it is 67.4%. The figure demonstrates that the gap is

reduced at a decreasing rate in the price of emissions - that is the good news, as the initial price

increase for carbon has the largest effect. Unfortunately, a substantially high carbon price is needed

to close the emissions gap by a significant amount. For example, if the price of carbon is $100 per

metric tonne, which is at the upper limit of most estimates, then the emissions gap reductions are

16% and 11% in the two scenarios. To achieve a 90% emissions gap reduction requires a carbon
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Figure 4: Emissions gap reduction - the percentage of the possible reduction in emissions achieved
through an explicit price on carbon.

price of approximately $2,500 and $4,500 per metric tonne. To put these numbers in perspective,

$1000 per metric tonne, corresponds to a fee of $8.8 per gallon of gasoline and $0.55 per kWh for

electricity (at the U.S. average emissions rate), which would increase the cost of gasoline by 337%

(to $12.50 per gallon) and increase the average cost of electricity by 645% (to $0.651 per ).

The conclusion from this observation is that while charging for carbon can induce a supply chain

design that reduces emissions, very high (and quite possibly unreasonably high) prices are needed

to achieve substantial reductions in emissions. Of course, an important caveat is that this analysis

assumes constant technologies. A carbon tax could induce investments in technologies to reduce

emissions. The impact of technological change is considered shortly.

Even though the model suggests that pricing carbon will not be an effective strategy for reducing

emissions (because very high prices are needed to have a significant impact), there are alternative

strategies to reduce emissions. Land use regulations that restrict the size of retail stores will force

retailers to build networks with more stores, closer to consumers. As indicated earlier, the supply

chain that minimizes emissions generally has considerably more, smaller stores, than the supply

chain that minimizes operating costs. Alternatively, technological improvements in fuel usage or

emissions can lead to substantial reductions in carbon emissions.

Table 9 provides total emission reductions that occur due to various improvements to the system

assuming the baseline parameters as the starting point. The “short term” column assumes the

supply chain design does not change before and after the improvement, on the assumption that
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supply chain design changes take time to implement. The “long term” column evaluates the

emissions reduction after the improvement changes the supply chain design as well (i.e., the number

of stores adjusts). In all cases the objective is to minimize supply chain operating costs and there is

no price for carbon,  = 0The table reveals that changing consumer behavior (large quantities per

shopping trip) or improving consumer fuel efficiency are the most effective strategies for reducing

emissions. The short term impact of these changes are the most substantial, but even the long

term changes are significant. The long term benefit of these consumer improvements is dampened

relative to the short term because they induce a supply chain with fewer, larger stores - taken to

the extreme, if consumers drove near zero-emissions vehicles, then the supply chain that minimizes

emissions has one very large store located very far from customers, which mitigates some of the

benefit of the low emissions vehicle.

Improvements in fuel efficiency could be achieved via a carbon tax to motivate automobile

manufacturers to improve the efficiency of the vehicles they offer and to motivate consumers to

choose those improved vehicles. However, this could also be achieved by regulation mandating

higher fuel efficiency, such as the current requirement that automobile manufacturers achieve 54.5

miles per gallon among the cars in their fleet by 2025 (Vlasic 2011). Doubling the load consumers

carry (which is equivalent to reducing their shopping frequency in half), appears to be more

challenging to achieve through direct policy measures. For example, consumers would shop less

frequently if fuel prices are higher, but, based on the delivery frequency model described in the

appendix, doubling their purchase quantities would require more than a four-fold increase in fuel

prices. (The purchase quantity is proportional to the square root of the cost of fuel, so at least a

four fold increase in fuel is needed to double the purchase quantity.)

Table 9: Total supply chain emissions reductions under various improvements

Total emissions reduction

Short term Long term

Double consumer load:  → 2 35.6% 29.3%

Double consumer fuel efficiency:  → 1
2
 35.6% 33.5%

Double truck fuel efficiency:  → 1
2
 0.9% 1.0%

Half retailer electricity usage:  → 1
2
 12.2% 13.4%

Half retailer electricity emissions:  → 1
2
 12.2% 12.2%

Reducing retailer electricity usage or emissions intensity provides the next largest set of reduc-

tions in emissions. Now the long term impact is even greater in the case of electricity usage because

the improvement encourages additional stores, but only marginally so. Usage reductions could

be achieved by subsidizing low energy use lighting (e.g., CFL or LEDs) and emissions intensity

reductions could be achieved by subsidizing the purchasing or building of renewable power.

While improving truck fuel efficiency does reduce emissions, it does so only marginally because
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trucks are already considerably more efficient than cars. Improvements in truck fuel efficiency

may be more beneficial in long-haul deliveries to the retailer, which are outside the scope of this

model.

To emphasize a point again, the retail store density problem incurs a high penalty when there

is an asymmetry in the emissions to operating cost ratios,   This suggests that other forms

of asymmetry could lead to substantial penalties. For example, suppose the cost of carbon is

fully charged to consumers and the retailer (probably through higher energy prices). If everyone

fully acknowledges these costs in their decisions, they will behave as if  and  are the costs

to haul one  of product one  for the consumer’s car and the retailer’s truck respectively.

Furthermore, the retailer will recognize that  is the cost to store one  of product for one unit of

time. The retailer has a strong incentive to fully acknowledge these costs and to make appropriate

decisions. However, possibly due to cognitive limitations, consumers may not fully consider their

transportation costs in their shopping decisions. Specifically, say consumers behave as if their costs

are  to transport one  one , where  ∈ (0 1] yet the retailer fully accounts for its costs,
and knows that consumers do not fully account for their costs. (See Attari, Dekay, Davidson

and Bruine de Bruin 2010 for further discussion of consumer perception of energy expenditure and

potential savings.) The optimal store configuration with   1 has

̄() =


 + 
= 

∗

Thus, if consumers partially ignore the costs of driving to a store, then the retailer builds a sparser

network than optimal (i.e., stores that are too big), which requires consumers to drive farther than

optimal. The cost penalty is then

(̄())− (∗)
(∗)

=

−12
 + 

12


2
− 1

If consumers account for only 50% of their costs ( = 05), the penalty is 6%, but it increases to

34% if they account for only 20% of their actual costs ( = 02) and 134% if they account of only

5% of their costs ( = 005).

5 Conclusion

The retail store density problem involves choosing the size and location of retail stores in a region

of consumers so as to minimize the sum of the retailer’s inbound replenishment costs, the retailer’s

space costs and the consumers’ travel costs. These costs include variable operating costs, such as

wear and tear on vehicles, fuel, and rent and electricity for retail space. These costs could also

reflect the externalities associated with carbon emissions, presumably in the form of higher fuel
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and electricity prices. However, it is possible (and maybe even likely) that the full cost of carbon

emissions is not included in current energy prices.

Two extreme objectives are considered for the retail store density problem: (i) minimize operat-

ing costs, ignoring any possible cost associated with emissions and (ii) minimize emissions, ignoring

operating costs. There are cases in which the retail store density problem is insensitive to which

of those objectives is chosen - emissions are nearly minimized even if the objective is to minimize

operating costs, and operating costs are nearly minimized even if the objective is to minimize

emissions. For example, this insensitivity to the chosen objective occurs when retail space costs

are low (or ignored), when the retailer uses electricity from a high emissions source or when the

retailer’s fuel usage (electricity and natural gas) is high. In each case, this result occurs because

the sources of emissions (cars, truck, retail space) have similar carbon emissions to operating cost

ratios. For example, even though trucks can haul several orders of magnitude more product than

a car, the ratio of carbon emissions per  to variable operating costs per  is about the same

for trucks and cars (1.168  2 $
−1 v.s. 1.364  2 $

−1)

There are situation, however, when emission to operating cost ratios differ. For example, if

the retailer operates in a high rent area and uses electricity from relatively clean sources, then its

emissions to operating cost ratio for space differs considerably from the same ratio for cars (0.134

 2 $
−1 v.s. 1.364  2 $−1) In that case, the retail supply chain that minimizes operating

costs consists of a sparse network to exploit the inventory productivity advantage of large stores

while the retail supply chain that minimizes emissions consists of a dense network of small stores

to exploit the retailer’s “clean” electricity relative to the consumers’ “dirty” vehicles. In fact, the

supply chain that minimizes emissions has more than 9 times more stores than the supply chain

that minimizes operating costs. Furthermore, minimizing operating costs increases emissions by

67.4% while minimizing emissions yields the same penalty on operating costs.

In situations in which there is a substantial difference in the structure of the retail supply chain

that minimizes operating costs relative to the one that minimizes emissions, it is natural to consider

the value of explicitly charging a price for carbon emissions. If carbon is explicitly charged, then it

becomes part of operating costs, so the objective of minimizing operating costs begins to consider

the quantity of emissions. Furthermore, using the retail store density model, it is possible to

estimate how large a price needs to be imposed on carbon so that the downstream supply chain

approaches one that minimizes emissions. Unfortunately, that price is considerably higher than

most estimates of the cost of carbon, well over $1,000 per metric tonne (Tol, 2008). Put another

way, hefty prices need to be imposed on carbon to induce changes that are substantial enough to

lead to a significantly lower emissions through changes in the structure of the downstream supply
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Figure 5: Sub-regions within a store’s single service area given a triangle tesselation

chain. In this context, a carbon price is probably not an effective mechanism for change.

Taxing carbon is not the only approach to influence change. The retail supply chain that

minimizes emissions generally has a dense network of small stores located close to consumers.

Hence, land use regulations could be considered to limit the construction of large format retail

stores. Technological improvement and changed in behavior provide other opportunities. However,

fuel efficiency improvements for trucks has little impact on overall emissions and while substantial

emissions reductions are possible by increasing the load consumers carry per store visit, it is not

clear how to achieve that behavioral change without a blunt instrument (i.e., without imposing

a controversially large tax). More promising, the model indicates that substantial reductions

are possible by reducing retailer electricity consumption (e.g., more efficient lighting) or emissions

(e.g., through renewable energy sources). The best option identified is to double consumer fuel

efficiency, which is technologically feasible, and this would reduce emissions by about one third.

Appendix A. Distances traveled

To evaluate the average distance consumers travels, consider one of the service regions for a store.

Within that region create a tessellation of right triangles by connecting the store to each vertex

and to each face via a line perpendicular to its edge, to form sub-regions. Figure 5 demonstrates

this for the triangle tessellation.

In a regular polygon with  sides, an “−gon”, there are 2 sub-regions. Consider one of the

(identical) sub-regions. Let  be the degree measure (in radians) of the acute angle formed at the

vertex where the store is located and let  be the shortest distance to the edge of the sub-region

(i.e.,  is the height of one of the right triangles in Figure 5) For an -gon,  =  The average

round-trip distance of customers within a sub-region to the store is:

( ) = 2

R 
0

R  tan 
0

p
2 + 2

(12)2 tan 
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where the denominator is the area of the sub-region Using a change of variables ( = ), we

obtain

( ) = (23)

µq
1 + (tan )2 + ln

µ
tan  +

q
1 + (tan )2

¶
tan−1 

¶


The area of the service region is  and the area of the sub-region is then (2). Thus,

(12)2 tan  =  (2)  and ( ) can be written as

 = 
−12

where  is a constant that depends on the tessellation (i.e., the number of sides, ) and the overall

size of the region, :

 = (23)
p
 ( tan )

µq
1 + (tan )2 + ln

µ
tan  +

q
1 + (tan )2

¶
tan−1 

¶
The retailer’s truck must travel into and out of each region at least once (assuming there are at

least two stores,  ≥ 2). The truck’s minimum distance within a sub-region is 2 so the length of

the TSP tour is no shorter than 2 Hence, a lower bound estimate for the retailer’s transport

distance is

 = 
12

where the constant  also only depends on the chosen tessellation and the area of the region, :

 = 2
p
 ( tan )

The estimate (2) is exact for triangles with  ∈ {2 6 10 } for squares with  ∈ {2 4 6 } and
for all  with hexagons. With triangles an upper bound on the TSP distance is 2(+1) which is

exact for  ∈ {4 8 12 } For  ∈ {3 5 7 9 } the TSP distance is 2(+√3−1)With squares,
the TSP distance is 2(+

√
2− 1) for odd 

Appendix B. Delivery frequency

In the main model, consumers do not change the frequency of their store visits, i.e.,  is fixed.

Now suppose consumers choose . Consequently, each consumer visits a store every  units of

time, where  is the consumer’s consumption rate. The retailer continues to choose the number of

stores, their locations and their size while operating a truck that holds  units and makes deliveries

every  units of time. This section evaluates the operating cost penalty when choices are made

to minimize emissions. The emissions penalty when operating costs are minimized is analogous.

For consumer, the choice of  involves a tradeoff between the cost of bringing goods to their

home and the cost of storage - as  increases, the consumer needs more storage space but shops

less frequently. Let  be the cost per unit of time to maintain the space to store one unit. The

average storage cost is  per unit of time. (The analysis is qualitatively unchanged if based on
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average inventory.) Divide  into two components,  =  + where 

 is the non-emissions

related cost per unit of space per unit of time and  is the amount of emissions per unit of space

per unit of time (e.g., due to heating and cooling).

Consider the  choice for consumer  whose round-trip distance to the nearest store is  As

before, the consumer incurs cost  per unit purchased. Hall (1992) considers a different model

that also includes a fixed cost for each delivery that is proportional to the distance travelled. It is

convenient to write  = ̂ where

̂ =  +  ( + ) 

Further divide ̂ into two components, ̂ = ̂ + ̂ where

̂ =  +  ̂ = 

Note that

 = ̂̂



Similarly, define

 = 



Suppose  is chosen to minimize the consumer’s average operating cost per unit, 

 ():

min



 () =




+

̂




The cost minimizing quantity is ∗ =
p
(̂


) , and the resulting minimum operating cost is

proportional to the square root of the round trip distance,
√



 (

∗
 ) = 2

p
(̂


) 

If instead of minimizing operating costs, the consumer uses ∗ =
p
(̂


)  which minimizes

the consumer’s emissions, then operating costs are again proportional to
√
 :


 (

∗
 ) =

p
(̂


) 

Ãs
 ̂




̂



+

s
̂




 ̂



!


Now evaluate costs across all consumer. Let ̂( ) be the average square root round-trip

distance across all consumers in a sub-area of a store’s service area in which the sub-area has

height  and angle  :

̂( ) =
√
2

R 
0

R  tan 
0

¡
2 + 2

¢14


(12)2 tan 


30



Using a change of variables ( = ), and (2) = (12)2 tan  we obtain

̂( ) =

Ã
4
√
2

5

R tan 
0

¡
1 + 2

¢14


tan 

!
12

=

Ã
4
√
2

5

Z tan 

0

¡
1 + 2

¢14


!
tan −54

³


´14
−14

Define

̂ =
4
√
2

5
(tan )−54 ()14

Z tan 

0

¡
1 + 2

¢14


Thus the average costs across all consumers are


 (

∗
 ) = 2̂

p
(̂


)

−14


 (

∗
 ) =

Ãs
 ̂




̂



+

s
̂




 ̂



!
̂
p
(̂


)

−14

Now consider operating costs as a function of  given consumers either implement the operating

cost minimizing quantity, ∗  or the emissions minimizing quantity, ∗ :

̂(∗  ) = 2̂ (

 ̂


)

12 −14 + (

 + 


)

12

̂(∗  ) =

Ãs
 ̂




̂



+

s
̂




 ̂



!
̂ (


 ̂


)

12 −14 + (

 + 


)

12

The optimal  to minimize operating costs is

∗ =

Ã
̂ (


 ̂


)

12



 + 




!43
and the choice to minimize emissions takes a similar form:

∗ =

Ã
̂ (


 ̂

)

12



 + 




!43
The minimum operating cost is

̂(∗  ∗) = 3̂
23

 ( ̂

)

13 (

 + 


)
13

but if the emissions minimizing choices are taken, then operating costs are

̂(∗  ∗) =

Ãs
 ̂




̂



+

s
̂




 ̂



!
̂ (


 ̂


)

12

Ã
̂ (


 ̂

)

12



 + 




!−13

+(

 + 


)

Ã
̂ (


 ̂

)

12



 + 




!23
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The operating cost penalty for minimizing emissions is (after some algebra)

̂(∗  ∗)
̂(∗  ∗)

− 1 =
1

3

⎡⎣µ


¶−23Ã





+
+ 


+

!−13

+

µ



¶13Ã





+
+ 


+

!−13

+

µ



¶13Ã





+
+ 


+

!23⎤⎦− 1
As before, the emissions to operating cost ratios are critical for determining the penalty, including

the ratio for consumer space,  The following table presents actual penalties for the main model’s

baseline scenario and various  values. When  = 1 the penalties are similar to those obtained

in the main model (with  fixed). Penalties generally increase as  increases, as is expected: if

the emissions to operating cost ratio for consumer space deviates considerably from 1, there will

be a substantial difference between ∗ and ∗  which can lead to a large penalty. Nevertheless,

the order of magnitude remains about the same even if  deviate considerably from 1.

Table 10: Operating cost penalties when customers choose their shopping frequency: base-

line scenario for transportation parameters

Scenarios  = 1  = 15  = 2

Baseline 7.4% 11.4% 16.2%

Low electricity emissions intensity 28.1% 37.4% 46.1%

High electricity emissions intensity 2.5% 4.2% 7.6%

High rent 26.1% 34.9% 43.3%

Low electricity emissions intensity and

high rent

65.0% 81.4% 95.5%

High fuel usage 0.8% 0.7% 2.7%

High fuel usage and high rent 5.0%% 8.0% 12.2%
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