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Opportunity Spaces in Innovation: Empirical Analysis of Large Samples of
Ideas

Abstract
A common approach to innovation, parallel search, is to identify a large number of opportunities and then to
select a subset for further development, with just a few coming to fruition. One potential weakness with
parallel search is that it permits repetition. The same, or a similar, idea might be generated multiple times,
because parallel exploration processes typically operate without information about the ideas that have already
been identified. In this paper we analyze repetition in five data sets comprising 1,368 opportunities and use
that analysis to address three questions: (1) When a large number of efforts to generate ideas are conducted in
parallel, how likely are the resulting ideas to be redundant? (2) How large are the opportunity spaces? (3) Are
the unique ideas more valuable than those similar to many others? The answer to the first question is that
although there is clearly some redundancy in the ideas generated by aggregating parallel efforts, this
redundancy is quite small in absolute terms in our data, even for a narrowly defined domain. For the second
question, we propose a method to extrapolate how many unique ideas would result from an unbounded effort
by an unlimited number of comparable idea generators. Applying that method, and for the settings we study,
the estimated total number of unique ideas is about one thousand for the most narrowly defined domain and
greater than two thousand for the more broadly defined domains. On the third question, we find a positive
relationship between the number of similar ideas and idea value: the ideas that are least similar to others are
not generally the most valuable ones.
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Abstract 

A common approach to innovation, parallel search, is to identify a large number of opportunities 
and then to select a subset for further development, with just a few coming to fruition. One 
potential weakness with parallel search is that it permits repetition. The same, or a similar, idea 
might be generated multiple times, as parallel exploration processes typically operate without 
information about the ideas that have already been identified. In this paper we analyze repetition 
in five data sets comprising 1,368 opportunities and use that analysis to address three questions: 
(1) When a large number of efforts to generate ideas are conducted in parallel, how likely are the 
resulting ideas to be redundant? (2) How large are the opportunity spaces? (3) Are the unique 
ideas more valuable than those similar to many others? The answer to the first question is that 
while there is clearly some redundancy in the ideas generated by aggregating parallel efforts, this 
redundancy is quite small in absolute terms in our data, even for a narrowly defined domain. For 
the second question, we propose a method to extrapolate how many unique ideas would result 
from an unbounded effort by an unlimited number of comparable idea generators. Applying that 
method, and for the settings we study, the estimated total number of unique ideas is about one-
thousand for the most narrowly defined domain and greater than two-thousand for the more 
broadly defined domains. On the third question, we find a positive relationship between the 
number of similar ideas and idea value: the ideas that are least similar to others are not generally 
the most valuable ones.    

Keywords: search, opportunity, opportunities, idea, ideation, idea generation, innovation, 
creativity, innovation process, opportunity identification, concept development, product 
development, product design, entrepreneurship 
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1. Introduction 

A common approach to innovation is to identify a large number of opportunities and then to 

select a subset for further development, with just a few coming to fruition. We define 

opportunity as an idea for an innovation that may have value after further investment of 

resources. For example, in the movie industry an opportunity is a script summary; in the 

pharmaceutical industry, an opportunity is a newly discovered chemical compound; for an 

entrepreneur, an opportunity is an “idea…for [a] potentially profitable new business venture….” 

(Baron and Ensley, 2006). 

Hundreds or thousands of opportunities may be considered for every commercial success 

(Stevens and Burley 1997). This process can be thought of as a tournament of ideas (Terwiesch 

and Ulrich, 2009), in which many ideas are explored in parallel with only the best prevailing. 

The parallel-search tournament is one of the standard approaches to exploring a space of 

opportunities (Sommer and Loch 2004).  

One potential weakness with parallel search is that it permits repetition. The same, or a similar, 

idea might be generated multiple times, as parallel exploration processes typically operate 

without information about the ideas that have already been identified. (For ease of exposition, we 

use the terms idea and opportunity interchangeably.) In practice, repetition might be dismissed as 

an unavoidable nuisance. In this paper we quantify the extent of repetition in five data sets and 

show how the repetition provides valuable clues about the size of the opportunity space.  

To our knowledge, no prior research has measured or analyzed repetition in opportunity 

identification. The existing literature either assumes that the identified opportunities are each 

unique (e.g., Dahan and Mendelson, 2001) or focuses on search strategies over stylized 

landscapes (e.g., the NK models). In contrast, we explicitly allow for repetition, measure it 

empirically, and examine its implications. Our goal is to answer both fundamental scientific 

questions about opportunity identification and to inform managerial practice. This research is 

motivated by three key questions. 

1. How much redundancy results from parallel search? To the extent that there is 

redundancy, the identification of the same idea multiple times, investments in opportunity 



 3  

identification are wasted. Answering this question is critical to deciding how much to 

invest in parallel search.  

2. How large are opportunity spaces? Once we know the level of redundancy, we have a 

clue to the effective size of the opportunity space, the total number of unique ideas. An 

innovator who has generated 50 unique opportunities would benefit from knowing if 

there are 100 or 1000 more opportunities to be discovered.1 In this paper we develop a 

method for estimating the size of opportunity spaces. This method can be used to find the 

total number of unique ideas or to find the total number of themes or “neighborhoods” of 

ideas. 

3. Are unique ideas, i.e., those that are similar to no or few other ideas in the data set, more 

valuable than ideas that are similar to many others? To answer this question, first we 

establish that sets of generated ideas, do, in fact, show significant clustering, compared to 

a random benchmark. Then, we test the hypothesis that unique ideas or those found in 

smaller clusters are more valuable than ideas found in larger clusters.  

To address these questions, we analyze a total of 1,368 ideas from five data sets, each created by 

different groups of individuals who generated ideas in parallel.  Our results show that in the data 

sets we analyze, strict redundancy is not highly prevalent, which suggests that the opportunity 

spaces are large, on the order of thousands of opportunities. Although strict redundancy is not 

widespread, we can clearly identify clusters of similar ideas. Our results suggest that cluster size 

is a positive indicator of the value of ideas. Furthermore, identifying themes for clusters can 

itself be a useful step in an innovation process, creating a map of the innovation landscape. 

The paper is organized as follows. First we discuss prior research in related areas. Then we 

present a population model for estimating the size of an opportunity space. Next we describe our 

data and metrics. Then, we describe our analyses in detail and report our results. Finally, we 

discuss the results and their implications for practice, qualify our findings, and provide 

concluding remarks. 

                                                
1 One could argue that the number of ideas is infinite because a detail can always be tweaked to make a new idea or 
because ideas could be arbitrarily unrelated to the innovation charge. However, the opportunity space can be thought 
of as finite if ideas that are highly similar are counted together and if ideas that are highly “distant” are assumed to 
be very unlikely to be generated. We discuss these issues in Section 5 of the paper. 
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2. Prior Work 

This study intersects several rich streams of prior research: (1) creativity and idea generation, (2) 

models of search strategies, and (3) process models of innovation. Our research also relies on 

prior work in wildlife ecology and in network analysis. However this reliance is more 

methodological than conceptual, and so we discuss the literature related to our methods in the 

analysis section of the paper. 

Creativity and Idea Generation 

Creativity and idea generation have been examined both in the social psychology literature and 

in the innovation management literature. The social psychology literature on idea generation 

originates with the development of brainstorming (Osborn 1957). Diehl and Stroebe (1987) and 

Mullen et al. (1991) provide a detailed overview of this literature. Most studies have 

experimentally examined groups generating ideas as teams or as individuals. The research has 

unequivocally found that the number of ideas generated (i.e., productivity) is significantly higher 

when individuals work by themselves and the average quality of ideas is no different between 

individual and team processes. (All of these studies normalize for total person-time invested to 

control for differences in the numbers of participants and the duration of the activity.) These 

studies have led to prescriptions that idea generation for innovation should include significant 

efforts by individuals working independently of one other (Ulrich and Eppinger, 2008). This 

literature provides some of the justification for parallel search in innovation, however that 

literature does not explicitly address the possibility that parallel search might lead to repetition, a 

question we address.  

The innovation management literature contains large-scale empirical studies of creativity in 

innovation. Fleming and Mingo (2007) provide an excellent synthesis of the concepts in this 

literature. These studies often use patent data (e.g., Singh and Fleming (2009), Fleming et al. 

(2007)), and draw on citations and patent classes to measure relationships among creative ideas 

(the patents). Fleming et al. (2007) investigate the “size” of an inventor’s search space by using a 

count of subclass combinations. The concept of similarity of ideas is central to our work, and we 

rely on human raters to make similarity judgments. Part of our contribution is the application of a 
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population model from wildlife ecology to estimate the size of the opportunity space based on 

the similarity of ideas generated. 

Models of Search Strategies 

Search is a common paradigm for understanding problem solving generally and innovation more 

specifically. March and Simon (1958) were among the first to characterize problem solving as 

search. (See also [Simon 1996].) Subsequently, many scholars have framed innovation as a 

search problem, including Stuart and Polodny (1996), Martin and Mitchell (1998), Perkins 

(2000), Rosenkopf and Nerkar (2001), Katila and Ahuja (2002), Loch and Kavadias (2007), 

Knudsen and Levinthal (2007), and Terwiesch (2007). Our work treats innovation as a search 

over a landscape, with a goal of analyzing—theoretically and empirically—the underlying 

structure of the search space. 

March (1991) and Kauffman (1993) each contribute influential models of search spaces. These 

models are multi-dimensional, abstract spaces. March (1991) uses the complexity of the space to 

introduce the distinct approaches of exploration (considering far flung alternatives) and 

exploitation (refinement of existing alternatives). Kauffman (1993) introduced the NK model of 

rugged fitness landscapes. This theory built from evolutionary biology has been highly 

influential in the academic field of management strategy, based on an analogy between the 

fitness of an organism and the success of an organization. See, for example, work by Levinthal 

(1993), Koput (1997), Rivkin and Siggelkow (2003, 2007), and Knudsen and Levinthal (2007). 

The NK model is flexible, and it can portray both smooth, unimodal landscapes (with an 

“interconnectedness” parameter, the K, of 0) and chaotic sharp-peaked landscapes (high K). An 

insight from this literature is that landscapes characterized by high K benefit from investments in 

parallel search. Sommer and Loch (2004) further investigate search strategies in different types 

of landscapes, comparing selectionism (pursuing several approaches independently) and trial and 

error learning (an incremental, local search strategy). Compared to March (1991) and Kauffman 

(1993), their work is more directly related to innovation as opposed to organizational problem 

solving more generally.  

However, to the best of our knowledge, this literature of search spaces and strategies has 

remained theoretical, with few if any efforts to characterize landscapes empirically. One 
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exception is Fleming and Sorenson (2004), an empirical analysis of the ruggedness of the patent 

space, which conceptualizes invention as search over a combinatorial space.  

In our research, we focus on one of the standard modes of search studied in this literature, 

parallel exploration. Our contribution is to develop theory about structural elements, such as size 

of the opportunity space, redundancy of ideas, and clusters of similar ideas, as well as to 

empirically measure these elements. 

Process Models of Innovation 

The statistical view of innovation was first developed by Dahan and Mendelson (2001). They 

model creation as a series of random draws from a distribution followed by a selection from the 

generated ideas. This approach is analogous to models of the economics of search (e.g., Stigler 

1961, Kohn and Shavell 1974, Rothschild 1974, Lippman and McCall 1976, Weitzman 1979, 

Morgan and Manning, 1985). Two other recent papers use the statistical view. First, Kavadias 

and Sommer (2009) model the idea generation process and look specifically at how process 

design choices relate to underlying problem structure. Second, Girotra et al. (2010) develop the 

idea of innovation as a search for extreme values, and model innovation as independent draws 

from a quality distribution. Our approach also takes a statistical perspective on the opportunity 

space. However, as opposed to characterizing opportunities along a single quality dimension, we 

also address the question of coverage of the landscape of possibilities by the search process.  

3. Population Model for Size of an Opportunity Space 

Our approach to studying innovation also uses a process model. We focus on the process of 

identifying a set of opportunities, recognizing that there can be repetition in the set. That 

repetition provides clues to the size of the “total population” of opportunities. To understand our 

model, consider opportunity identification as fishing in a lake. Each draw is a catch, with the fish 

released back into the lake. Sometimes the same fish will be caught again. The more frequently 

an individual fish is caught, the smaller the estimate of the fish population. Laplace reportedly 

used such a model to estimate the population of France in 1802 (Cochran 1978); the technique, 

called the capture-recapture method, has since been adapted to wildlife ecology (e.g., Cormack 

1964, Seber 1965, Seber 1982, Amstrup et al. 2005). This type of model has also been applied to 
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problems outside of ecology, such as estimating the size of the knowledge set in brand recall, as 

in Hutchinson et al. (1994).  

The capture-recapture method models a sequential process in which the probability that the next 

idea is unique (i.e., the fish has never been caught previously) is a decreasing function of the 

number of ideas generated.2 That probability decay can be represented by an exponential 

function. We define p(n) as the probability that the next idea is unique given n ideas generated 

already: 

p(n) = e-an     (1) 

The expected number of unique ideas out of n generated, u(n), is the integral under this curve. (In 

using the integral we are making a continuous approximation to the—obviously discrete—

number of ideas.)  

     u(n) = (1/a)(1-e-an)     (2) 

This particular form of probability decay, the exponential form, comes from a specific 

underlying process, one in which there are T unique ideas total (T fish in the population) and 

each is equally likely to be drawn. This equally likely assumption is used in the Lincoln-Peterson 

method (Lincoln 1930), the standard model for estimating population size in the wildlife ecology 

literature. Some authors have relaxed this assumption (e.g., Sudman et al. 1988). We will also 

relax this assumption in Section 5.  

The decay parameter and the total T are linked: T = 1/a. This model has only a single parameter, 

a, and that parameter is the inverse of the very thing we are interested in, the size of the 

opportunity space, i.e., an estimate of the total number of unique ideas that would result if an 

enormous number of ideas were generated by an unlimited number of comparable idea 

generators.  

This capture-recapture model from wildlife ecology can be used to answer one of our key 

questions. Given a set of ideas generated, and given a count of the number of ideas that are 

                                                
2 The sequential capture metaphor embodied in this model should not be confused with sequential search in 
innovation, in which the identification of one opportunity benefits from knowledge gained from the identification of 
prior opportunities. In the capture-recapture model, sequential draws are independent of each other as in parallel 
search in innovation. 



 8  

unique in that set, the model can be used to calculate T, an estimate of the size of the opportunity 

space. 

4. Data  

We report results for five different data sets, each comprised of several hundred ideas. These 

data sets were all generated by groups of students as part of project work they were doing for our 

courses on product development or innovation. The characteristics of the data sets are 

summarized in Table 1.  

All five data sets are quite similar in structure, in that all were generated in response to a similar 

charge to participants and all were submitted to the same web-based tool for managing ideas 

(http://www.darwinator.com). Each idea in each data set was described with a title and a 

paragraph of text. The descriptions were not limited in length, but tended to be a few sentences. 

An example of an idea (from the New Ventures data set) is as follows: 

Airplane Dating 
“Airplane Dating” is a service that would help place singles in a specified section 
of an airplane where other singles have registered. A profile is created and 
recommended matches are sent to the subscribers.  

 

Table 1: Characteristics of the five data sets. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Description Ventures that 
could be 

explored and 
prototyped in 
six weeks by a 
team of MBA 

students. 

Web-based product 
or service that 

could be 
prototyped in a 

one-week 
workshop 

Physical products 
for college student 
market with retail 

price <$50 

Physical products 
for college student 
market with retail 

price <$50 

New technologies 
for use in higher-

education 
classroom 
instruction 

Year 2007 2009 2008 2009 2008 

Sample Size 232 249 290 286 311 

Population 47 executive 
MBA students 

53 executive and 
full-time MBA 

students 

58 undergraduate 
and graduate 

students in business 
and/or engineering 

58 undergraduate 
and graduate 

students in business 
and/or engineering 

63 undergraduate 
business students 

Quality Metric  How valuable is 
this 

opportunity? 

How appealing is 
this opportunity to 
you as a potential 

user? 

How likely is it that 
pursuing this 

opportunity will 
result in a great 

product? 

How attractive 
would a product 
addressing this 

opportunity be to 
you personally? 

How do you rate 
this concept 

(Hate it / Love it)? 
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The students in these classes were studying innovation. They were trained in idea generation 

methods and many if not all intended to pursue careers closely related to innovation. Two of the 

data sets were generated largely by mid-career working professionals participating in a weekend 

executive MBA program. The alumni of these courses have an impressive track record in 

pursuing new ventures after graduation, often based on their class projects. (See, for example, 

Terrapass.com, OfficeDrop.com, DocASAP.com.) Thus, we believe these data are closer to what 

might be derived from industrial field studies than what might be generated in laboratory 

experiments with untrained subjects. 

There is no overlap in the participants across the five data sets. Each individual typically 

contributed five ideas, but individuals worked independently. However, the ideas are not strictly 

independent for two reasons. The first reason is within-person dependence. The within-person 

effect could either be that a single person will self-censor to avoid duplication in the five ideas 

submitted; or the effect could be the opposite, that a single person will generate ideas that are 

variations on a theme. We examine both of these issues in our analysis (Sections 5 and 6). The 

second reason is between-person dependence related to shared experience. Our analysis assumes 

a particular generating process and attempts to estimate the size of the opportunity space it has 

access to. Different processes would result in different sizes. For instance, imagine that the 

process engaged elementary school children in generating ideas for surgical instruments. Surely 

this process would result in different results than one that engaged engineers, or one that engaged 

surgeons, for instance. The ideas generated by a process are not independent in the sense that 

they are generated by a group of individuals who may share some characteristics like geographic 

location, experience, training, age, and so forth. The ideas are only independent in the sense that 

the generation of idea N does not depend on an observation of ideas 1 through N-1. Indeed, these 

ideas can be thought of as parallel or simultaneous draws. This scenario is typical of processes 

that collect ideas from a large number of sources without feeding back to those sources the 

results of the idea collection effort. 

The methods and approach in the courses in which the students were enrolled generally take a 

“market pull” perspective on innovation. Most of the opportunities identified by the participants 

are therefore articulated in terms of the problem or need to be addressed. Very few of the 

opportunities are driven purely by the availability of a technology. 
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Quality Measures 

The web-based submission tool used by the subjects was also used for peer evaluation of the 

quality of the ideas. We used the tool to aggregate 10-20 independent judgments from 

participants on a 10-point scale for the quality metric indicated in Table 1. The tool does not 

gather judgments from the originator of an idea. It is not possible to know the “true” quality of 

all the ideas, which would require observing the economic value created from each idea, good 

and bad, from an optimal investment of development resources under all the possible market and 

competitive scenarios which might play out.  A set of 10-20 independent subjective judgments 

have been shown by Girotra et al. (2010) to be internally consistent and highly correlated with 

purchase intent and other measures of idea quality, and we believe that these evaluations are the 

best practical indicator of the value of the ideas. 

Similarity Measures 

Similarity of ideas is a central element of our conceptual framework. For our purposes we need 

to measure the extent of similarity between every pair of ideas within each data set. Our 

measurement technique was motivated by the enormity of this task. Consider, for example, the 

New Products I data set comprised of 290 ideas. We would like to estimate the level of similarity 

between each pair of different ideas in the data set. To do this, we need to make (290 x 289)/2 = 

41,905 comparisons. Figure 1 is a matrix showing the results of such estimates, with each cell in 

the matrix representing a pair of ideas: cell (i, j) represents the pair of idea i and idea j. The 

darker the cell, the more similar the pair. The figure illustrates the complexity of the estimation 

task. Recall that we have five data sets, so in total we actually need to make about 200,000 

comparisons. One way to do this would be to present pairs of ideas to judges and ask them to rate 

the level of similarity. For robustness, we would want to average the judgments of multiple raters 

for each pair. With three raters for each pair, if each judgment took only 15 seconds, this 

approach would require 2,500 hours of rater effort, more than a full work year, which would be 

prohibitively time consuming and costly. 

Instead of that pair-by-pair approach, we developed a more efficient and less tedious method for 

measuring similarity. In our approach, respondents look at a list of ideas—titles plus 

descriptions—and identify groups of similar ideas. Rao and Katz (1971) document the 

challenges in assessing similarity between the pairs of elements in large data sets; our approach 
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is most similar to the category of approaches they call “picking.” Based on several pre-tests, we 

learned that this task is manageable for lists of up to about 85 ideas, a quantity that can be printed 

on three letter-size sheets of paper. (With many more ideas than that, we observed that 

respondents faced difficulty accurately recalling the ideas well enough to identify similar groups. 

That limit of 85 ideas means that respondents could not be simply given the entire list of ideas 

and be expected to accurately identify similar groups.) Using this method, we presented raters 

with three-page lists of ideas and asked them to create groups of similar ideas. We then asked the 

raters to reconsider the groups of similar ideas and identify any subsets from these groups that 

were identical or essentially identical. The exact instructions to the raters are in Appendix A.  

 

 

Figure 1: Similarity between pairs of ideas for the New Products I data set. The 
degree of similarity is represented by gray levels in each cell of a 290 by 290 matrix: 
cell (i, j) shows the similarity between idea i and idea j. In this data set, approximately 
26% of the pairs have non-zero similarity. 

We experimented with different types of questions, including coding on multiple dimensions of 

similarity, such as similarity of need, similarity of solution, similarity of market, similarity of 

function provided. However, the combinatorial complexity of the similarity coding problem is 
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immense, and even a slight increase in the cognitive burden of the task threatened feasibility. As 

a result, we deliberately instructed the respondent to use his or her own notion of overall 

similarity in constructing groups. Other scholars reached the same conclusion about instructing 

participants on similarity. For example, Griffin and Hauser (1993) also leave the definition of 

similarity unspecified in their customer-sort procedure. More broadly, procedures for creating 

affinity diagrams (e.g., Kawakita 1991) call for the grouping of concepts according to the 

participants’ own notions of similarity. Finally, Tversky (1977) advocates approaching similarity 

holistically, showing that empirically, similarity ratings do not correspond to underlying multi-

dimensional attribute models. 

We devised a method to form 40-50 different lists of about 80 ideas each from the 200-300 ideas 

in each data set. We formed these lists such that each pair of ideas appeared together on an 

average of about four different lists. These lists reflected overlapping samples of the 200-300 

ideas such that most pairs of ideas appeared multiple times. The procedure for forming these lists 

is detailed in Appendix B. 

We used university student subjects in the behavioral laboratory of one of our universities as 

raters. A rater was assigned a list and asked to form similarity groups. In total, we obtained 230 

responses across the five data sets. The sessions were not timed and subjects were paid $10 for 

participating. Most subjects required 30-50 minutes to complete the similarity grouping task. As 

part of the protocol, we asked subjects for feedback on the task after they were finished. Many 

reported that the task was interesting. Some reported that the task was challenging. Very few 

reported that the task was overwhelming.  

The net result of the similarity coding was that for each of the five data sets, we obtained a list of 

groupings of “similar” and “identical or essentially identical” ideas for each of 40-50 subjects 

and their associated lists of ideas. These similarity groupings are the raw data from which we 

compute various similarity measures. 

With the population model (Equation 2) and the three types of data—idea descriptions, idea 

quality measures, and similarity ratings—we are now ready to complete the analysis addressing 

the key questions. Figure 2 gives a complete overview of our process: the data, the analyses (to 

be described subsequently), and paths to the three key questions. 
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Figure 2. Analytical framework and approach. This analysis is performed for each of 
five independent data sets.  
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5. Redundancy of Ideas  

The first of our key questions is about the level of redundancy in each of the data sets: how often 

is the exact same idea repeated? In this section, we describe how we used the raters’ assessments 

of identical ideas to calculate redundancy. Then we show how we applied the population model 

(Equation 2) to estimate the size of the opportunity space, the total number of unique ideas. 

Finally, we address several issues related to the robustness of that estimate: confidence intervals; 

relaxing the equally likely assumption of the model; and controlling for the fact that each person 

typically generated five ideas, which adds a sequential element to what is largely a parallel 

search. 

Determining the Number of Unique Ideas 

To measure redundancy, we identify clusters of “identical” ideas within each data set. For this 

analysis, we use only the groupings of identical or essentially identical ideas provided by each 

rater. A pair of ideas is defined as identical when enough raters who saw the pair rate it as 

identical. 

To ensure robustness, we apply two different thresholds. The majority threshold is defined as 

50% of the raters on whose lists of ideas the pair appears. The consensus threshold is defined as 

70% of the raters on whose lists the pair appears. Thus, for a pair to be coded as identical under 

the majority threshold, 50% or more of the raters exposed to the pair would have grouped the 

pair together as identical, and for the consensus threshold 70%. These are of course arbitrary cut-

offs for the definition of identical, which is why we report results for two different thresholds. 

In applying these thresholds, we exclude from consideration outliers, defined as any groupings of 

“identical” ideas that are larger than the 95th percentile of group size for the data set in question. 

We do this because one or two raters for each data set constructed extremely large groups of 

“identical” ideas. For example, one rater constructed a group of 49 ideas, all rated as “identical 

or essentially identical” to one another, reflecting either a disregard for instructions or a very 

unusual definition of identical. Culling these outliers is important because otherwise each of the 

49x48/2 = 1176 pairs of ideas would count in the computation of the similarity metric. Thus, 

very large groups of identical ideas are not only implausible, but they disproportionately 

influence the metric.  
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Here we give an example of the outcome of this analysis for one data set, New Products I. Then, 

we summarize the results of the analyses in a table for the other data sets. There are 290 ideas in 

the New Products I data set. Of these, 197 are not identical to any other idea using the majority 

threshold. That is, for each of these 197 ideas, there is no other idea deemed identical to that idea 

by half or more of the raters. The remaining 93 ideas are clustered into the twenty-four network 

components shown in Figure 3. (In network analysis, a component is a group of nodes that are 

interconnected, at least indirectly, and that are not connected to other nodes [Scott, 2000].) There 

are 11 pairs of ideas; 4 triples; 4 clusters of four; and so forth. The distribution of sizes of 

network components for all five data sets is shown in Table 2. 

The distributions presented in Table 2 show that the level of redundancy in the data sets is quite 

low. Even at the majority threshold, which reflects a fairly loose notion of what it means for two 

opportunities to be identical, most ideas are not considered identical to any other idea in four of 

the five sets, all but Classroom Technologies. At the consensus threshold, 85-90% of the ideas in 

the first four data sets are not considered identical to any other. And even in Classroom 

Technologies, with the most narrowly defined scope, 68% of the ideas are not considered 

identical to any other.  

To apply our model to estimate the size of the opportunity space, i.e., the total number of unique 

ideas, we need an estimate of the number of unique ideas within each data set. Simply counting 

the number of components in the network would understate the number of unique ideas.  

Because of the multi-dimensionality of similarity and the latitude in the threshold, identical 

relationships are not fully transitive. Therefore, not all ideas in every component are identical. 

For example, the Backpack/Umbrella appears in the same component (seen in the upper left 

corner of Figure 3) as the Hands Free Coffee Sleeve, and yet clearly these are two different 

ideas. We use the definition of a clique from network analysis to count the number of unique 

ideas. A clique is a fully connected set of nodes: every node in the set is directly connected to 

every other node in the set (Scott 2000). If a set of ideas is truly identical, then those ideas should 

appear as cliques in the network. 
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Figure 3. Clusters of identical ideas for data set New Products I based on the majority 
threshold for the definition of identical. The 197 singletons (i.e., ideas for which there 
are no identical counterparts) are not shown. The thickness of the links is proportional 
to the fraction of raters identifying the pair as identical. The labels are the actual titles 
used by the originator of the idea, and so do not always summarize the description of 
the actual opportunity precisely.  
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Table 2. Distribution of network component sizes for each data set and for two 
thresholds defining identical. The value of N is the number of ideas in components of 
a given size (i.e., 15 clusters of 2 is shown as N=30). 
 
Panel A: Majority Threshold for Identical (≥50% of raters identify pair as 
identical)  

 New Ventures Web-Based 
Products 

New Products 
I 

New Products 
II 

Classroom 
Technologies 

 N Fraction 
of Ideas 

N Fraction 
of Ideas 

N Fraction 
of Ideas  

N Fraction 
of Ideas 

N Fraction 
of Ideas 

Singletons 139 60% 175 70% 197 68% 165 58% 78 25% 

Pairs 30 13% 40 16% 22 8% 40 14% 6 2% 

Triples 12 5% 12 5% 12 4% 27 9% 6 2% 

Clusters of 4 12 5% 12 5% 16 6% 4 1% 0 0% 

Clusters of 5 0 0% 10 4% 5 2% 5 2% 0 0% 

Clusters>5 39 17% 0 0% 38 13% 45 16% 221 71% 

 
 
Panel B: Consensus Threshold for Identical (≥70% of raters identify pair as 
identical) 

 New Ventures Web-Based 
Products 

New Products 
I 

New Products 
II 

Classroom 
Technologies 

 N Fraction 
of Ideas 

N Fraction 
of Ideas 

N Fraction 
of Ideas  

N Fraction 
of Ideas 

N Fraction 
of Ideas 

Singletons 206 89% 224 90% 247 85% 243 85% 213 68% 

Pairs 20 9% 16 6% 30 10% 30 10% 32 10% 

Triples 6 3% 9 4% 9 3% 9 3% 12 4% 

Clusters of 4 0 0% 0 0% 4 1% 4 1% 4 1% 

Clusters of 5 0 0% 0 0% 0 0% 0 0% 5 2% 

Clusters>5 0 0% 0 0% 0 0% 0 0% 45 15% 

 

We count the cliques from largest to smallest. First we find the largest clique (fully connected set 

of nodes), count that as a single idea, and remove it from the network. Then we identify and 

remove the largest clique in the remaining network, and so forth, until there are only singletons 

left. Each singleton naturally counts as a unique idea. We break ties by randomly selecting a 

largest clique.  

Finding the cliques in a network is an NP-hard problem (Karp, 1972). However, the identical 

matrices are very sparse (i.e., most of the links are 0), so we were able to complete the 

computations. This approach has been used in network analysis applications such as identifying 
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community structure (Yan and Gregory, 2009) and creating reduced forms of large networks for 

visualization (Six and Tollis, 2001). 

The results of our count of number of unique ideas for each data set are shown in Table 3.  

Table 3. Estimates of number of unique ideas for each data set based on counting 
cliques in the identical network, at the majority threshold and consensus threshold. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Ideas in data set 
(N) 

232 249 290 286 311 

Number of unique 
ideas (u) at 
majority threshold 

191 216 252 231 216 

Percent unique 

 

82% 87% 87% 81% 69% 

Number of unique 
ideas (u) at 
consensus 
threshold 

220 238 271 267 271 

Percent unique 95% 96% 93% 93% 87% 

 

Applying the Model to Estimate the Size of the Opportunity Space 

Using the tally of unique ideas, we can now estimate the a parameter of the population model 

(Equation 2) for each data set.  Each data set has a size, N, and a number of unique ideas in that 

set, u. These two numbers, (u, N) produce an estimate of a from a numerical solution3 to u = 

(1/a)(1-e-aN). The expected total number of unique ideas is then calculated as T = 1/a. In Table 4, 

we show those values for the consensus threshold on identical. (The T values are rounded in the 

table.)   

Figure 4 illustrates the relationship between the number of unique ideas identified and the total 

number of ideas generated for two of the data sets. The relationship is concave; it is increasingly 

difficult to identify unique ideas as the number of ideas generated increases. Different domains 

and generating processes would exhibit different curves. 

                                                
3 Dawkins (1991) gives an approximation to T as u2/(2(n-u)).  For the first four data sets, this approximation 
underestimates T by about 10%; for the fifth one, it underestimates by nearly 20%. 
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The notion of finite number of unique ideas needs to be qualified. In a real sense, the number of 

ideas is not finite. There is an arbitrarily large number of attributes that can be used to 

characterize an opportunity (e.g., focal user segment, performance level, nuances of needs 

addressed, etc.). Within our analytical framework, the identical threshold defines a level of 

resolution beyond which two ideas are categorized as the same idea. This qualifies the definition 

of T as the total number of ideas that are distinct enough from one another to exceed that 

threshold. With that qualification, we can reasonably consider the size of the opportunity space 

to be finite. 

Table 4. Estimates of total number of unique ideas, T, in each opportunity space 
based on values for N and u for each data set. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Ideas in data set 
(N) 

232 249 290 286 311 

Number of unique 
ideas (u) at 
consensus 
threshold 

220 238 271 267 271 

Parameter (a) 
estimate 

0.000462 0.000366 0.000473 0.000486 0.000907 

Estimate of T, 
total number of 
unique ideas 

2165 2735 2115 2056 1103 

Lower bound for T 
(2.5th percentile) 

1205 1493 1333 1299 806 

Upper bound for T 
(97.5th percentile) 

3704 4762 3333 3226 1493 
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Figure 4: Number of unique ideas, u, expected for a given number of ideas 
generated, N. Two domains are shown, Web-Based Products and Classroom 
Technologies.  

Confidence Intervals 

Using our model we have derived point estimates of the total number of unique ideas, T, for each 

data set. Our model for the probability that the next idea is unique (Equation 1), dictates a 

stochastic process for the number of unique ideas in any set. Using that uncertainty, we can 

numerically approximate confidence intervals around our estimates of T. The details of how we 

do this are explained in Appendix C. 

The results for the 95% confidence intervals are shown in the last two rows of Table 4, rounded 

to the nearest whole number. The confidence intervals are wide, but appropriately so: they reflect 

the level of uncertainty in the process.  

We test whether the estimated sizes of the opportunity spaces are statistically significantly 

different. We find that the sizes of the first four opportunity spaces are not statistically different 

from one another, and the first four are all statistically significantly greater than Classroom 

Technologies (with three of the four at the 0.05 significance level and Web-Based Products at the 

0.01 level). Details are in Appendix D.  
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This test confirms the intuitive notion that the Classroom Technologies space is a smaller or 

narrower space. The innovation charge for the Classroom Technologies domain cued both a 

“how” (“technology”) and a setting (higher education classroom), so there is a base level of 

similarity across every single idea. In contrast, the innovation charges for the other domains were 

more abstract, soliciting ideas for general products and ventures. 

Relaxing the Equally Likely Assumption  

Now we return to one of the fundamental assumptions in landscape size estimation: what if the 

ideas are not equally likely? A logical replacement for the equally-likely assumption is an 

empirical distribution based on the observed relative frequency of the unique ideas in each data 

set. To construct that relative frequency distribution, we use the clique sizes for each of the 

unique ideas identified in each data set. In considering different levels of T (total number of 

unique ideas), we stretch (or shrink) the distribution accordingly. Using a grid search, we find the 

T that gives the best match with the observed data for each set. Matches are determined by 

repeatedly simulating N draws from a population of size T according the relative frequency 

distribution of clique sizes, and looking for the value of T that results in u(N) unique ideas (e.g., 

271 for New Products I at the consensus threshold). The estimates of T based on this approach 

are shown in Table 5, along with the original estimates based on the equally likely assumption. 

The estimates of T do not change much with this analysis. In every case, accounting for the non-

uniform distribution raises the estimate somewhat. 

Table 5: Estimates of the total number of unique ideas, T, based on empirical relative 
frequency of ideas. These estimates use the consensus threshold for identical, 1000 
simulation trials, and a grid search interval of 15.  

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

T assuming each 
idea equally 
likely 

2165 2735 2115 2056 1103 

T assuming 
empirical 
frequency 
distribution 

2268 2839 2334 2205 1192 
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Robustness to Multiple Ideas per Person  

Our model of unique idea generation captured in Equation 2 is based on a process in which each 

idea is a draw from a pool of T equally likely unique ideas. We have already examined relaxing 

the equally likely assumption. Now we examine another issue in light of our data collection 

process, that of multiple ideas per person.  

In our idea generation assignments, each student was asked to contribute five ideas. 

Conceptually, this can raise an issue for our data analysis. Self-censoring occurs such that a 

single person is highly unlikely to submit two redundant ideas. Could this explain why the level 

of redundancy that we find in the data sets is so low?  

We examine this possibility by simulating an idea generation process in which each person 

generates enough ideas to have five unique ideas. The predicted number of unique ideas from 

Equation 2 based on the larger N that would result from this process is virtually identical to our 

reported results. Further details from the simulation can be found in Appendix E. This result 

makes sense, because the probability of encountering a redundant idea in just five draws is very 

low; thus the effect of censoring does not influence the main result very much. 

6. Clusters of Similar Ideas 

In the previous section we analyzed redundancy, the strict repetition of ideas. Now we turn our 

attention to a looser sense of repetition, similarity among ideas. The analysis we did for strict 

redundancy produced an estimate of the total number of unique ideas. We do the same analysis 

at a higher level of abstraction, counting the number of idea clusters in each data set and using 

the population model to estimate the total number of clusters in the landscape. We also show that 

clustering is a statistically significant feature of the landscape as compared to a random 

benchmark.  

Computing the Similarity of Each Pair of Opportunities 

Recall that we asked each of the 230 raters to group separately the identical ideas and the similar 

ideas. To construct clusters of similar opportunities for this analysis, we compute a similarity 

measure for each pair of opportunities within a data set. This similarity measure is a weighted 
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function of the identical groupings and the similar groupings of each respondent, averaged over 

the respondents who had the pair on their list. 

Weighted similarity is a metric ranging from 0 to 10, defined as the average over all raters of the 

maximum of  

• 10, if the rater identified the pair as identical, and 

• 15/list-length, where list-length is the length of the shortest list in which a rater 

included the pair.  

As in our analysis of identical ratings, we exclude the top five percent longest identical lists from 

these calculations. 

The extreme value of 10 occurs when all raters identify a pair as identical. The logic of the 

second term in constructing the metric (i.e., 15/list-length) is that all else equal, the longer the list 

of similar ideas, the more general the categorization of ideas. In previous work, respondents have 

been given a specified list length or a maximum list length (Rao and Katz, 1971, Methods 4 and 

5). In our method, the respondent has more control over the definition of similarity. 

To illustrate the logic of controlling for list length, consider dorm room storage. Lists of broad 

dorm room storage solutions will be longer than lists of easy-to-hang shelves. If the rater formed 

a group of just two similar ideas, then the similarity score for that rater and pair would be 15/2 = 

7.5. If that pair of ideas were included in a group with one other idea, then the similarity score 

would be 15/3=5. We used the value of 15 so that the highest score a pair of ideas could receive 

from a similarity ranking, absent an identical ranking, was 7.5.4 This is a scaling factor that 

allows both groups of identical ideas and groups of similar ideas to be used to compute a single 

similarity metric. Our preliminary investigations revealed that our results are not highly sensitive 

to this scaling factor.5 When averaged across all raters, the weighted similarity score exhibits a 

relatively smooth unimodal distribution, skewed towards 0, and with a thin tail stretching to the 

maximum value of 10.  

                                                
4 Note that raters were instructed that ideas can appear on multiple lists. The similarity score for a pair of ideas 
comes from the shortest list on which a rater included the pair. 
5 Table 8 refers to more details of this sensitivity analysis. 
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The result of this computation is a similarity matrix for each domain, of which Figure 1 an 

example. 

To evaluate how consistently different raters perceived the pairs of ideas, we calculated the 

variance in ratings for each pair. For example, if a pair appeared on five lists, and was rated 

identical (10) by two raters, similar to one idea by one rater (15/2 = 7.5), similar to two ideas by 

another rater (15/3 = 5), and not similar by the fifth rater, the variance in rating for that pair is the 

variance of (10, 10, 7.5, 5, 0) = 17.5. In each data set, we averaged the variances across all pairs 

of ideas. The results are shown in Table 6, and indicate an overall high level of agreement across 

raters. 

Table 6: Variance in similarity ratings across raters for each data set. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Average inter-
rater variance 
across all pairs of 
ideas 

0.58 

 

0.39 

 

0.33 0.39 1.3 

 

 

Clustering Similar Opportunities 

Once we built the similarity matrices for each data set, we used them to find clusters of similar 

ideas. To identify clusters, we used a hierarchical clustering analysis, implemented in 

Mathematica. The clustering analysis iteratively groups the closest ideas, and then sets of ideas, 

using the average proximity (in our case the similarity score) of items in sets. The output of that 

analysis is a dendrogram, a tree, which displays the most similar ideas together and indicates by 

branches how similar the ideas are.  As an example, a portion of a dendrogram for the New 

Products I data set is shown in Figure 5. Uses of this clustering technique are described in Punj 

and Stewart (1983), Girvan and Newman (2002), and Gulbahce and Lehmann (2008).  

We then apply the ordering of the opportunities in the dendrogram to the order of the rows and 

columns in the similarity matrix, which results in clusters of opportunities appearing visually as 

blocks along the diagonal of the matrix as shown in Figure 6. We have labeled some of these 

blocks according to the opportunities they contain. 
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We observe that the themes that characterize the clusters in the two New Products data sets are, 

as one would expect, quite similar. These data sets were created by successive offerings of the 

same course using the same innovation charter. Both have clusters of ideas around general areas 

like dirty dishes, bathrooms, food and beverage, alarm clocks, school supplies, and dorm room 

storage. And both have clusters of ideas around more specific needs like transporting small items 

such as keys and IDs, managing messes of cords and wires, and locating lost objects. For many 

of these clusters, not only are the idea groupings similar across the two data sets, but the relative 

proportions of the ideas in the data set are too. For example, both have about 5% of the ideas 

related to the bathroom, about 10-15% related to food and beverages, and about 2-3% related to 

transporting small items.  

Despite substantial overlap in the clusters, there are still differences in the data sets. For example, 

New Products I contains many ideas related to bicycling and New Products II contains almost 

none. These cross-set observations echo our findings that we should expect both similarity and 

uniqueness in idea generation. 

 

Figure 5: A portion of the dendrogram for the New Products I data set. 
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Figure 6: Reordered matrices of opportunities for the New Products I dataset (left) 
and Classroom Technologies showing labeled blocks along the diagonal.  

Dendrogram Slicing and Estimating the Total Number of Clusters in the Landscape 

By making a vertical “slice” through the dendrogram, we identify the different clusters (or 

branches) of the tree. If the cut is made very near the leaves of the tree (the left side of the tree in 

Figure 5), then the number of clusters will be high, approximating the number of unique ideas 

counted using cliques. If the vertical cut is made near the root of the tree, then the tree will be 

divided into a few, large clusters. The location of the cut determines the level of abstraction at 

which clusters are defined, and is a decision variable in the analysis to be performed. 

For our data sets, we report on clusters at two different levels of abstraction, 1/5 of the distance 

from the root to the leaves and 1/10 of that distance. Slicing a dendrogram at the 1/5 distance 

yields clusters defined by a fairly specific shared need. For example, from Figure 5, a slice at the 

1/5 mark clusters together Travel Jewelry Case and Compact Traveler's Kit—both solutions for 

carrying specific items while traveling—but separates those two from a clustered pair of other 

travel-related ideas, Suitcase Packing and Suitcase/Luggage Handle—which relate more to the 

logistics of the travel bags themselves. This level of abstraction is somewhere between the very 

strict redundancy measures used to count number of unique ideas and looser category levels. 
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Slicing a dendrogram at the 1/10 distance yields more general categories or clusters. At this 

level, the clusters relate to a more general category (e.g., travel) or purpose (e.g., carrying small 

items). Because the slice distance is a decision variable in the analysis, any conclusions about 

clustering must be accompanied by a specification of the slice distance used to define that 

clustering. In Figure 6, most labels correspond to selected clusters at the 1/10-slice level, chosen 

for their notable visual presence in the matrix. The italicized labels for New Products I in that 

figure show supersets at the 1/50-slice level. 

Table 7 shows the number of clusters in the data sets at these two levels of abstraction, and 

includes an estimate of T, the total number of clusters in the landscape. This value of T is 

estimated from the number of ideas generated, N, considering the number of clusters as u, and 

adjusting for the empirical relative frequency of the ideas as explained in Section 5. In other 

words, in this analysis multiple ideas appearing in a cluster correspond to repeated “capture” of 

that cluster. At the shared-need level (1/5), there is still quite a bit of undiscovered territory (T - 

u) in all the data sets, but at the category level (1/10), most of the categories have been identified 

in all the data sets, and especially in Classroom Technologies. 

Table 7: Estimated total number of clusters in the landscape for the five domains at 
two different levels of abstraction, the level of shared need (1/5 slice distance), and 
the level of shared category (1/10 slice distance). 

 New 
Ventures 

Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Ideas in data set (N) 232 249 290 286 311 

Shared-need slice level (1/5) 

Number of clusters 
in data set (u) 

110 133 147 147 99 

Estimate of total 
number of clusters in 
the landscape  (T) 

158 201 225 228 116 

Shared-category slice level (1/10) 

Number of clusters 
in data set (u) 

69 84 88 98 62 

Estimate of total 
number of clusters in 
the landscape (T) 

82 100 103 112 69 
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Clustering as a Significant Feature of the Landscape 

There are clearly clusters in the data as shown in the dendrogram. However, there would be 

clusters in random data as well. To support the idea that clusters represent real underlying themes 

in the idea generation effort, we show evidence that the opportunities are more tightly clustered 

than one would expect from a random sample. We address this question by comparing the 

clustering of the opportunities from our data sets with that which we observe on average in 50 

randomly generated similarity matrices. The random matrices are generated to have the exact 

same cell values as the similarity matrix for a data set, but in a randomized order.6 We can then 

compare the clustering in these randomly generated matrices with the clustering observed for our 

data sets. More formally stated, we test the hypothesis that opportunities in the data sets are more 

clustered than random opportunities with the same degree of similarity. Table 8 reports the 

results of this hypothesis test in the form of a T-test. 

We find strong support for the clustering hypothesis. In every case, the number of clusters in the 

data sets is lower than the average number of clusters in the random benchmarks. Therefore, we 

conclude that opportunities generated in practice are clustered, as opposed to randomly or 

uniformly distributed. This is especially true at the category level. This finding suggests that 

there are significant underlying themes driving idea generation, and that the clustering approach 

can usefully identify those themes. 

                                                
6 We also analyzed random benchmarks that treat within-person and between-people pairs separately. These 
benchmarks replicate the actual number of individuals and number of ideas per individual in each data set, and they 
pull separately from the within-person similarity values and between-people similarity values. See Appendix F.  
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Table 8: Comparison of number of clusters in actual similarity matrices compared 
with the clustering in random matrices. The T-statistic compares the observed number 
of clusters to the distribution of clusters observed for 50 randomly generated matrices 
with the same values of inter-idea similarity as found in the data.7 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Shared-need slice level (1/5) 

Number of 
clusters, actual 

110 133 147 147 99 

Number of 
clusters, random 
(average over 50 
samples) 

121 139 160 152 126 

T-statistic  4.24*** 2.11** 3.75*** 1.73* 9.29*** 

Shared-category slice level (1/10) 

Number of 
clusters, actual 

69 84 88 98 62 

Number of 
clusters, random 
(average over 50 
samples) 

82 95 109 105 76 

T-statistic 4.49*** 3.91*** 8.07*** 2.54** 5.76*** 
*** p<0.01, **p<0.05, *p<0.10 two-tailed tests 

 

7. Quality and Similarity 

In this section we address the third key question of the paper: are unique ideas more valuable? 

On the one hand, the existence of many similar ideas suggests that an idea is not truly novel, 

perhaps even obvious, and therefore not especially valuable. On the other hand, the existence of 

similar ideas might indicate that the idea addresses a widely held need, suggestive of market 

acceptance of the innovation. Thus, we have conflicting theoretical bases for hypothesizing the 

direction of a relationship between value and similarity. To capture the alternative effects, we 

pose the Uniqueness Hypothesis that the estimated value of an idea decreases with the number of 

similar ideas; and the Popularity Hypothesis that the estimated value of an idea increases with 

the number of similar ideas. To test these hypotheses, we regress the estimated value of each 

opportunity against the size of the dendrogram cluster in which that opportunity resides.  

                                                
7 In Appendix G, we show results of a sensitivity analysis to the similarity metric. First, we examine sensitivity to 
the scaling factor (15 in the base case). Second, we examine sensitivity to the functional form of the metric: we 
rerun the analysis of Table 8 for a similarity metric in which we do not adjust for list length. In those cases, we treat 
the similar lists like the identical lists: all pairs that appear together on a list get a fixed similarity value. As in our 
identical analysis, we omit the longest 5% of lists from this calculation 
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The dependent variable for this regression is the rating given by a specific rater to a specific 

opportunity. This dependent variable is an integer value between 1 and 10. Although strictly 

speaking, the bounds on the dependent variable violate the assumptions of ordinary least squares 

regression, in practice, the dependent variable rarely takes on values of 1 or 10, and exhibits a 

unimodal distribution well within the bounds of 1 and 10. 

We control for the identity of each rater with a dummy variable, because the raters typically use 

different parts of the 1-10 quality rating scale. 

For the cluster-size variable, we show results for two dendrogram slice levels, the shared-need 

level (1/5 slice) and the shared-category level (1/10 slice). The results are similar for a stricter 

definition of similarity (e.g.,1/2 slice). The summary statistics for the variables are in Table 9 and 

the results of the regressions are in Table 10. Recall that the questions used to assess the value of 

ideas were somewhat different for each data set, although Girotra et al. (2010) show that the 

responses to these questions are highly correlated. 

Five out of the ten of these tests show support for the Popularity Hypothesis, that value is 

increasing in the number of similar ideas related to the need or in the category. None of the 

remaining ones show significant support for the Uniqueness Hypothesis, that value is decreasing 

in the number of similar ideas. In four of the five data sets, the cluster sizes produced by at least 

one of the slice levels (1/5 or 1/10) is a significant, positive predictor of value.8 Even though not 

extremely consistent or compelling, the best single model of these data would be that value is 

increasing in similarity. Thus, we can reject the Uniqueness Hypothesis. There is no support for 

the theory that more novel ideas are considered more valuable than those that are similar to 

others. We consider the implications of these results in the discussion section. 

 

                                                
8 We also tested non-linear models (e.g., including the square of the cluster size). These models do not consistently 
offer more explanatory power. 
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Table 9: Summary statistics for variables. 
 New Ventures  Web-Based 

Products 
New Products I New Products II Classroom 

Technologies 

Question for assessing 
value 

How valuable is 
this opportunity? 

How appealing is 
this opportunity to 
you as a potential 

user? 

How likely is it that 
pursuing this 

opportunity will 
result in a great 

product? 

How attractive 
would a product 
addressing this 

opportunity be to 
you personally? 

How do you rate 
this concept (Hate 

it / Love it)? 

Mean - Estimated Value 5.24 4.64 5.36 4.37 5.62 

S.D. – Estimated Value 2.27 2.70 2.35 2.74 2.30 

Mean –Cluster size (shared 
need, 1/5 level) 

2.86 2.52 2.95 2.79 6.08 

S.D. – Cluster size (shared 
need, 1/5 level) 

1.60 1.52 2.01 1.76 5.83 

Mean - Cluster size (shared 
category, 1/10 level) 

4.68 4.30 5.16 4.66 10.07 

S.D. – Cluster size (shared 
category, 1/10 level) 

2.44 2.82 3.28 3.13 7.40 

Pearson Correlation  
Value  | Cluster size 
(shared need, 1/5) 

0.023 -0.018 0.042 .055 0.024 

Pearson Correlation  
Value  | Cluster size 
(shared category, 1/10) 

0.030 -0.010 0.021 .064 0.039 

 

Table 10: Results of regression of the value rating of an opportunity as a function of 
cluster size, using similarity dendrogram slice levels of 1/5 and 1/10. Specific Rater 
IDs are included as controls. T-statistics are in brackets.  

 New Ventures Web-Based Products New Products I New Products II Classroom 
Technologies 

Constant9 3.98*** 
[19.13] 

3.95*** 
[18.95] 

6.16*** 
[7.88] 

6.14*** 
[7.85] 

3.29*** 
[11.06] 

3.36*** 
[11.31] 

2.51*** 
[5.89] 

2.46*** 
[5.80] 

7.83*** 
[26.23] 

7.77*** 
[25.96] 

Cluster size 
(shared need, 
1/5) 

0.025 
[1.36] 

 -0.032 
[-1.31] 

 0.048*** 
[2.81] 

 0.064*** 
[2.99] 

 0.007 
[1.29] 

 

Cluster size 
(shared 
category, 
1/10) 

 0.022* 
[1.82] 

 -0.011 
[-0.81] 

 0.015 
[1.410] 

 0.054*** 
[4.47] 

 0.013*** 
[2.86] 

(+  controls for raters) 

N 4626 4626 4477 4477 3366 3366 3801 3801 4189 4189 

Adj. R2 0.22 0.22 0.17 0.17 0.30 0.30 0.28 0.29 0.17 0.17 

F Statistic 28.36 28.40 17.44 17.42 24.23 24.10 26.17 26.43 10.72 10.82 
*** p<0.01, **p<0.05, *p<0.10 two-tailed tests 

                                                
9 The constant reported for each model is determined by which of the Rater IDs serves as the baseline for the rater 
dummy, and so should not be interpreted as a meaningful difference across the data sets relative to the hypotheses. 
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8. Discussion 

To understand and characterize opportunity spaces, we tackled three main questions in this 

paper: (1) When a large number of independent efforts to generate ideas are conducted in 

parallel, how likely are the resulting ideas to be redundant? (2) Using redundancy as a clue, how 

vast are the opportunity spaces we study? (3) Are the less similar ideas more valuable than ideas 

that are relatively common? The answer to the first question is that while there is clearly some 

redundancy in the ideas generated by aggregating parallel efforts, this redundancy is quite small 

in absolute terms, even for very narrowly defined domains. For the second question, we find that 

the estimated total number of unique ideas is about one-thousand for one narrowly defined 

domain and greater than two-thousand for the other more broadly defined domains. On the third 

question, we find that ideas that are more distinct from other ideas are not generally considered 

more valuable. 

In addition to answering these key questions, we have developed methods for measuring 

similarity, defining unique ideas, estimating the sizes of opportunity spaces, and identifying 

clusters of ideas. These methods have proven useful scientifically, and offer promise in practice 

as well. 

Managerial Implications 

In our five data sets of ideas, there is very little redundancy. Of course we cannot extrapolate that 

result to all innovation efforts and claim that there will never be much redundancy. However, the 

results from our data sets do demonstrate the remarkable breadth of ideas that can be produced 

by parallel idea generation. Organizations have some control over the breadth of ideas produced 

by setting the scope of the innovation effort and by involving a diverse group of people. With 

landscape sizes comparable to our data sets, organizations can generate hundreds of 

opportunities and most will be unique.  

The capture-recapture model offers promise for managing the idea generation effort. Examining 

an initial set of ideas for redundancy gives a clue to how vast the opportunity space is, as defined 

by the stated innovation charge and the idea generating process. Table 11 shows estimates of 

total number of unique ideas (T) for different numbers of ideas generated (N) and the fraction of 

those that are unique (f).  For example, if only 95% of the first 100 ideas are unique, the estimate 



 33  

of the total is 966. In this scenario, the team would probably benefit from substantial further 

investment in idea generation, very little of which would be wasted effort. We note that this table 

uses the simplest assumptions: the ideas in the opportunity space are generated independently, 

each with equal probability. However, our estimates using the empirical distribution of ideas 

showed that the equally likely model underestimates the total number of unique ideas (T).  

Table 11: Estimate of the total number of unique ideas (T) for a given number of 
ideas generated (N) and the fraction of those ideas that are unique (f).  

 F       

N 65% 70% 75% 80% 85% 90% 95% 

50 54 66 83 108 150 233 483 

100 107 131 165 215 299 466 966 

150 161 197 248 323 449 699 1450 

200 214 263 330 431 598 932 1933 

250 268 328 413 539 748 1165 2416 

300 321 394 495 646 897 1398 2899 

350 375 460 578 754 1047 1631 3382 

400 428 525 660 862 1196 1864 3866 

In posing the paper’s key questions, we noted that the level of redundancy informs the decision 

about how much to invest in parallel search. Dahan and Mendelson (2001) focus directly on that 

question in a context in which each concept is unique. Their estimates are therefore an upper 

bound for the number of ideas to generate when we allow for the redundancy that is likely in 

industrial practice. 

While redundancy in our data is low, we did found strong evidence of clustering. A description 

of that clustering may be useful in practice: the dendrogram clustering and the implied cluster 

labels (as shown in Figure 6) organize several hundred ideas into a few dozen themes. Clustering 

has implications for the design of an innovation tournament (Terwiesch and Ulrich 2009). If each 

idea has to be evaluated in isolation, efficiency must be favored over depth in the evaluations. 

However, if clusters rather than individual ideas can be evaluated, the depth of analysis can be 

increased.  

Our clustering analysis was originally motivated by scientific inquiry. However, the resulting 

dendrograms and ordered matrices provide a valuable window into the innovation process. The 

clusters reveal where most exploratory effort is being directed. The degree to which clusters 
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align with the innovator’s strategic intent may provide an effective diagnosis of problems in the 

opportunity identification processes of the innovator. More broadly, the set of ideas taken as a 

whole may contain information. The set structure speaks to the relative salience of different 

needs. We have used the clustering analysis with a major automobile manufacturer to explore the 

future of “electric mobility.” The innovation charter was loosely defined in the sense that any 

ideas related to the future of transportation and innovative technologies were entertained. This 

laxity was daunting to the company at first. However, the clustering analysis revealed themes, 

making the structure of the opportunity space come into focus. The clusters then served as a 

useful tool in framing the evaluation phase.  

We observe that when generating ideas with practicing professionals, there appears to be an 

instinctive positive response to unique ideas. This response appears to be even more pronounced 

with novice innovators, who often dismiss a cluster of ideas because the similarity of those ideas 

mean that they do not seem sufficiently novel. Our data show that this reaction may be at odds 

with the evidence that unique ideas are not systematically valued more highly than ideas that are 

similar to others. This result implies that managers should pay closer attention to the message 

that repetition in idea generation may be signaling a strongly felt need. 

Limitations 

There are four main limitations to this research. First, these data are derived from a classroom 

setting. While about half of our subjects were mid-career professionals and experienced 

innovators, they were still working within an educational setting. It would be interesting to do a 

similar analysis of a data set arising naturally from commercial activity, as one might find in the 

development organization of a consumer products company. Of course our estimates of 

landscape size pertain specifically to the data sets we collected. Just as the ideas themselves 

depend on who is generating the ideas, so does the landscape size. 

Second, the quality measure for our opportunities is a subjective peer evaluation. It is possible 

that this measure is poorly correlated with the expected value of the eventual commercial success 

of an opportunity if pursued. However, it is of course practically impossible to get profit 

outcomes for hundreds of opportunities, most of which do not warrant investment. Furthermore, 

even a profit outcome would be just a particular realization of a stochastic process dependent in 

part on exogenous factors. Prior research shows that these peer evaluations are highly correlated 
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with purchase intent, which is reflective of one of the main drivers of eventual success—market 

acceptance. 

Third, the similarity rating task is challenging to execute perfectly. One of the issues with our 

approach is that a pair of ideas might be judged more or less similar based on the other ideas 

with which they appear. Indeed, Ratneshwar et al. (2001) show that similarity is somewhat 

context-dependent. 

Fourth, the innovation challenges from which our data are derived were fundamentally needs-

driven endeavors. The participants possessed relatively general capabilities as entrepreneurs and 

product designers and were seeking out unmet market needs. While we believe that most 

successful innovation is market-driven, we would expect different patterns of similarity and 

quality for opportunities that were fundamentally technology or solution driven. 

Future Work 

The patterns we observe in large samples of innovation opportunities are the result of both the 

nature of the landscape and the nature of the search process. To what extent can the search 

process be managed to achieve different results? Hoffman et al. (forthcoming) suggest that it is 

certain customers, ones with an “emergent nature” that should be tapped by idea generation. Are 

there strategies that improve the idea generation performance of non-emergent customers? For 

example, do some heuristics for idea generation result in less clustered outcomes? Dahl and 

Moreau (2002) describe the positive effect of far analogies on creativity and idea value. Would 

innovators prompted with this knowledge produce less clustered ideas? Toubia (2006) examines 

how incentive structure affects creative output, another approach to managing the process. 

We have only begun to probe the phenomenon of clustering. These questions seem promising for 

further exploration: 

• How do the patterns of opportunities compare to the patterns of successful commercial 

innovations? What do differences between the patterns of opportunities and the patterns 

of existing successful products reveal? We are struck in our project-based courses by how 

some of the same opportunities have arisen for many years (e.g., better wire and cord 

management). Do these recurring gaps reveal technological limits (i.e., a very hard 

problem for which no good solutions have yet been developed)? 
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• The relationship between similarity and value is, if anything, positive. This result is 

consistent with there being a common driver of quality and clustering, an underlying 

interest or attraction from the idea generating group.10 Further exploration of these 

potential underlying factors would be interesting. 

• Erat and Krishnan (2010) develop a model that shows how clustering can be a 

consequence of a group of innovators all trying to propose the best idea. To what extent 

do incentives and competition drive the clustering, either at the level of individual 

innovators or possibly at the level of innovating firms? 

• Are patterns in the opportunity landscape fractal in nature? That is, would we observe 

similar patterns of redundancy and clustering when examining innovation opportunities at 

very different levels of abstraction? These levels might extend from the level of 

identifying potential new businesses down to the level of identifying potential new design 

details on individual products. 
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Appendix A: Instructions for Similarity Coding 

On the accompanying three paper sheets, you will find a master list of “new ideas” generated as 

part of an innovation effort. 

In this task you will form groups of similar ideas from this list. 

First, read through the entire list to become generally familiar with the ideas. 

Then, complete two tasks. The first aims to identify similar ideas. The second aims to identify 

identical or essentially identical ideas. The detailed instructions for these two tasks are provided 

below. You will record the results of your work in the spreadsheet you’ve been given.  

Before you begin, record in the cells at the top of the spreadsheet your “Lab ID,” the ”Session 

Letter” and “Session #” printed at the top of your list. These cells are highlighted in light blue. 

Similar Ideas 

Consider the list of ideas. Identify groups of two or more ideas that are that are similar to 

each other. You should base this grouping on your own notion of similarity. We understand that 

people think about similarity in their own way, which is fine.  

Record the ID numbers for ideas that are similar in the rows in the spreadsheet you’ve been 

given (labeled “Similar Ideas”). So, for example, the first group would correspond to Row 4 and 

the ideas in that group would be entered along Row 4 in Columns B, C, etc. You may find it 

helpful to give each group a descriptive label in Column A, but this is optional. Feel free to mark 

up the paper sheet of ideas if that is helpful, but only the information recorded in the spreadsheet 

will be used in our analysis.  

The ideas on your list are drawn randomly from a larger sample, and so it is possible there could 

be few or many groups of similar ideas. 

It is ok to place an idea in more than one group if you wish. 

Identical or Essentially Identical Ideas 

Consider again the list of ideas and your groups of similar ideas. On the lower portion of the 

worksheet, identify groups of two or more ideas that are identical or essentially identical.  
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Record the ID numbers for ideas that are identical or essentially identical in the rows in the 

spreadsheet you’ve been given (in the area labeled “Essentially Identical Ideas”). Again, you 

may find it helpful to give each group a descriptive label, but this is optional. 

If ideas are essentially identical, then they are also similar, and so any ideas that appear together 

in an essentially identical group will also appear together in one or more of your similar groups. 

The ideas on your list are drawn randomly from a larger sample, and so it is possible that there 

could be no ideas on your list that are identical or essentially identical. 

Appendix B: Forming Lists of Ideas for Raters 

To rate the similarity of ideas as described in Appendix A, we provided subjects with lists of 

ideas. Ideally, each subject would rate the similarity of all the ideas in an entire data set. 

However, each of the five data sets had a few hundred ideas, approximately twelve pages of 

ideas. We saw that it was too hard for people to reliably recall similar and identical ideas over 

that many ideas. To make the task manageable, we created lists of approximately 75 ideas, or 3 

pages of ideas. We used a process to create a set of lists so that (1) every pair of ideas appeared 

on at least one list and (2) pairs of ideas appeared together on lists an average of about 4 times. 

Our algorithm for creating these lists was as follows. Consider every pair of ideas, in random 

order. If the pair does not appear on any lists, find the shortest list that contains one idea in the 

pair. Add the other idea to that list. If neither idea appears on any list, add both ideas to the 

shortest list.  

For the data sets with 232 and 249 ideas, we created 40 lists each. For the data sets with 286 to 

311 ideas, we created 50 lists each. In total, we had 230 lists of between 68 and 85 ideas that 

subjects rated for similarity. 

 

Appendix C: Confidence Intervals 

In this appendix, we describe the details of how we computed the confidence intervals on the 

estimate of the total number of unique ideas, T. We use a Bayesian approach. As such, we derive 

a posterior distribution p(a|u), i.e., a distribution on the equation parameter (a) given the 
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observed data (the number of unique ideas u in the data set). To do that, we need two 

components, the likelihood function p(u|a) and the prior distribution p(a). 

The likelihood function p(u|a) gives the probability that there are u unique ideas out of N ideas 

generated, for a particular value of a. The value of  p(u|a) is derived from the stochastic process 

defined by Equation 1: the ith idea is either unique (with probability p(i) = e-ai) or not (with 

probability 1− p(i)). The total number of unique ideas out of N ideas generated is therefore the 

sum of N Bernoulli (i.e., binary 0/1) random variables. Using a central limit theorem 

(Kallenberg, 1997), we approximate the sum of the Bernoulli random variables as a Normal 

distribution with mean equal to the expected number of unique ideas u(N) and the variance as the 

sum of the variances of the Bernoulli random variables. The variance of a Bernoulli random 

variable with parameter p is p(1-p). We approximate this sum using the integral 

 

The observation for each data set, the number of unique ideas out of N, is a whole number. The 

Normal approximation to the sum of the Bernoulli random variables is a continuous 

approximation. To find the probability that u unique ideas appeared, we use the probability of the 

Normal random variable being between u−0.5 and u+0.5. 

Below we show an example of a likelihood function for the New Products I data set, with 271 

unique ideas out of 290 generated (u(290) = 271). There are a few things to note about the 

likelihood function. First, it is not a probability distribution; it does not necessarily sum to 1. 

Second, it is bell-shaped. Values of the parameter (a) around 0.00047 yield 271 unique ideas out 

of 290 with greater likelihood than values of the parameter that are much lower or much higher. 

Third, for values of a that are too low or too high, there is essentially no chance that they yield 

271 unique ideas out of 300.  
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For the prior distribution on a, we use a “diffuse prior,” (Hays and Winkler, 1971, pp. 482-484) 

representing the case in which the observed information would receive much more weight than 

the prior. A diffuse prior essentially serves as a uniform distribution on a for which we don’t 

have to pre-specify the range. The p(a) is treated as a constant. In our calculations, the range of a 

is effectively narrowed to values of a for which p(u|a) is non-zero. (In our numerical analysis, we 

set the threshold to be 10-10.)   (Note: we also checked the case in which the diffuse prior is 

placed on T rather than on a. The confidence intervals are shifted up slightly, but are quite 

similar.) 

 Putting together the pieces with Bayes’ rule, we use p(u|a) to find p(a|u) the probability of a, 

given an observed value of u: 

 , which reduces to   because of our assumption 

that p(a) is constant. 
 

For practical purposes, we discretize the a space, looking at values of a in intervals of 10-5. For 

the New Products I data set shown in the figure above, the relevant range for a is 0.00012 to 

0.00171.  

Finally, we use the range of a between the 2.5th and 97.5th percentiles of p(a|u) to deduce the 

corresponding range on T.  
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Appendix D: Test for Statistically Significant Difference of Estimates 

To test for the statistical significance of the difference of the estimates for any two data sets, we 

compute the probability that that difference would be at least as big as observed.  The logic is 

that of a t-test. However, we do not use the t-test per se, because we are testing a difference in 

the medians of non-Normally distributed quantities, not a difference in means of Normally 

distributed quantities (as in the t-test).  

For each pair of data sets, we simulated 100,000 draws from each median-centered distribution. 

The distributions are those derived as described in the previous appendix on confidence intervals, 

the p(a|u). We use the median to center because the point estimate for the model parameter is 

approximately the median of the distribution. Then we compute the fraction of the simulated 

pairs that have a difference greater than or equal to the difference in the observed parameter 

estimates. If very few of the simulated differences are as big as the actual difference, we 

conclude that it is unlikely that the point estimates (the medians) of the distributions are the 

same. 

Those fractions are shown in Table A1 for each pair of data sets, using the unique counts from 

the consensus threshold (70% level of agreement). 

Table A1: Fraction of 100,000 simulated draws that are greater than or equal to the 
observed differences between data sets. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

New Ventures      

Web-Based 
Products 

0.57     

New Products I 0.93 0.48    

New Products II 0.89 0.43 0.92   

Classroom 
Technologies 

0.03** 0.01*** 0.02** 0.03**  
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Appendix E: Multiple Ideas per Person 

To examine the question of how much it matters that each person generated five ideas, we run a 

simulation of the five-unique-ideas-per-person format and see how that format changes the 

expected number of unique ideas in a data set, compared to the predictions from our baseline 

model, Equation 2. 

For each data set, we simulated q people each generating five ideas. The five ideas are modeled 

as five draws, without replacement, from a set of T total unique ideas. The q is set determined by 

Round[N/5]. (Note that there are slight discrepancies with the data: for New Products II, 58 

actual participants generated 286 ideas; a few people did not complete all five; therefore we 

simulated 57 people and use the benchmark u(285).) Table A2 shows the results. 

Table A2: Comparison of estimate of N assuming enough ideas are generated by 
each individual to produce five unique ideas. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

N, ideas in data set 232 249 290 286 311 

# simulated ideas, 
5 Round[N/5]  

230 250 290 285 310 

Predicted u(5q) 
from model 

218.20 238.91 271.00 266.13 270.25 

Average # of 
unique ideas in 
10,000 trials 

218.42   239.12 271.31 266.47 270.85 

The comparison of the last two rows of this table shows that the restriction that each individual 

will generate five unique ideas has virtually no effect on the predictions of the model.   
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Appendix F: Clustering Analysis Accounting for Multiple Ideas per Person 

Table A3: A variation of Table 8 in which the random benchmarks reproduce the 
pattern of multiple ideas per person found in the data. We continue to see support for 
the hypothesis that opportunities in the data sets are more clustered than random. 

 
 New Ventures Web-Based 

Products 
New Products I New Products II Classroom 

Technologies 

Shared-need slice level (1/5) 

Number of 
clusters, actual 

110 133 147 147 99 

Number of 
clusters, random 
(average over 50 
samples) 

122 140 159 153 126 

T-statistic  4.96*** 2.36** 3.66*** 1.84* 8.76*** 

Shared-category slice level (1/10) 

Number of 
clusters, actual 

69 84 88 98 62 

Number of 
clusters, random 
(average over 50 
samples) 

81 96 110 105 76 

T-statistic 4.83*** 4.76*** 6.80*** 2.17** 6.09*** 
*** p<0.01, **p<0.05, *p<0.10 two-tailed tests 
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Appendix G: Sensitivity to Similarity Metric 

Table A4: A variation of Table 8, with sensitivity analysis to the scaling factor in the 
similarity measure. (The original value was 15; here we compare to 17.5, 12.5, and 
10.) We continue to see support for the hypothesis that opportunities in the data sets 
are more clustered than random, especially for the higher values of the scaling factor. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Shared-need slice level (1/5) 

17.5 Actual 106 124 132 131 98 

17.5 Random avg 116 132 151 146 123 

T-statistic  3.61*** 2.94*** 6.01*** 4.13*** 8.67*** 

15 Actual 110 133 147 147 99 

15 Random avg 121 139 159 154 125 

T-statistic  3.65*** 1.70* 3.61*** 2.27** 9.51*** 

12.5 Actual 114 135 157 151 103 

12.5 Random avg 125 145 165 157 127 

T-statistic  3.60*** 3.28*** 2.60** 1.92* 8.20*** 

10 Actual 122 150 170 159 103 

10 Random avg 131 156 176 164 128 

T-statistic  2.37** 1.60 1.64 1.31 9.18*** 

Shared-category slice level (1/10) 

17.5 Actual 64 73 76 88 56 

17.5 Random avg 77 89 102 99 74 

T-statistic  6.37*** 5.49*** 10.16*** 4.23*** 7.07*** 

15 Actual 69 84 88 98 62 

15 Random avg 81 95 110 106 77 

T-statistic  5.72*** 3.50*** 7.68*** 2.80*** 6.46*** 

12.5 Actual 74 96 97 105 63 

12.5 Random avg 86 102 117 109 78 

T-statistic  4.04*** 2.01* 6.12*** 1.46 6.10*** 

10 Actual 89 104 111 112 70 

10 Random avg 91 112 127 117 80 

T-statistic  0.69 2.31** 5.22*** 1.96* 3.99*** 
*** p<0.01, **p<0.05, *p<0.10 two-tailed tests 
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Table A5: A variation of Table 8, with sensitivity analysis to the functional form of 
the similarity measure. In this analysis, we do not divide by list length: all pairs on 
any list are given the same similarity value, except that the longest 5% of lists are 
excluded, as in the identical analysis. We examined similarity values of 7, 5, and 3. 
We continue to see support for the hypothesis that opportunities in the data sets are 
more clustered than random. 

 New Ventures Web-Based 
Products 

New Products I New Products II Classroom 
Technologies 

Shared-need slice level (1/5) 

7 Actual 68 68 76 89 63 

7 Random avg 85 93 107 111 87 

T-statistic  7.56*** 10.24*** 13.58*** 7.75*** 11.00*** 

5 Actual 83 98 99 107 78 

5 Random avg 102 114 129 130 104 

T-statistic  6.77*** 5.75*** 12.21*** 9.05*** 8.64*** 

3 Actual 118 143 155 150 96 

3 Random avg 125 147 164 157 119 

T-statistic  2.76*** 1.16 2.46** 1.77* 7.12*** 

Shared-category slice level (1/10) 

7 Actual 33 36 39 45 27 

7 Random avg 49 54 62 65 40 

T-statistic  7.48*** 8.06*** 11.30*** 10.22*** 7.96*** 

5 Actual 42 49 51 62 36 

5 Random avg 62 70 79 82 54 

T-statistic  9.90*** 11.21*** 14.20*** 7.49*** 7.90*** 

3 Actual 70 81 88 98 53 

3 Random avg 82 98 110 107 69 

T-statistic  5.24*** 6.59*** 8.17*** 2.92*** 7.29*** 
*** p<0.01, **p<0.05, *p<0.10 two-tailed tests 
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