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New Perspectives on Customer “Death” Using a Generalization of the
Pareto/NBD Model

Abstract
Several researchers have proposed models of buyer behavior in noncontractual settings that assume that
customers are “alive” for some period of time and then become permanently inactive. The best-known such
model is the Pareto/NBD, which assumes that customer attrition (dropout or “death”) can occur at any point
in calendar time. A recent alternative model, the BG/NBD, assumes that customer attrition follows a
Bernoulli “coin-flipping” process that occurs in “transaction time” (i.e., after every purchase occasion).
Although the modification results in a model that is much easier to implement, it means that heavy buyers
have more opportunities to “die.”

In this paper, we develop a model with a discrete-time dropout process tied to calendar time. Specifically, we
assume that every customer periodically “flips a coin” to determine whether she “drops out” or continues as a
customer. For the component of purchasing while alive, we maintain the assumptions of the Pareto/NBD and
BG/NBD models. This periodic death opportunity (PDO) model allows us to take a closer look at how
assumptions about customer death influence model fit and various metrics typically used by managers to
characterize a cohort of customers. When the time period after which each customer makes her dropout
decision (which we call period length) is very small, we show analytically that the PDO model reduces to the
Pareto/NBD. When the period length is longer than the calibration period, the dropout process is “shut off,”
and the PDO model collapses to the negative binomial distribution (NBD) model. By systematically varying
the period length between these limits, we can explore the full spectrum of models between the “continuous-
time-death” Pareto/NBD and the naïve “no-death” NBD.

In covering this spectrum, the PDO model performs at least as well as either of these models; our empirical
analysis demonstrates the superior performance of the PDO model on two data sets. We also show that the
different models provide significantly different estimates of both purchasing-related and death-related metrics
for both data sets, and these differences can be quite dramatic for the death-related metrics. As more
researchers and managers make managerial judgments that directly relate to the death process, we assert that
the model employed to generate these metrics should be chosen carefully.
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Abstract

New Perspectives on Customer “Death” Using a Generalization of the
Pareto/NBD Model

Several researchers have proposed models of buyer behavior in noncontractual settings which
assume that customers are “alive” for some period of time, then become permanently inactive.
The best-known such model is the Pareto/NBD, which assumes that customer attrition (dropout

or “death”) can occur at any point in calendar time. A recent alternative model, the BG/NBD,
assumes that customer attrition follows a Bernoulli “coin-flipping” process that occurs after

every purchase occasion. While the modification results in a model that is much easier to
implement, it means that heavy buyers have more opportunities to “die.”

In this paper, we develop a model with a discrete-time dropout process tied to calendar time.
Specifically, we assume that every customer periodically “flips a coin” to determine whether

she “drops out” or continues as a customer. For the purchasing while “alive” component, we
maintain the assumptions of the Pareto/NBD and BG/NBD models. This results in a model

that has the appealing characteristics of the Pareto/NBD with none of its computational burden.
This periodic death opportunity (PDO) model allows us to take a closer look at how as-

sumptions about customer death influence model fit. When the time period after which each

customer makes his or her dropout decision (which we call periodicity) is very small, we show
analytically that the PDO model converges to the Pareto/NBD. When the periodicity is longer

than the calibration period, the dropout process is “shut off” and the PDO model converges to
the NBD model. By systematically varying the periodicity between these limits, we can explore

the full spectrum of models between the “continuous-time death” Pareto/NBD and the näıve
“no death” NBD. In covering this spectrum, the PDO model performs at least as well as either

of these models; we show this theoretically and our empirical analysis demonstrates the superior
performance of the PDO model on two datasets. Finally, we extend the basic model to allow

for heterogeneity in periodicity across customers and find that such an extension confirms the
results of the basic model.

Keywords: Customer-base analysis, Pareto/NBD, BG/NBD, customer attrition.



1 Introduction

As marketing researchers become more sophisticated in building models of customer behavior,

they begin to scrutinize, test, and improve upon underlying assumptions of their models that

were originally taken for granted. Within the domain of noncontractual customer-firm relation-

ships, the assumptions made about the timing and nature of customer “death” (i.e., unobserved

and unobservable dropout) are ripe for such improvements. For years, the gold standard for

such models has been the Pareto/NBD (Schmittlein, Morrison, and Colombo 1987), which was

the first to capture and exploit a customer death process in such a setting. Applications of

the model (e.g., Fader, Hardie and Lee (2005a), Reinartz and Kumar (2000), Schmittlein and

Peterson (1994)) have utilized the Pareto/NBD dropout process (namely an exponential tim-

ing process with gamma-distributed heterogeneity across customers) without questioning it or

testing alternative mechanisms.

The first paper to raise such questions was Fader, Hardie and Lee (2005b), which replaced

the continuous-time exponential-gamma process with a discrete-time beta-geometric one. The

resulting model, called the BG/NBD, was viewed as a “quick and easy” alternative to the

Pareto/NBD, since it offers a much more straightforward parameter estimation process with no

substantial loss in the model’s fit and forecasting capabilities. But beyond these computational

benefits and aggregate indicators of overall model performance, not much attention was paid to

the death process itself.

In this paper we propose and carefully investigate a new process for customer death in the

noncontractual setting, one that combines the “best of both worlds.” Our new model is a gener-

alization of the Pareto/NBD yet still enjoys some of the computational benefits of the BG/NBD

(e.g., no need to evaluate Gaussian hypergeometric functions in model estimation). Further-

more, this model offers new insights about the death process and some surprising connections

between the beta-geometric and exponential-gamma sub-components.

The new framework, called the periodic death opportunity (PDO) model, assumes that

customers act in accordance with the discrete “coin-flipping” story associated with the beta-

geometric, but these “coin flips” arise at periodic intervals in calendar time instead of being

1



linked to actual purchases (as in the BG/NBD model). Formulated in this manner, the PDO

model allows us to take a closer look at how assumptions about customer death influence model

fit as well as key managerial inferences/diagnostics that emerge from the model. By varying the

length of the time interval after which each customer makes her dropout decision, which we call

the periodicity, we effectively vary the customer dropout dynamics. When the periodicity is very

large, the dropout component is “shut off” and our model becomes the standard “no death”

NBD model. At the other extreme, when the periodicity tends to zero, our discrete-time dropout

process converges into the continuous-time dropout process of the Pareto/NBD; we prove this

convergence analytically. We find in our empirical analysis that the PDO model works better

than both the NBD and the Pareto/NBD models for intermediate values of periodicity, both in

the calibration samples and longitudinal holdout periods.

In the next section we formally develop the PDO model. In Section 3, we carry out an

empirical analysis in which the performance of the proposed model is compared to that of the

Pareto/NBD, BG/NBD and NBD models on two datasets—one using transactions from an

online retailer of music CDs, and the other using transactions from a grocery store. In Section

4, we extend the basic model to allow for heterogeneity in the periodicity parameter and estimate

this new model on both datasets. Finally, we conclude with a recap of the model, brief discussion

of its limitations, and some suggestions for related future research opportunities.

2 Model Development

The periodic death opportunity (PDO) model is based on the following six assumptions:

1. A customer’s relationship with a specific firm can be characterized as first being “alive”

for some period of time, then become permanently inactive (“death”).

2. While alive, the number of transactions made by a customer follows a Poisson process

with transaction rate λ. (This is equivalent to assuming that the interpurchase times are

iid exponential with rate λ.)
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3. Heterogeneity in transaction rates across customers follows a gamma distribution with

shape parameter r and scale parameter α:

f(λ | r, α) =
αrλr−1e−λα

Γ(r)
. (1)

4. Let the random variable Ω denote the unobserved time at which the customer “dies.” We

model the death process by assuming that every τ units of time (where time starts at

0) the customer can drop out with probability θ. (This implies that the customer can

drop out at τ, 2τ, . . . , bt/τc τ in the interval (0, t], where b.c denotes the “floor” function.)

Therefore, the probability that the customer has died by time t is

P (Ω ≤ t | θ, τ) = 1 − (1− θ)bt/τc ,

and the mean lifetime of the customer is E(Ω | θ, τ) = τ/θ. We refer to τ as the periodicity

parameter and assume that it is the same for all customers. (We relax this assumption in

Section 4.)

5. Heterogeneity in θ follows a beta distribution with pdf

f(θ | a, b) =
θa−1(1 − θ)b−1

B(a, b)
. (2)

6. The transaction rate λ and the dropout probability θ vary independently across customers.

(Note that the first three assumptions are identical to the corresponding assumptions of the

Pareto/NBD model; the difference lies in the assumptions regarding the nature of the death

process.)

It follows from Assumptions 4 and 5 that the mean lifetime of a randomly chosen customer

is

E(Ω | a, b, τ) = τ

(

a+ b− 1

a− 1

)

, (3)
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while the probability that he died by t is

P (Ω ≤ t | a, b, τ) = 1 −
B(a, b+ bt/τc)

B(a, b)
. (4)

The Pareto/NBD assumes that individual lifetimes follow an exponential distribution (in

place of Assumption 4) and that heterogeneity in the underlying death rate follows a gamma

distribution with shape parameter s and scale parameter β (in place of Assumption 5). This

implies that, for a randomly chosen customer,

E(Ω | s, β) =

(

β

s− 1

)

, and (5)

P (Ω ≤ t | s, β) = 1−

(

β

β + t

)s

. (6)

On the face of it, these two models for the underlying death process seem quite different: in

the PDO model a customer can die only at fixed points in time, while in the Pareto/NBD model

a customer can die at any point in time. However, one can see that as τ (in the PDO model)

becomes smaller and smaller, the points in time when a customer can die come closer and closer.

Extending this argument, as we let τ approach zero, the customer can die at any point of time.

The geometric “discrete” process then becomes an exponential “continuous” process. (We could

think of the customers as continually flipping their coins to decide whether to drop out or not.)

We can begin to see how the PDO model nests the Pareto/NBD as a special case.

Consider a customer who made x transactions in the interval (0, T ], with the transactions

occurring at t1, t2, . . . , tx; by definition, tx = 0 when x = 0. We define K1 = btx/τc and

K2 = bT/τc.

When K1 = K2, we have

0

τ 2τ

×

t1
· · · -

K1τ

K2τ

×

tx T

(K2 + 1)τ

The fact that a purchase occurred at tx implies the customer must have been “alive” at K1τ ,

which occurs with probability (1− θ)K1. Since K1 = K2, the customer must still be alive at T .
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Given the model assumptions, the likelihood function for this case is

L(λ, θ, τ | t1, . . . , tx, T ) = λe−λt1λe−λ(t2−t1) · · ·λe−λ(tx−tx−1)e−λ(T−tx)(1− θ)K2

= λxe−λT (1− θ)K2 .

When K1 < K2, we have

0

τ 2τ

×

t1
· · ·

K1τ

×

tx

(K1 + 1)τ

· · · -

K2τ

T

(K2 + 1)τ

As before, the fact that a purchase occurred at tx implies the customer must have been “alive”

at K1τ . There are, however, a number of possible explanations for the lack of purchasing in the

remaining interval (tx, T ]:

• The customer “died” at (K1 +1)τ , having made no purchase in the interval (tx, (K1+1)τ ],

with likelihood function

λxe−λ(K1+1)τθ(1 − θ)K1 .

• The customer “died” at (K1 +2)τ , having made no purchase in the interval (tx, (K1+2)τ ],

with likelihood function

λxe−λ(K1+2)τθ(1 − θ)K1+1 .

• The customer “died” at (K1 + 3)τ , . . .

• The customer “died” at K2τ , having made no purchase in the interval (tx, K2τ ], with

likelihood function

λxe−λK2τθ(1 − θ)K2−1 .

• The customer did not “die” at K2τ and made no purchase in the interval (tx, T ], with

likelihood function

λxe−λT (1− θ)K2 .

Note that in both cases (K1 = K2, K1 < K2), information on when each of the x transactions

occurred is not required; we can replace t1, . . . , tx, T with (x, tx, T ). In other words, tx and x are
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sufficient summaries of a customer’s transaction history. (Using direct marketing terminology,

tx is recency and x is frequency.)

Combining these two cases we see that the individual-level likelihood function is

L(λ, θ, τ | x, tx, T ) = λxe−λT (1 − θ)bT/τc

+ δbT/τc>btx/τc

bT/τc−btx/τc
∑

j=1

λxe−λ(btx/τc+j)τθ(1 − θ)btx/τc+j−1 . (7)

Taking the expectation of (7) over the distributions of λ and θ, (1) and (2), results in the

following expression for the likelihood function for a randomly-chosen customer with purchase

history (x, tx, T ):

L(r, α, a, b, τ | x, tx, T )

=

∫ 1

0

∫ ∞

0
L(λ, θ, τ | x, tx, T )f(λ | r, α)f(θ | a, b) dλ dθ

=
Γ(r + x)αr

Γ(r)

[ (

1

α + T

)r+x B(a, b+ bT/τc)

B(a, b)

+ δbT/τc>btx/τc

bT/τc−btx/τc
∑

j=1

{ (

1

α + (btx/τc + j)τ

)r+x

×
B(a + 1, b+ btx/τc + j − 1)

B(a, b)

}]

. (8)

The five model parameters (r, α, a, b, τ) can be estimated via the method of maximum like-

lihood in the following manner. Suppose we have a sample of I customers, where customer i

had xi transactions in the interval (0, Ti], with the last transaction occurring at txi
. The sample

log-likelihood function is given by

LL(r, α, a, b, τ) =
I

∑

i=1

ln
[

L(r, α, a, b, τ | xi, txi
, Ti)

]

. (9)

We find the maximum of this function by performing a line search on τ , using standard numerical

methods to find the values of r, α, a, b that maximize LL(r, α, a, b, τ) for a given value of τ .

In Appendix A.1, we show that that as τ → 0, (8) becomes the likelihood function associated

with the Pareto/NBD model. As τ → ∞, bT/τc = 0 and δbT/τc>btx/τc = 0, in which case (8)
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collapses to

Γ(r + x)αr

Γ(r)

(

1

α+ T

)r+x

,

which is simply the timing-model analog of the basic NBD model (Gupta and Morrison 1991).

(Strictly speaking, the PDO model collapses to the NBD whenever τ > T .)

Following Schmittlein et al. (1987), there are three quantities of managerial interest in a

customer-base analysis exercise:

• The expected number of transactions in a time interval of length t is given by

E(X(t) | r, α, a, b, τ) =
rt

α

B(a, b+ bt/τc)

B(a, b)
+
rτ

α

bt/τc
∑

j=1

j
B(a + 1, b+ j − 1)

B(a, b)
. (10)

(This quantity is central to computing the expected transaction volume for the whole

customer base over time.)

• The probability that a customer with observed behavior (x, tx, T ) is still “alive” at time

T is given by

P (Ω > T | r,α, a, b, τ, x, tx, T )

=
Γ(r + x)αr

Γ(r)

(

1

α+ T

)r+x B(a, b+ bT/τc)

B(a, b)

/

L(r, α, a, b, τ | x, tx, T ) . (11)

• The expected number of transactions in the interval (T, T+t] for a customer with observed

behavior (x, tx, T ) is given by

E(X(T, T + t) | r, α, a, b, τ, x, tx, T ) =
1

L(r, α, a, b, τ | x, tx, T )

×
Γ(r + x+ 1)αr

Γ(r)

(

1

α+ T

)r+x+1 {

B(a, b+ b(T + t)/τc)

B(a, b)
t

+

b(T+t)/τc−bT/τc
∑

j=1

B(a + 1, b+ bT/τc + j − 1)

B(a, b)
[(bT/τc+ j − 1)τ − T ]

}

. (12)

(See Appendix A.2 for the associated derivations.)
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3 Empirical Analysis

We now examine the performance of the PDO model using the CDNOW dataset used in Fader

et al. (2005a,b) and a grocery purchase dataset used in Batislam et al. (2007) (henceforth, the

Grocery dataset).

3.1 The CDNOW Dataset

This dataset tracks 2,357 individuals who made their first-ever purchases at the CDNOW website

in the first 12 weeks of 1997, and records their repeat purchasing through June 1998. The first

39 weeks of data are used for model calibration; the remaining 39 weeks of data are used as

longitudinal holdout for model validation. Fitting the Pareto/NBD model to these data yields

a log-likelihood of −9,595.0; fitting the NBD model yields a log-likelihood of −9,763.7. Clearly

the Pareto/NBD model does much better than the NBD model while using only two extra

parameters. Our focus, however, is on the performance of the PDO model. Is its fit bounded

between these Pareto/NBD and NBD limits, or does it provide a superior fit to the data?

Varying τ from 0.01 weeks to 40 weeks, we find the maximum likelihood estimates of the

remaining four model parameters by maximizing the log-likelihood function given in (9). The

corresponding values of the log-likelihood function are plotted in Figure 1. When τ is very small

(τ = 0.01 weeks, LL = −9,594.6), the fit of the PDO model is almost exactly the same as that

of the Pareto/NBD. When τ is large (> 39 weeks in this empirical setting), the PDO model

yields the same log-likelihood as that of the NBD model.

What is interesting to note is that the fit of the PDO model can dominate that of the

Pareto/NBD. As τ increases from 0.01, the log-likelihood increases from the Pareto/NBD limit

to a maximum value of −9,585.3 at τ = 3.00, then starts declining towards the much lower

value associated with the NBD. As soon as τ > 6 weeks, the fit of the PDO model is worse than

that of the Pareto/NBD. The PDO model (with τ = 3) provides a significant improvement in

calibration-period model fit over the Pareto/NBD (p < .001 using the likelihood ratio test). The

parameter estimates of the best-fitting PDO model and the Pareto/NBD model are reported in

Table 1.
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Figure 1: Plot of the PDO model log-likelihood for the CDNOW dataset as a function

of the periodicity parameter τ . (The right-hand plot presents a “zoomed in”
view for small values of τ .)

PDO (τ = 3) Pareto/NBD

Estimate Std. Error Estimate Std. Error

r 0.51 0.04 0.55 0.05
α 10.40 0.82 10.58 0.84

a 0.43 0.09
b 2.61 0.85

s 0.61 0.19
β 11.67 6.21

LL −9,585.3 −9,595.0

Table 1: Parameter estimates and standard errors for the PDO (τ = 3) and Pareto/NBD
models for the CDNOW dataset.

To illustrate more clearly the relationship between the Pareto/NBD, the NBD and the PDO

models with various values of τ , we present the parameter estimates and other summary statis-

tics for these models in Table 2. Note how the parameters of the PDO model tend towards

those of the Pareto/NBD model as τ → 0 (a → s, bτ → β). This is in accordance with the

pattern predicted theoretically in Appendix A.1. Beyond the raw parameter estimates, we also

see an interesting range of values for two summary statistics of the underlying behavioral char-

acteristics, namely the mean transaction rate and the median lifetime. First, comparing the

two extreme models, we expect that under the Pareto/NBD, we would have shorter lifetimes

and therefore higher average transaction rates when compared to the NBD. Pursuing this logic

further, it follows that increases in τ would be associated with declining average transaction

rates and increasing median lifetimes. But what is not known is how quickly these statistics

will change with τ , and whether the rates of change are similar or different when we compare
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them. The data in Table 2 confirm the expected directional changes for these two statistics as a

function of τ , but they also reveal some differences. As τ rises from 0 (i.e., Pareto/NBD model)

to 3, the mean transaction rate falls by about 5% but the median lifetime rises by about 10%.

These differences are not dramatic, but they suggest that the death process is more sensitive to

changes in τ than the mean transaction rates.

Transaction Death

τ r α a† b† LL E(Λ) Median(Ω)

(0) 0.55 10.58 0.61 11.67 −9595.0 0.05 25.0

0.01 0.55 10.58 0.61 1167.41 −9,594.6 0.05 25.0
0.10 0.55 10.57 0.60 115.29 −9,594.4 0.05 25.0
1.00 0.54 10.50 0.56 10.90 −9,589.2 0.05 26.5

2.00 0.51 10.16 0.53 5.20 −9,587.8 0.05 26.8
3.00 0.51 10.40 0.43 2.61 −9,585.3 0.05 27.8

4.00 0.50 10.45 0.42 2.02 −9,594.2 0.05 29.8
5.00 0.48 11.26 0.46 2.03 −9,599.0 0.05 30.8

10.00 0.45 10.49 0.26 0.62 −9,619.9 0.04 45.0
20.00 0.40 11.18 0.63 1.51 −9,704.1 0.04 53.8

(∞) 0.39 12.07 - - - - −9,763.7 0.03 - -

† s and β in the case of the Pareto/NBD model (τ = 0).

Table 2: Estimation results for the CDNOW dataset for the Pareto/NBD model (τ = 0),

the NBD model (τ = ∞) and the PDO model (for various values of τ).

The differences between the Pareto/NBD and PDO (τ = 3) models in terms of the underlying

death process are illustrated in Figure 2, which plots P (Ω ≤ t) for both models (as computed

using (4) and (6)). The higher median lifetime associated with the PDO (τ = 3) model reflects

the slower overall rate of attrition amongst the customer base under this model in this empirical

setting.

Coupled with the fact that there is little difference in the mean underlying transaction rates

(while alive), E(Λ), between the two models, it follows that the PDO (τ = 3) model generates a

slightly higher estimate of total repeat sales over time. But is this good or bad? And does the

best-fitting PDO specification perform better on holdout data than other specifications (τ 6= 3)?

To examine this we create total repeat sales forecasts for each of the specifications reported

in Table 2. In Table 3 we report the mean absolute percent error (MAPE) numbers for both

cumulative total repeat sales and weekly total repeat sales over weeks 40–78.
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PDO (τ = 3)

Figure 2: Plot of the probability that a randomly chosen customer will have died by
time t (P (Ω ≤ t)) under the PDO model with τ = 3 and the Pareto/NBD
model.

MAPE (Weeks 40–78)
τ Cumulative Weekly

(0) 1.35% 20.89%

0.01 1.35% 20.89%
0.10 1.34% 20.53%
1.00 1.14% 20.13%

2.00 1.09% 19.81%
3.00 0.85% 19.06%

4.00 0.85% 19.06%
5.00 0.88% 19.33%

10.00 0.70% 19.18%
20.00 0.92% 19.25%

(∞) 10.37% 36.22%

Table 3: Measures of model forecasting performance for the Pareto/NBD model (τ = 0),

the NBD model (τ = ∞) and the PDO model (for various values of τ).

Looking at the cumulative MAPE numbers, we see that all of the PDO models with a

finite periodicity forecast the cumulative sales trajectory extremely well; it is hard to discern

meaningful differences in a plot of these curves. In contrast, when we look at errors on an

incremental (week-by-week) basis, there are greater deviations (as would be expected). But

overall, there is strong empirical support for the performance of the PDO model (particularly

with τ = 3) as a worthy alternative to the Pareto/NBD.
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Do these results prove that customers are actually “flipping their coins” every three weeks?

Of course not. But they do suggest that there is room for improvement in modeling the death

process beyond the starting point established by the Pareto/NBD, and they provide some reason-

able evidence to support the general idea of the periodic, discrete-time “story” being told here.

The consistency of these results and their superiority to a very strong benchmark (represented

by the Pareto/NBD) are hard to deny.

3.2 The Grocery Dataset

Batislam et al. (2007) used a dataset covering 5,479 individuals at a Turkish grocery store who

made their first-ever purchase between August 2001 and October 2001, recording their repeat

purchasing through April 2003. For every individual, we have data on the recency and frequency

of repeat purchasing and the length of time for which this individual was observed. To make

our study consistent with that of Batislam et al. (2007), we use the first 78 weeks for calibration

and the last 13 weeks as longitudinal holdout for model validation.

Fitting the Pareto/NBD model to these data yields a log-likelihood of −67,926.0 and fitting

the NBD model yields −71,000.5. Fitting the PDO models by varying τ from 0.01 weeks to

80 weeks, we confirm the pattern we observed for the CDNOW dataset—when τ is very small

(τ = 0.01 weeks, LL = −67,926.0), the fit of the PDO model is the same as that of the

Pareto/NBD; when τ is large (> 78 weeks in this empirical setting), the PDO model yields the

same log-likelihood as that of the NBD model; and the fit of the PDO model dominates that

of the Pareto/NBD model for an intermediate range of values of τ (in this case, τ ≤ 8 weeks).

The values of the log-likelihood function as τ varies from 0.01 weeks to 10 weeks are plotted

in Figure 3. The maximum log-likelihood value is achieved when τ = 1.00 and is −67,749.8.

Compared to the Pareto/NBD model, this is a highly significant improvement in model fit —an

improvement of 176 log-likelihood points at the cost of just one additional parameter. In Table 4,

we present the parameter estimates of the best-fitting PDO model and the Pareto/NBD model.

As expected, we also observe exactly the same patterns as in Table 2 for the parameter

estimates, mean underlying transaction rates and median lifetimes for the different PDO models

as τ varies, and the same qualitative relationships between these models and the Pareto/NBD

12
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Figure 3: Plot of the PDO model log-likelihood for the Grocery dataset as a function of

the periodicity parameter τ .

PDO (τ = 1) Pareto/NBD
Estimate Std. Error Estimate Std. Error

r 0.46 0.01 0.48 0.02

α 4.38 0.18 4.38 0.16
a 0.62 0.03

b 22.19 0.02
s 0.57 0.05

β 17.64 2.87

LL −67,749.8 −67,925.8

Table 4: Parameter estimates and standard errors for the PDO (τ = 1) and Pareto/NBD
models for the Grocery dataset.

model. For instance, for the best-fitting PDO model (with τ = 1), the mean underlying transac-

tion rate is 0.11 per week and the median lifetime is 45.2 weeks; for the Pareto/NBD model, the

mean underlying transaction rate is the same (0.11 per week) and the median lifetime is smaller

(41.8 weeks). Furthermore, for the 13-week holdout period also, we observe similar patterns as

in Table 3. For the PDO (τ = 1) model, the cumulative MAPE is 0.9% and the weekly MAPE

is 3.6%; for the Pareto/NBD model, the cumulative MAPE is 0.5% and the weekly MAPE is

3.7%.

To summarize, the best-fitting PDO model performs significantly better than the Pareto/NBD

model in terms of in-sample fit for the Grocery dataset, and we observe similar relationships be-

tween the Pareto/NBD, NBD and various PDO models in this dataset as we did in the CDNOW

dataset.
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3.3 Comparison with the BG/NBD Model

A natural question that arises is: what about the original BG/NBD model (with “coin flips”

tied to transactions instead of occurring periodically in calendar time)? The answer is quite

interesting. In terms of in-sample fit, the BG/NBD performs at least as well as all of the PDO

models for the CDNOW dataset; its log-likelihood value of −9,582.4, as reported in Fader et al.

(2005b), is slightly better than that of the PDO model with τ = 3 (and therefore substantially

better than that of the regular Pareto/NBD). However, for the Grocery dataset, the BG/NBD

model (LL = −68,007.0) significantly underperforms both the PDO model and the Pareto/NBD

model.1 In terms of out-of-sample performance on the summary statistics shown in Table 3,

the BG/NBD consistently performs slightly worse than the PDO model. For the CDNOW

dataset, the BG/NBD model’s cumulative MAPE is 2.6% and weekly MAPE is 19.4% (both

slightly worse). For the Grocery dataset, the BG/NBD model’s cumulative MAPE is 8.8%

(much worse) and weekly MAPE is 4.0% (slightly worse).

But beyond the empirical evidence, it is important to emphasize the theoretical benefits of

the PDO relative to the BG/NBD. The BG/NBD has no direct connection to the Pareto/NBD

(although it does nest the basic NBD), and there is no way to equate the parameters across these

different specifications. These conceptual benefits may give the edge to the PDO framework,

particularly for researchers with a focal interest in the nature of the death process.

4 Heterogeneity in τ

In the previous sections, we have treated the parameter τ as homogeneous for all customers; in

reality, however, the nature of the periodicity is likely to vary across them. In this section, we

allow for heterogeneity in τ . Specifically, we assume that τ varies across customers according to

a gamma distribution with pdf

f(τ |m, ρ) =
ρmτm−1e−τρ

Γ(m)
.

1The BG/NBD model parameter estimates are r̂ = 0.24, α̂ = 4.41, â = 0.79, b̂ = 2.43 for the CDNOW dataset,
and r̂ = 0.28, α̂ = 2.34, â = 0.40, b̂ = 2.09 for the Grocery dataset.
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(Using other heterogeneity distributions, such as a lognormal distribution or a normal distribu-

tion truncated below at zero, yields similar results.)

Under this specification, the individual-level process is the same as before, and the likelihood

function for a randomly-chosen customer is obtained by taking the expectation of (8) over the

distribution of τ , i.e., evaluating the integral

∫ ∞

0
L(r, α, a, b, τ)f(τ |m, ρ)dτ .

As this does not have an algebraic solution, we turn to MCMC methods for estimating this

heterogeneous PDO (henceforth HPDO) model; see Appendix A.3 for details.

We estimate the HPDO model on both datasets. Our inferences are based on 50,000 iter-

ations, following a burn-in of 20,000 iterations. We use different starting values and confirm

convergence to the same values every time for both datasets. The resulting parameter esti-

mates are presented in Table 5. (The associated log-marginal density numbers are −8,577.1 and

−63,746.2 for the CDNOW and Grocery datasets, respectively.)

CDNOW Grocery

Posterior mean 95% Interval Posterior mean 95% Interval

r 0.41 [ 0.408 , 0.413 ] 0.35 [ 0.349 , 0.351 ]
α 11.74 [ 11.647 , 11.833 ] 4.55 [ 4.529 , 4.571 ]

a 0.20 [ 0.194 , 0.206 ] 0.54 [ 0.535 , 0.545 ]
b 2.75 [ 2.648 , 2.852 ] 10.54 [ 10.354 , 10.726 ]
m 1.47 [ 1.463 , 1.478 ] 1.42 [ 1.416 , 1.424 ]

ρ 0.12 [ 0.118 , 0.123 ] 0.21 [ 0.207 , 0.214 ]

Table 5: Parameter estimates for the HPDO model for the CDNOW and Grocery
datasets.

Figure 4 shows the distribution of τ for both datasets. Clearly, there is significant hetero-

geneity in τ in both datasets. Note that the expected value of τ is larger for the CDNOW

dataset as compared to the Grocery dataset; this is in line with the fact that the value of τ for

the best-fitting PDO model (i.e., without heterogeneity in τ) is larger for the CDNOW dataset

as compared to the Grocery dataset. However, while the HPDO model offers new insights into

the dropout process and a large improvement in in-sample fit, it performs slightly worse in terms

of out-of-sample predictions than the PDO models without heterogeneity in τ . For the CDNOW
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Figure 4: Histogram of posterior draws of τ across customers from one iteration after

convergence for the CDNOW dataset (left) and the Grocery dataset (right).

dataset, for weeks 40–78, the cumulative MAPE is 1.92% and the weekly MAPE is 20.55%. For

the Grocery dataset, for weeks 78–91, the cumulative MAPE is 1.5% and the weekly MAPE is

8.1%. In this respect, the simpler PDO model may be the preferred alternative. Nevertheless,

we believe that the HPDO model is a worthwhile extension to consider and might offer a great

deal of value to future researchers, particularly if they want to test theories about how the nature

of the dropuout process varies across customers.

5 Discussion and Conclusions

We have proposed the periodic death opportunity (PDO) model as a new way to better un-

derstand and capture the death process associated with “buy till you die” type models that

are frequently used to model customer buying behavior in noncontractual settings. We demon-

strated (both analytically and empirically) that the PDO model nests both the Pareto/NBD and

the traditional “no death” NBD as special cases, and we found strong evidence that customers

behave as if their death process is somewhere in between these two extremes.

But while this paper questions (and improves upon) one aspect of the original Pareto/NBD

paradigm, it does not necessarily mean that the Pareto/NBD itself is obsolete and should be

avoided. We continue to view the Pareto/NBD as a natural benchmark which is still very

useful when the manager’s primary goal is forecasting purchases, as opposed to a principal

focus on the death process, per se. Although in our datasets the best-fitting PDO models and
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the HPDO model offer consistent and significant improvements in the calibration sample, the

improvements in predictions for the holdout period are not especially dramatic. On the other

hand, when inferences about customer dropout are central to the manager’s goals, the PDO

framework deserves her attention.

Besides improvements in model performance and parameter inferences, the PDO model

might offer other managerial benefits as well. For instance, while we hesitate to suggest that the

periodic death opportunity “story” is a true representation of customer decision-making, the τ

parameter may serve as an indicator of any “re-evaluation” decision that each customer may be

undertaking. In this sense, it might offer useful guidance about customer contact strategies— for

instance, it might help managers determine which customers should be “reminded” more often,

and which ones can be left alone for longer periods of time. It is easy to envision such allocation

decisions as an explicit component as part of a broader program to prevent customer attrition.

Finally, a logical extension of our hierarchical Bayesian estimation procedure would be the use

of covariates to help explain how the death process varies across customers—something that

is already being investigated for the regular Pareto/NBD model by several researchers (e.g.,

Abe 2009, Fader and Hardie 2007)—and perhaps over time. This could help managers manage

customer attrition in an effective manner. But these issues go beyond the PDO model proposed

here (and may not offer substantial benefits to justify their additional complexity). Before

rushing ahead with these potential improvements, we encourage researchers to contemplate the

basic PDO model and take advantage of its desirable theoretical properties and its computational

simplicity.
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Appendix

A.1 The Pareto/NBD as a Limiting Case

In this section we show that the PDO model likelihood function approaches that of the Pareto/NBD

model as τ → 0.

The individual-level likelihood function for the Pareto/NBD model is (Fader and Hardie

2005)

L(λ, µ | x, tx, T ) =
λxµ

λ+ µ
e−(λ+µ)tx +

λx+1

λ+ µ
e−(λ+µ)T .

Assuming heterogeneity in λ and µ is distributed gamma with parameters (r, α) and (s, β),

respectively, it follows that the likelihood function for a randomly-chosen customer is found by

solving

L(r, α, s, β | x, tx, T )

=

∫ ∞

0

∫ ∞

0

(

λxµ

λ+ µ
e−(λ+µ)tx +

λx+1

λ+ µ
e−(λ+µ)T

)

f(λ | r, α)f(µ | s, β) dµ dλ . (A1)

Our proof is based on showing that

lim
τ→0

∫ 1

0

∫ ∞

0
L(λ, θ, τ | x, tx, T )f(λ | r, α)f(θ | a, b) dλ dθ

is identical to (A1) (i.e., limτ→0 L(r, α, a, b, τ)≡ L(r, α, s, β)).

This proof will make use of the following results:

lim
τ→0

(1− µτ)T/τ = e−µT , (A2)

lim
τ→0

eλτ − (1 − µτ)

τ
= λ+ µ , (A3)

lim
τ→0

Γ(s + β/τ)

Γ(β/τ)
τ s = βs . (A4)

(We note that (A2) is a standard result, (A3) results from the application of L’Hospital’s rule,

and (A4) follows from Abramowitz and Stegun (1972), equation 6.1.46.)
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Noting that

bT/τc−btx/τc
∑

j=1

λxe−λ(btx/τc+j)τθ(1 − θ)btx/τc+j−1

= λxe−λ(btx/τc+1)τθ(1 − θ)btx/τc
bT/τc−btx/τc−1

∑

l=0

[

e−λτ (1− θ)
]l

= λxe−λ(btx/τc+1)τθ(1 − θ)btx/τc
1 −

[

e−λτ (1 − θ)
]bT/τc−btx/τc

1 −
[

e−λτ (1− θ)
]

=
λxe−λ(btx/τc)τθ(1 − θ)btx/τc

eλτ − (1 − θ)
−
λxe−λ(bT/τc)τθ(1 − θ)bT/τc

eλτ − (1− θ)
,

we can rewrite the individual-level likelihood function (7) as

L(λ, θ, τ | x, tx, T ) = λxe−λT (1 − θ)bT/τc

+ δbT/τc>btx/τc

{

λxe−λbtx/τcτθ(1 − θ)btx/τc

eλτ − (1− θ)
−
λxe−λbT/τcτθ(1 − θ)bT/τc

eλτ − (1− θ)

}

.

Let θ = µτ , which implies dθ = τdµ. (When θ = 0, µ = 0; similarly, when θ = 1, µ = 1/τ .)

Also let a = s and b = β/τ . It follows that PDO likelihood function for a randomly-chosen

customer, L(r, α, a, b, τ), can be written as

L(r, α, s, β, τ) =

∫ 1/τ

0

∫ ∞

0

{

L(λ, µτ, τ | x, tx, T )f(λ | r, α)

× (µτ)s−1(1− µτ)β/τ−1 Γ(s+ β/τ)

Γ(s)Γ(β/τ)

}

dλ (τdµ)

= A1 + δbT/τc>btx/τc(A2 −A3) (A5)

where

A1 =

∫ 1/τ

0

∫ ∞

0
λxe−λT τ sµs−1(1− µτ)bT/τc+β/τ−1 Γ(s + β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α) dλ dµ ,

A2 =

∫ 1/τ

0

∫ ∞

0

λxe−λbtx/τcττ sµs(1 − µτ)btx/τc+β/τ−1

eλτ − (1 − µτ)

Γ(s + β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α) dλ dµ ,

A3 =

∫ 1/τ

0

∫ ∞

0

λxe−λbT/τcττ sµs(1− µτ)bT/τc+β/τ−1

eλτ − (1 − µτ)

Γ(s+ β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α) dλ dµ .

(Note that the only difference between A2 and A3 is tx vs. T .)
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We now take the limit of (A5) as τ → 0. Noting that δbT/τc>btx/τc = 1 as τ → 0, we have

lim
τ→0

L(r, α, s, β, τ) = lim
τ→0

A1 + lim
τ→0

A2 − lim
τ→0

A3 . (A6)

Noting btx/τc ' tx/τ and bT/τc ' T/τ as τ → 0, and using (A2)–(A4),

lim
τ→0

A1 = lim
τ→0

∫ ∞

0

∫ 1/τ

0
λxe−λT τ sµs−1(1− µτ)bT/τc+β/τ−1 Γ(s+ β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α) dµ dλ

=

∫ ∞

0

∫ limτ→0 1/τ

0
lim
τ→0

{

λxe−λT τ sµs−1(1 − µτ)bT/τc+β/τ−1 Γ(s+ β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α)

}

dµ dλ

=

∫ ∞

0

∫ ∞

0
λxe−λT

βsµs−1e−µ(β+T )

Γ(s)
f(λ | r, α) dµ dλ

=

∫ ∞

0

∫ ∞

0
λxe−(λ+µ)T f(λ | r, α)f(µ | s, β) dµ dλ (A7)

and

lim
τ→0

A2 = lim
τ→0

∫ ∞

0

∫ 1/τ

0

λxe−λbtx/τcττ sµs(1− µτ)btx/τc+β/τ−1

eλτ − (1 − µτ)

Γ(s+ β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α) dµ dλ

=

∫ ∞

0

∫ limτ→0 1/τ

0
lim
τ→0

{

λxe−λbtx/τcττ sµs(1 − µτ)btx/τc+β/τ−1

eλτ − (1 − µτ)

Γ(s + β/τ)

Γ(s)Γ(β/τ)
f(λ | r, α)

}

dµ dλ

=

∫ ∞

0

∫ ∞

0

λxe−λtx

λ+ µ

βsµse−µ(β+tx)

Γ(s)
f(λ | r, α) dµ dλ

=

∫ ∞

0

∫ ∞

0

λxµe−(λ+µ)tx

λ+ µ
f(λ | r, α)f(µ | s, β) dµ dλ . (A8)

It follows that

lim
τ→0

A3 =

∫ ∞

0

∫ ∞

0

λxµe−(λ+µ)T

λ+ µ
f(λ | r, α)f(µ | s, β)dµdλ . (A9)

Substituting (A7)–(A9) in (A6) and simplifying gives us

lim
τ→0

L(r, α, s, β, τ) =

∫ ∞

0

∫ ∞

0

(

λxµ

λ+ µ
e−(λ+µ)tx +

λx+1

λ+ µ
e−(λ+µ)T

)

f(λ | r, α)f(µ | s, β)dµdλ ,

which is exactly the integral for the Pareto/NBD likelihood function, (A1). Q.E.D.

This proof establishes the equivalence between the likelihoods of observing the same data

under the PDO model when τ → 0 and the Pareto/NBD. We use this fact somewhat liberally
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to “prove” that the two models are equivalent under this special condition (τ → 0). (Using a

similar procedure and the same substitutions, it is easy to show that all the expressions for the

PDO model (e.g., (10)–(12)) are identical to those of the Pareto/NBD as τ → 0.)

A.2 Derivations of Key Results

Derivation of (10)

Let the random variable X(t) denote the number of transactions occurring in the interval (0, t].

Conditional on λ, it follows from the assumption of Poisson purchasing that E[X(t)] is simply

λt if the customer is active at t, λτ if the customer dies at τ , 2λτ if the customer dies at 2τ , 3λτ

if the customer dies at 3τ , . . . , and bt/τcλτ if the customer dies at bt/τcτ . Multiplying these

quantities by the probability that the customer dies at τ , 2τ , . . . , gives us

E(X(t) | λ, θ, τ) = λt(1− θ)bt/τc + λτ

bt/τc
∑

j=1

θ(1 − θ)j−1 .

Taking the expectation of this over the distributions of λ and θ, (1) and (2), gives us the

expression in (10).

Derivation of (11)

The probability that a customer with purchase history (x, tx, T ) is “alive” at time T is simply

the probability that he was alive at K2τ . Referring back to our derivation of the individual-level

likelihood function, (7)), the application of Bayes theorem gives us

P (Ω > T | λ, θ, τ, x, tx, T ) =
λxe−λT (1− θ)bT/τc

L(λ, θ, τ | x, tx, T )
. (A10)

(We note that if btx/τc = bT/τc (i.e., K1 = K2), P (Ω > T | λ, θ, τ, x, tx, T ) = 1.)

By Bayes theorem, the joint posterior distribution of λ and θ is given by

f(λ, θ | r, α, a, b, τ, , x, tx, T ) =
L(λ, θ, τ | x, tx, T )f(λ | r, α)f(θ | a, b)

L(r, α, a, b, τ | x, tx, T )
. (A11)
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Taking the expectation of (A10) over this joint posterior distribution gives us (11).

Derivation of (12)

Let the random variable X(T, T + t) denote the number of purchases made in the interval

(T, T + t]. We are interested in computing the conditional expectation E(X(T, T + t) | x, tx, T ),

the expected number of purchases in the interval (T, T+ t] for a customer with purchase history

(x, tx, T ).

Let us assume the customer is alive at T (i.e., Ω > T ). Conditional on λ, it follows from the

assumption of Poisson purchasing that the expected number of purchases in (T, T + t] is simply

λt if the customer is active at T + t, λ[(bT/τc+ 1)τ − T ] if the customer dies at (bT/τc + 1)τ ,

λ[(bT/τc + 2)τ − T ] if the customer dies at (bT/τc + 2)τ , . . . , and λ(b(T + t)/τcτ − T ) if the

customer dies at b(T +t)/τcτ . Multiplying these quantities by the probability that the customer

dies at (bT/τc+ 1), (bT/τc + 2), . . . , gives us

E(X(T, T + t) | λ, θ, τ,Ω> T ) = λt(1− θ)b(T+t)/τc−bT/τc

+

b(T+t)/τc−bT/τc
∑

j=1

λ[(bT/τc+ j)τ − T ]θ(1− θ)j−1 . (A12)

Taking the expectation of the product of (A10) and (A12) over the joint posterior distribution

of λ and θ, (A11), gives us (12).

A.3 MCMC Procedure for HPDO Model

Customer i with periodicity τi makes his dropout decision at τi, 2τi, 3τi, . . . . Whether the cus-

tomer dropped out or not and, if so, when he dropped out, is unobserved. To aid with the

model estimation, we generate these unobservables using data augmentation (Tanner and Wong

1987). Specifically, we use the indicator variable Zi (with the realization zi) to denote whether

the customer died between txi
and Ti: if the customer is still alive at Ti, Zi = 1; if the customer

died at ψiτi, where ψi ∈ {btxi
/τic + 1, . . . , bTi/τic}, Zi = 0.

Recalling the logic of the derivation of (7), the likelihood function of customer i is given by
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λxi

i e
−λiTi(1 − θi)

bTi/τic if Zi = 1, and λxi

i e
−λiψiτiθi(1 − θi)

ψi−1 if Zi = 0 (and the customer died

at ψiτi). Therefore,

L(λi, θi, τi | xi, txi
, Ti, zi, ψi) = λxi

i e
−λi[ziTi+(1−zi)ψiτi]θ

(1−zi)
i (1− θi)

[zibTi/τic+(1−zi)(ψi−1)] .

The parameters of the heterogeneity distributions for λ, θ and τ specified earlier act as

priors for λi, θi and τi. Hence, λi ∼ gamma(r, α), θi ∼ beta(a, b) and τi ∼ gamma(m, ρ). We

derive expressions for the conditional densities of the relevant individual-level parameters in the

following manner.

• The conditional posterior distribution of λi is proportional to L(λi, θi, τi | xi, txi
, Ti, zi, ψi)×

f(λi | r, α), which in turn is proportional to λr+xi−1
i e−λi[α+ziTi+(1−zi)ψiτi]. Therefore,

λi | r, α, τi, xi, Ti, zi, ψi ∼ gamma(r + xi − 1, α+ ziTi + (1 − zi)ψiτi) . (A13)

• The conditional posterior distribution of θi is proportional to L(λi, θi, τi | xi, txi
, Ti, zi, ψi)×

f(θi | a, b), which in turn is proportional to θa−zii (1−θi)
b−1+zibTi/τic+(1−zi)(ψi−1). Therefore,

θi | a, b, τi, Ti, zi, ψi ∼ beta(a+ 1 − zi, b+ zibTi/τic + (1 − zi)(ψi − 1)) . (A14)

• The conditional posterior distribution of τi is proportional to L(λi, θi, τi | xi, txi
, Ti, zi, ψi)×

f(τi |m, ρ), which gives us

f(τi |m, ρ, τi, Ti, zi, ψi) ∝ τm−1
i e−[ρτi+λi(1−zi)ψiτi](1 − θi)

zibTi/τic . (A15)

We can sample from this distribution using Metropolis-Hastings methods.

• Recalling (A10),

P (Zi = 1 | λi, θi, τitxi
, Ti) =

B1

B1 + δbTi/τic>btxi
/τicB2

(A16)

where

B1 = e−λiTi(1− θi)
bTi/τic and B2 =

bTi/τic−btx
i
/τic

∑

j=1

e−λi(btxi
/τic+j)τiθi(1 − θi)

btxi
/τic+j−1 .
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Note that if bTi/τic = btxi
/τic, customer i is definitely alive at Ti since she did not get

a chance to flip her “death” coin after her last purchase (which occurred at txi
); as such

P (Zi = 1 | ·) = 1.

• If Zi = 0, then we also generate an integer ψi ∈ {btxi
/τic + 1, . . . , bTi/τic}, where txi

<

ψiτi < Ti is the point in time at which customer i died. Assuming a (discrete) uniform

prior on ψi,

P (Ψi = ψi | λi, θi, τi, txi
, Ti) ∝ e−λiψiτiθi(1− θi)

ψi−1 . (A17)

The joint conditional posterior distributions of the population-level parameters are given by

f(r, α |λ) ∝

{ I
∏

i=1

f(λi | r, α)

}

f(r)f(α) , (A18)

f(a, b | θ) ∝

{ I
∏

i=1

f(θi|a, b)

}

f(a)f(b) , (A19)

f(m, ρ | τ) ∝

{ I
∏

i=1

f(τi|m, ρ)

}

f(m)f(ρ) . (A20)

where λ, θ and τ denote the current vectors of the individual-level parameters. We use weakly

informative gamma hyperpriors for r, α, a, b, m and ρ. (The choice of these priors does not

influence our final estimates (except for ensuring that they are positive) because the two datasets

we use have a large number of individuals in them.) Metropolis-Hastings methods are used to

sample the pairs (r, α), (a, b) and (m, ρ).

The resulting MCMC procedure used in the estimation is as follows:

1. Set initial values for r, α, a, b,m, ρ and λi, θi, τi, zi, ψi, ∀ i = 1, . . . , I .

2. Iterate until convergence:

(a) For each customer i, sample λi, θi and τi using (A13), (A14) and (A15), respectively.

(b) For each customer i, generate zi using (A16). If zi = 0, generate ψi using (A17).

(This is the data augmentation step.)

(c) Sample the pairs (r, α), (a, b) and (m, ρ) using (A18), (A19), and (A20), respectively.
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