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Abstract

We examine the value of price commitment for a nonprofit organization using individual

level purchases over a series of concert performances. To decide on a pricing policy,

the performing arts organization must be able to accurately measure when each ticket

will be sold and what type of audience will purchase the tickets for each performance.

We use a competing hazards framework to model the timing of ticket purchases when

customers differ in their valuations and arrival times. We show that the customer

purchase likelihoods change based on the prices observed earlier in the season, and

demonstrate how price commitment aid in improving sales and revenues. We provide

insights into the revenue-generating capability of commitment to a pricing policy that

can address the differences among customer segments. In particular, we show that

price commitment to a monotone discount policy can improve the average revenues as

high as 6.72% per concert.

Keywords: Non-Profit, Performing Arts Industry, Price Commitment, Survival Anal-

ysis, Competing Risks, Proportional Hazard.
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1 Introduction

The media often reports crises in the symphony orchestra industry. The Philadelphia Or-

chestra filed for Chapter 11 bankruptcy in April 2011, the Honolulu Symphony and the

Syracuse Symphony Orchestra ceased operations in 2011 as a result of financial problems

(Schweitzer 2011), and the Atlanta Symphony Orchestra had to cancel its shows in the first

few months of the 2014-15 season. Such observations are common.

With a decline in donations from private sponsors and large corporations, these nonprofit

organizations are under increased pressure to generate more revenues from their ticket sales,

to make it possible for their less lucrative but traditionally important performances to be

shown. It may be profitable to include popular performers in the concerts, which would

attract media attention for the orchestra and increase subscription ticket sales. However,

subscription sales are reportedly lacking because of a changing social landscape with members

of the “keep-your-options-open” generation that rarely commits to events months in advance

(Schweitzer 2011). As a result, the orchestras are being forced to consider their revenue-

generating audiences across both subscribers and occasional buyers. Since all patrons are

potential future donors, the organizations face the challenge of filling seats in the theaters

(full houses) by careful discounting which improves customer goodwill, while generating

healthy revenues to cover expenditures and fixed operating costs.

To meet such revenue objectives, managers in non-profit institutions are faced with the

problem of accurately predicting when a seat in a particular seating section will be purchased,

which customer category will purchase that seat, and how the organization’s commitment

to a particular pricing policy will influence those customer purchases. Our empirical model

focuses on how the likelihood of purchase from each customer category changes over time

based on the organization’s pricing decisions and on other time-related factors. Managers

then have the option to customize a pricing policy for a particular customer category and

commit to this policy throughout the season.

Selling a good to customers with different valuations over time has led to the growth of
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theory of revenue-maximizing dynamic pricing policies. Both in practice and research, there

has been a debate on various dynamic pricing models given the increasing evidence of vari-

ous consumer purchase behaviors. Bitran and Mondschein (1997) argue that those dynamic

policies may be hard to implement because of “non-trivial coordination and management

costs” and customer aversion to seemingly “random” price oscillations. Such customer aver-

sion has been noted in practice: Uber received harsh criticism from its own customers for its

reliance on surge pricing policies (Surowiecki 2014). Similarly, customers, who buy ski lift

tickets at high prices earlier in the season, reportedly feel unjustly treated when they see ski

resorts dropping lift prices at the last minute (Deprez 2015). In the context of non-profits,

such negative customer reactions are antithetical to both the endowment directives, and the

organization’s goal of progressing patrons to become donors.

Hence, commitment to pre-announced prices may allay some of the revenue losses related

to forward-looking customer behavior, and may reduce consumer regret. For instance, Bitran

and Mondschein (1997) suggest that commitment to a monotone increasing price policy

will dissuade customers from waiting for discounts, and may provide revenue as good as

an optimal discounting policy. In addition, such price commitments are easier to manage

or coordinate between several agents. While commitment to a monotone price policy is

appealing due to its simplicity in implementation, it also suffers from a delayed ability to

respond to market changes. It is tempting to offer deep discounts - indeed, may provide

higher sales - when there is a significant amount of left-over inventory. Hence, the efficacy

of such price commitment policies is unclear: this is one principal focus of our study.

In fact, in the airline industry, the evidence for price commitment is mixed. While

dynamic pricing is typically prevalent in most airline markets, there are also airlines that

use some form of price commitment. Some airlines such as Southwest Airlines (Heskett

and Sasser Jr 2010) follow a posted pricing model, in which prices of many seat segments

are preannounced and are typically sold out in increasing prices; airlines such as easyJet

(Koenigsberg et al. 2008) adopt a monotone increasing price policy.
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Very little is known on theoretical and empirical validation of such price commitment

policies. For example, Li et al. (2014) examine strategic consumer behavior in depth in the

airline market and mention that “non-decreasing price commitment to eliminate strategic

behavior is not always preferable,” particularly in leisure markets rife with strategic consumer

behavior.

Given the state of mixed findings in industry, and the continuing theoretical debate

concerning customer purchase behavior, our goal is to explore the value of price commitments

when a non-profit performing arts organization sells a limited amount of inventory (theater

seats) over a finite time horizon, using a customer level data set from a symphony orchestra.

We are not aware of any other empirical research study on price commitments and in a

performing arts setting.

Our key objective is to identify ways we can effectively use the information, such as

the ticket purchase times and the category of customers making these purchases. This

information may reveal the change in the likelihood of a ticket sale due to the organization’s

actions as the concert date approaches. We then use the result to test the effectiveness

of price commitment; specifically, we explore the decreasing monotone discounting (DMD)

policy for this organization.

To achieve this goal, we model the propensity of a ticket being sold at a particular point

in time, as well as its dependencies on the organization’s discounting actions and other time-

related factors. We focus on the two main customer categories in this setting: subscribers

and occasional buyers. In each category, people may have different propensities to purchase

a ticket.

We use the competing risks framework with proportional hazards to model the differences

in purchase timings for the two customer types. The estimation of this framework documents

how the propensity to sell a ticket to a particular customer segment changes over time in

response to the discounts offered. We use this estimated framework to perform pricing

experiments to assess the impact of commitment to a monotone decreasing discounting policy
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on the orchestra’s revenues. The results show that commitment to a decreasing monotone

discounting policy can increase the average revenue per concert by 6.72% relative to the

current pricing policy of the organization.

2 Related Literature

Our research documenting the value of commitment to a monotone non-decreasing price

policy draws from the literature on pricing in economics and marketing, as well as on revenue

management in operations management.

Our empirical modeling of timing of ticket purchases considers potential interest for a

ticket from two broad and distinct customer categories, in line with that of Dana (1998) and

Koenigsberg et al. (2008), with each customer category exhibiting differing sensitivities to

the organization’s discount policies. In addition, the likelihood of a ticket purchase varies

both by category and time.

Unlike prior research, we employ the hazard rate of each individual seat’s sale to track

how the likelihood of a sale to different customer categories changes over time in response to

the organization’s past and current pricing decisions. More specifically, instead of calibrating

just the aggregate demand, we track individual seat’s purchase likelihood and the likelihood

of this seat being sold to a particular customer category in response to the organization’s

pricing decisions. Our hazard-based model can also be derived using a utility model. We

then exploit the theoretical relationship between hazard rates and survival probabilities to

link the likelihood of a seat’s purchase with the pricing decisions of the organization.

Our hazard-based model corresponds to the extensive literature on longitudinal survival

analysis in statistics. Traditionally, the model is used to analyze the time to the occurrence of

an event, such as the death for a person with a particular disease or a failure in a mechanical

system (Kleinbaum and Klein 2012). This framework can be extended to document the

impact of a continuous implementation of a factor (such as a drug) on the time to the
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occurrence of a death using an exponential of a parametric linear functional form defined

as proportional hazards (Cox 1972). Such models are appropriate for duration analysis in a

variety of field settings – in music purchases (Moe and Fader 2002), customer retention (Fader

and Hardie 2007), service acquisition (Schweidel et al. 2008a, 2008b), flight departure times

(Deshpande and Arikan 2012), and production times (Terwiesch et al. 2005). We use this

framework to model the time to the occurrence of a seat purchase and use the proportional

hazards to examine the impact of the organization’s discounts and some time-related factors

on timing of that purchase. To the best of our knowledge, the employment of a duration

model to match customer demand in a revenue management setting is new.

Our empirical analysis on documenting the value of commitment to a pricing policy

draws from a rich body of research in dynamic pricing in revenue management, including

Gallego and van Ryzin (1994, 1997) and Feng and Gallego (1995, 2000). We refer the

reader to Talluri and van Ryzin (2004) for an extensive analysis of theory and practical

issues in revenue management settings. The uncertainty in an organization’s pricing action

in subsequent periods may involve behavioral anomalies in the timing of purchases. Some

consumers may delay their purchases in anticipation of a potential price drop. This behavior

exists in the airline industry (Li et al. 2014). Recent papers that consider strategic customers

show that organizations might have to follow a mark-up policy if high valuation customers

are highly patient (Su 2007) or a fixed pricing policy (Ovchinnikov and Milner 2011).

Some researchers explore pricing decisions when the organization does not commit to

a pricing policy. Koenigsberg et al. (2008) argue that an organization will benefit from

a last-minute sale as long as there is uncertainty with respect to the organization’s pricing

decisions. However, a last-minute sale may lead to more consumers anticipating the discount

and delaying their purchases, hence potentially reducing the revenue of the organization

(Jerath et al. 2010).

A renewed theoretical interest in price commitments has shown such price commitments

may be beneficial when customers exhibit varying degrees of patience (Liu and Cooper 2014,
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Besbes and Lobel 2015, and Caldentey et al. 2014).

We use the flexible competing hazards model, to run pricing analytics on the data,

and show the revenue-generation capability of commitment to a non-increasing monotone

discounting policy when customer classes have different valuations and arrival rates. Next,

we describe how we implement the competing risks with proportional hazards framework in

this setting.

3 Model Description

3.1 Modeling Ticket Sales with Proportional Hazards

The orchestra (organization) sells tickets for shows at a venue with capacity of K seats

divided into j = 1, ..., J zones for N shows or performances in a season. The tickets are sold

at some base price for each zone (or at a discounted price, if discounts prevail). Several types

of discounts are offered. There are discounts for customers who buy tickets for a single show

occasionally (occasional buyers), and those customers who buy tickets for multiple shows, or

who subscribe to bundles (subscribers). Furthermore, if a subscriber buys tickets for multiple

shows, he is allowed to inform the theater of the selections for the specific shows he desires

to attend at any point in time before the show dates. Hence, in the data, the actual timing

of the purchase of tickets for a particular show is when the selection bundles are chosen. We

model the purchase timing of occasional buyers similarly.

We define the customer arrivals in the context of the timing of a ticket purchase by

taking a seat perspective. Let T ∈ (0,∞) be the time to sell a ticket for a particular

concert. Let f(t) be the probability density function of selling a ticket for a seat at time t

and F (t) = P (T < t) be the cumulative distribution function of selling a ticket until time

t. Then, the survival function, the probability of a seat remaining empty until time t would

be S(t) = 1−F (t). The survival probability specifies the unconditional probability that the

sale of a ticket for a seat has not happened by time t. The hazard rate λ(t), on the other
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hand, is defined by means of a conditional probability. We look at those tickets that have not

been sold by time t and consider the probability of there being a ticket sale in the small time

interval [t, t+dt]. Then, this probability would be equivalent to λ(t)dt. Mathematically, the

hazard rate is defined as a limit in the following way,

λ(t) = lim
h→0

Pr(t ≤ T < t+ h|T ≥ t)
h

= lim
h→0

1
h

S(t)− S(t+ h)
S(t) .

In that case, the instantaneous hazard rate of selling a ticket would be λ(t) = −S′(t)
S(t) if T is

absolutely continuous.

We can write the survival rate of the seat at time t using the boundary condition S(0) = 1,

S(t) = exp

(
−
ˆ t

0
λ(s)ds

)
. (1)

Hence, for this setting it is useful to think of λ(t) as the hazard on the seat survival (i.e.,

arrivals create sales). As a result of an arrival and sales, a seat does not survive. Next,

we need to model the time-inhomogenous λ(t) to explore the relation between observed

covariates and the purchase timing of tickets using Equation (1).

In Figures 1(a) and 1(b), we graph the total sales of both subscribers and occasional

buyers, respectively, in every week for every concert in the first season. In Figure 1(a), we

see that the sales pattern for subscribers starts with a peak, and then (roughly) decreases,

with smaller peaks progressively. In contrast, in Figure 1(b), we see spikes in the sales

pattern for occasional buyers towards the end of the horizon.

Typically, the exponential distribution characterized by the scale parameter λ is used

to model stationary arrivals. However, it is not flexible enough to cover the non-stationary

arrivals seen in our data, as seen in Figures 1(a) and 1(b). Such observations indicate that

a baseline hazard rate should have the capability to change with time.

We use the Weibull distribution for the link between the arrivals of customers and the

timing of ticket sales. The probability density function of a Weibull random variable t is
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Figure 1: Number of tickets sold to subscribers per week for every concert on the left.
Number of tickets sold to occasional buyers per week for every concert on the right.

f(t;λ, k) = λk(λt)k−1e−(λt)k−1 for t ≥ 0, and 0 otherwise. The parameters λ and k account for

the scale and shape of the probability density function, respectively. The Weibull distribution

gives a distribution for which the hazard rate is proportional to the power of time, i.e.,

λ0(t;λ, k) = λk(λt)k−1.

We are interested in the impact of the organization’s pricing decisions on the likelihood

of selling a ticket over time when controlling for some concert- and venue-related factors. We

use an exponential specification for the link between the hazard rate and the organization,

concert- and venue-related factors. Let x(t) be the vector of factors that may have an

influence on the likelihood of selling a ticket to a consumer at time t. We propose:

Λ(t;λ, k, β, xt) = λ0(t;λ, k)ex′(t)β = λk(λt)k−1ex
′(t)β, (2)

where λ0(t;λ, k) is the baseline hazard rate at time t, and β is the vector of parameters that

shows the impact of changes in factors on hazards of selling a ticket at every point in time.

9



This exponential link is also known as the proportional hazards framework in the survival

analysis literature (Cox 1972). We use the exponential specification to account for potential

non-linear effects of the changes in factors on the hazard rate. See Kiefer (1988) for examples

of the use of parametric baseline hazard models in econometrics with similar motives, as in

our research.

3.2 Factors Influencing Hazard Rates

There are a variety of customer categories in the data. Subscribers commit to purchasing dif-

ferent pre-set quantities of tickets: subscribers who subscribe to all 21 performances, 14-show

subscribers, and 7-show subscribers. It is only a commitment to attend a specific number

of shows; subscribers are free to select the specific choice of shows to attend throughout the

season (and may infrequently incur additional charges for the changes). Hence, the actual

timing of the ticket purchases for a particular show is the date when the subscriber informs

the theater of this final decision, which we tabulate. In our analysis, the subscribers, regard-

less of the number of shows that they committed to attend, are all grouped together and

labeled as “subscribers.” The “occasional buyers” may buy tickets to multiple shows, but

purchase their tickets to each show separately. In our data set, occasional buyers typically

buy tickets for about two shows.

Figures 1(a) and 1(b) show that there is a notable difference between the timing of pur-

chases by subscribers and occasional buyers. To account for this difference, we use different

proportional hazard rate specifications for the two customer categories using Equation (2),

Λs (t;λs, ks, βs, xs(t)) = λsks(λst)ks−1ex
′
s(t)βs (3)

Λo (t;λo, ko, βo, xo(t)) = λoko(λot)ko−1ex
′
o(t)βo (4)

where xs(t) and xo(t) contain factors such as the average discount received by subscribers

and occasional buyers at time t (AvgDiscs(t) and AvgDisco(t)), a dummy variable repre-
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senting if time t is the last week before the show (LastWeek(t)), three dummy variables

to account for unobserved performance day-related effects (Thurs, Sat, and Sun) since the

same concert can be performed on Thursday, Friday, Saturday, or Sunday in that week, 20

dummy variables to account for unobserved concert-related effects from 21 different concerts

in a season (Concert2, ..., Concert21), and a dummy variable to account for seasonal change

in sales from the 2008-09 season to the 2009-2010 season (Y ear2). We also include an addi-

tional dummy variable (Phone(t)) in xs(t) to account for the telephone marketing campaign

of the subscription packages (starting around the sixth week and ending around the eleventh

week of the season, see Figure 1(a)). This variable becomes 1 if time t is between the sixth

and eleventh weeks; otherwise the value is 0. Hence, the hazard rate of sales to these two

customer categories may change over time due to time-related effects, and it may also change

based on the organization’s pricing decisions, or performance day and concert-related effects.

The management provides different types of discounts to the patrons for several historic

reasons but they never provide a higher discount than the previous one throughout the season

for any concert. We see that the discounts used by customers always decrease over time until

the performance week. The opposite of this strategy may have caused the customers to delay

their purchases to buy the tickets at a higher discount later in the season, as depicted by

Li et al. (2014) in the airline industry. The organization’s current pricing strategy prevents

such purchase behavior in this setting. We explore the impact of these discounts received

by subscribers and occasional buyers on timing of their purchases with AvgDiscs(t) and

AvgDisco(t).

3.3 Competing Hazards Framework

To model the ticket sales, we consider the competing risks framework (Kalbfleisch and Pren-

tice 2002), under which the two streams of customers compete for the same seat. Also see,

Han and Hausman (1990) use the framework to study the unemployment rate and its dif-

ferent causes, and Braun and Schweidel (2011) who study customer churn. Similarly, we
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perceive the tickets as our test subjects and model their cause-specific sales. Recall that

subscribers and occasional buyers are from two different pools with non-stationary rates.

Each ticket is available to both categories. In this case, if one pool sends a customer earlier

than the other, the seat is given to the earliest arrival. We employ this framework for every

seat in the theater.

We index all shows by i where i ∈ {1, . . . , N}. Let Ti stand for the ordinal value of the

performance week of show i. Thus, for each show, we start the horizon at Ti weeks prior to the

performance week. Ti increases in the order of the show indexes i. Thus, the season concludes

during week TN . Recall that multiple performances of the same show happen during the

same week on different days. These same performances are indexed chronologically based on

the performance day and they have the same performance week value. We group together

the zones as follows: the expensive zones (1 and 2), mid-price zones (3, 4, 5), and cheap

zones (6, 7, 8). They are aggregated together according to similar aspects of price and the

quality of the seats. Separate estimation of the zones in expensive, mid-price and cheap tiers

provides very similar estimates. We index all three tiers by j where j ∈ {1, 2, 3} stands for

the expensive, mid-price, and cheap zones, respectively.

We next define the likelihood of the ticket (seat) sale from tier j for show i at time t

to a particular customer type. If the ticket is sold in week t, then the ticket should not be

purchased by any types until week t. The ticket would survive the purchase by customer

type l ∈ {s, o} with probability:

Slj(t;λlj, klj, βlj, xlj(t)) = exp

(
−
ˆ v

0
Λlj(v;λlj, klj, βlj, xlj(t))dv

)

= exp

(
−λklj

lj

t−1∑
v=0

exp(x′lj(v)βlj)
ˆ v+1

v

kljv
klj−1dv

)

= exp

(
−λklj

lj

t−1∑
v=0

exp(x′lj(v)βlj)((v + 1)klj − vklj )
)
.

The probability of a ticket surviving until week t is ∏l∈{s,o} Slj(t;λlj, klj, βlj, xlj(t)). Hence,
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the probability for a ticket, that is observed to be sold in week t, to be purchased by

customer type l would be Λlj (t;λlj, klj, βlj, xlj(t))
∏
l∈{s,o} Slj(t;λlj, klj, βlj, xlj(t)). Let dsj

indicates whether the ticket is sold to a customer from the subscriber category at time t, and

doj indicates whether the ticket is sold to a customer from the occasional buyer category at

time t. Clearly, dsj + doj = 1 because the ticket can be sold to only one customer category.

We can then write the likelihood contribution for each ticket sold at time t for tier j as:

∏
l∈{s,o}

Λlj (t;λlj, klj, βlj, xlj(t))dlj Slj(t;λlj, klj, βlj, xlj(t)). (5)

A ticket for show i, which was not purchased until the performance week, would mean that

it survived all purchases over Ti weeks. Then, this ticket’s likelihood contribution would be∏
l∈{s,o} Slj(Ti;λlj, klj, βlj, xlj(Ti)).

3.4 Estimation Scheme

We find the maximum likelihood estimators for λsj, ksj, λoj, koj, βsj, and βoj for all tiers

j = 1, 2, 3 through the product of likelihood contributions from each ticket (described in

subsection 3.3). Let Mj be the total number of available seats in tier j, and m = 1, ...,Mj

be the index of a seat in tier j. We can write the total likelihood function for tier j as:

Lj =
N∏
i=1

Mj∏
m=1

∏
l∈{s,o}

Λlj (tim;λlj, klj, βlj, xlj(tim))dimlj Slj(tim;λlj, klj, βlj, xlj(tim)).

Note that the overall likelihood function for tier j is a product of likelihoods for each type

of customer category l. This implies that we can estimate the parameters for each customer

category by maximizing the separate likelihoods of each customer category and can save time

with lower number of parameters to estimate in each run. We run the estimations separately

for each customer category.
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4 Data

This research is based on data collected during two seasons of ticket sales transactions at

the individual level for a renown symphony orchestra in the Northeast region of the United

States. The data was collected from several departments and at the ticket booth, and

tabulated.

The data include 53 performances during the 2008-09 season (Year 1) and 54 performances

during the 2009-10 season (Year 2). Each season has about 21 weeks of concerts. In each of

the 21 weeks, a different musician presents a distinct repertoire, with most of the repertoires

conducted by the orchestra conductor.

The theater has a maximum seating capacity of 2500+ seats. Our data covers 9,833

distinct customers – a few special customers, many regulars, and various categories of sub-

scribers. From our data, we note that the concerts are rarely sold out. For example, in Year

1, the average sales was 1,661 per concert (with a standard deviation of 457) which is less

than 65% of the capacity of the venue. During Year 1, only eight shows had sales in excess

of 80% of the venue capacity.

The prices of these seats are determined by the seat quality associated with the zone

– in other words, the acoustic experience and the visual line of sight to the stage. There

is a significant price difference between the zones and days. For instance, on Thursdays

(Fridays/Saturdays), the high-priced zones are sold at an advertised ticket price of $41.50

($78.50) and the lowest priced zone ticket is about $12.50 ($19.50).

Typically, ticket sales begin several weeks in advance of the first concert of the season.

In our data, the ticket sales begin as early as 39 weeks prior to the first concert week. Thus,

our data covers sales over 76 weeks for the full season for both years.

It is hard to obtain individual income level data, for this customer population. Never-

theless, we use ZIP Code location data for customers, whenever available. The customers

are dispersed over three ZIP Codes, which did not differ much in income levels to affect our

main findings.

14



4.1 Preliminary Processing for Calibration and Validation

There are a variety of discount options and programs available to customers. The mean

price of the ticket sold is $28.63, and the standard deviation is $16.08. The average Gini

coefficient for the price of the ticket is 0.216 (and the standard deviation is 0.031), which

indicates that the expected absolute difference between the prices of any two tickets chosen

at random is about 42% of the mean price.

We use the data from individual purchase transactions from all 53 performances of the

21 concerts in the first season (Year 1) and all 35 performances of the first 14 concerts in

the second season (Year 2) to estimate our model. In Section 5.1, we validate our model

on the performances of the remaining seven concerts of Year 2. From the total of 54,945

transactions observed in this data, 7,313 transactions of complementary or large group ticket

sales were deleted. We code each performance, labeling them with the values {1, 2, 3, ...,

88}, in chronological order.

In each purchase transaction, we observe which one of the 21 concerts is selected, which

performance day of that concert is selected, and when the transaction took place. We use

this information to identify the week the performance takes place, as well as the week the

tickets were purchased during Year 1 and Year 2. The information for the transaction week

is used to set the indicator variables such as LastWeek(t), Phone(t), Thurs, Sat, and Sun.

The information on the transaction year and the concert is used to set the dummy variable

Y ear2, and the concert-related dummy variables (Concert2, ..., Concert21).

Each purchase transaction in the data reflects not only the number of tickets sold and their

transaction price, as well as the type of customer purchasing the ticket. We extract from this

data the discount used by that customer category. We aggregate all discounts to calculate

the average discount used by each customer category, AvgDiscs(t) and AvgDisco(t), in each

week t throughout Year 1 and Year 2.
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5 Results

We have established the formation of competing hazards that are based on time, the or-

ganization’s pricing decisions, performance day, and concert-related parameters. Table 1

presents the coefficient estimates from the estimations for each tier.

Subscribers and occasional buyers differ in their arrival patterns. The parameter es-

timates for the scale (λ) and the shape (k) are significant (at 1% level) for all customer

categories and tiers. Comparing λ and k between subscribers and occasional buyers for each

tier shows that there is a significant change in the value of the estimates based on asymptotic

t-tests of the difference in magnitude at the α = 0.01 level. We see that λ for subscribers

is higher than λ for occasional buyers, and k for subscribers is lower than k for occasional

buyers for all tiers. Thus, the majority of subscribers purchase their tickets earlier than the

majority of occasional buyers, who purchase their tickets later in the selling horizon.

Table 1 shows that the impact of the average discount (AvgDisc) on hazard rate of

subscribers is positive and statistically significant (at the 1% level) for each tier. The hazard

rate in a week would be adjusted up by the exponential of the estimate for each 1% discount

to the customer. For instance, if the organization provides an additional 1% discount to

subscribers for a ticket purchase from an expensive tier, then the hazard rate for subscribers

would be adjusted up by exp(0.01× 1.6) = 1.016. Hence, for a given week, the average sales

rate to subscribers would increase by 1.6%.

Similarly, for each tier, we find that the impact of the average discount on the hazard

rate of occasional buyers is positive and statistically significant (at the 1% level except for

the mid-priced tier). For instance, if the organization provides an additional 1% discount to

occasional buyers for a purchase of a ticket from an expensive tier, then the hazard rate for

occasional buyers would be adjusted up by exp(0.01 × 0.487) = 1.005. Hence, for a given

week, the average sales rate to occasional buyers would increase by 0.5%.

Comparing the increases in hazard rate for an additional discount shows that subscribers

value the discounts more than occasional buyers for all tiers. This was expected since oc-
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Coefficients Expensive Mid-priced Cheap
Subscriber Occasional Subscriber Occasional Subscriber Occasional

λ
0.020*** 0.013*** 0.017*** 0.013*** 0.016*** 0.013***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

k
1.404*** 7.024*** 1.598*** 7.331*** 2.001*** 8.083***
(0.010) (0.132) (0.008) (0.044) (0.013) (0.094)

AvgDisc
1.600*** 0.487*** 0.865*** 0.057* 0.970*** 0.398***
(0.095) (0.056) (0.038) (0.034) (0.033) (0.045)

Thurs
-0.204*** 0.214** 0.087*** -0.024 0.013 0.047
(0.037) (0.075) (0.026) (0.060) (0.032) (0.072)

Sat
-0.059*** 0.082** -0.123*** 0.103*** -0.185*** 0.132***
(0.017) (0.035) (0.012) (0.021) (0.015) (0.024)

Sun
0.106*** -0.127*** 0.340*** -0.123*** 0.302*** 0.115***
(0.016) (0.037) (0.011) (0.023) (0.013) (0.025)

Y ear2 -0.040*** 0.156*** -0.081*** -0.031 -0.148*** 0.034
(0.015) (0.035) (0.011) (0.023) (0.013) (0.025)

LastWeek
1.872*** 2.673*** 1.557*** 2.843*** 1.393*** 2.708***
(0.039) (0.039) (0.028) (0.023) (0.031) (0.025)

Phone
1.611*** - 1.712*** - 1.879*** -
(0.020) (0.014) (0.021)

Log Likelihood -99,218.28 -14,956.59 -220,885.30 -40,152.76 -155,506.3 -33,137.25

Note. The models for subscribers and occasional buyers for all price tiers also include concert
related indicators. Standard errors are shown in parentheses. *, **, and *** denote significance at
the 10%, 5%, and 1% confidence level, respectively.

Table 1: Estimation results for expensive, mid-priced, and cheap tiers.

casional buyers attend concerts occasionally, and they might not be aware of the value of

the discounts; subscribers likely pay close attention to prices to reduce their total payment

for attending multiple concerts. We also find that the hazard rates for both customer cate-

gories increase most with an additional discount in the expensive tier, which indicates a high

interest by price sensitive customers.

We find that another organization-related factor, the telephone marketing campaign

(Phone) for sales to subscribers, also has a positive and statistically significant effect (at

the 1% level) on the hazard rates of subscribers for each tier. For instance, the hazard rate

of subscribers for the expensive tier for a given week is 400% higher, as evident by the huge

spike of sales between the sixth and eleventh weeks in subscriptions for every concert (Figure

1(a)).
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Not surprisingly, the hazard rates for both subscribers and occasional buyers go up during

the last week before a performance; this increase is higher for occasional buyers. It is

normal for any customer category to make last-minute purchase decisions. For instance,

Table 1 shows that the hazard rate on the LastWeek before a performance increases by

| exp(1.872)− 1| × 100 = 550% for subscribers and by | exp(2.673)− 1| × 100 = 1, 348% for

occasional buyers relative to other weeks. Figures 1(a) and 1(b) also confirm this last minute

increases in sales, with spikes later in the season right before the performance weeks.

Finally, the hazard rates for a Saturday performance are generally lower for subscribers

and higher for occasional buyers relative the Friday performance of the same material for

all tiers. For instance, the hazard rate decreases by | exp(−0.059) − 1| × 100 = 5.73% for

subscribers and increases by | exp(0.082) − 1| × 100 = 8.55% in the expensive tier. This is

consistent with the observation that Fridays are the busiest concert evenings, with subscribers

occupying most of the seats.

To summarize, subscribers and occasional buyers exhibit significant differences in their

purchase patterns throughout the selling period. Their purchase timings also differ in re-

sponse to the organization’s pricing strategies, the performance day related factors, and to

some other factors. This shows that some pricing strategies can be used to change the timing

of ticket sales to a particular customer category throughout the season.

5.1 Out-of-Sample Tests

In this section, we perform out-of-sample tests for each tier to illustrate the accuracy of the

estimation. To this end, we use all the shows for the last seven concerts for prediction and

testing of the model. The testing is done for each customer category and tier in isolation.

Let Psj(t) denote the ex ante probability of a seat from tier j being sold to a subscriber

in week t. Similarly, let Poj(t) denote the ex ante probability of a seat from tier j being sold

18



to an occasional buyer in week t. These probabilities are given by:

Psj(t) = Λsj(t;λsj, ksj, βsj, xsj(t))
∏

l∈{s,o}
Slj(t;λlj, klj, βlj, xlj(t)) (6)

Poj(t) = Λoj(t;λoj, koj, βoj, xoj(t))
∏

l∈{s,o}
Slj(t;λlj, klj, βlj, xlj(t)) (7)

The seat’s selling propensity to each customer category in each period is independent of

each other. Therefore, the predicted number of sales to subscribers and occasional buyers in

week t has a multinomial distribution. Let msj(t) and σsj(t) denote the mean and standard

deviation for the subscriber category of this distribution, respectively. Similarly, let moj(t)

and σoj(t) denote the mean and standard deviation for the occasional buyer category of

this distribution, respectively. Then, given that tier j has Mj seats, mlj(t) = MjPlj(t)

and σlj(t) =
√
MjPlj(t)(1− Plj(t)) for customer categories l ∈ {o, s}. Furthermore, the

predicted number of aggregate ticket sales from tier j to customer category l for show i is∑Ti
t=1 mlj(t) = Mj

∑Ti
t=1 Plj(t). Let alj(t) denote the actual number of tickets sold from tier j

to customer category l ∈ {o, s} in week t.

We consider the absolute errors in predicting the aggregate sales rates to customer cate-

gories l ∈ {o, s} as the performance metric for the out-of-sample test. This measure is given

by:

Absolute Errorilj = 1
Mj

∣∣∣∣∣∣
Ti∑
t=1

mlj(t)−
Ti∑
t=1

alj(t)

∣∣∣∣∣∣ . (8)

Table 2 presents the averages of the performance metric across all shows in the prediction

sample for different customer categories and tiers. The results show that our model is fairly

accurate in predicting the aggregate ticket sales for both subscribers and occasional buyers.

Figure 2 provides a detailed comparison of the predicted and actual sales to subscribers

and occasional buyers for only the Friday show of the 19th concert in the second season. In

addition to mlj(t) and σlj(t), the graphs also show mlj(t) ± 2σlj(t) over time for customer

categories l ∈ {o, s} and for all tiers. These graphs help us to assess the accuracy of the
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Seating Tier Absolute Error
Subscriber Occasional Buyer

Expensive 0.19 0.04
Mid-price 0.29 0.06
Cheap 0.27 0.07

Table 2: Averages of the Performance Metrics Across All Shows

prediction in relation to the inherent variability of the sales to subscribers and occasional

buyers.

5.2 Pricing Experiments

In this section, we discuss the ticket revenue management process using the estimated hazard

rate parameters. We perform what-if analyses to assess the impact of changes in the pricing

policy.

We construct the simulation along the lines of the usual discrete-event simulations for

a tier of a show. In the simulation, the remaining seats for every week are either sold

to subscribers or occasional buyers, with probabilities depicted in Equations (6) and (7),

respectively, or they survive to the next week. We repeat this procedure until the tier runs

out of seats or we reach the performance week. Then, we run the simulation on the expensive

tier of the Friday shows of seven consecutive concerts in our prediction sample.

We first reconstruct the existing as is performance of the organization’s pricing policy.

The expensive tier contains 400+ seats. We start the simulation with these seats by imple-

menting the organization’s current discounting policy. For every week, we track which seats

are sold to subscribers and occasional buyers, and calculate the corresponding revenues from

these sales with the organization’s current average discounting policy. Note that separate

simulations are run for every one of seven shows. Once all seven simulations end (either by

reaching the end of the performance week of a show or if all seats in the tier are sold), we

calculate the total revenue. We run these simulations 1,000 times and calculate the average

revenue obtained for all seven shows. Table 3 provides the average revenues from the “as-is”
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Figure 2: The predicted sales m(t), actual sales a(t), and m(t) ± 2σ(t) over time for sub-
scribers and occasional buyers and for all seating tiers.

policy for every show. Recall that the orchestra’s current operational practice attempts to

lift the ticket sales by providing ad-hoc discounts, even earlier in the season.

Next, we consider assessing the impact of changes to the pricing policies. To this end, we

evaluate a decreasing monotone discounting (DMD) policy. Under this pricing policy, the
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organization sticks to its current pricing policy for subscribers. For the occasional buyers,

the organization starts with some discount and gradually decreases the discount until the

performance week. In particular, we test the following policy: 50% discount in the first 30

weeks of the season, followed by a 30% discount in the next 20 weeks, then a 10% discount

until two weeks prior to the performance day, and no discount in the last two weeks. The

average revenues from this policy is given under the DMD policy column of Table 3.

Show Current policy ($) DMD Policy ($) Revenue Improvement
1 16,193.75 16,529.83 2.08%
2 16,145.07 16,557.44 2.55%
3 16,160.44 16,615.15 2.81%
4 15,959.56 16,559.51 3.76%
5 15,870.74 16,471.87 3.79%
6 15,990.69 16,484.78 3.09%
7 15,714.87 16,771.37 6.72%

Table 3: Average revenues under As-Is and Decreasing Monotone Discounting (DMD) pricing
policies.

In the Revenue Improvement column in Table 3, we summarize the percentage increase

in revenues under the DMD pricing policy relative to the revenues under the as-is pricing

policy of the organization. The results show that the commitment to a DMD policy can

increase the average revenue per concert by 6.72% relative to the current pricing policy of

the organization.

6 Conclusions

In this paper, we empirically explore the role of a non-profit performing arts organization’s

pricing policy. Nonprofit organizations such as theaters have an objective to sell as many

seats as possible, while maintaining or improving customer loyalty, and accruing revenues to

meet fixed operational costs. In our paper, two main customer categories are evaluated for

their purchasing decisions over two seasons. We use counterfactual pricing experiments to

explore discounting policy recommendations and to show how commitment to a decreasing

22



monotone discounting policy may play a significant role in the revenue generation capability

of an organization.

Our empirical model has the flexibility to account for different degrees of consumer pa-

tience for each customer category by measuring the link between the past observed prices

and other time-related factors and the current purchase probability through cumulative pro-

portional hazards in survival probabilities of seats. Our model also has the flexibility to

account for differing valuations through separate price sensitivity measures in hazard rates

for each customer category. Finally, the separate proportional hazard rates give our model

the flexibility to account for potential differences between arrival times of subscribers and

occasional buyers.

We find that subscribers and occasional buyers have different purchase patterns through-

out the season. Results from the competing risks framework show that the likelihood of a

ticket sale to a subscriber relative to an occasional buyer is higher earlier during the season,

whereas the likelihood of a ticket sale to an occasional buyer is higher relative to a subscriber

closer to the performance week. These patterns are independent of the organization’s pricing

policies for both customer categories.

We also find that discounts play a significant role in attracting more subscribers and

occasional buyers during any given performance week. Specifically, the likelihood of a pur-

chase by a subscriber or occasional buyer increases when that customer category can take

advantage of a ticket discount. In the light of discount-driven lifts in ticket purchases, we

show that an organization can improve its revenue by committing to a non-decreasing pricing

policy even if the customer categories exhibit different valuations and arrival times for each

performance throughout the season.

Our study of customer purchase tendencies throughout the season provides evidence

that discounting decisions may require joint consideration of multiple customer categories.

It might be possible that the purchase tendency of one customer category might also change

based on the discounts offered to other customer categories in the market. To maintain the
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research focus, our model assumes an independent hazard rate of a customer category from

the discount received by other customer category. We employ a parametric model. Non-

parametric characterization of hazards in competing risks frameworks remains a challenging

future research direction.

Our competing hazards framework can be directly applied to other non-profit settings

with charity events or blood donation events to explore the change in donation tendencies

due to incentives offered by the organization. By integrating appropriate covariates that are

specific to those settings, we believe that the primary competing hazard model structure can

be translated to most settings with minimal variations.
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