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OPTIMAL ON-LINE SELECTION OF AN

ALTERNATING SUBSEQUENCE:

A CENTRAL LIMIT THEOREM

ALESSANDRO ARLOTTO AND J. MICHAEL STEELE

Abstract. We analyze the optimal policy for the sequential selection of an
alternating subsequence from a sequence of n independent observations from

a continuous distribution F , and we prove a central limit theorem for the

number of selections made by that policy. The proof exploits the backward
recursion of dynamic programming and assembles a detailed understanding of

the associated value functions and selection rules.
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1. Introduction

In the problem of on-line selection of an alternating subsequence, a decision
maker observes a sequence of independent random variables {X1, X2, . . . , Xn} with
common continuous distribution F , and the task is to select a subsequence such
that

Xθ1 < Xθ2 > Xθ3 < · · · ≷ Xθk

where the indices 1 ≤ θ1 < θ2 < θ3 < · · · < θk ≤ n are stopping times with respect
to the σ-fields Fi = σ{X1, X2, . . . , Xi}, 1 ≤ i ≤ n. In other words, at time i when
the random variable Xi is first observed, the decision maker has to choose to accept
Xi as a member of the alternating sequence that is under construction, or choose
to reject Xi from any further consideration.

We call such a sequence of stopping times a feasible policy, and we denote the
set of all such policies by Π. For any π ∈ Π, we then let Aon(π) denote the number
of selections made by π for the realization {X1, X2, . . . , Xn}, i.e.

Aon(π) = max {k : Xθ1 < Xθ2 > · · · ≷ Xθk and 1 ≤ θ1 < θ2 < · · · < θk ≤ n} .

It was found in Arlotto, Chen, Shepp and Steele (2011) that for each n there is a
unique policy π∗n ∈ Π such that

E[Aon(π∗n)] = sup
π∈Π

E[Aon(π)],
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and it was proved that optimal mean E[Aon(π∗n)] can be tightly estimated. Specifi-
cally, one has

(1) E[Aon(π∗n)] = (2−
√

2)n+O(1).

Here, our main goal is to show that Aon(π∗n) satisfies a central limit theorem.

Theorem 1 (Central Limit Theorem for Optimal On-line Alternating Selection).
There is a constant 0 < σ2 <∞ such that

Aon(π∗n)− (2−
√

2)n√
n

=⇒ N(0, σ2) as n→∞.

The exact value of σ2 is not known, but σ2 has a representation as an infinite
series and Monte Carlo calculations1 suggest that σ2 ∼ 0.3096. The determination
of a closed-form expression for σ2 remains an open problem. It may even be a
tractable problem, though it is unlikely to be easy.

Motivation: History and Connections

The theory of alternating sequences has ancient roots. It began with the investi-
gations of Euler on alternating permutations, and, through a long evolution, it has
become an important part of combinatorial theory (cf. Stanley, 2010). The proba-
bility theory of alternating sequences is much more recent, and its main problems
fit into two basic categories: problems of global selection and problems of sequential
selection.

In a problem of global selection (or an off-line problem), one sees the whole
sequence {X1, X2, . . . , Xn}, and the typical challenge is to understand the distri-
bution of length of the longest alternating subsequence under various probability
models. For example, when {X1, X2, . . . , Xn} is a random permutation of the in-
tegers [1 : n], explicit bivariate generating functions were used by Widom (2006),
Pemantle (cf. Stanley, 2007, p. 568), and Stanley (2008) to obtain central limit
theorems. Simpler probabilistic derivations of these results were then developed
by Houdré and Restrepo (2010) and Romik (2011). These authors exploited the
close connection between the length of the longest alternating subsequence and the
number of local extrema of a sequence, a link that is also relevant to local minima
problems studied in computer science (e.g. Bannister and Eppstein, 2012) and to
similar structures in the theory of turning point tests (e.g., Brockwell and Davis,
2006, p. 312, or Hua, 2010, Section 1.2).

The theory of on-line alternating subsequences is of more recent origin, but it
is closely tied to some classic themes of applied probability. In the typical on-line
decision problem, a decision maker considers n random values in sequential order
and must decide whether to accept or reject each presented value at the time of
its first presentation. In the most famous such a problem, the decision maker gets
to make only a single choice, and his goal is to maximize the probability that the
selected value is the best out of all n values. Cayley (1875) considered a problem of
this kind, but the modern development of the theory began in earnest with notable
studies by Lindley (1961) and Dynkin (1963). Samuels (1991) gives a thoughtful
survey of the work on related problems through the 1980’s, and connections to more

1Numerical estimates are obtained discretizing the state space with a grid size of 10−4 and per-
forming 5 · 105 repetitions. The standard error for the estimate of σ2 is 6.19× 10−4.
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recent work are given by Krieger and Samuel-Cahn (2009), Buchbinder, Jain and
Singh (2010), and Bateni, Hajiaghayi and Zadimoghaddam (2010).

In more complex problems, the decision maker typically makes multiple se-
quential selections from the sequence of presented values, and the objective is
to maximize the expected number of selected elements, subject to a combinato-
rial constraint. For example, one can consider the optimal sequential selection
of a monotone subsequence. This on-line selection problem was introduced in
Samuels and Steele (1981), and it has been analyzed more recently in Gnedin
(1999; 2000a; 2000b), Baryshnikov and Gnedin (2000), Bruss and Delbaen (2001)
and Arlotto and Steele (2011).

The present investigation is particularly motivated by Bruss and Delbaen (2004),
where a central limit theorem is proved for the sequential selection of a monotone
subsequence when the number N of values offered to the decision maker is a Poisson
random variable that is independent of the sequence of the offered values. The
methodology of Bruss and Delbaen (2004) is tightly bound with the theory of
Markov processes and Dynkin’s formula, while the present method leans heavily on
the Bellman equation and explicit estimates of the decision functions.

Organization of the Analysis

The proof of Theorem 1 rests on a sustained investigation of the value functions
that are determined by the Bellman equation for the alternating selection prob-
lem. The optimal policy π∗n is determined in turn by the time-dependent threshold
functions {gn, gn−1, . . . , g1} that tell us when to accept or reject a newly presented
value. Inferences from the Bellman equation almost inevitably require inductive
arguments, and the numerical calculations summarized in Figure 1 are a great help
in framing appropriate induction hypotheses.

In Section 2, we frame the selection problem as a dynamic program, and we sum-
marize a few results from earlier work. The main observation is that, by symmetry,
one can transform the natural Bellman equation into an equivalent recursion that
is much simpler. We also note that the value functions determined by the reduced
recursion have a useful technical feature, which we call the property of diminishing
returns.

Sections 3 through 6 develop the geometry of the value and threshold func-
tions. Even though the alternating subsequence problem is rather special, there
are generic elements to its analysis, and our intention is to make these elements
as visible as possible. Roughly speaking, one frames concrete hypotheses based on
the suggestions of Figure 1 (or its analog), and one proves these hypotheses by
inductions that are driven by the Bellman equation. While the specific inferences
are unique to the problem of alternating selections, there is still some robustness
to the pattern of the proof.

Sections 7 and 8 exploit the geometrical characterization of the threshold func-
tions to obtain information about the distribution of Aon(π∗n), the number of se-
lections made by the optimal policy for the problem with time horizon n. The
main step here is the introduction of a horizon-independent policy π∞ that is de-
termined by the limit of the threshold functions that define π∗n. It is relatively easy
to check that the number of selections Aon(π∞) made by this policy is a Markov
additive functional of a stationary, uniformly ergodic, Markov chain. Given this
observation, one can use off-the-shelf results to confirm that the central limit theo-
rem holds for Aon(π∞), provided that one shows that the variance of Aon(π∞) is not
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o(n). We then complete the proof of Theorem 1 by showing that there is a coupling
under which Aon(π∗n) and Aon(π∞) are close in L2; specifically, we show that one has
‖ Aon(π∗n)−Aon(π∞)− E [Aon(π∗n)−Aon(π∞)] ‖2= o(

√
n).

2. Dynamic Programming Formulation

We first note that since the distribution F is continuous and since the problem
is unchanged if we replace Xi by Ui = F−1(Xi), we can assume without loss of
generality that the Xi’s are uniformly distributed on [0, 1]. The main task now
is to exploit the symmetries of the problem to obtain a tractable version of the
Bellman equation.

We proceed recursively, and, for 1 ≤ i ≤ n, we let Si denote the value of the
last member of the subsequence selected up to and including time i. We also set
Ri = 0 if Si is a local minimum of {S0, S1, . . . , Si}, and we set Ri = 1 if Si is a
local maximum. Finally, to initialize our process, we set S0 = 1 and R0 = 1, and
we note that the process {(Si, Ri) : 0 ≤ i ≤ n} is Markov.

At time i, the decision to accept or reject the new observation Xi depends only
on two quantities: (1) the state of the selection process before the presentation of
Xi; this is represented by the pair (Si−1, Ri−1) and (2) the number of observations
k that were yet to be seen before the presentation of Xi, i.e. k = n− i+ 1.

One can now characterize the optimal policy π∗n through these state variables
and an associated dynamic programming equation (or Bellman equation) for the
value function. We let vk(s, r) denote the expected number of optimal alternating
selections when the number of observations yet to be seen is k, and the state of the
selection process is given by the pair (s, r). If k = 0, then we set v0(s, r) ≡ 0 for all
(s, r) ∈ [0, 1]× {0, 1}. Otherwise, for 1 ≤ i ≤ n, states Si−1 = s and Ri−1 = r, and
residual time k = n− i+ 1, we have the Bellman equation

vk(s, r) =

{
svk−1(s, 0) +

∫ 1

s
max {vk−1(s, 0), 1 + vk−1(x, 1)} dx if r = 0

(1− s)vk−1(s, 1) +
∫ s

0
max {vk−1(s, 1), 1 + vk−1(x, 0)} dx if r = 1.

To see why this equation holds, first consider the case when r = 0 (so the next
selection needs to be a local maximum). With probability s, we are presented with
a value, Xi, that is less than the previously selected value. In this case, we do not
have the opportunity to make a selection, we reduce the number of observations
yet to be seen to k − 1, and this contributes the term svk−1(s, 0) to our equation.

Next, consider the case when r = 0 but s < Xi ≤ 1. In this case, one must
decide to select Xi = x, or to reject it. If we do not select the value Xi = x, then
the expected number of subsequent selections equals vk−1(s, 0). If we do select
Xi = x, then we account for the selection of x plus the expected number of optimal
subsequent selections, which together equal 1 + vk−1(x, 1). Since Xi is uniformly
distributed in [s, 1] the expected optimal contribution is given by the second term
of our Bellman equation (top line). The proof of the second line of the Bellman
equation is completely analogous.

One benefit of indexing the value functions vk(·, ·) by the “time-to-go” param-
eter k is that, by the optimality principle of dynamic programming, the selection
problem for a sequence of size n embeds automatically into the selection problem
for a sequence of size n+1. As a consequence, we can consider the infinite sequence
of value functions {vk(·, ·), 1 ≤ k <∞}. It is also useful to observe that these value
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functions satisfy an intuitive2 symmetry property:

(2) vk(s, 0) = vk(1− s, 1) for all 1 ≤ k <∞ and all s ∈ [0, 1],

so we can define the single-variable value function vk(y), 1 ≤ k <∞, by setting

vk(y) ≡ vk(y, 0) = vk(1− y, 1) for all 1 ≤ k <∞ and all y ∈ [0, 1].

Now, when we replace the bivariate value function vk(·, ·) in the earlier Bellman
equation with the corresponding value of the univariate value function vk(·), we
obtain a much nicer recursion:

(3) vk(y) = y vk−1(y) +

∫ 1

y

max {vk−1(y), 1 + vk−1(1− x)} dx.

Here, we have that v0(y) ≡ 0 for all y ∈ [0, 1], and we note that the map y 7→ vk(y)
is continuous and differentiable on [0, 1], and it satisfies the boundary condition
vk(1) = 0 for all 1 ≤ k < ∞. In this reduced setting, the state of the selection
process is simply given by the value y, rather than the pair (s, r).

The key benefit of the reduced Bellman equation (3) is that it leads to a sim-
ple rule for the optimal acceptance or rejection of a newly presented observation.
Specifically, if we set

(4) gk(y) = inf{x ∈ [y, 1] : vk−1(y) ≤ 1 + vk−1(1− x)},
then a value x is an optimal selection if and only if gk(y) ≤ x. For 1 ≤ k <∞, we
then call the function gk : [0, 1]→ [0, 1] the optimal threshold function if it satisfies
the variational characterization given by (4). We will see shortly that the value
function y 7→ vk(y) is strictly decreasing on [0, 1], a fact that will imply that gk(y)
is uniquely determined for each y ∈ [0, 1].

The optimal threshold functions {gn, gn−1, . . . , g1} give us a useful representation
for the number Aon(π∗n) of selections made by the optimal policy π∗n. Specifically, if
we set Y0 ≡ 0 and define the sequence Y1, Y2, . . ., by the recursion

Yi =

{
Yi−1 if Xi < gn−i+1(Yi−1)

1−Xi if Xi ≥ gn−i+1(Yi−1),

then we have that

(5) Aon(π∗n) =

n∑
i=1

1 (Xi ≥ gn−i+1(Yi−1)) ,

and, moreover, by the principle of optimality of dynamic programming, we have

E[Aon(π∗n)] = vn(0) for each n ≥ 1.

The representation (5) also tells us that Aon(π∗n) is a sum of functions of a time
inhomogeneous Markov chain. The analysis of this inhomogeneous additive func-
tional calls for a reasonably detailed understanding of both the threshold functions
{gk(·) : 1 ≤ k <∞}, and the value functions {vk(·) : 1 ≤ k <∞}.

A technical fact that will be needed shortly is that, for each 1 ≤ k < ∞, the
value function vk(·) satisfies the bound

(6) vk−1(u)− vk−1(1− y) ≤ vk(u)− vk(1− y) for all y ∈ [0, 1/2] and u ∈ [y, 1− y].

This bound reflects a restricted principle of diminishing returns; a proof of (6) is
given by Arlotto, Chen, Shepp and Steele (2011, Lemma 4).

2A formal proof of (2) is given in Arlotto, Chen, Shepp and Steele (2011, Lemma 3).
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Figure 1. Threshold functions gk(y), 1 ≤ k ≤ 10, and their limit
as k →∞ for y ∈ [0, 0.35].
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Solid lines plot the threshold functions gk, 1 ≤ k ≤ 10, for values of y in the

range [0, 0.35]. We have g1(y) = g2(y) = y for all y ∈ [0, 1], and the piecewise

smooth graphs of g3, g4, and g5 are explicitly labeled with their index placed
just below the curve. For k = 6, 7, ..., 10 the gk are indicated without labels.

Each gk the meets the diagonal line at some point, and one has gk(y) = y

on the rest of the interval [0, 1]. The plot suggests most of the analytical
properties of the sequence {gk : 1 ≤ k < ∞} that are needed for the proof of

the central limit theorem. In particular, for each fixed y ∈ [0, 1] the sequence

k 7→ gk(y) is monotone non-decreasing. The dashed line represents the limit
of gk(y) as k →∞; this limit is piecewise linear.

Given the dynamic programming formulation provided here, the results in this
paper can be read independently of our earlier work. Still, for the purpose of com-
parison, we should note that the notation used here simplifies our earlier one in some
significant ways. For example, we now take k to be number of observations yet to
be seen, and this gives us the pleasing formulation (3) of the Bellman equation. We
also write gk(y) for the optimal threshold function when there are k observations yet
to be seen, and this replaces the earlier, more cumbersome, notation f∗n−k+1,n(y).

3. Geometry of the Value and Threshold Functions

Figure 1 gives a highly suggestive picture of the individual threshold functions
gk(·), and it foretells much of the story about how they behave as k → ∞. An-
alytical confirmation of these suggestions is the central challenge. The path to
understanding the threshold functions goes through the value functions, and we
begin by proving the very plausible fact that the value functions are strictly de-
creasing.
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Lemma 2 (Strict Monotonicity of the Value Functions). For each 1 ≤ k <∞, the
value function y 7→ vk(y) defined by the Bellman recursion (3) is strictly decreasing
on [0, 1].

This assertion is certainly intuitive and one may not feel any need for a proof.
Nevertheless, there is something to be gained from a formal proof; specifically, one
sees in a simple context how the Bellman equation can be used to propagate a
sequence of induction hypotheses.

Proof of Lemma 2. We consider the sequence of hypothesis:

Hk : vk(y + ε) < vk(y) for all y ∈ [0, 1) and all ε > 0 such that y + ε ≤ 1.

Since v1(y) = 1 − y, H1 is true. For k ≥ 2, we note by the Bellman recursion (3)
that we have

vk(y + ε)− vk(y) = (y + ε)vk−1(y + ε) +

∫ 1

y+ε

max{vk−1(y + ε), 1 + vk−1(1− x)} dx

− yvk−1(y)−
∫ 1

y

max{vk−1(y), 1 + vk−1(1− x)} dx

≤ (y + ε)vk−1(y + ε) +

∫ 1

y+ε

max{vk−1(y), 1 + vk−1(1− x)} dx

− (y + ε)vk−1(y)−
∫ 1

y+ε

max{vk−1(y), 1 + vk−1(1− x)} dx

= (y + ε) {vk−1(y + ε)− vk−1(y)} < 0,

where the first inequality of the chain follows from

ε vk−1(y) ≤
∫ y+ε

y

max{vk−1(y), 1 + vk−1(1− x)} dx

and the second inequality follows from Hk−1. This completes the proof of Hk and
of the lemma. �

Figure 1 further suggests that the threshold functions have a long interval of
fixed points; the next lemma partially confirms this.

Lemma 3 (Range of Fixed Points). For all k ≥ 1 and y ∈ [0, 1], we have

(7) vk(y)− vk(2/3) ≤ vk(0)− vk(2/3) ≤ 1.

In particular, for all k ≥ 1, we have

(8) gk(y) = y for all y ∈ [1/3, 1]

and

(9) gk(y) ≤ 1/3 for all y ∈ [0, 1/3].

Proof. The first inequality of (7) is trivial since the map y 7→ vk(y) is strictly
decreasing in y. Also, the identities (8) and (9) are immediate from the variational
characterization (4) and the bound (7).

The real task is to prove the second inequality of (7). This time we use induction
on the hypotheses given by

(10) Hk : vk(0)− vk(2/3) ≤ 1, for 1 ≤ k <∞.
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As before v1(y) = 1− y, so H1 is trivially true. Now, when we apply the Bellman
recursion (3) with y = 0 and y = 2/3, we get

vk(0)− vk(2/3) =

∫ 1

0

max {vk−1(0), 1 + vk−1(1− u)} du

− (2/3)vk−1(2/3)−
∫ 1

2/3

max {vk−1(2/3), 1 + vk−1(1− u)} du,

from which a change of variable gives

(11) vk(0)− vk(2/3) =

∫ 1/3

0

I1(u) du+

∫ 1

1/3

I2(u) du

where I1(u) and I2(u) are defined by

I1(u) ≡ max {vk−1(0), 1 + vk−1(u)} −max {vk−1(2/3), 1 + vk−1(u)}

and

I2(u) ≡ max {vk−1(0)− vk−1(2/3), 1 + vk−1(u)− vk−1(2/3)} .
For the first integrand, I1(u), we note that

I1(u) = max {vk−1(0)− vk−1(2/3), 1 + vk−1(u)− vk−1(2/3)}(12)

−max {0, 1 + vk−1(u)− vk−1(2/3)} .

The induction assumption Hk−1 then tells us that

vk−1(0)− vk−1(2/3) ≤ 1,

and the strict monotonicity of the value function vk−1(·) on [0, 1] yields

1 ≤ 1 + vk−1(u)− vk−1(2/3) for all u ∈ [0, 1/3].

Thus, both the first and the second addend in (12) equal the right maximand and

(13) I1(u) = 0 for all u ∈ [0, 1/3],

so the first integral in (11) vanishes.
To estimate I2(u), we note that Hk−1 and the monotonicity of y 7→ vk−1(y) tell

us that

(i) if u ∈ [1/3, 2/3], then

I2(u) = 1 + vk−1(u)− vk−1(2/3) ≤ 1 + vk−1(0)− vk−1(2/3) ≤ 2 and

(ii) if u ∈ [2/3, 1], then

I2(u) = max {vk−1(0)− vk−1(2/3), 1 + vk−1(u)− vk−1(2/3)} ≤ 1.

Now we just calculate

vk(0)− vk(2/3) =

∫ 1

1/3

I2(u) du ≤
∫ 2/3

1/3

2 du+

∫ 1

2/3

1 du = 1,

and thus we complete the proof of (7). �

From Lemma 3, we know that a threshold function gk has many fixed points;
in particular, gk(y) = y if y ∈ [1/3, 1]. Figure 1 further suggests that much of the
geometry of gk is governed by its minimal fixed point:

(14) ξk ≡ inf{y : gk(y) = y}.
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The value ξk also has a useful policy interpretation. If the value y of the last
observation selected is bigger than ξk, then the decision maker follows a greedy
policy; he accepts any feasible arriving observation. On the other hand, if y < ξk,
the decision maker acts conservatively; his choices are governed by the value of the
threshold gk(y). Finally, if y = ξk, the greedy policy and the optimal policy agree.
This interpretation of ξk is formalized in the next lemma, where we also prove that
the sequence {ξk : k = 1, 2, . . .} is non-decreasing.

Lemma 4 (Characterization of the Minimal Fixed Point). For k ≥ 3, the minimal
fixed point ξk ≡ inf{y : gk(y) = y} is the unique solution to the equation

vk−1(y)− vk−1(1− y) = 1.

Moreover, the minimal fixed points form a non-decreasing sequence, so we have

(15) ξk ≤ ξk+1 for all k ≥ 1.

Proof. From the variational characterization of gk(·), we have

gk(y) = inf{x ∈ [y, 1] : vk−1(y) ≤ 1 + vk−1(1− x)},

so if we set δk(y) ≡ vk−1(y)− vk−1(1− y), then we have

(16) gk(y) = y if and only if δk(y) ≤ 1.

The Bellman equation (3) for vk(·) and Lemma 2 tell us that the map y 7→ vk−1(y)
is continuous and strictly decreasing with v1(y) = 1− y and v2(y) = (3/2)(1− y2).
Then, the function δk is continuous and strictly decreasing, and for k ≥ 3 we have
δk(0) = vk−1(0) ≥ v2(0) = 3/2 > 1, and δk(1) = −vk−1(0) < 0, so, there is a unique
value y∗ such that

δk(y∗) ≡ vk−1(y∗)− vk−1(1− y∗) = 1.

Since the map y 7→ δk(y) is strictly decreasing, we can also write y∗ as

y∗ = inf{y : vk−1(y)− vk−1(1− y) ≤ 1} = inf{y : gk(y) = y} = ξk,

where the second equality follows from (16) and the third equality comes from the
definition of ξk.

To prove the monotonicity property ξk ≤ ξk+1 for all k ≥ 1, we first note that
since v0(y) ≡ 0 and v1(y) ≡ 1− y, we have that ξ1 = ξ2 = 0. Also, by Lemma 3 we
have for k ≥ 3 that there is always a value 0 ≤ y ≤ 1/3 such that gk(y) = y so

ξk = inf{y ∈ [0, 1/3] : gk(y) = y}
= inf{y ∈ [0, 1/3] : δk(y) ≡ vk−1(y)− vk−1(1− y) ≤ 1}
≤ inf{y ∈ [0, 1/3] : δk+1(y) ≡ vk(y)− vk(1− y) ≤ 1}(17)

= inf{y ∈ [0, 1/3] : gk+1(y) = y} = ξk+1,

where the one inequality (17) follows from the diminishing return property (6). �

4. A Second Property of Diminishing Returns

The value functions have a second property of diminishing returns that provides
some crucial help. Specifically, we need it to show that the threshold functions
gk(·) increase with 1 ≤ k <∞. This monotonicity moves us a long way toward an
exhaustive understanding of the asymptotic behavior of the threshold functions.
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Proposition 5 (Second Property of Diminishing Returns). For all k ≥ 3, the value
functions defined by the Bellman recursion (3) satisfy the bound

(18) vk−1(y)− vk−1(1− x) ≤ vk(y)− vk(1− x) for all y ≤ ξk and x ∈ [y, gk(y)].

Proof. We again use induction to exploit the Bellman equation, and this time the
sequence of hypotheses is given by

Hk : vk−1(y)− vk−1(1− x) ≤ vk(y)− vk(1− x), for all y ≤ ξk and x ∈ [y, gk(y)].

We first prove H3, which we then use as the base case for our induction. We
recall that v1(y) = 1 − y and, if we use the Bellman recursion (3), we obtain that

v2(y) = (3/2)(1 − y2). In turn, this implies g3(y) = max{1 −
√

2/3 + y2, y} and
ξ3 = 1/6. To calculate v3(y) we apply the Bellman recursion one more time, and
we obtain a messier but still tractable formula:

v3(y) =

{
(3/2)(1− y2) + 3−3/2(2 + 3y2)3/2 if y ≤ 1/6

(1/2)(1− y)(4 + 5y + 2y2) if y ≥ 1/6.

Thus, for y ≤ ξ3 = 1/6, we need to show

v2(y)− v2(1− x) ≤ v3(y)− v3(1− x) for all x ∈ [y, g3(y)],

where g3(y) = 1 −
√

2/3 + y2. From our explicit formulas for v2(·) and v3(·), we
have

v3(1− x)− v2(1− x) = (5/2)x− 3x2 + x3,

and

v3(y)− v2(y) = 3−3/2(2 + 3y2)3/2 ≥ (2/3)
3/2 ≈ 0.5443.

Calculus shows that (5/2)x− 3x2 + x3 increases on 0 ≤ x ≤ 1−
√

2/3 and attains

an endpoint maximum of (1/18)
(
9−
√

6
)
≈ 0.3640. Thus, we find

v3(1− x)− v2(1− x) ≤ (1/18)(9−
√

6) < (2/3)
3/2 ≤ v3(y)− v2(y)

for all y ≤ 1/6 and y ≤ x ≤ 1−
√

2/3 + y2, completing the proof of H3.
We now suppose that Hk holds, and we seek to show Hk+1. First, from the

variational characterization of gk(·) and the definition of ξk, recall that

1 ≤ vk−1(y)− vk−1(1− x) for y ≤ ξk and x ∈ [y, gk(y)],

which, together with the induction assumption Hk, implies

(19) 1 ≤ vk−1(y)−vk−1(1−x) ≤ vk(y)−vk(1−x) for y ≤ ξk and x ∈ [y, gk(y)].

The second inequality in (19) and the variational characterization (4) give us

gk(y) ≤ gk+1(y) for all y ≤ ξk.

Moreover, if x ∈ [gk(y), gk+1(y)] the variational characterization of gk+1(·) also
gives

vk−1(y)−vk−1(1−x) ≤ 1 ≤ vk(y)−vk(1−x) for y ≤ ξk and x ∈ [gk(y), gk+1(y)],

which combines with (19) to give the crucial inequality

(20) vk−1(y)− vk−1(1− x) ≤ vk(y)− vk(1− x) for y ≤ ξk and x ∈ [y, gk+1(y)].
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From an application of the Bellman recursion (3) for y ≤ ξk and x ∈ [y, gk+1(y)],
we obtain

vk(y)− vk(1− x) = y (vk−1(y)− vk−1(1− x))

+

∫ 1−x

y

max {vk−1(y)− vk−1(1− x), 1 + vk−1(1− u)− vk−1(1− x)} du.(21)

If we now change variable in the last integral by replacing u with 1 − u, then the
range of integration changes to [x, 1− y] and we can rewrite (21) as

vk(y)− vk(1− x) = y (vk−1(y)− vk−1(1− x))

+

∫ 1−x

x

max {vk−1(y)− vk−1(1− x), 1 + vk−1(u)− vk−1(1− x)} du

+

∫ 1−y

1−x
max {vk−1(y)− vk−1(1− x), 1 + vk−1(u)− vk−1(1− x)} du.

In this last equation, we see that we can use our crucial inequality (20) to bound
the first addend and the left maximand of the other two addends. Moreover, since
x ≤ gk+1(y) ≤ 1/3, we can appeal to the diminishing return property (6) to bound
the right maximand of the second addend. In doing so, we obtain

vk(y)− vk(1− x) ≤ y (vk(y)− vk(1− x))(22)

+

∫ 1−x

x

max {vk(y)− vk(1− x), 1 + vk(u)− vk(1− x)} du

+

∫ 1−y

1−x
max {vk(y)− vk(1− x), 1 + vk−1(u)− vk−1(1− x)} du.

We now observe that the monotonicity property of the map u 7→ vk−1(u) for u ∈
[1− x, 1− y] and the variational characterization of gk+1(·) combine to give

1 + vk−1(u)− vk−1(1− x) ≤ 1 ≤ vk(y)− vk(1− x)

for all y ≤ ξk and x ∈ [y, gk+1(y)]. Hence, the third integrand in (22) satisfies the
equality

max {vk(y)− vk(1− x), 1 + vk−1(u)− vk−1(1− x)} = vk(y)− vk(1− x),

and an analogous monotonicity argument for u ∈ [1− x, 1− y] also yields

max {vk(y)− vk(1− x), 1 + vk(u)− vk(1− x)} = vk(y)− vk(1− x).

When we use the last two observations in (22) we obtain that

vk(y)− vk(1− x) ≤ vk+1(y)− vk+1(1− x), for all y ≤ ξk and x ∈ [y, gk+1(y)].

We now conclude our argument by considering values y ∈ [ξk, ξk+1]. From the
variational characterization of gk+1(·) and the definition of ξk, we obtain

vk−1(y)−vk−1(1−x) ≤ 1 ≤ vk(y)−vk(1−x) for y ∈ [ξk, ξk+1] and x ∈ [y, gk+1(y)]

which can be used instead of (20) to construct an argument similar to the earlier
one and conclude that

vk(y)− vk(1− x) ≤ vk+1(y)− vk+1(1− x), for y ∈ [ξk, ξk+1] and x ∈ [y, gk+1(y)],

just as needed to complete the proof of (18). �
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The usefulness of the property of diminishing returns in Proposition 5 shows
itself simply — but clearly — in the following corollary.

Corollary 6 (Monotonicity of Optimal Thresholds). For all y ∈ [0, 1], the threshold
functions satisfy

(23) gk(y) ≤ gk+1(y) for all k ≥ 1, and

(24) 1/6 ≤ gk(y) for all k ≥ 3.

Proof. For k = 1, 2, we have v0(y) = 0 and v1(y) = 1− y, so that

g1(y) = g2(y) = y.

For k = 3, we have already noticed in the course of proving Proposition 5 that we
have g3(y) = max{1 −

√
2/3 + y2 , y}, so, in particular, g3(y) ≥ 1/6 for y ∈ [0, 1].

Finally, for k > 3, the bound (18) and the variational characterization (4) of the
threshold function give us (23), and this confirms the lower bound (24). �

We now pursue two further suggestions from Figure 1. Specifically, we show
that the limit function g∞ has exactly the piecewise linear shape that the figure
suggests, and we also show that the convergence to g∞ is uniform. The proof of
these facts requires some additional regularity properties that are discussed in the
next section.

5. Regularity of the Value and Threshold Functions

The minimal fixed points give us a powerful guide to the geometry of the value
function and its derivatives. The connection begins with the Bellman recursion (3)
and the variational characterization (4) which together give the identity

vk(y) = gk(y)vk−1(y) +

∫ 1

gk(y)

{1 + vk−1(1− x)} dx.

If we now differentiate both sides with respect to y, we obtain the recursion for the
first derivative:

v′k(y) = g′k(y)vk−1(y) + gk(y)v′k−1(y)− g′k(y) {1 + vk−1(1− gk(y))} .

The definition of the minimal fixed point (14) and the variational characterization
(4) then give us

(25) vk−1(y) = 1 + vk−1(1− gk(y)) if y ≤ ξk,

so our recursion for v′k(·) can be written more informatively as

(26) v′k(y) =

{
gk(y)v′k−1(y) if y ≤ ξk
vk−1(y)− 1− vk−1(1− y) + yv′k−1(y) if y ≥ ξk.

These relations underscore the importance of the minimal fixed points to the ge-
ometry of the value function, and they also lead to useful regularity properties.

Lemma 7 (Monotonicity Properties of the Derivatives). For all k ≥ 1, we have

−1 ≤ v′k(y) ≤ v′k+1(y) ≤ 0 for y ∈ [0, 1/3] and(27)

v′k+1(y) ≤ v′k(y) ≤ −1 for y ∈ [1/2, 1].(28)
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Proof. We already know from Lemma 2 that y 7→ vk(y) is strictly decreasing, so
v′k(y) is non-positive on [0, 1]. Since 0 ≤ gk(y) ≤ 1, the top line of (26) tells us that

(29) v′k−1(y) ≤ gk(y)v′k−1(y) = v′k(y) for y ≤ ξk.
To cover the rest of the range in (27), we use induction on the sequence of hypotheses

Hk : v′k−1(y) ≤ v′k(y), for all y ∈ [ξk, 1/3] and 2 ≤ k <∞.

For the base case H2, we have ξ2 = 0, v1(y) = 1− y, and v2(y) = (3/2)(1− y2). So

v′1(y) = −1 ≤ −3y = v′2(y) if and only if y ≤ 1/3,

just as needed. Now taking Hk as our induction assumption, we seek to prove
Hk+1.

First, for y ∈ [ξk, 1/3], the second line of (26) gives us v′k(·). By the diminishing
return property (6), the monotonicity ξk ≤ ξk+1, and the induction assumption
Hk, we see for y ∈ [ξk+1, 1/3] that

v′k(y) = vk−1(y)− 1− vk−1(1− y) + yv′k−1(y)

≤ vk(y)− 1− vk(1− y) + yv′k(y) = v′k+1(y),

completing the proof Hk+1. To complete the proof of (27), one just needs to note
that the lower bound −1 ≤ v′k(y) now follows from v′1(y) = −1 together with (29)
and Hk.

To prove (28), we again use induction, but this time the sequence of hypothesis
is given by

Hk : v′k(y) ≤ v′k−1(y) for y ∈ [1/2, 1], and 2 ≤ k <∞.

As before, v1(y) = 1− y and v2(y) = (3/2)(1− y2) so v′1(y) = −1 and v′2(y) = −3y.
For y ≥ 1/2, we then have

v′2(y) ≤ −3/2 ≤ −1 = v′1(y),

proving H2. As tradition demands, we again take Hk as our induction assumption,
and we seek to prove Hk+1.

Since y ∈ [1/2, 1], we have 1 − y ≤ 1/2 ≤ y, so the diminishing return property
(6) gives us

(30) vk−1(1− y)− vk−1(y) ≤ vk(1− y)− vk(y).

Next, recall the identity of the bottom line of (26), but, as you do so, replace k
by k + 1. We can then directly apply (30) and Hk to get

v′k+1(y) = vk(y)− 1− vk(1− y) + yv′k(y)

≤ vk−1(y)− 1− vk−1(1− y) + yv′k−1(y) = v′k(y).

This inequality completes the proof of Hk+1 and confirms the lower bound of (28).
For the upper bound of (28), v′k(y) ≤ −1 on [1/2, 1], we just need to note that it
follows from the fact v′1(y) = −1 and the validity of Hk for all k ≥ 1. �

The smoothness of the value functions converts easily into a very useful Lipschitz
equi-continuity property of the threshold functions.

Lemma 8 (Lipschitz Equi-Continuity of Threshold Functions). For all k ≥ 1, we
have

(31) |gk(y)− gk(z)| ≤ |y − z| for all y, z ∈ [0, 1].
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Proof. We first consider y ∈ [0, ξk]. In this case, we have that identity (25) holds,
so, by its differentiation, we obtain

(32) g′k(y) = −
|v′k−1(y)|

|v′k−1(1− gk(y))|
≤ 0 for all y ∈ [0, ξk].

Moreover, since y ∈ [0, ξk] we know that y ≤ 1/3 so by (9) we have gk(y) ≤ 1/3,
and hence by (28) we obtain 1 ≤ |v′k−1(1− gk(y))|. Consequently, (32) gives us

(33) |g′k(y)| ≤ |v′k−1(y)| for all y ∈ [0, ξk],

and (27) implies |v′k(y)| ≤ 1. Thus, at last, we have the uniform bound

(34) |g′k(y)| ≤ 1 for all y ∈ [0, ξk],

which confirms the inequality (31) for y, z ∈ [0, ξk]. Also, for y, z ∈ [ξk, 1] we have
that (31) trivially holds, so if we choose y < ξk < z, the triangle inequality gives us

|gk(y)− gk(z)| ≤ |gk(y)− gk(ξk)|+ |gk(ξk)− gk(z)| ≤ |y − z|,

confirming that (31) holds in general. �

6. The Optimal Policy at Infinity

The minimal fixed points ξk, 1 ≤ k < ∞, are non-decreasing and bounded by
1/3, so they have a limit

(35) lim
k→∞

ξk
def
= ξ ≤ 1/3.

The threshold values gk(y), 1 ≤ k < ∞ are also non-decreasing and bounded, so
they have a pointwise limit g∞(y). The next lemma characterizes g∞ and gives a
crucial bound on the uniform rate of convergence to g∞

Proposition 9 (Characterization of Limiting Threshold). For the limit threshold
g∞, we have the formula

g∞(y) = max{ξ, y} for all y ∈ [0, 1].

Moreover, we have an exact measure of the uniform rate of convergence

(36) max
0≤y≤1

|gk(y)− g∞(y)| = ξ − ξk for all k ≥ 1.

Proof. We first fix m and y ∈ [0, ξm]. We then recall that y ≤ ξm ≤ 1/3 implies
that gj(y) ≤ 1/3 for all j ≥ 1. Now, given k ≥ m, we can repeatedly apply the top
line of (26) to obtain

(37) |v′k(y)| = |v′m−1(y)|

 k∏
j=m

gj(y)

 ≤ 3m−k|v′m−1(y)| for y ∈ [0, ξm],

and by (27) we have |v′m−1(y)| ≤ 1 for all y ∈ [0, 1/3], so (33) gives us more simply

(38) max
0≤y≤ξm

|g′k(y)| ≤ 3m−k for all k ≥ m.

Now, for any y, z in [0, ξm] we have |gk(y)−gk(z)| ≤ 3m−k|y−z| so, letting k →∞,
we obtain that g∞ is constant on [0, ξm] for each m ≥ 1. Since ξm ↑ ξ, there is a
constant c such that g∞(y) = c for all y ∈ [0, ξ).



15

As Figure 1 suggests, c = ξ and this is easy to confirm. Again we fix m, take
k ≥ m, and note that by the triangle inequality and the Lipschitz bound (31) on
gk we have

|g∞(ξm)− ξk| ≤ |g∞(ξm)− gk(ξm)|+ |gk(ξm)− gk(ξk)|
≤ |g∞(ξm)− gk(ξm)|+ |ξm − ξk|.

When k →∞, gk(ξm) converges to g∞(ξm) and ξk to ξ so we have

|g∞(ξm)− ξ| ≤ |ξm − ξ|.

Since g∞(ξm) = c does not depend on m and since |ξm − ξ| → 0 as m → ∞, we
see that g∞(ξm) = ξ for all m ≥ 1 and consequently g∞(y) = ξ for all y ∈ [0, ξ].
Finally, for all m ≥ 1, we also have gm(y) = y for each y ∈ [ξ, 1], so the proof of
the formula for g∞ is complete.

To prove (36), we first note

g∞(y)− gk(y) =


ξ − gk(y) y ∈ [0, ξk],

ξ − y y ∈ [ξk, ξ],

0 y ∈ [ξ, 1].

By (32), gk(y) is strictly decreasing on [0, ξk], so the gap g∞(y)−gk(y) is maximized
when y = ξk. This gap decreases linearly over the interval [ξk, ξ] and equals 0 at ξ;
consequently the maximal gap is exactly equal to ξ − ξk. �

7. The Central Limit Theorem for Aon(π∞) Is Easy

We now recall that ξ denotes the limit (35) of the minimal fixed points, and we
define a selection policy π∞ for all X1, X2, . . . by taking the (time independent)
threshold function to be

g∞(y) = max{ξ, y} ≡ ξ ∨ y.

If Aon(π∞) counts the number of selections made by policy π∞ up to and including
time n, then we have the explicit formula

(39) Aon(π∞) =

n∑
i=1

1
(
Xi ≥ ξ ∨ Y ′i−1

)
,

where one sets Y ′0 = 0, and one defines Y ′i for i ≥ 1 recursively by

(40) Y ′i =

{
Y ′i−1 if Xi < ξ ∨ Y ′i−1

1−Xi if Xi ≥ ξ ∨ Y ′i−1.

Given the facts that have been accumulated, it turns out to be a reasonably easy
task to prove a central limit theorem for Aon(π∞). One just needs to make the right
connection to the known central limit theorems for Markov additive processes.

To make this connection explicit, we first recall that, at any given time 1 ≤ i ≤ n,
the decision maker knows the state of the selection process Y ′i−1 prior to time i,
and the decision maker also knows the value Xi of the observation currently under
consideration for selection. The bi-variate random sequence

{Zi = (Xi, Y
′
i−1) : i = 1, 2, 3, . . .}
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then represents the state of knowledge immediately prior to the decision to accept
or to reject Xi, and this sequence may be viewed as a Markov chain on the two-
dimensional state space S ≡ [0, 1]×[0, 1−ξ]. The Markov chain {Zi : i = 1, 2, 3, . . .}
evolves over time according to a point-to-set transition kernel that specifies the
probability of moving from an arbitrary state (x, y) ∈ S into a Borel set C ⊆ S in
one unit of time. If we denote the transition kernel by K((x, y), C), then we have
the explicit formula

K((x, y), C) = P
(
(Xi+1, Y

′
i ) ∈ C |Xi = x, Y ′i−1 = y

)
=

∫ 1

0

[
1{(u, 1− x) ∈ C}1(x ≥ ξ ∨ y) + 1{(u, y) ∈ C}1(x < ξ ∨ y)

]
du,

where the first summand of the integrand governs the transition when Xi is chosen
and the second summand governs the transition when Xi is rejected. Given this
explicit formula, it is straightforward (but admittedly a little tedious) to check
that a stationary probability measure for the kernel K is given by the uniform
distribution γ on S = [0, 1] × [0, 1 − ξ]. We will confirm shortly that γ is also the
unique stationary distribution.

To more deeply understand the chain Zi, i = 1, 2, ..., we now consider the double
chain (Zi, Z̄i), i = 1, 2, . . ., where Z1 = (x, y) is an arbitrary point of S and Z̄1 has
the uniform distribution on S. For i = 1, 2, . . ., the chains {Zi = (Xi, Y

′
i−1)} and

{Z̄i = (Xi, Ȳ
′
i−1)} share the same independent uniform sequence Xi, i = 1, 2, . . .,

as their first coordinate, while their second coordinates Y ′i−1 and Ȳ ′i−1 are both
determined by the recursion (40). Typically these coordinates differ because of
their differing initial values, but we will check that they do not differ for long.

To make this precise, we set ν = min{i ≥ 1 : Xi ≥ 1 − ξ}, and we show that ν
is a coupling time for (Zi, Z̄i) in the sense that

Zi = Z̄i for all i > ν.

Since Y ′i and Ȳ ′i both satisfy the recursion (40), we have

Y ′i ≤ 1− ξ and Ȳ ′i ≤ 1− ξ for all i = 1, 2, . . . ,

so by the definition of ν, we must have

max{ξ ∨ Y ′ν−1, ξ ∨ Ȳ ′ν−1} ≤ Xν .

The recursion (40) then gives us

Y ′ν = Ȳ ′ν = 1−Xν and Zν = Z̄ν .

By the construction of the double process (Zi, Z̄i), if one has Zi(ω) = Z̄i(ω) for
some i = i(ω), then Zj(ω) = Z̄j(ω) for all j ≥ i(ω), so ν is indeed a coupling time
for (Zi, Z̄i).

The coupling inequality (see, e.g., Lindvall, 2002, p. 12) then tells us that for all
Borel sets C ⊆ S, we have the total variation bound

(41) ‖ K`((x, y), C)− γ(C) ‖TV≤ P(ν > `) = (1− ξ)`,

where γ is the uniform stationary distribution on S. The bound (41) has several
useful implications. First, it implies that γ is the unique stationary distribution
for the chain with kernel K. It also implies (see, e.g., Meyn and Tweedie, 2009,
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Theorem 16.0.1) that the chain {Zi : i = 1, 2, . . .} is uniformly ergodic; more
specifically, it is a φ–mixing chain with

φ(`) ≤ 2ρ` and ρ = 1− ξ.
If we set z = (x, y) and f(z) = 1(x ≥ y ∨ ξ), then the representation (39) can

also be written in terms the chain {Zi : i = 1, 2, . . .} as

Aon(π∞) =

n∑
i=1

f(Zi),

and this makes it explicit that Aon(π∞) is a Markov additive process. Our coupling
and the uniform ergodicity of {Zi : i = 1, 2, . . .} imply (see, e.g., Meyn and Tweedie,
2009, Theorem 17.5.3 and Lemma 17.5.1) that there is a constant σ2 ≥ 0 such that

(42) lim
n→∞

n−1 Var (Aon(π∞)) = lim
n→∞

n−1 Varγ (Aon(π∞)) = σ2,

where the first variance refers to the chain started at Z1 = (X1, 0) and the sec-
ond variance refers to the chain started at Z1 with the stationary distribution γ
(i.e. the uniform distribution on S). The general theory also provides the series
representation for the limit (42):

σ2 = Varγ
[
1
(
X1 ≥

{
ξ ∨ Y ′0

})]
(43)

+ 2

∞∑
i=2

Covγ
[
1
(
X1 ≥

{
ξ ∨ Y ′0

})
,1
(
Xi ≥

{
ξ ∨ Y ′i−1

})]
,

where the subscript γ again refers to the situation in which the chain starts with
Z1 having the stationary distribution.

The general representations (42) and (43) give us the existence of σ2 but they
do not automatically entail σ2 > 0, so to prove a central limit theorem for Aon(π∞)
with the classical normalization, one must independently establish that σ2 > 0. To
show this, we first need an elementary lemma that provides a variance analog to
the information processing inequality for entropy.

Lemma 10 (Information Processing Lemma). If a random variable X has values
in {1, 2, . . .} and P (X = 1) = p, then p(1− p) ≤ Var(X).

Proof. Define a function f on the natural numbers N by setting f(1) = 0 and
f(k) = 1 for k > 1. We then have |f(x)− f(y)| ≤ |x− y| for all x, y ∈ N. If we take
Y to be an independent copy of X, then we have

2p(1− p) = E[(f(X)− f(Y ))2] ≤ E[(X − Y )2] = 2 Var(X).

�

Now we can address the main lemma of this section.

Lemma 11. There are constants α > 0 and N∗ <∞ such that

αn ≤ Var (Aon(π∞)) for all n ≥ N∗.

Proof. We first set ν0 ≡ 0 and then define the stopping times

νt = inf{i > νt−1 : Xi ≥ 1− ξ}, t = 1, 2, . . . .

We also set T (n) = inf{t : νt ≥ n}, and note that T (n) is a stopping time with
respect to the increasing sequence of σ-fields

Gt = σ{ν1, ν2, . . . , νt} for all t ≥ 1.
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Next, we set

(44) Ut =

νt∑
i=νt−1+1

1
(
Xi ≥ ξ ∨ Y ′i−1

)
for 1 ≤ t ≤ T (n) and set

V =

νT (n)∑
i=n+1

1
(
Xi ≥ ξ ∨ Y ′i−1

)
,

so we have the representation

(45) Aon(π∞) = AoνT (n)
(π∞)− V =

T (n)∑
t=1

Ut − V.

Here, the random variables Ut, t = 1, 2, . . ., are independent and identically dis-
tributed. We also have V ≤ νT (n) − n and νT (n) = inf{i ≥ n : Xi ≥ 1− ξ}, so the
variance of V is bounded by a constant that depends only on ξ. The existence of
the limit (42) and the Cauchy-Schwarz inequality then give us

(46) Var (Aon(π∞)) = Var
(
AoνT (n)

(π∞)
)

+O(
√
n) as n→∞,

so to prove the lemma it suffices to obtain a linear lower bound for Var(AoνT (n)
(π∞)).

By the definition of νT (n) and Ut, t = 1, 2, . . ., we have

AoνT (n)
(π∞) =

T (n)∑
t=1

Ut

so, by the conditional variance formula, the independence of the Ut’s, and the fact
that T (n) is GT (n) measurable, we have the bound

(47) Var
( T (n)∑
t=1

Ut
)
≥ E

[
Var

( T (n)∑
t=1

Ut | GT (n)

)]
= E

[ T (n)∑
t=1

Var
(
Ut | GT (n)

)]
.

We now note from the definition (44) that Ut takes values in {1, 2, . . . , νt − νt−1}.
Thus, if p is the probability that no Xi is selected for i ∈ {νt−1 + 1, . . . , νt − 1},
then setting a = (1− ξ)−1ξ, we have

p = P(Ut = 1 | GT (n)) = P
(
Xi < ξ ∀ νt−1 + 1 ≤ i ≤ νt − 1 | GT (n)

)
= aνt−νt−1−1.

Now, by applying Lemma 10 to the conditional expectation, we have

Var
(
Ut | GT (n)

)
≥ aνt−νt−1−1

(
1− aνt−νt−1−1

)
,

so from (47), we have

Var
( T (n)∑
t=1

Ut
)
≥ E

[ T (n)∑
t=1

aνt−νt−1−1
(
1− aνt−νt−1−1

) ]
.

The summands are independent and identically distributed and T (n) is a stopping
time with respect to the increasing sequence of σ-fields Gt = σ{ν1, ν2, . . . , νt}, t ≥ 1,
so by Wald’s identity, we have

(48) Var
( T (n)∑
t=1

Ut
)
≥ E [T (n)]E

[
aν1−1

(
1− aν1−1

)]
.
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For the stopping time T (n), we have the alternative representation

T (n) = 1 +

n−1∑
i=1

1 (Xi ≥ 1− ξ) ,

so we have E [T (n)] = ξ n + O(1). Since ν1 has the geometric distribution with
success probability ξ, we also have E

[
aν1−1

(
1− aν1−1

)]
> 0, so by (46) and (48)

the proof of the lemma is complete. �

All of the pieces are now in place. By the central limit theorem for functions
of uniformly ergodic Markov chains (Meyn and Tweedie, 2009, Theorem 17.5.3; or
Jones, 2004, Corollary 5), we get our central limit theorem for Aon(π∞).

Proposition 12 (Central Limit Theorem for Aon(π∞)). As n → ∞, we have the
limit

Aon(π∞)− µn√
n

=⇒ N(0, σ2),

where µ = Eγ [1 (X1 ≥ {ξ ∨ Y ′0})], γ is the stationary distribution for the Markov
chain {Zi : i = 1, 2, . . .}, and σ2 is the constant defined by either the limits (42) or
the sum (43).

By appealing to the known relation (1) that E[Aon(π∗n)] = (2 −
√

2)n + O(1),

one can show with a bit of calculation that here we have µ = 2 −
√

2. Since this
identification is implicit in the calculations of the next section, there is no reason
to belabor it here.

8. Aon(π∗n) and Aon(π∞) are Close in L2

Proposition 12 tells us that the easy sum Aon(π∞) obeys a central limit theorem,
and now the task is to show that the harder sum Aon(π∗n) follows the same law. The
essence is to show that, after centering, the random variables Aon(π∗n) and Aon(π∞)
are close in L2 in the sense that ‖ Aon(π∗n) − Aon(π∞) − E [Aon(π∗n)−Aon(π∞)] ‖2=
o(
√
n) as n→∞. For technical convenience, we work with the random variable

∆n
def
= Aon−2(π∗n)− E

[
Aon−2(π∗n)

]
−Aon−2(π∞) + E

[
Aon−2(π∞)

]
.

The essential estimate of our development is given by the next lemma. In one way
or another, the proof of the lemma calls on all of the machinery that has been
developed.

Lemma 13 (L2-Estimate). There is a constant C such that, for all n ≥ 3, we have

‖ ∆n ‖22≤ C
n∑
k=3

(ξ − ξk);

so, in particular, we have the asymptotic estimate

‖ ∆n ‖2= o(
√
n) as n→∞.

Proof. We first note that the threshold function lower bound (24) implies that
Yi ≤ 5/6 for all 1 ≤ i ≤ n − 2. Consequently, if Xi ≥ 5/6, then Xi is selected
by both of the policies π∗n and π∞. At such a time i, we have a kind of “renewal
event,” though we still have to be attentive to the non-homogeneity of the selection
process driven by π∗n.
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To formalize this notion, we set τ0 = 0 and, for m ≥ 1, we define stopping times

τm = inf {i > τm−1 : Xi ≥ 5/6} and τ ′m = min{τm, n− 2};
so τm is the time at which the mth “renewal” is observed. For each 1 ≤ j ≤ n− 2,
we then set

N(j) =

j∑
i=1

1(Xi ≥ 5/6),

so the time τN(j) is the time of the last renewal up to or equal to j, the time τN(j)+1

is the time of the first renewal strictly after j, and we have the inclusion

τN(j) ≤ j < τN(j)+1.

For 1 ≤ j ≤ n− 2, we then consider the martingale differences defined by

dj = E
[
Aon−2(π∗n)−Aon−2(π∞)|Fj

]
− E

[
Aon−2(π∗n)−Aon−2(π∞)|Fj−1

]
,

where F0 is the trivial σ-field and Fj = σ{X1, X2, . . . , Xj} for 1 ≤ j ≤ n. Using
the counting variables

ηi ≡ 1 (Xi ≥ gn−i+1(Yi−1)) and η′i ≡ 1
(
Xi ≥ ξ ∨ Y ′i−1

)
,

we have the tautology

dj = E[

τ ′N(j)+1∑
i=j

(ηi − η′i) | Fj ]− E[

τ ′N(j)+1∑
i=j

(ηi − η′i) | Fj−1](49)

+ E[

n−2∑
i=τ ′

N(j)+1
+1

(ηi − η′i) | Fj ]− E[

n−2∑
i=τ ′

N(j)+1
+1

(ηi − η′i) | Fj−1],

and this becomes more interesting after one checks that the last two terms cancel.
To confirm the cancelation, we first recall that, for τN(j)+1 < n − 2, the value

XτN(j)+1
≥ 5/6 is selected as a member of the alternating subsequence under both

policies π∗n and π∞, so we also have

YτN(j)+1
= Y ′τN(j)+1

= 1−XτN(j)+1
.

Any difference in the selections that are made by the policies π∗n and π∞ after time
τN(j)+1 is measurable with respect to the σ-field

Tj = σ{XτN(j)+1
, XτN(j)+1+1, . . . , Xn−2}.

Trivially, we have j < τN(j)+1, so Fj is independent of Tj , and the last two addends
in (49) do cancel as claimed.

We can therefore write

(50) dj = E[

τ ′N(j)+1∑
i=j

(ηi − η′i) | Fj ]− E[

τ ′N(j)+1∑
i=j

(ηi − η′i) | Fj−1] = Wj − Ij−1(Wj),

where Wj denotes the first summand and Ij−1 is the projection onto L2(Fj−1).
Denoting the identity by I, we have that I − Ij−1 is an L2 contraction, so

(51) E
[
d2
j

]
≤ E

[
W 2
j

]
= E

[( τ ′N(j)+1∑
i=j

(ηi − η′i)
)2]

,

and the remaining task is to estimate the last right-hand side.
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For 1 ≤ j ≤ n−2, we let L(j) denote time from j since the last renewal preceding
j; in other words, L(j) is the age at time j. Analogously, we let M(j) denote the
time from j until the time of the next renewal or until time n − 2; so M(j) is the
residual life at time j with truncation at time n− 2. We then have

L(j) = j − τN(j) and M(j) = τ ′N(j)+1 − j.

Our interarrival times are geometric, so L(j) and M(j) are independent, and for
p = 1/6 we have

P(L(j) = `) =

{
p(1− p)` if 0 ≤ ` < j

(1− p)j if ` = j,

and

P(M(j) = m) =

{
p(1− p)m−1 if 1 ≤ m < n− 2− j
(1− p)n−3−j if m = n− 2− j.

We now introduce the disagreement set

Dj [`,m] = {ω : ∃ i ∈ {j − `+ 1, . . . , j, . . . , j +m} : Xi(ω) ∈ [ξn−i+1, ξ]} ;

this is precisely the set of ω for which, if Yj−` = Y ′j−`, then the policies π∞ and π∗n
differ in at least one selection during the time interval {j − `+ 1, . . . , j +m}, while
on the complementary set Dc

j [`,m] the selections all agree. Thus, by the crudest
possible bound, we have

|
τ ′N(j)+1∑
i=j

(ηi − η′i)| ≤ (L(j) +M(j))1 (Dj [L(j),M(j)]) ,

and when we square both sides and rearrange, we obtain( τ ′N(j)+1∑
i=j

(ηi − η′i)
)2

≤ (L(j) +M(j))2
1 (Dj [L(j),M(j)])

=

n−2−j∑
m=1

j∑
`=0

(`+m)2
1 (Dj [`,m])1(L(j) = `)1(M(j) = m).(52)

For each 1 ≤ j ≤ n− 2, we now set

Rj [`,m] = {ω : Xi(ω) < 5/6 for all i ∈ {j − `+ 1, . . . , j +m}} ,
so, Rj [`,m] is the event that no renewal takes place in [j−`+1, j] or in [j+1, j+m].
By the definition of L(j) and M(j), we then have

1(L(j) = `) = 1 (Rj [`, 0])1 (Xj−` ≥ 5/6 or ` = j) , for 0 ≤ ` ≤ j,
and

1(M(j) = m) ≤ 1 (Rj [0,m− 1]) , for 1 ≤ m ≤ n− 2− j.
Thus, if we define 1 (Rj [0, 0]) ≡ 1, then we have the composite bound

(53) 1(L(j) = `)1(M(j) = m) ≤ 1 (Rj [`,m− 1])1 (Xj−` ≥ 5/6 or ` = j) ,

so by inserting (53) in (52) and recalling (51), we find
(54)

E
[
d2
j

]
≤
n−2−j∑
m=1

j∑
`=0

(`+m)2E [1(Dj [`,m])1(Rj [`,m−1])1(Xj−` ≥ 5/6 or `=j)] .
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The expected value on the right-hand side of (54) accounts for the probability that
policies π∗n and π∞ differ when one renewal has occurred at time j − `, and no
renewal will occur until time j + m. For this to happen, we need at least one
i ∈ {j − `+ 1, . . . , j +m} such that Xi ∈ [ξn−i+1, ξ]. Since the Xi’s are uniformly
distributed on [0, 1], the probability that Xi ∈ [ξn−i+1, ξ] equals ξ − ξn−i+1 and,
by the monotonicity of the minimal fixed points in Lemma 4, we have the upper
bound ξ− ξn−i+1 ≤ ξ− ξn−(j+m)+1 for all i ∈ {j− `+ 1, . . . , j+m}. Then, we can
estimate the right-hand side of (54) with Boole’s inequality, and obtain that there
is a constant C such that

E [1(Dj [`,m])1(Rj [`,m−1])1(Xj−` ≥ 5/6 or `=j)]

≤ C(m− `)
(
ξ − ξn−(j+m)+1

)
(1− p)`+m−1.

At this point, C = 6/5 would suffice, but subsequently C denotes a Hardy-style
constant that may change from line to line. If we use this last bound in (54), we
obtain

E
[
d2
j

]
≤ C

n−2−j∑
m=1

j∑
`=0

(`+m)3(ξ − ξn−(j+m)+1)(1− p)`+m−1,

so, if we change variable by applying the transformation r = j +m, we have

E
[
d2
j

]
≤ C

n−2∑
r=j+1

j∑
`=0

(`+ r − j)3(ξ − ξn−r+1)(1− p)`+r−j−1.

If we now sum over 1 ≤ j ≤ n− 2, we obtain

E
[
∆2
n

]
=

n−2∑
j=1

E
[
d2
j

]
≤ C

n−2∑
j=1

n−2∑
r=j+1

j∑
`=0

(`+ r − j)3(ξ − ξn−r+1)(1− p)`+r−j−1,

so if we interchange the first with the second sum and rearrange, we have

E
[
∆2
n

]
≤ C

n−2∑
r=2

(ξ − ξn−r+1)
{ r−1∑
j=1

j∑
`=0

(`+ r − j)3(1− p)`+r−j−1
}
.

At this point, it is elementary to check that for all r the last double sum is bounded
by the constant

∑∞
u=1 u

4(1−p)u−1, and this completes the proof of our lemma. �

9. Some Perspective

We have pursued the proof of a specific central limit theorem, but some aspects
of our analysis may have useful implications for a wider class of Markov decision
problems (MDPs). For example, we took advantage here of the existence of a policy
π∞ that could be viewed heuristically as the “optimal policy at infinity,” and the
temporal homogeneity of this policy then gave us access to the machinery of Markov
additive processes. Many MDPs offer similar prospects.

To be sure, specialized efforts were needed to relate the finite horizon policy π∗n to
the limiting policy, but the pattern used here does offer some general guidance. In
almost any MDP, the Bellman equation gives one good prospects for computing the
value function, but to extract the full value of those functions one needs to develop
a deeper understanding of their geometry — and the geometry of the associated
threshold functions. Here, the development of such an understanding would have
been stymied without the guidance provided by Figure 1. If one views our analysis
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as a case study, then one message is that when facing a new MDP one would almost
always be wise to begin with the best numerical work that the problem allows.

Finally, the Bellman equation grants a natural place for induction in the analysis
of many MDPs, and here we have seen that such inductions can be greatly helped
by various forms of diminishing returns. Without the special properties represented
by (6) and (18) our inductions could not have moved forward. One can anticipate
that some aspect of this experience will be present in the analysis of many other
MDPs.
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