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Abstract

We estimate investment policy functions under general assumptions about tech-

nology and markets. Policy functions are easy to estimate and summarize the key

predictions of any dynamic investment model. Because our method does not rely on

Tobin’s Q, it does not require information about market values and can be readily

applied to study private firms. In addition, unlike Tobin’s Q, we show that in-

vestment policy functions account for a large fraction of the variation in corporate

investment. As such they are much better suited to evaluate and estimate dy-

namic investment models. Using this superior characterization of firm investment

behavior we then use indirect inference methods to estimate deep parameters of a

structural model of investment featuring decreasing returns to scale and generalized

adjustment cost functions.

Keywords: Corporate Investment, Firm Decisions, Indirect Inference
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1 Introduction

Hayashi’s (1982) famous elaboration of Brainard and Tobin’s Q-theory has influenced the

study of corporate and aggregate investment for nearly three decades. The prediction

that Tobin’s Q is a sufficient statistic to describe investment behavior has been immensely

popular among researchers, and the simple investment regressions implied by the linearly

homogenous version of the model form the basis for a myriad of empirical studies in

economics and finance. Despite a long-standing consensus that Q is poorly measured

and that the linearly homogenous model which motivates its use is misspecified, Q-type

investment regressions still form the basis for most inferences about corporate behaviors.1

In this paper we propose an alternative procedure to describe firm investment under

very general assumptions about the nature of markets, production and investment tech-

nologies. Our methodology is not only theoretically correct but also straightforward to

implement. Importantly, unlike Q theory we do not require information about the market

value of the firm and thus our method can be used to study the investment behavior of

private firms and to compare it with that of publicly traded corporations.2

Like many others, our starting point is a dynamic structural model of corporate

investment behavior, but without the stringent, and counterfactual, assumptions about

homogeneity and perfect competition.3 Our procedure exploits the fact that the optimal

investment policy can always be directly estimated as function of key state variables of

the firm. Unlike marginal q, many of the state variables are either directly observable or

can be readily constructed from observables, under fairly general conditions.

We show both in theory and in the data that even a simple low order polynomial

1Q-based investment regressions, often augmented by various ad-hoc measures of cash flows, have
been used to, among other purposes, test the importance of financial constraints, the effects of corporate
governance, and the efficiency of market signals.

2Asker, Farre-Mensa and Ljungqvist (2011) offer a recent example on the difficulties of using Q-theory
with private firms.

3Possible departures from homogeneity due to technological and/or financial frictions include market
power or decreasing returns to scale in production (Gomes, 2001; Cooper and Ejarque, 2003; Abel and
Eberly, 2010), inhomogeneous costs of investment (Abel and Eberly, 1994, 1997; Cooper and Haltiwanger,
2006) or of external financing (Hennessy and Whited, 2007). Although he relies on homogeneity, Philipon
(2009) also offer another alternative to the use of Tobin’s Q.
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approximation in the key state variables provides a better description of investment than

standard Q-type regressions. Investment is simply not closely correlated with Tobin’s (or

average) Q and moves more in tandem with key state variables like firm size and sales.

Alternatively, the covariances between investment and Q, implied by standard regres-

sions, are far less informative about underlying structural parameters, than covariances

with the state variables. Specifically, we show that elasticity of regression coefficients

to the deep parameters is always significantly higher than those obtained Q regressions.

Altogether this evidence suggests policy function estimates should receive considerably

more weight in indirect inference studies.

Theoretically, the main novelty of our approach is to explicitly identify firm size

and productivity as key state variables for optimal investment behavior under general

assumptions about markets and technology. Surprisingly, given its popularity in other

empirical applications, firm size is often ignored in the investment literature, and when

used, it usually shows up either as a catch-all variable to account for omitted variables in

investment regressions or as sorting variable for identification of financially constrained

firms.4 Here we formally establish that firm size naturally is an important determinant of

investment, with decreasing returns to scale technologies, even in the absence of financial

market frictions. Similarly, our approach also clarifies the role of sales and cash flow

variables. Contrary to their once popular use in tests of financing constraints, we show

that these variables should matter because they capture underlying movements in the

state of productivity and demand or in factor prices.5

By avoiding market values we also minimize the serious measurement concerns in-

duced by potential stock market misvaluations (Blanchard, Rhee and Summers, 1993;

Erickson and Whited, 2000), and approximations of unavailable market values of debt

securities and nonphysical assets such as human capital, intangibles, and goodwill (Er-

4A notable recent exception is Gala and Julio (2012). Exploiting variation across industries, they
provide direct empirical evidence that firm size captures technological decreasing returns rather than
differences in firms’ financing frictions.

5Gomes (2001), Cooper and Ejarque (2003) and Abel and Eberly (2010) all argue that cash flow
might capture differences between marginal and average Q. Instead, we show that flow variables like
sales and/or cash flow, and not Q, should always be the primary determinant of investment, even in the
absence of capital market imperfections.
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ickson and Whited, 2006). No doubt many of our proposed variables are also subject

to some measurement error, but this is likely to be much smaller than the errors in

measuring Tobin’s Q (Erickson and Whited, 2006, 2011).6

We believe our paper contributes to the literature in two significant ways. First,

and foremost, it provides a very robust empirical methodology to characterize firm level

investment behavior, that can be applied in many settings, including the study of private

firms’ investment. Second, direct approximation of investment policy functions delivers

many more informative empirical moments for the identification and inference of the

underlying structural parameters of the model. These are especially more informative

than Q-type investment regressions, which are much less general and likely subject to

serious measurement error.

With respect to measurement error, our paper delivers perhaps the most logical con-

clusion to the influential arguments in Erickson and Whited (2000, 2006 and 2011) that

“Tobin’s Q contains a great deal of measurement error because of a conceptual gap be-

tween true investment opportunities and observable measures”. Ultimately, our approach

offers a simple way to circumvent the problem by avoiding the use of Q entirely, or, at

least, limiting its use.

As with any structural method, specification error can be a concern. Here, this

manifests itself in the possibility that the model is specified with the wrong state variables.

For example, in many models leverage or liquid assets play an important role in the

investment decisions of firms. However, our approach offers a very effective way to deal

with this issue. By projecting the empirical investment policies on a set of candidate

state variables we can let the data inform us as to which ones are appropriate to include

in the model. In this way model specification is entirely guided by the data.

The rest of our paper is organized as follows. The next section describes the general

6Other authors have also developed methodologies that do not rely on the use of market values. For
example, Shapiro (1986), Whited (1992), and Bond and Meghir (1994) propose estimating the Euler
equation for investment. Abel and Blanchard (1986) and Gilchrist and Himmelberg (1995, 1998) use
VAR forecasts of profitability to estimate marginal q. Our direct estimation of the investment policy
function however imposes fewer restrictions on functional forms and allows for the use of much simpler
estimation methods.
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model and the implied optimal investment policies. In Section 3 we discuss the empirical

estimation of the investment policy functions. Section 4 contains the main theoretical

and empirical findings. Section 5 generalizes the basic approach to models with leverage

and other shocks. We then conclude with a brief discussion of the role of asset prices in

estimating investment.

2 Modeling Investment

This section describes a general structural model of investment suitable for empirical work

on firm level investment. It provides guidance and imposes discipline on the identification

and measurement of relevant state variables. Our model is a generalized version of

Abel and Eberly (1994, 1997) and Caballero and Engel (1999). We allow for a weakly

concave production technology and an investment technology featuring both non-convex

and convex capital adjustment costs which are potentially asymmetric and discontinuous.

This environment is flexible enough to include the majority of investment models in the

literature as special cases. For exposition purposes, we delay the discussion of additional

features such as financial market imperfections in Section 5.

2.1 The Benchmark Model

We examine the optimal investment decision of a firm seeking to maximize current share-

holder value in the absence of any financing frictions, V . For simplicity, we assume that

the firm is financed entirely by equity and denote by D the value of periodic distributions

net of any securities issuance.

The operating cash flows or profits of this (representative) firm are summarized by

the function Π defined as sales revenues net of operating costs. We formalize this relation

as follows:

Π (Kt, At,Wt) = max
Nt
{F (At, Kt, Nt)−WtNt} . (1)
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The function Yt = F (At, Kt, Nt) denotes the value of sales revenues in period t, net of the

cost of any materials. Revenues depend on a firm’s capital stock and labor input, denoted

by Kt and Nt, respectively. The variable At captures the exogenous state of demand

and/or productivity in which the firm operates. Wt denotes unit labor costs, including

wages, taxes and other employee benefits. Both At and Wt can vary stochastically over

time, thus accommodating any variations to the state of the economy or industry in

which a firm operates. We now summarize our main assumptions about revenues and

profits.

Assumption 1. Sales. The function F : A×K ×N → R+, (i) is increasing in A, and

increasing and concave in both K and N ; (ii) is twice continuously differentiable;

(iii) satisfies F (hA, hK, hN) ≤ hF (A,K,N) for all (A,K,N); and (iv) obeys the

standard Inada boundary conditions.

Item (iii) is a departure from the standard linear homogeneous model and explicitly

allows for decreasing returns to scale. It is straightforward to show that the function

Π(K,A,W ) is also increasing and weakly concave in K.

Installed capital depreciates at a rate δ ≥ 0, and capital accumulation requires invest-

ment, It. We assume that current investment does not affect the current level of installed

capacity and becomes productive only at the beginning of the next period:

Kt+1 = (1− δ)Kt + It. (2)

Moreover, there exist costs to adjusting the stock of capital, Φ(·), which reduce operating

profits. Capital adjustment costs depend on the amount of investment and the current

stock of capital. Our assumptions about the adjustment cost function are described

below.

Assumption 2. Adjustment Cost. The adjustment cost function Φ (·) : I×K → R+

obeys the following conditions: (i) it is twice continuously differentiable for all I,
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except potentially I = I∗ (K); (ii) Φ (I∗ (K) , K) = 0; (iii) ΦI (·)×(I − I∗ (K)) ≥ 0;

(iv) ΦK (·) ≤ 0; and (v) ΦII (·) ≥ 0.

Items (ii) and (iii) together imply that adjustment costs are non negative and mini-

mized at the natural rate of investment I∗ (K). In most cases this is assumed to be either

0 or δK depending on whether adjustment costs apply to gross or net capital formation.

Item (i) allows for general non-convex and potentially discontinuous adjustment costs.

2.2 The Investment Decision

We now define the sequence of optimal investment decisions by the firm as the solution

to the following dynamic problem:

V (Kt, At,Wt,Ωt) = max
{It+s,Kt+s+1}∞s=0

Et

[
∞∑
s=0

Mt,t+sDt+s

]
(3)

s.t. Dt+s = Π (Kt+s, At+s,Wt+s)− Φ (It+s, Kt+s) (4)

together with the capital accumulation equation (2). Mt,t+s is the stochastic discount

factor between periods t and t + s, and Ωt denotes the set of aggregate state variables

summarizing the state of the economy. Aggregate state variables may include shocks

to productivity, wages, capital adjustment costs, relative price of investment goods, and

representative household preferences.

2.2.1 Optimal Policies

When item (i) of Assumption 2 holds for any level of investment including I∗ (K) - i.e.

Φ (·) is twice continuously differentiable for all I - standard first-order conditions are

sufficient to characterize the solution to (3). The optimal investment policy equates

marginal benefit and cost of investment:

qt = ΦI (It, Kt) (5)
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where qt is the marginal value of installed capital, or marginal q, and satisfies the following

Euler equation:

qt = Et [Mt,t+1 (ΠK (Kt+1, At+1,Wt+1) + (1− δ) qt+1 − ΦK (It+1, Kt+1))] . (6)

The computation of optimal investment policies requires combining the expressions in

(5) and (6). However, under general conditions, there exist no explicit closed form solu-

tion. Nevertheless, these policies can be further characterized by inverting the marginal

cost of investment in (5) as:
It
Kt

= G̃ (Kt, qt) .

Most of the literature follows Hayashi (1982) and assumes linear homogeneity (in I and

K) for the functions Π (·) and Φ (·) to obtain a linear investment policy from (5) under

quadratic adjustment costs:
It
Kt

= α0 + α1qt. (7)

Under these assumptions marginal q equals average Q - i.e. ratio of market value to

replacement cost of capital - and the investment equation in (7) can be estimated directly

from the data.

With less restrictive conditions, however, marginal q is no longer directly observable.

Nevertheless, as long as the process for the stochastic variables is Markov, the law of

motion (6) implies that the marginal value of installed capital can be written as qt =

q (Kt, Zt), where the vector Z denotes all state variables other than capital and captures

possible shocks to firm productivity, firm output demand, firm wages, and aggregate

state variables, i.e. Zt = {At,Wt,Ωt}.

In general, the optimal rate of investment can always be characterized by the following

state variable representation:
It
Kt

= G (Kt, Zt) (8)

where the explicit form for the function G (·) depends on the specific functional forms of

Π (·) and Φ (·), and may not be readily available in most circumstances. However, given

9



the measurability of investment, the unknown investment policy G (·) can be directly

estimated as function of its underlying state variables K and Z as long as they are also

measurable.7

The appeal of Tobin’s Q lies on the belief that it serves as a forward-looking measure

of investment opportunities that summarizes all information about the expected future

profitability and discount rates. However, this information is also incorporated in the

characterization of the optimal investment policy as function of the underlying state

variables. A key difference is that the policy function characterization is always correct,

while the use of average Q relies on an unlikely combination of assumptions. The following

simple numerical example illustrates this point.

2.2.2 A Simple Example

As a special case of the dynamic investment model consider the case where:

Y = AK0.85 (9)

and

Φ (I,K) = I +
b

2

(
I

K

)2

K, b > 0 (10)

Note that this is a relatively small deviation from the standard homegeneous case

with quadratic adjustment costs.

Figure 1 plots the optimal policy rules for the investment rate, I/K, against average

Q, firm size, and firm sales-to-capital ratio, respectively.

Even in this simple case with a relatively small deviation from the extreme homoge-

nous model with quadratic adjustment costs the relationship between investment and

Tobin’s Q is significantly weaker. Moreover this relationship seems much less precise

7When item (i) of Assumption 2 holds for any level of investment excluding I∗ (K), the optimal
investment policy may be a discontinuous function. Nonetheless, it still admits the representation in
(8), and it can be directly estimated as function of its underlying state variables.
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than that with size and sales. Furthermore, these variables also more clearly identify the

position of each firm over the state-space, K×A, and as such are very informative about

the optimal investment policy than Tobin’s Q

Figure 2 makes this even clearer by depicting the difference in the model’s actual and

fitted values of I/K from standard Q regressions and comparing them with the outcome

of fitting a second order polynomial in ln(K) and ln(Y/K), respectively. Again, even in

this simple example with quadratic adjustment costs, a relatively small departure from

constant returns to scale renders average Q much less informative about investment.

Although very simple, the example illustrates how approximated policy functions

then offer a much more robust description of investment behavior and are thus likely to

be more informative to infer underlying structural parameters.

2.3 Discussion

Direct estimation of the policy functions has other important benefits. First, unlike Q-

type regressions which are based on an optimality condition where Q and investment are

determined simultaneously, state variables are, by construction, pre-determined at the

time current investment is chosen. Although endogeneity issues are not eliminated, our

method represents a distinct improvement over standard Q-regressions. Second, policy

function estimation also minimizes the measurement error concerns induced by potential

stock market misvaluations (Blanchard, Rhee and Summers, 1993; Erickson and Whited,

2000).

Our methodology builds on the idea that a model is described not only by its re-

strictions on functional forms, but also, and most importantly, by its state variables.

Different classes of investment models often lead to different sets of state variables. The

importance of various classes of investment models can then be assessed through a sta-

tistical variance decomposition of their corresponding state variable representation of

investment.8

8For example, a model with non trivial capital structure decisions (e.g. Hennessy and Whited (2005),
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3 Empirical Estimation

This section discusses how to use the method above to construct empirical counterparts

to the policy functions, G(K,Z). First, we note that under general conditions we can

approximate the optimal investment policy arbitrarily closely with the following tensor

product representation:

I

K
=

nk∑
ik=0

nz∑
iz=0

cik,izk
ikziz + εit (11)

where z = log (Z) and k = log (K) and εit is the approximation error.9 Once estimated,

the approximation coefficients cik,iz can be used to infer the underlying structural pa-

rameters of the model, or at the very least, place restrictions on the nature of technology

and adjustment costs. We investigate several parameterizations of the model in the next

section.

The choice of the polynomial order can be made according to standard model selection

techniques based on a measure of model fit such as adjusted R2 or Akaike information

criterion (AIC). We show below that a second order polynomial is often sufficient, and

higher order terms are generally not important to improve the quality of the approxima-

tion. The low order of approximation mitigates the need to use orthogonal polynomials,

simplifying the interpretation of the estimated coefficients and their relationships with

the underlying structural parameters of the model.

3.1 Measurement

Empirical implementation of (11) requires measurement of the state variables, most im-

portantly of the possible components of the exogenous state Z. This can be achieved

by imposing the theoretical restrictions implied by the model. For example, under the

common assumption that the sources of uncertainty are in firm technology and demand

Gomes and Schmid (2010)) implies that financial leverage is also a state variable in (8).
9Non-smooth investment policies may require several high order polynomial terms to better capture

nonlinearities in investment. More generally, although not pursued in this paper, optimal policies can
also be estimated using a full nonparametric approach.
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(i.e. Z = {A}) we can measure these shocks directly from observed sales by inverting

the revenue function Y = F (Z,K,N).10

In this case we can work instead with the polynomial approximation:

I

K
=

nk∑
ik=0

ny∑
iy=0

nn∑
in=0

gik,iy ,ink
ikyiynin + εit. (12)

The investment policy is now represented as a direct function of three observable vari-

ables, including capital, sales and labor, and can be readily estimated from the data.11

Finally, since the right hand side variables are all in logs, we can - without any loss

of generality - scale employment and sales by the capital stock and estimate a version

of (12) using ln(Y/K) and ln(N/K). This transformation allows us to make our results

more directly comparable with the existing literature.

3.2 Time and Firm Fixed Effects

Any aggregate state variables, Ω, can also be part of the exogenous state Z. These

variables may include, among others, shocks to the stochastic discount factor, aggregate

wages, and input prices. Given a large panel of firms, complete knowledge of the aggregate

state variables in Ω is not necessary for the purpose of estimating investment policies.

To the extent that variation in these variables affects all firms equally, it can be easily

captured by allowing the constant term g0,0,0 in (12) to be time-specific.12,13

In addition, it is also natural to expect differences in firms’ natural rate of investment,

I∗(K)/K, mainly due to variations in the depreciation rates on their assets. We can

10Alternatively, we could also estimate Z directly (e.g. Olley and Pakes (1996)) and use a two stage
approach. However this requires specification of the precise revenue function and adds a number of
econometric problems, most significantly, endogeneity. However, since we are interested in characterizing
investment, exact knowledge of Z is not required.

11The coefficients gik,iz,in are now convolutions of the structural parameters of the revenue function
and the approximation coefficients c’s.

12For comparison with the existing literature, we focus our analysis on unobserved aggregate variation
that enters only linearly the investment policy. It is straightforward to allow for unobserved aggregate
variation to enter non-additively the investment policy, with time-specific slope coefficients.

13Additional industry-level fixed effects can also be used to capture industry-level state variables.
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capture firm heterogeneity in depreciation rates, i.e. δ = δj, by allowing the constant

term g0,0,0 in (12) to have a firm-specific component.

3.3 Estimated Policy Functions

We can now implement our methodology to estimate the empirical policy function and

compare its performance with standard Q regressions. All details concerning the data

and the construction of the variables are provided in the Appendix. Table 1 reports

the key summary statistics including mean, standard deviation and main percentiles for

the primary variables of interest. Our goal is to identify a parsimonious polynomial

representation both in terms of variables and an order of approximation that provides

the best overall fit for investment empirically and can be used to evaluate our structural

model.

Table 2 shows the empirical estimates for various polynomial approximations to the

investment policy (12). All estimates use time and firm fixed effects to account for

potential aggregate shocks and firm differences in average investment rates. Generally,

we find that first and second order terms are all strongly statistically significant, except

for the second order term in the employment-to-capital ratio, which is significant only at

the ten percent level. Moreover, it is generally the case that adding the employment-to-

capital ratio leaves the overall fit of the regression virtually unaffected.14

We conclude that a second order polynomial approximation that uses firm size and the

sales-to-capital ratio (column 2) offers the best parsimonious empirical representation of

investment. For comparison, the last column of Table 2 also shows that this approximate

policy function fits the investment data much better than a standard Q regression. Even

a state variable approximation that use only first order terms has a much higher adjusted

R2.

14Interaction and higher order terms are generally not statistically significant and do not improve the
overall quality of the approximation. We omit these results for conciseness but they are available upon
request.
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4 Structural Estimation and Inference

We now use the information from the estimated policy functions to structurally estimate

the key adjustment cost parameters using indirect inference. The first step is the spec-

ification of functional forms for general sales and adjustment cost functions that satisfy

Assumptions 1 and 2. We then report the elasticity of each moment with respect to each

structural parameter and show how policy function estimates can be more informative

than the coefficient from Q-type regressions.

4.1 Model Parameterization

We assume that the technology exhibits decreasing returns or, alternatively, that markets

are not perfectly competitive. Specifically, sales are given by the decreasing returns to

scale function:

Y = A
(
KαN1−α)γ

where α ∈ (0, 1) and γ < 1 captures the degree of returns to scale. The stochastic process

for A is of the AR(1) form:

lnAt = (1− ρ) ln Ā+ ρ lnAt−1 + σζt

where |ρ| < 1, σ > 0 and ζ follows a truncated i.i.d. normal with zero mean and unit

variance. We assume that the unit labor cost W is constant and normalized to one.

A general adjustment cost function that satisfies Assumption 2 is:

Φ (I,K) = I +

 aK + b
v

(
I−I∗(K)

K

)v
K if I 6= I∗(K)

0 if I = I∗(K)
(13)

where a, b are all non-negative, and v ∈ {2, 4, 6, ...}. We normalize the relative price

of investment to one and assume that adjustment costs apply to net capital formation,

I∗ (K) = δK. We have non-convex fixed cost of investment when a is positive. Note that
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standard smooth quadratic adjustment costs are obtained as special case of (13) when

v = 2 and a = 0.

4.2 Estimation Results

Most of the other structural parameters can be quite accurately estimated directly from

unconditional moments of variables such as sales and/or profits without resorting to in-

direct inference methods. We thus fix a number of these accessory technology parameters

to what are more or less consensual values in the literature. Specifically we set the degree

of decreasing returns, γ = 0.85, and α = 0.35 implying a capital share (αγ) of 0.30 in line

with the numerical values used in previous studies (Gomes, 2001). Moreover, values like

the the average depreciation rate, δ, and discount factor, M , are largely immaterial for

our results. We set their values at 0.10 and 0.95, respectively. Throughout our analysis,

we also set the persistence and the standard deviation of the technology shocks, ρ and σ,

respectively, to 0.80 and 0.10. Although it is straightforward to include these parameters

in the structural estimation exercise, they are usually best identified from the variance

and persistence of profits or revenues and do are not generally crucial to the identification

of adjustment costs parameters.

The algorithm for indirect inference is now well understood. First, given a specific set

of parameter values, we solve numerically the problem of the firm in (3) using standard

value function iteration techniques. We then generate multiple panels of simulated data

using the optimal policy and value functions of the model. Next, we estimate the re-

gression coefficients from both standard Q regressions and polynomial approximations to

the optimal investment policy in each panel and compare the average estimate to those

obtained in the Compustat dataset. The method then picks the model parameters that

make the actual and simulated moments as close to each other as possible.15

For each parameterization of the adjustment cost function we simulate 100 artificial

panels of 500 firms each with 390 years of data. We estimate the investment polynomial

15For a detailed description in a very general setting see Warusawitharana and Whited (2015).
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regressions using the last 39 years of simulated data, which corresponds to the time span

of the actual data sample. We then report the average coefficient estimates and standard

errors across artificial panels.

Table 3 shows the estimated parameter values and compares the implied moments in

the artificial data with our own empirical estimates. The table shows that a model with

quadratic adjustment costs but also a small amount of fixed costs does well in matching

all regression coefficients found in the data. This model is able to both generate a weak

sensitivity of investment to Q and produce the coefficients from empirical policy function

estimates.

4.3 Moment Elasticities

Our results offer compelling evidence that Q regressions are much less informative than

estimates of the investment policy function. For example, the coefficient estimates on Q

regressions are quite similar across alternative adjustment cost parameterizations ranging

only from a minimum of 0.05 in the specification without adjustment costs to a maximum

of about 0.08 across all parameterizations. On the other hand, the coefficients on the

polynomial approximation exhibit substantial variation. For instance, the coefficients

on the linear terms in firm size and sales range from -0.24 to -0.06, and 0.13 to 7.51,

respectively.

We follow Hennessy and Whited (2007) and use the simulated model to measure the

elasticity of key theoretical moments with respect to the various parameters.16 Formally,

the elasticity of moment x with respect to parameter κ is computed as:

ξx,κ =
x (κ̂ (1 + ε) ; θ)− x (κ̂ (1− ε) ; θ)

2εx (κ̂)

where κ̂ is the baseline value of κ, ε is the percent deviation from the baseline, and θ is

16Intuitively, if the elasticity of a particular theoretical moment to a particular parameter is low, then
that moment is an unreliable guide to inferring the true value of the underlying structural parameter.
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a vector of the other structural parameters.17

We report the elasticity of the following conditional and unconditional moments: (1)

the coefficient estimate from a standard Q-type investment regression; (2) the coeffi-

cient estimates from the investment policy function approximation; and (3) standard

unconditional moments of the investment distribution such as the standard deviation

and autocorrelation. We use our parameter estimates as our baseline.

Table 4 reports our findings. For completeness we include also the elasticities with

respect to the technology parameters γ and α. The Table shows that most coefficients

are quite sensitive to the degree of returns to scale, γ. Perhaps unsurprisingly, the capital

elasticity α has a larger effect on unconditional moments of the investment distribution

and the polynomial terms in lnK.

The main conclusion however is that investment adjustment cost parameters are gen-

erally much better identified from estimated policy function coefficients, which exhibit

higher elasticities than the coefficient from a standard Q-regression. To us, this sug-

gests that full estimation of a structural model, should primarily target unconditional

moments of the investment distribution together with the approximate investment policy

function implied by the model. By contrast, the slope of a Q regression is generally less

informative about model parameters.

5 Cases with More State Variables and Model Mis-

specification

We have illustrated our approach for the (popular) class of investment models where opti-

mal policies depend only on two state variables, size (K) and exogenous demand/productivity

shocks (A). However, our core insight of directly estimating optimal policy functions is

easily expanded to much larger classes of models. In this section we describe how to

17We generally use ε = 0.1, except for the curvature of the adjustment costfunction where we use
ε = 1 and consider a one sided deviation only.
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adapt our procedure to two specific examples: (i) a model with financial leverage, and

(ii) a model with firm-specific shocks to the price of variable inputs such as wages.

5.1 Capital Market Imperfections and Leverage

Our basic approach can be easily extended to models with financial frictions. Most

modifications of the firm problem (3), that allow for frictions such as tax benefits of

debt, collateral requirements and costly external financing, also imply that firm debt, B,

becomes an additional state variable for the optimal investment policy. Formally, these

models imply that:18

I

K
= G (K,B,Z) . (14)

It follows that in this case we can generalize our procedure by augmenting the approxi-

mate policy function (12) with additional terms including corporate debt:

I

K
=

nk∑
ik=0

ny∑
iy=0

nn∑
in=0

nb∑
ib=0

gik,iy ,in,ibk
ikyiyninbib + εit. (15)

5.2 Labor Market Shocks and Cash Flow

Aggregate variation in the price of variable inputs, such as labor, will be captured by

adding simple time effects to (11). However, if some of these shocks are firm-specific, the

set of state variables, Z, would now need to be expanded to also include the firm level

wage rate, W (i.e. Z = {A,W}). Since direct evidence on firm level labor costs is often

sparse it is often best to again use theory to infer these shocks directly from observed

cash flow data.

For example, if the production function, F (A,K,N), is Cobb-Douglas, operating

profits become Π = ZKθ, where Z captures joint information about A and W , and can

18Examples of models where net financial liabilities represents an additional state variable for the
optimal investment policy include Whited (1992), Bond and Meghir (1994), Gilchrist and Himmelberg
(1999), Moyen (2004), Hennesy and Whited (2007), Hennessy, Levy, and Whited (2007), Gomes and
Schmid (2010), Bustamante (2011), and Bolton, Chen, and Wang (2012), among others.
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be directly constructed from:

z ≡ lnZ = log Π− θ log(K).

The investment policy is now be approximated as:

I

K
=

nk∑
ik=0

nπ∑
iπ=0

dik,iπk
ikπiπ + εit,

using only data on log operating profits, π = log Π and the stock of capital.

5.3 Model Misspecification and Tobin’s Q

The thrust of our argument is that marginal Q should matter a lot more than average Q

for investment policies. Theoretically, any information contained in marginal Q will be

spanned by the state variables characterizing the optimal investment policy. Moreover,

because these are much easier to measure accurately, empirical policy functions offer a

much better description of the investment data.19

How useful is then Tobin’s average Q? It remains true that Tobin’s average Q remains

an endogenous variable in the model which retains some (but generally far from perfect)

correlation with investment behavior. As such is it possible that this variable may isolate

additional investment variation due to some omitted state variables.

Table 5 investigates this possibility empirically by reporting the results of a covariance

analysis (ANCOVA) as in Lemmon and Roberts (2008). Specifically, we compute a

normalized Type III partial sum of squares for several variables or groups of variables -

including Q - in the investment specification.20

Unsurprisingly, firm fixed effects account for a large fraction of the variation in in-

vestment levels - in the long run all cross-sectional variation in levels is accounted by

19As a corollary, estimating the underlying process for investment as a function of state variables offers
an estimate of marginal Q (see Gala (2015).

20Type III sum of squares is not sensitive to the ordering of the covariates, and our panel is unbalanced.
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variation in the depreciation rate, δj. A more meaningful decomposition of the variation

in investment changes however, shows that our baseline polynomial in firm sales and

size accounts for 97 percent of the investment variation.

This variance decomposition shows that, in this sample of publicly traded firms, only

about 4 percent of the explained variation in investment levels can be accounted by the

covariation with firm financial leverage. Similarly, financial leverage accounts only for

about 4 percent of the overall explained variation in investment changes, while 94 percent

is attributable to our core state variables alone.21

Column (4) shows that only 7 percent of the overall variation in investment can be

attributed to Tobin’s Q, while 32 percent is attributable to the state variable polynomial.

A similar decomposition of investment rates changes is more stark. Tobin’s Q accounts

only for 2 percent of the overall explained variation in investment changes, while 96

percent is attributable to our core state variables alone. Overall, it seems that Tobin’s

Q incorporates fairly little “independent” information for investment.

6 Conclusion

How can we understand the investment of small private firms where information about

Tobin’s Q is not available? This paper proposes an asset price-free alternative relying on

the insight that the optimal investment policy is a function of much more easily measur-

able state variables. Under very general assumptions about the nature of technology and

markets, our approach ties investment rates directly to firm size, sales or cash flows, and,

in the presence of financial market frictions, measures of net liabilites. Empirically, our

methodology also appears superior to Q theory even for samples of large publicly traded

firms.

21Because leverage is itself an endogenous variable, it can still affect investment indirectly through
feedbacks on firm size and sales. Gala and Gomes (2012) investigate in more details the implications of
capital market imperfections on the direct estimation of alternative investment policies.
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A Appendix

Our data comes from the combined annual research, full coverage, and industrial COM-

PUSTAT files. To facilitate comparison with much of the literature our initial sample

is made of an unbalanced panel of firms for the years 1972 to 2010, that includes only

manufacturing firms (SIC 2000-3999) with at least five years of available accounting data.

We keep only firm-years that have non-missing information required to construct the

primary variables of interest, namely: investment, I, firm size, K, employment, N , sales

revenues, Y , and Tobin’s Q. Firm size, or the capital stock, is defined as net property,

plant and equipment. Investment is defined as capital expenditures in property, plant and

equipment. Employment is the reported number of employees. Sales are measured by net

sales revenues. In our implementation these variables are scaled by the beginning-of-year

capital stock. Finally, Tobin’s Q is measured by the market value of assets (defined as

the book value of assets plus the market value of common stock minus the book value of

common stock) scaled by the book value of assets.22 We use also standard measures of

cash flow, CF , defined as earnings before extraordinary items plus depreciation; and net

corporate debt, B, computed as the sum of short-term plus long-term debt minus cash

and short-term investments.

Our sample is filtered to exclude observations where total capital, book value of assets,

and sales are either zero or negative. To ensure that our measure of investment captures

the purchase of property, plant and equipment, we eliminate any firm-year observation

in which a firm made an acquisition. Finally, all primary variables are trimmed at the

1st and 99th percentiles of their distributions to reduce the influence of any outliers,

which are common in accounting ratios. This procedure yields a base sample of 32,890

firm-years observations.

22Erickson and Whited (2006) show that using a perpetual inventory algorithm to estimate the re-
placement cost of capital and/or a recursive algorithm to estimate the market value of debt barely
improves the measurement quality of the various proxies for Q.
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Table 1: Summary Statistics

This table reports summary statistics for the primary variables of interest
from Compustat over the period 1972-2010. The investment rate, I/K, is de-
fined as capital expenditures in property, plant and equipment scaled by the
beginning-of-year capital stock. The capital stock, K, is defined as net prop-
erty, plant and equipment. Firm size, ln (K), is the natural logarithm of the
beginning-of-year capital stock. The sales-to-capital ratio, ln (Y/K), is com-
puted as the natural logarithm of end-of-year sales scaled by the beginning-of-
year capital stock. The employment-to-capital ratio, ln (N/K), is defined as
the natural logarithm of the number of employees scaled by the capital stock.
The cash flow rate, CF/K, is calculated as the sum of end-of-year earnings
and depreciation scaled by the beginning-of-year capital stock. Tobin’s Q is
defined as the market value of assets scaled by the book value of assets.

Obs Mean Std. Dev. 25th 50th 75th

I/K 32,890 0.26 0.24 0.12 0.20 0.32

lnK 32,890 3.56 2.27 1.88 3.44 5.20

ln Y
K

32,890 1.72 0.77 1.23 1.69 2.18

ln N
K

32,890 -3.16 1.00 -3.81 -3.15 -2.46

Q 32,890 1.56 1.00 0.95 1.24 1.80
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Table 2: Empirical Investment Policies

This table reports empirical estimates from the investment regression spec-
ification:

Ijt+1

Kjt

= βXjt + δj + ηt + εjt+1

where the left-hand-side is end-of year capital expenditures scaled by
beginning-of-year property, plant and equipment, δj is a firm fixed effect, ηt
is a year fixed effect, and X denotes a set of explanatory variables including
average Q, firm size, lnK, sales-to-capital ratio, ln (Y/K), and employment-
to-capital ratio, ln (N/K). Standard errors are clustered by firm and reported

in parenthesis. R
2

denotes the adjusted R2 and AIC is the adjusted Akaike
Information Criterion. The sample period is 1972 to 2010.

(1) (2) (3) (4) (5)

Q 0.078
(0.004)

ln Y
K

0.204 0.100 0.222 0.113
(0.008) (0.010) (0.007) (0.010)

lnK -0.014 -0.021 -0.018 -0.027
(0.003) (0.005) (0.003) (0.005)

ln N
K

-0.034 -0.060
(0.006) (0.018)

( ln Y
K

)2 0.029 0.030
(0.003) (0.003)

(lnK)2 0.002 0.002
(0.001) (0.001)

( ln N
K

)2 -0.004
(0.002)

R2 0.38 0.39 0.38 0.39 0.29
AIC -12, 887 -13, 229 -12, 955 -13, 292 -8, 430
Obs 32, 890 32, 890 32, 890 32, 890 32, 890
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Table 3: Estimated Moments and Parameters

This table reports results from estimating the baseline model using in-
vestment regressions from simulations using 100 artificial panels of 500 firms
each with 39, which corresponds to the time span of the actual data sample
from Compustat. The top panel reports the average regression coefficient
estimates and standard errors for the data and across artificial panels. The
bottom panel reports the estimated parameter values as well as the implied
χ2 statistic.

PANEL A

Data Moments Simulated Moments
Q 0.078 0.057

(0.004) (0.001)
ln Y

K
0.100 0.132

(0.010) (0.005)
lnK -0.021 -0.058

(0.005) (0.002)

( ln Y
K

)2 0.029 0.025
(0.003) (0.003)

(lnK)2 0.002 0.002
(0.001) (0.002)

PANEL B

Estimated Parameters
a b ν χ2

0.010 0.75 2 0.0028
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Table 4: Sensitivity of Model Moments to Parameters

This table presents elasticities of model moments with respect to key
model parameters. The parameters values are those estimated in Section 4.
The set of moments include: (1) the coefficient estimate from a standard Q-
type investment regression; (2) the coefficient estimates from the investment
policy function approximation; (3) moments of the investment distribution
such standard deviation (Std) and autocorrelation (AR).

Moments γ α a b ν
1 Q 7.92 0.23 -0.46 -0.33 0.49

2 ln Y
K

4.76 0.01 -0.55 -0.75 3.44
lnK -0.20 -0.65 -0.31 -0.16 1.36

( ln Y
K

)2 3.22 -0.01 -0.27 -1.30 1.49

(lnK)2 10.04 3.08 2.26 9.39 4.13

3 Std I/K 3.41 -0.62 -0.22 -0.35 2.24
AR I/K 6.84 -1.09 -1.07 -0.30 0.50
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Table 5: Empirical Variance Decompositions

This table presents a variance decomposition of several polynomial speci-
fications for both the levels (Panel A) and changes (Panel B) in investment.
We compute the Type III partial sum of squares for each effect in the model
and then normalize each estimate by the sum across the effects, forcing each
column to sum to one. For example, in specification (4) of Panel A, 7% of
the explained sum of squares captured by the included covariates can be at-
tributed to Tobin’s Q. Similarly, in specification (4) of Panel B, 2% of the
explained investment changes can be attributed to changes in Tobin’s Q. Firm
FE are firm fixed effects. Year FE are calendar year fixed effects. Q denotes
Tobin’s Q. “Sales and Size” denotes the second order polynomial in firm size,
ln (K), and sales-to-capital ratio, ln (Y/K). “Cash Flow” denotes a second or-
der polynomial in firm cash flow-to-capital ratio, CF/K. “Leverage” denotes

a second order polynomial in firm net leverage, B/K. R
2

denotes adjusted
R2. The sample period is 1972 to 2010.

(1) (2) (3) (4)

A: Investment Levels (I/K)

Firm FE 0.61 0.70 0.59 0.56
Year FE 0.06 0.07 0.07 0.05
Sales and Size 0.33 0.19 0.30 0.32
Cash Flow 0.03
Leverage 0.04
Q 0.07

R2 0.39 0.40 0.40 0.41

B: Investment Changes (∆I/K)

Year FE 0.02 0.02 0.02 0.02
Sales and Size 0.98 0.97 0.94 0.96
Cash Flow 0.01
Leverage 0.04
Q 0.02

R2 0.30 0.30 0.31 0.31
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Figure 1: Optimal Investment Policies with Decreasing Returns.
This figure shows scatter plots of the optimal investment rates, I/K, against average Q,
firm size, lnK, and firm sales-to-capital ratio, ln (Y/K), respectively, in a model with
standard quadratic adjustment costs but decreasing returns to scale.
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Figure 2: Actual versus Fitted Investment.
This figure compares the actual and fitted investment rates from simulated data when
using regressions on average Q and a second order polynomial approximation of the
optimal policy function. Simulated data from a simple dynamic investment model with
quadratic adjustment costs but decreasing returns to scale.
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