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Abstract

We examine the asymptotic efficiency of using individual stocks or portfolios as base assets

to test cross-sectional asset pricing models. The literature has argued that creating portfolios

reduces idiosyncratic volatility and enables factor loadings, and consequently risk premia, to be

estimated more precisely. We show analytically and find empirically that the more efficient es-

timates of betas from creating portfolios do not lead to lower asymptotic variances of factor risk

premia estimates. Instead, the standard errors of factor risk premia estimates are determined by

the cross-sectional distribution of factor loadings and residual risk. Creating portfolios shrinks

the dispersion of betas and leads to higher asymptotic standard errors of risk premia estimates.



1 Introduction

Cross-sectional factor models specify that expected excess returns are a linear function of factor

loadings. This relation holds for all assets, whether these assets are individual stocks or whether

individual stocks are aggregated into portfolios. The literature has taken two approaches in

specifying the universe of test assets for cross-sectional regression tests. First, researchers have

followed Black, Jensen and Scholes (1972) and Fama and MacBeth (1973), among many others,

to first group stocks into portfolios and then run factor model tests using portfolios as base as-

sets. An alternative approach is to estimate cross-sectional risk premia using the entire universe

of stocks following Litzenberger and Ramaswamy (1979) and others.

Blume (1970) gave the original motivation for creating a parsimonious set of test portfolio

assets, which is to reduce the errors-in-variables problem. Cross-sectional regressions specify

estimated betas as the regressor. If the errors in the estimated betas are imperfectly correlated

across assets, then the estimation errors would tend to offset each other when the assets are

grouped into test portfolios. Thus, using portfolios as test assets allows for more efficient esti-

mates of factor loadings. These more precise estimates of factor loadings would enable factor

risk premia to also be more precisely estimated. On the other hand, an argument stated by

Litzenberger and Ramaswamy (1979) for using individual stocks as test assets is that generally

far fewer than 100 portfolios, often as few as 10-25 portfolios, are often used as test assets. In

contrast, in standard empirical applications with U.S. data, the number of individual stocks is

currently above 5000. Thus, the number of individual stocks is usually two orders of magnitude

greater than the number of portfolios commonly used leading to a potentially severe loss of

efficiency.

In this paper we study the relative efficiency of using individual stocks or portfolios as base

assets in tests of cross-sectional factor models. We deliberately present theoretical results in

a very simple one-factor setting applicable to the original CAPM, but our results generalize

to other multi-factor models. We work with maximum likelihood for several reasons.1 First,

the maximum likelihood estimators obtain the Cramér-Rao lower bound and enable us to de-

rive analytical forms for the standard variances of the estimators. Second, the commonly used

two-pass methodology of Fama and MacBeth (1973) is asymptotically equivalent to the one-

step approach of maximum likelihood as shown by Shanken (1992). Third, Shanken and Zhou

1 Jobson and Korkie (1982), Huberman and Kandel (1987), MacKinlay (1987), Zhou (1991), Velu and Zhou

(1999), among others, derive small-sample or exact finite sample distributions of various maximum likelihood

statistics but do not consider efficiency using different test assets.
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(2007) show the maximum likelihood method also has similar performance to two-pass esti-

mators in small samples. Thus, the commonly used two-pass cross-sectional estimates can be

be used as consistent estimates, but maximum likelihood standard errors are asymptotically

efficient. Maximum likelihood standard errors serve as a benchmark estimate of potential effi-

ciency losses for other methods of computing standard errors. We also empirically examine the

effect of different numbers of portfolios, compared to using individual stocks, in simulations as

well as actual data.

Forming portfolios dramatically reduces the standard errors of factor loadings due to de-

creasing idiosyncratic risk, but we show the more precise estimates of factor loadings donot

lead to more efficient estimates of factor risk premia. In a setting where all stocks have the same

idiosyncratic risk, the idiosyncratic variances of portfolios decline linearly with the number of

stocks in each portfolio but the variance of the risk premia estimates increase compared to the

case when all stocks are used. Thus, creating portfolios to reduce estimation error in the factor

loadings does not lead to reduced estimation error in the factor risk premia. Nor do we find that

it is simply greater power by using a larger number of assets for individual stocks compared

to using portfolios that makes estimates from employing individual stocks as test assets more

efficient.

The most important determinant of the standard variance of risk premia is the cross-sectional

distribution of risk factor loadings scaled by the inverse of idiosyncratic variance. Intuitively,

the more disperse the cross section of betas, the more information the cross section contains to

estimate risk premia. More weight is given to stocks with lower idiosyncratic volatility as these

observations are less noisy. Aggregating stocks into portfolios causes the information contained

in individual stock betas to become more opaque and tends to shrink the cross-sectional disper-

sion of betas. This causes estimates of factor risk premia to be less efficient when portfolios

are created. We show these results by analytically computing the efficiency losses when portfo-

lios are used for special distributions of beta when idiosyncratic risk is constant across stocks.

Furthermore, we demonstrate these results also hold when idiosyncratic volatility is stochastic

and correlated with betas in Monte Carlo exercises. Finally, we empirically verify that using

portfolios leads to wider standard error bounds in estimates of a one-factor model using the

CRSP database of stock returns.

Our paper is related to a long literature on factor model specifications. Some of this literature

discusses how to test for factors in the presence of spurious sources of risk (see, for example,

Kan and Zhang, 1999; Kan and Robotti, 2006; Hou and Kimmel, 2006; Burnside, 2007). Other
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authors have presented alternative estimation approaches to maximum likelihood or the standard

two-pass methodology, such as Brennan, Chordia and Subrahmanyam (1998), who run cross-

sectional regressions on all stocks using risk-adjusted returns as dependent variables, rather than

excess returns, with the risk-adjustments involving estimated factor loadings and traded risk

factors. However, this approach cannot be used to estimate factor risk premia. Other authors,

like Shanken and Zhou (2007) examine the small-sample performance of various estimation

approaches and test statistics for cross-sectional factor models. None of these authors discuss

the relative efficiency of the test assets employed in cross-sectional factor model tests.

Two papers that examine the effect of different portfolio groupings in testing asset pricing

models are Berk (2000) and Grauer and Jamaat (2004). Berk (2000) addresses the issue of

grouping stocks on a characteristic known to be correlated with expected returns and then testing

an asset pricing model on the stocks within each group, rather than using all stocks or using

portfolios constructed from the groups. Berk (2000) argues that this practice, as done by Daniel

and Titman (1997), leads to spurious rejections of a factor model.2 We examine the relative

efficiency of portfolios formed by different groupings, where all portfolios are used, rather than

just a subset of stocks or portfolios within a group that Berk (2000) examines. Grauer and

Janmaat (2004) show that portfolio grouping under the alternative when a factor model is false

may may cause the model to appear correct. Both Berk (2000) and Grauer and Janmaat (2004)

do not discuss the efficiency of using tests assets of portfolios versus individual securities or

address the relative efficiency of different numbers of portfolios as test assets.

The rest of this paper is organized as follows. Section 2 presents the one-factor model and

derives asymptotic standard errors. We analytically characterize the efficiency loss for using

portfolios as opposed to individual stocks. Section 3 compares the performance of portfolios

versus stocks in simulations and in the CRSP database. Finally, Section 4 concludes.

2 The Model

We work with the following one-factor model:

Rit = α + βiλ + βi(Rmt − µm) + σiεit, (1)

whereRit, i = 1, ..., N andt = 1, ..., T , is the excess (over the risk-free rate) return of stocki

at timet, Rmt is the excess return of the market index, and the parametersα, µm, βi, andσi are

2 Lo and MacKinlay (1990) point out that sorting firms into characteristics correlated with returns in sample

contain a data-snooping bias. We do not address this issue here.
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constant across time. We specify the shocksεit to be IID N(0, 1) over timet and uncorrelated

across stocksi. This specification can be easily extended to the case where there are multiple

factors, such as Fama and French (1993).3 In vector notation we can write equation (1) as

Rt = α + βλ + β(Rmt − µm) + Σ1/2
ε εt, (2)

whereRt is anN × 1 vector of stock returns,β is anN × 1 vector of betas,Σε is a diagonal

matrix with elementsσ2
i , andεt is anN × 1 vector of idiosyncratic shocks.

Equation (1) states that the risk premium, or the expected excess return, of asseti is a linear

function of stocki’s beta:

E(Rit) = α + βiλ. (3)

This is the beta representation of Connor (1984), which is estimated by Black, Jensen and

Scholes (1972) and Fama and MacBeth (1973).

Asset pricing theories impose various restrictions onα andβ in equation (3). If the risk

premium is given by the Arbitrage Pricing Theory or the CAPM, then

α = 0. (4)

If the market factor is priced with a risk premium, then

λ > 0. (5)

In addition, if the risk premium is given by the CAPM,

λ = µm. (6)

Most linear asset pricing models involve at least one of the restrictions imposed by equations

(4)-(6). Note thatα, λ, andβi are all estimated from data and the relation between the parame-

ters is non-linear in equation (3).

A complementary view presented in standard MBA textbooks labels equation (3) the empir-

ical Security Market Line (SML). Under the SML implied by the CAPM, a graph of expected

excess returns on they-axis versus beta on thex-axis should yield a straight line. The SML’s

intercept should be the origin and the slope of the line should be the market risk premium. The

3 A multi-factor extension could also handle a conditional CAPM as long as the conditional CAPM is estimated

using an unconditional factor model test with additional factors resulting from parameterizing the time variation in

risk premia or betas by linear functions of predictive instruments. The models of Jagannathan and Wang (1996),

Cochrane (2001), and Lettau and Ludvigson (2001), among many others, fall into this category.

4



empirical SML in equation (3) allows for two deviations from CAPM theory: a potentially non-

zero intercept term, which follows from the zero-beta Black (1972) model, and the slope of the

SML can be different from the market risk premium.

We are particularly interested in deriving the statistical properties of the estimators ofα, λ,

andβi in equations (1) and (3). We use maximum likelihood rather than working with the two-

pass procedures developed by Fama and MacBeth (1973) for several reasons. First, the max-

imum likelihood estimators are unbiased, asymptotically efficient, and analytically tractable.

We derive in closed-form the Cramér-Rao lower bound, which yields the lowest standard errors

achievable of all consistent estimators.

Second, our results also apply to the two-pass estimators. Shanken (1992) shows that max-

imum likelihood and two-pass estimators are asymptotically equivalent under our standard reg-

ularity assumptions of IID error terms. Cochrane (2001) shows that the Fama-MacBeth (1973)

estimates are also numerically identical to pooled time-series maximum likelihood estimates in

a balanced panel with constant betas, which is the setting we use in equation (1).

Third, maximum likelihood estimators and two-pass cross-sectional estimators are also very

similar in small samples. In particular, Shanken and Zhou (2007) find that for small sample sizes

similar to those used in empirical work, maximum likelihood estimators are virtually unbiased

and the precision of the maximum likelihood method is similar to, in fact slightly better than,

two-pass OLS in factor model simulations. Finally, computing GMM standard errors following

Shanken (1992), Cochrane (2001), and Jagannathan, Skoulakis and Wang (2002), among others,

does not achieve a conservative lower efficiency bound because GMM standard errors are not

the lowest achievable. By using maximum likelihood we can compute efficiency losses relative

to the Craḿer-Rao lower bound.

The log-likelihood ofRit is given by

L = −
∑

i

∑
t

1

2σ2
i

(
Rit − α− βiλ− βi(Rmt − µm)

)2

, (7)

ignoring the constant and the determinant of the covariance terms.4 For notational simplicity,

4 Gibbons (1982) and Shanken (1985) work with an alternative empirical time-series specification of the CAPM:

Rit = αi + βi(Rmt − µm) + σiεit,

where the CAPM imposes the restriction thatαi = βiµm ∀i. This is a special case of our set-up withλ = µm.

Note that the model

Rit = αi + βiλ + βi(Rmt − µm) + σiεit,

which allows for a stock-specific intercept term, does not allowλ to be identified and the Hessian term forλ is
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we assume thatµm, σm, andσi for all i are known.5 As argued by Merton (1980), variances

are estimated very precisely at high frequencies and are much easier to estimate than means.

Furthermore, the market risk premiumµm and market volatilityσm can be estimated separately

using time-series data on the market index return. Thus, our parameters of interest areΘ =

(α, λ, βi), i = 1, . . . , N .

Taking the first derivative of the log-likelihood we obtain

∂L

∂α
=

∑
i,t

1

σ2
i

(
Rit − α− βiλ− βi(Rmt − µm)

)

∂L

∂λ
=

∑
i,t

1

σ2
i

(
Rit − α− βiλ− βi(Rmt − µm)

)
βi

∂L

∂βi

=
∑

t

1

σ2
i

(
Rit − α− βiλ− βi(Rmt − µm)

)
(λ + Rmt − µm). (8)

These equations lead to the following maximum likelihood estimators:

α̂ =
1

T

∑
i,t

1
σ2

i

(
Rit − β̂iλ̂− β̂i(Rmt − µm)

)
∑

i
1
σ2

i

(9)

λ̂ =
1

T

∑
i,t

β̂i

σ2
i

(
Rit − α̂− β̂i(Rmt − µm)

)

∑
i

β̂2
i

σ2
i

(10)

β̂i =

∑
t(Rit − α̂)(λ̂ + Rmt − µm)∑

t(λ̂ + Rmt − µm)2
. (11)

From equations (9)-(11) we make the following observations:

Comment 2.1 The maximum likelihood parameters impose the constraints under the null.

In particular, although the betas are defined in the data generating process (1) as

βi =
cov(Rit − E(Rit), Rmt − µm)

var(Rmt)
,

undefined. This arises because there is no common cross-sectional mean to identifyλ.
5 It can be easily verified that the maximum likelihood estimators of the parameters we do not consider are given

by the standard formulas

µ̂m =
1
T

∑
t

Rmt

σ̂2
m =

1
T

∑
t

(Rmt − µm)2

σ̂2
i =

1
T

∑
t

(Rit − α̂− β̂iλ̂)2.

6



the maximum likelihood estimator of the betas in (11) is not the regular OLS estimator. The

pricing restrictions of the expected return are imposed to gain more efficient beta estimates.

Given the betas, equations (9) and (10) take the same form as a weighted least squares (WLS)

cross-sectional regression, as noted by Cochrane (2001):

λ̂WLS = (B̂Σ−1
ε B̂)−1B̂′Σ−1

ε (R̄− α̂),

whereB̂ = [1N β̂] corresponds to the vector notation in equation (2) withβ̂ being the vector of

maximum likelihood estimates ofβi satisfying equation (11),̄R = (1/T )
∑

t Rt, and we setµm

equal to the sample mean ofRmt. However, we see below that a regular WLS standard error for

λ̂ does not apply under maximum likelihood because of the restrictions under the null.

The non-linear equations (9)-(11) can be solved iteratively (see Gibbons, 1982) or in one

step (see Shanken, 1985). Shanken (1992) shows that both the maximum likelihood estima-

tors and the more popular two-pass Fama-MacBeth (1973) cross-sectional estimators are both

asymptotically efficient asT → ∞ and thus asymptotically equivalent. Because the two-pass

estimators are most often used in the literature and the small sample performance of the max-

imum likelihood estimators and the two-pass estimators are very similar in small samples (see

Shanken and Zhou, 2007), we use first-pass OLS estimates of betas and estimate risk premia

coefficients in a second-pass cross-sectional regression in our empirical work. However, we

derive appropriate standard errors with maximum likelihood as these achieve the Cramér-Rao

lower bound. These are valid with any consistent estimators ofα, λ, andβi.

Comment 2.2 The estimatorŝα andλ̂ are negatively correlated, all else being equal.

This is shown directly by equations (9) and (10). The earliest study of the CAPM by Douglas

(1969) found that the SLM intercept term was positive and its estimated slope was lower than

the average market excess return. Black, Jensen and Scholes (1972) also found that the slope of

the SLM was lower than the average market excess return. Equations (9) and (11) imply thatα̂

andβ̂i are negatively correlated, all else being equal. In equation (1) this is also obvious as any

over-estimation of beta in the panel will result in an under-estimation of alpha and vice versa.
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2.1 Asymptotic Standard Errors

For asset pricing tests we are interested in the standard errors of the estimates. To derive asymp-

totic standard errors for the parametersΘ, the second derivative of the log-likelihood is:

∂2L

∂Θ∂Θ′ =



−T
∑

i
1
σ2

i
−T

∑
i

βi

σ2
i

−∑
t

λ+Rmt−µm

σ2
i

−T
∑

i
βi

σ2
i

−T
∑

i
β2

i

σ2
i

−∑
t

α+2βi(λ+Rmt−µm)−Rit

σ2
i

−∑
t

λ+Rmt−µm

σ2
i

−∑
t

α+2βi(λ+Rmt−µm)−Rit

σ2
i

−∑
t

(λ+Rmt−µm)2

σ2
i


 .

The Hessian is then given by:

(
E

[
− ∂2L

∂Θ∂Θ′

])−1

=
1

T




∑
i

1
σ2

i

∑
i

βi

σ2
i

λ
σ2

i∑
i

βi

σ2
i

∑
i

β2
i

σ2
i

βiλ
σ2

i

λ
σ2

i

βiλ
σ2

i

λ2+σ2
m

σ2
i




−1

, (12)

where under the null1
T

∑
t Rmt → µm and 1

T

∑
t Rit → α + βiλ.

We define the following cross-sectional sample moments:

Ec(β/σ2) =
1

N

∑
j

βj

σ2
j

Ec(β
2/σ2) =

1

N

∑
j

β2
j

σ2
j

Ec(1/σ
2) =

1

N

∑
j

1

σ2
j

varc(β/σ2) =

(
1

N

∑
j

β2
j

σ4
j

)
−

(
1

N

∑
j

βj

σ2
j

)2

covc(β
2/σ2, 1/σ2) =

(
1

N

∑
j

β2
j

σ4
j

)
−

(
1

N

∑
j

β2
j

σ2
j

)(
1

N

∑
j

1

σ2
j

)
. (13)

The first three expressions in equation (13) are the cross-sectional sample averages ofβ/σ2,

β2/σ2, and1/σ2, respectively, and the last two expressions are the cross-sectional sample vari-

ance ofβ/σ2 and the sample covariance betweenβ2/σ2 and1/σ2, respectively. From the last

two definitions, we can write

(∑
j

β2
j

σ2
j

)(∑
j

1

σ2
j

)
−

(∑
j

βj

σ2
j

)2

= N2
(
varc(β/σ2)− covc(β

2/σ2, 1/σ2)
)
. (14)

8



From the Hessian in equation (12), the asymptotic variance ofα̂, λ̂, andβ̂i are:

var(α̂) =
1

NT

σ2
m + λ2

σ2
m

Ec(β
2/σ2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
(15)

var(λ̂) =
1

NT

σ2
m + λ2

σ2
m

Ec(1/σ
2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
(16)

var(β̂i) =
1

T

σ2
i

(σ2
m + λ2)

(
1 +

λ2

Nσ2
i σ

2
m

Ec(β
2/σ2)− 2βiEc(β/σ2) + β2

i Ec(1/σ
2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)

)
.(17)

The proof of equations (15) to (17) can be found in Appendix A.

The analytical expressions of the asymptotic variances in equation (17) enable us to make

several observations:

Comment 2.3 Cross-sectional heterogeneity in betas is necessary to identifyα andλ.

The variance of̂α and λ̂ in equations (15) and (16) are not defined when stock returns

are identically distributed with the same beta and idiosyncratic risk. This is intuitive. We

can identifyα andλ, which constitute the cross-sectional risk premium, only from the cross

section of individual stocks. When all stocks are identical, there is no cross-sectional variation

in expected returns and we cannot identifyα andλ.

Comment 2.4 The asymptotic variance of̂α andλ̂ depend on the cross-sectional distributions

of betas and idiosyncratic volatility.

Equations (15) and (16) reveal the cross-sectional distribution of betas scaled by idiosyn-

cratic volatility determines the asymptotic variance ofα̂ andλ̂. Some intuition for these results

can be gained from considering a standard OLS regression in a panel with independent obser-

vations exhibiting heteroskedasticity. In this case WLS is optimal and this can be implemented

by dividing the regressor and regressand of each observation by residual volatility. Not surpris-

ingly, in our setting this leads to the variances ofα̂ andλ̂ involving moments of1/σ2. Intuitively,

scaling by1/σ2 places more weight on the asset betas estimated more precisely corresponding

to those stocks with lower idiosyncratic volatilities. Unlike standard WLS, the regressors are

estimated and not exogenous and the parametersβi andλ enter non-linearly in the data gener-

ating process (1). These assumptions under the null are imposed on the maximum likelihood

estimators and cause the maximum likelihood standard errors to be different from regular WLS.

Comment 2.5 Cross-sectional and time-series data are useful for estimatingα andλ but pri-

marily only time-series data is useful for estimatingβi.
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In both equations (15) and (16), the variance ofα̂ and λ̂ depend onN andT . Under the

IID error assumption, increasing the data by one time period yields anotherN cross-sectional

observations to estimateα andλ. Thus, the standard errors follow the same convergence prop-

erties as a pooled regression with IID time-series observations, as noted by Cochrane (2001).

In contrast, the variance of̂βi in equation (17) depends primarily on the length of the data sam-

ple,T . The stock beta is specific to an individual stock, so the variance ofβ̂i converges at rate

1/T and the convergence of̂βi to its population value is not dependent on the size of the cross

section. The standard error ofβ̂i depends on a stock’s idiosyncratic variance,σ2
i , and intuitively

stocks with smaller idiosyncratic variance have smaller standard errors forβ̂i.

However, the cross-sectional distribution of betas and idiosyncratic variance does enter the

variance ofβ̂i, but the effect is second order. Equation (17) has two terms. The first term

involves the idiosyncratic variance for a single stocki. The second term involves cross-sectional

moments of beta and idiosyncratic volatilities. The second term arises becauseα andλ are

estimated, and the sampling variation ofα̂ andλ̂ contributes to the standard error ofβ̂i. Note

that the second term is of order1/N and when the cross section is large enough tends to zero.6

Comment 2.6 Sampling error of the factor loadings affects the standard errors ofα̂ andλ̂.

Appendix A shows that the term(σ2
m + λ2)/σ2

m in equations (15) and (16) arise through

the estimation of the betas and increases the terms involving the cross-sectional distribution of

betas and idiosyncratic volatilities. This term also plays a role in the tests of Gibbons, Ross and

Shanken (1989) and Shanken (1992), which take into account the estimation of the betas. For

comparison, suppose thatα is known or not estimated. Then, var(λ̂) simplifies to

1

NT

σ2
m + λ2

σ2
m

1

Ec(β2/σ2)
. (18)

In this same setting withα = 0, the Shanken (1992) standard variance of a WLS two-pass

estimator ofλ is

1

T

(
σ2

m + λ2

σ2
m

(β′Σ−1
ε β)−1 + σ2

m

)
=

1

NT

σ2
m + λ2

σ2
m

1

Ec(β2/σ2)
+

1

T
σ2

m, (19)

6 It is important to note that the estimators are notN -consistent as emphasized by Jagannathan, Skoulakis and

Wang (2002). That is,̂α 9 α andλ̂ 9 λ asN →∞. The maximum likelihood estimators are onlyT -consistent

in line with a standard Weak Law of Large Numbers. WithT fixed, λ̂ is estimated ex post, which Shanken (1992)

terms an ex-post price of risk. AsN →∞, λ̂ converges to the ex-post price of risk. Only asT →∞ doesα̂ → α

andλ̂ → λ.
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which is also rederived by Cochrane (2001) and Jagannathan, Skoulakis and Wang (2002). The

Shanken (1992) standard variance has an additional term involving the market variance which

is due to using the regular OLS moment conditions to estimate the factor loadings. This term

is not present in the maximum likelihood variance ofλ̂ because the OLS moment conditions

implicitly use stock-specific constant terms to estimate the OLS betas whereas maximum like-

lihood imposes that the constant term is shared across all stocks from the null in equation (3)

and estimates betas consistently with this assumption.

Comment 2.7 In the presence of characteristics, the asymptotic variance ofα̂ and λ̂ depend

on the joint cross-sectional distribution of factor loadings and characteristics.

We stress that we do not focus on the question of the most powerful specification test of the

factor structure in equation (1) (see, for example, Daniel and Titman, 1997; Jagannathan and

Wang, 1998; Lewellen, Nagel and Shanken, 2007) or whether the factor lies on the efficient

frontier (see, for example, Roll and Ross, 1994; Kandel and Stambaugh, 1995). Our focus is

on testing whether the model intercept term is zero and whether the factor is priced given the

model structure. Nevertheless, many authors have used additional firm-specific characteristics,

such as firm size and book-to-market ratios, as additional determinants of expected returns. If

equation (1) is extended to

Rit = α + βiλ + ziγ + βi(Rmt − µm) + σiεit,

to allow for a firm-specific characteristiczi so that betas alone do not fully account for the

cross section of expected returns, then var(α̂) and var(λ̂) now involve the joint cross-sectional

distribution of betas and characteristics. This case is examined in Appendix B. While we leave

the empirical examination of this extension to future work, we note that the same results in

Section 2.3 hold for estimating the coefficient on the firm characteristic on individual stocks

versus portfolios. Grouping into portfolios destroys cross-sectional information and inflates the

standard error of̂α andλ̂.

The asymptotic covariances between the parameters are given by:

cov(α̂, λ̂) =
1

NT

σ2
m + λ2

σ2
m

−Ec(β/σ2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
(20)

cov(α̂, β̂i) =
1

NT

λ

σ2
m

βiEc(β
/σ2)− Ec(β

2/σ2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
(21)

cov(λ̂, β̂i) =
1

NT

λ

σ2
m

Ec(β/σ2)− βiEc(1/σ
2)

varc(β/σ2)− covc(β2/σ2, 1/σ2)
. (22)
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From equation (20) we observe:

Comment 2.8 The correlation between̂α andλ̂ is negative.

This is also demonstrated by the maximum likelihood estimates in equations (9) and (10).

Thus, positive estimates ofα will be correlated with low slope estimates ofλ, which the early

studies testing the CAPM found.

2.2 Portfolios

From the properties of maximum likelihood, the estimators using all stocks are most efficient

with asymptotic variances given by equation (15) to (17). If we use onlyP portfolios as test as-

sets, what is the efficiency loss? This analysis has two goals. First, we examine some analytical

distributions of beta to develop intuition on how forming portfolios affects the efficiency loss.

Second, we ask under these settings how many portfolios are required for the efficiency loss to

be negligible.

Let the portfolio weights beφpi, wherep = 1, . . . , P and i = 1, . . . , N . The returns for

portfolio p are given by:

Rtp = α + βpλ + βp(Rmt − µm) + σpεtp, (23)

where we denote the portfolio returns with a superscriptp to distinguish them from the under-

lying securities with subscriptsi, i = 1, . . . , N , and

βp =
∑

i

φpiβi

σp =

(∑
i

φ2
piσ

2
p

)1/2

εtp =
1

σp

∑
i

φpiσiεit. (24)

The literature forming portfolios as test assets has predominantly used equal weights with

each stock assigned to a single portfolio (see for example, Jagannathan and Wang, 1996). Typ-

ically, each portfolio contains an equal number of stocks. We follow this practice and form

P portfolios, each containingN/P stocks withφki = 1/P for stocki belonging to portfolio

p and zero otherwise. Each stock is assigned to only one portfolio usually based on a factor

loading estimates or characteristic. In our theoretical framework, we assume that the true be-

tas are known; we deal with estimation error in the factor loadings in the simulation results of

Section 3.1.
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2.2.1 The Approach of Fama and French (1992)

An approach that uses all individual stocks but computes betas using test portfolios is Fama and

French (1992). This approach would seem to have the advantage of more precisely estimated

factor loadings, which come from portfolios, with the greater efficiency of using all stocks as

observations. Fama and French run cross-sectional regressions using all stocks, but they use

portfolios to estimate factor loadings. First, they createP portfolios and estimate betas,β̂p, for

each portfoliop. Fama and French assign the estimated beta of an individual stock to be the

fitted beta of the portfolio to which that stock is assigned. That is,

β̂i = β̂p ∀ i ∈ p. (25)

The Fama-MacBeth (1973) cross-sectional regression is then run over all stocksi = 1, . . . , N

but using the portfolio betas instead of the individual stock betas. In Appendix C, we show in

the context of estimating only factor risk premia, this procedure results in exactly the same risk

premium coefficients as running a cross-sectional regression using the portfoliosp = 1, . . . , P

as test assets. Thus, estimating a pure factor premium using the approach of Fama and French

(1992) on all stocks is no different from estimating a factor model using portfolios as test assets.

Thus, we do not need to separately consider this approach in our analysis.

2.2.2 Estimates of Factor Loadings

The literature’s principle motivation for grouping stocks into portfolios is that “estimates of

market betas are more precise for portfolios” (Fama and French, 1993, p430). This is due to

the diversification of idiosyncratic risk in portfolios. In the context of our maximum likeli-

hood setup, equation (17) shows that the variance forβ̂i is directly proportional to idiosyncratic

volatility, ignoring the small second term if the cross section is large. Going from oneβi = 1

stock with an idiosyncratic volatility of 50% to an equally-weighted portfolio of 100 such stocks

approximately decreases var(β̂i) by a ratio of 100.

We can also illustrate this effect in the context of a time-series regression to estimate betas.

Consider a typical stock withβi = 1 with an idiosyncratic volatility ofσi = 0.50. TheR2 of a

typical time-series regression to estimateβi is

1− (0.50)2

(0.15)2 + (0.50)2
= 0.08.

with σm = 0.15. In contrast, consider an equally-weighted portfolio of 100 stocks all with

βi = 1 and each having an idiosyncratic volatility of 50%. The idiosyncratic variance of the
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portfolio isσp =
√

σ2
i /100 = 0.05. TheR2 of the time-series regression of portfolio returns on

the market factor is now

1− (0.05)2

(0.15)2 + (0.05)2
= 0.90.

Thus, portfolios dramatically decrease measurement error in the betas.

However, this marked reduction in the standard errors of portfolio betas does not mean that

the variance of̂α and λ̂ are smaller. In fact, we now show that aggregating information into

portfolios generally increases the variance ofα̂ andλ̂ and we can only attain the efficiency of

using all stocks only in very special cases.

2.3 Comparisons of Portfolios and Individual Stocks as Test Assets

The standard errors of the risk premium estimatesα̂ andλ̂ depend on the cross-sectional distri-

bution of betas. Since the maximum likelihood estimates achieve the Cramér-Rao lower bound

creating subsets of this information can only do worse.7 Intuitively, if the individual distribu-

tion of betas is extremely diverse, there is a lot of information in the betas of individual stocks

and aggregating stocks into portfolios causes the information contained in individual stocks to

become more opaque. Thus, we expect the efficiency losses of creating portfolios to be largest

when the distribution of betas is very disperse. Naturally, the actual cross section of factor

loadings is an empirical question, which we investigate in Section 3. In this section we examine

analytically two benchmark cases where betas are uniformly distributed or normally distributed.

In both examples, we assume thatσi is the same across stocks and equal toσ. In this case the

asymptotic variances of̂α andλ̂ simplify to

var(α̂) =
σ2

NT

σ2
m + λ2

σ2
m

Ec(β
2)

varc(β)

var(λ̂) =
σ2

NT

σ2
m + λ2

σ2
m

1

varc(β)
. (26)

7 Berk (2000) also makes the point that the most effective way to maximize the cross-sectional differences in

expected returns is to not sort stocks into groups. However, Berk focuses on first forming stocks into groups

and then running cross-sectional tests within each group. In this case the cross-sectional variance of expected

returns within groups is lower than the cross-sectional variation of expected returns using all stocks. Our results

are different because we consider the efficiency losses of using portfolios created from all stocks, rather than just

using stocks or portfolios within a group. Appendix D details a special case where creating portfolios can attain

the same efficiency as using individual stocks but it is of limited empirical application.
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2.3.1 Uniform Distribution of Betas

Let βi be uniformly distributed between[a, b]. We partition all stocks intoP portfolios sorted

by beta. Each stock is assigned to only one portfoliop = 1, . . . , P . Thepth portfolio contains

stocks with betas lying in the interval
[
a + (p− 1)

(b− a)

P
, a + p

(b− a)

P

]
.

Thus, there areP portfolio betas, which are

βp = a +
(2p− 1)

2P
(b− a) for p = 1, . . . , P ,

and the variance of the portfolios,σ2
p is σ2P/N . This partitioning of stocks does not change the

cross-sectional mean of the betas, with

Ec(βp) = Ec(β) =
1

2
(a + b).

Grouping stocks into portfolios has two effects on var(α̂) and var(λ̂). First, the idiosyncratic

volatilities of the portfolios change. However, the factorσ2/N using all individual stocks in

equation (26) remains the same usingP portfolios as

σ2
p

P
=

(σ2P/N)

P
=

σ2

N
.

Thus, when idiosyncratic risk is constant, forming portfolios shrinks the standard errors of

factor loadings, but this has no effect on the efficiency of the risk premium estimate. In fact, the

formulas (26) involve the total amount of idiosyncratic volatility diversified by all stocks and

forming portfolios does not change the total composition.

Second, the variance of the portfolio betas is now smaller than the variance of all stock

betas. Forming portfolios destroys some of the information in the cross-sectional dispersion of

beta making the portfolios less efficient. When idiosyncratic risk is constant across stocks, the

only effect that creating portfolios has on var(λ̂) is to reduce the cross-sectional variance of beta

compared to using all stocks, that is varc(βp) < varc(β).

Denoting the asymptotic variances ofα̂ and λ̂ computed using portfolios as varp(α̂) and

varp(λ̂), respectively, we compute the variance ratios

varp(α̂)

var(α̂)
and

varp(λ̂)

var(λ̂)
(27)

in forming P portfolios. The analytical expressions for the efficiency losses are derived in

Appendix D. We note that neither of these variance ratios involve the idiosyncratic variance of
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stocks. We graph these variance ratios in the top panel of Figure 1 when beta is uniform between

[0, 2] for P = 2 to 20 portfolios. ForP = 5 portfolios, using portfolios generates variances of

α̂ andλ̂ that are 1.03 and 1.04 times greater than using individual stocks. ForP = 10 portfolios

varp(λ̂)/var(λ̂) is 1.01 and forP = 20 portfolios the ratios are nearly one. The ratios tend to

one quickly because for a uniform distribution of betas, only a few equally-spaced points are

needed to accurately mimic the distribution of individual stocks. But, the number of portfolios

needed to make the variance ratios small may be much larger for other distributions with long

tails , as we now examine with the normal distribution.

2.3.2 Normal Distribution of Betas

Assume that beta is normally distributed with meanµβ and standard deviationσβ. We create

portfolios by partitioning the beta space intoP sets, each containing an equal proportion of

stocks. We assign all portfolios to have1/P of the total mass. DenotingN(·) as the cumulative

distribution function of the standard normal, the critical pointsδp corresponding to the standard

normal are

N(δp) =
p

P
, p = 1, ..., P − 1.

The pointsζp, p = 1, . . . , P − 1 that divide the stocks into different portfolios are given by

ζp = µβ + σβδp. (28)

Appendix D computes the variance ratios in equation (27) in closed form for the normal distri-

bution of beta, which we report in the bottom panel of Figure 1 forµβ = 1.2 andσβ = 0.8.8

The efficiency loss in the variance ratio also does not involve the idiosyncratic volatility of

individual stocks.

When beta isN(1.2, (0.8)2) and there areP = 5 portfolios, varp(α̂) is 1.08 times larger

than var(α̂) and varp(λ̂) is 1.11 times larger than var(λ̂). For P = 10 portfolios, the ratio

varp(λ̂)/var(λ̂) is still 1.04 and even atP = 20 portfolios the variance ratios for botĥα and

λ̂ remain above 1.01. Not surprisingly, this convergence is much slower than for the uniform

distribution in the top panel of Figure 1.

8 Appendix D provides some intuition for the variance ratio varp(λ̂)/var(λ̂), which takes the form of the inverse

of a numerical approximation of var(Z2) for Z ∼ N(0, 1). This approximation evaluates the integral using non-

equally spaced rectangles lying below the normal curve and the inverse of this approximation is always greater

than one.
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Figure 1 may suggest that there is very little lost in using the standard 25 portfolios (Fama

and French, 1993) or 100 portfolios (Fama and French, 1992) in cross-sectional tests often em-

ployed in the literature. This is not true. While most of these portfolios have significant variation

in expected returns, this is not due to forming the portfolios strictly on factor loadings. Nor is

this variation in expected returns necessarily highly correlated with factor loading dispersion.

For example, the10 × 10 portfolios created by Fama and French (1992) and Jagannathan and

Wang (1996) rank stocks on beta and size. Size is correlated with beta and other factor loadings,

but the correlation is low (see Daniel and Titman, 1997). Thus, there are effectively little more

than 10 portfolios ranked only on beta. In the 25 portfolios of Fama and French (1993), port-

folios are formed on size and book-to-market ratios without any role for beta. These portfolios

deliver low beta dispersion. More recently, Pástor and Stambaugh (2003) use only 10 portfolios

sorted on a liquidity factor loading. Thus, for many studies Figure 1 suggests the efficiency

losses in creating portfolios may be significant.

We illustrate the shrinking estimation errors of beta in Figure 2, which plots two standard

error bars in vertical lines for the case of a sample size ofT = 60 with N = 1000 stocks. We

graph various percentiles of the true beta distribution with circles. For individual stocks, the

typical standard error of̂βi is around 0.38. When we create portfolios, equation (17) shows

that var(β̂i) shrinks by approximately the number of stocks in each portfolio, which isN/P .

Figure 2 graphs two standard error bars of five portfolio betas in crosses linked by the solid line.

These are graphed at the mid-point percentiles of each portfolio. The standard errors forβ̂p are

much smaller, at around 0.04, but Figure 2 also clearly shows the cross-sectional dispersion of

βp is smaller than the cross-sectional dispersion of all stock betas. It is this shrinking of the

cross-sectional dispersion of betas that causes var(α̂) and var(β̂) to increase when portfolios

are used.

3 Empirical Work

In this section we characterize the increase in standard errors resulting from using portfolios

versus individual stocks to estimate a cross-sectional factor model. Section 3.1 reports results

of Monte Carlo simulations that extend the analytical characterization of the previous section.

We compare actual estimates of a one-factor market model on the CRSP universe in Section 3.2.
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3.1 Monte Carlo Simulations

Although Section 2.3 demonstrates that creating portfolios may result in large efficiency losses

relative to using individual stocks, there are two remaining issues that we investigate with Monte

Carlo simulations. First, we allow idiosyncratic volatility to be stochastic and correlated with

betas. Second, we previously assumed that portfolios are created ranking on true betas whereas

in practice betas must be estimated. The estimation error in the betas may further contribute to

efficiency losses.

We consider the following data generating process in which the CAPM holds:

Rit = βiµm + βi(Rmt − µm) + σiεit. (29)

We simulate data at a monthly frequency where the market excess returnsRmt ∼ N(µm, σ2
m),

whereµm = 0.06/12 andσm = 0.15/
√

12. We specify a joint normal distribution for(βi, ln σi):

(
βi

ln σi

)
∼ N

((
1.09

−1.03

)
,

(
(0.77)2 (0.43)(0.77)(0.58)

(0.43)(0.77)(0.58) (0.58)2

))
(30)

with the ln σi parameters set for an annual frequency. To obtain monthlyσi values we employ

the transformationexp(v)/
√

12 for v generated from theln σi process in (30). All of these

parameters are calibrated to the sample 1960-2005 detailed in Section 3.2. From this generated

data, we compute the standard errors ofα̂ andλ̂ in the estimated process (1), which are given

in equations (15) and (16).

We simulate small samples of sizeT = 60 months withN = 5000 stocks in the cross

section. We use OLS beta estimates to form portfolios using the ex-post betas estimated over

the sample. Note that these portfolios are formed ex post at the end of the period and are not

tradable portfolios. We also form portfolios using the true betas of each small sample following

the analytical characterization in Section 2.3. Then, we compute the variance ratios in equation

(27) using the true simulated parameter values in each small sample because these are the actual

efficiency losses. We simulateM = 10, 000 small samples and report the mean, median and

standard deviation of variance ratio statistics across the generated small samples. Table 1 reports

the results. In all cases the mean and medians are very similar and the standard deviations of

the variance ratios are very small at less than 1/10th the value of the mean or median.

Panel A formsP portfolios on true betas and shows that forming as few asP = 5 portfolios

leads to standard variances 2.99 and 3.10 times larger forα̂ andλ̂, respectively. These are sub-

stantially higher than the setting of Section 2.3.2 where idiosyncratic risk was constant across
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stocks and betas were normally distributed, where the corresponding variance ratios were 1.08

and 1.11 forP = 5 portfolios. Even when 2500 portfolios are used with each portfolio con-

taining two stocks, the variance ratios are 1.60 for bothα̂ andλ̂. This substantial increase can

be traced to two sources. First, we work with a small sample ofN = 5000 stocks rather than

an entire distribution of stocks as in Section 2.3.2. The effect of this channel is very small be-

causeN = 5000 is more than enough to cover the normal distribution of betas and idiosyncratic

volatility very well. Second,σi is now stochastic and positively correlated with betas. Creating

portfolios significantly shrinks the−covc(β
2/σ2, 1/σ2) term in equations (15) and (16) causing

the standard variances using portfolios to substantially increase. When the correlation of beta

andln σ is set higher than our value of 0.43, there are further increases in the efficiency losses

of using portfolios.

In Panel B, we form portfolios on OLS estimated betas.9 When the betas are estimated,

creating portfolios further increases the efficiency losses. ForP = 25 portfolios the mean

variance ratio varp(λ̂)/var(λ̂) is 5.14 in Panel B compared to 3.02 in Panel A when portfolios

are formed on the true betas. ForP = 100 portfolios formed on estimated betas, the mean

variance ratio for̂λ is 4.95. Thus, the efficiency losses considerably increase once portfolios

are formed on estimated betas. We expect that more sophisticated approaches to estimating

betas, such as Avramov and Chordia (2006) and Meng, Hu and Bai (2007), will not make the

performance of using portfolios any better because these methods can be applied at both the

stock and the portfolio level.

When betas are estimated, the cross section of estimated betas is wider, by construction, than

the cross section of true betas. These estimation errors are diversifiable in portfolios, which is

why theP = 5 andP = 10 portfolio variance ratios are slightly lower than the moderately

largeP = 25 or P = 50 cases. For example, the variance ratio forλ̂ is 4.61 forP = 5 when we

sort on estimated betas, but 5.14 usingP = 25 portfolios. Interestingly, the efficiency losses

are greatest for usingP = 25 portfolios, a number often used in empirical work. As the number

of portfolios further increases, the diversification of beta estimation error becomes minimal,

but this is outweighed by the increasing dispersion in the cross section of (noisy) betas causing

the variance ratios to decrease. These two offsetting effects cause the slight hump-shape in the

variance ratios in Panel B.

In summary, when idiosyncratic volatility is correlated with betas, the efficiency losses as-

9 We confirm Shanken and Zhou (2007) that the maximum likelihood estimates are very close to the two-

pass cross-sectional estimates and portfolios formed on maximum likelihood estimates give very similar results to

portfolios formed on the OLS betas.
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sociated with using portfolios instead of individual stocks in asset pricing tests are even larger

than when idiosyncratic volatility is constant across stocks. When portfolios are formed based

on estimated, rather than true betas, the efficiency losses are further magnified.

3.2 Empirical Estimates

We close our analysis by estimating a one-factor model using the CRSP universe of individual

stocks or using portfolios. Our empirical strategy mirrors the data generating process (1) and

looks at the relation between realized factor loadings and realized average returns. We take the

CRSP value-weighted excess market return to be the single factor, but do not assume that its

mean,µm, is equal toλ. We do not claim that the unconditional CAPM is appropriate or holds,

rather our purpose is to illustrate the differences on point estimates and standard errors ofα and

λ when the entire sample of stocks is used compared to creating test portfolios.

3.2.1 Distribution of Betas and Idiosyncratic Volatility

We work in non-overlapping five-year periods, which is a trade-off between a long enough sam-

ple period for estimation but over which an average true (not estimated) stock beta is unlikely

to change drastically (see comments by Lewellen and Nagel, 2006). Our first five-year period

is from January 1960 to December 1965 and our last five-year period is from January 2000 to

December 2005. We consider each stock to be a different draw from equation (1). All our data

is at a monthly frequency and we take all stocks listed on NYSE, AMEX, and NASDAQ with

share type codes of 10 or 11. In order to include a stock in our universe it must be traded at the

end of each five-year period and must have data for at least three out of five years. Our stock

returns are in excess of the Ibbotson one-month T-bill rate. In all our empirical work we report

regular OLS estimates of betas and use second-pass estimates ofα andλ to construct standard

errors.

Table 2 reports summary statistics of the beta and idiosyncratic volatilities across firms.

The full sample contains 29,096 firm observations. As expected, betas are centered around

one with the beta distribution having a mean of 1.093 and a standard deviation of 0.765. The

average annualized idiosyncratic volatility is 0.425 with a standard deviation of 0.278. Average

idiosyncratic volatility has generally increased over the 1960-2005 period beginning at 0.278

and ending at 0.438, consistent with the findings of Campbell et al. (2001). The cross-sectional

dispersion ofσ and ln σ has also increased over the sample. Stocks with high idiosyncratic
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volatilities tend to be stocks with high betas, with the correlation between beta andln σ equal

to 0.430.

In Figure 3, we plot empirical histograms of beta (top panel) andln σ (bottom panel) over

all firm observations. The distribution of beta is positively skewed, at 0.783 and very fat-

tailed with a kurtosis of 6.412. This implies there is very valuable cross-sectional dispersion

information in the tails of betas that creating portfolios may destroy. The distribution ofln σ

is fairly normal, with almost zero skew at 0.0161 and little excess kurtosis with a kurtosis of

3.326. The behavior of near-normal residuals forln σ is most commonly seen in a time-series

context like the stochastic volatility models of Jacqui, Polson and Rossi (1994) and others who

specifyln σ as a stochastic process, but Figure 3 shows that the cross-sectional distribution of

ln σ is also well-approximated by a normal distribution.

3.2.2 Individual Stocks versus Portfolios

Panel A of Table 3 reports the estimates ofα andλ in equation (1) using all 29,096 firm obser-

vations. The estimates are produced by the two-pass methodology so OLS betas are estimated

for each stock over each five-year period. Then, all stocks are stacked into one panel and the

second cross-sectional regression is run by using realized firm excess returns over each five-

year period as the regressor and the estimated betas as the regressand. Using these consistent

estimates we compute various standard errors and t-statistics. The columns labelled “Pooled”

report robust pooled standard errors where the clustering is done at the firm or portfolio level

in each five-year period. We compute the maximum likelihood standard errors (equations (15)

and (16)) in the columns labelled “Max Lik.” Finally, the last two columns of Table 3 report

Shanken (1992) standard errors.

Using all stocks produces an annualized value ofα̂ = 6.14% and λ̂ = 5.24%. Pooled

standard errors are 0.29 and 0.26, respectively, but these do not take into account the errors-

in-variables of the estimated betas. The maximum likelihood and the Shanken standard errors

do take into account the fact that betas are estimated and are larger than the pooled standard

errors. The maximum likelihood standard errors ofα̂ and λ̂ are 0.84 and 0.92, respectively.

The Shanken standard errors are 0.42 and 0.79, respectively. All of these t-statistics reject the

CAPM as the hypothesisα = 0 is rejected. Clearly while the CAPM is rejected, we also reject

thatλ = 0 so the market factor is priced. In fact, over 1960-2005, the market excess return is

µm = 5.76% per annum, which is very close to the estimateλ̂ = 5.24% and we fail to reject the

hypothesis that̂λ = µm using all standard error estimates.
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Theoretically the Shanken standard errors should be larger than the maximum likelihood

ones because the Shanken errors assume additional moment conditions for the betas and do not

impose all the restrictions under the null of equation (1). The reason the Shanken standard errors

are smaller than the maximum likelihood standard errors is because we compute all standard

errors using the two-pass pooled estimates, not the maximum likelihood estimates. What is

important are the increases in the standard errors, or the decreases in the absolute values of

the t-statistics, over each type of standard error as we form portfolios. We investigate these in

Panels B and C.

“Ex-Post” Portfolios

We form “ex-post portfolios” in Panel B of Table 3. Over each five-year period we group stocks

into P portfolios based on realized OLS estimated betas over those five years. All stocks are

equally weighted at the end of the five year period within each portfolio. Thus, these port-

folios are formed ex post and are not tradeable. Nevertheless, they represent valid test assets

to estimate the cross-sectional model (1) as we can still measure the relation between realized

covariances with the market and realized average returns. In all cases,α̂ andλ̂ estimated using

the ex-post portfolios are very close to the estimates computed using all stocks.

However, the standard errors using portfolios are much larger than the standard errors com-

puted using all stocks. For example, forP = 25 portfolios the maximum likelihood standard

error onλ̂ is 1.90 compared with 0.92 using all stocks. The corresponding Shanken standard

errors are 1.85 and 0.79, respectively. AsP increases, the standard errors decrease (and the

t-statistics increase) to approach the values using individual stocks. AtP = 100 portfolios the

maximum likelihood standard error for̂λ is 0.93, almost identical to the standard error of 0.92

using all stocks. But, the Shanken standard error forλ̂ with P = 100 portfolios is 1.26, which

is still significantly larger than 0.79 using all stocks. Thus, forming portfolios ex post results in

significant losses of efficiency.

“Ex-Ante” Portfolios

In Panel C of Table 3 we form “ex-ante” tradeable portfolios. We group stocks into portfolios

at the beginning of each calendar year ranking on the estimated market beta over the last five

years. Equally-weighted portfolios are created and the portfolios are held for twelve months to

produce monthly portfolio returns. The portfolios are rebalanced annually. The first estimation

period is January 1954 to December 1959 to produce monthly returns for the calendar year 1960

and the last estimation period is January 2003 to December 2004 to produce monthly returns
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for 2005. Thus, the sample period is exactly the same as Panels A and B with all stocks and the

ex-post portfolios. After the ex-ante portfolios are created, we compute realized OLS market

betas of each portfolio in each non-overlapping five-year period and then run a second-pass

cross-sectional regression to estimateα andλ.

Panel C shows that the estimates ofα andλ from these ex-ante portfolios are very different

from Panels A and B. Using the ex-ante portfolios produces an estimate ofα approximately

around 10-11% and an estimate ofλ close to zero. With the ex-ante portfolios we would reject

the CAPM (α = 0 andλ = µm) and we also cannot reject the hypothesis that the market factor

is not priced with all the t-statistics corresponding toλ̂ being close to zero.

The ex-ante portfolios produce such a markedly differentα̂ andλ̂ because ranking on pre-

formation betas estimated over the previous five years dramatically shrinks the post-formation

realized distribution of beta. It is the realized distribution of betas that is important for testing

the factor model. As an example, takeP = 10 portfolios. The average pre-formation beta for

each stock in each portfolio, averaging the beginning of each calendar year, ranges from 0.245

for decile 1 to 2.332 to decile 10. The average realized post-formation beta for each portfolio,

averaging across all five-year periods, ranges from 0.661 to 1.696. Thus, this portfolio formation

has significantly decreased the cross-sectional dispersion of beta and this produces a very low

value of λ̂. Put another way, the ex-ante portfolios have a much smaller spread in realized

betas to identifyλ. Note that the ex-post betas in Panel B have larger beta dispersions because

the portfolios are created at the end of each period, rather than at the beginning of each year.

Effectively, the ex-ante portfolios have damped the information in the long tails of the beta

distribution in Figure 3 even more than the ex-post portfolios.

Like Panel B, Panel C shows all three types of standard errors decrease asP increases.

The pooled standard errors using portfolios are always larger than the standard errors using all

stocks. Pooled standard errors do not depend on risk premia estimates; the maximum likelihood

and Shanken standard errors do. The maximum likelihood standard errors also shrink asP

increases, but atP = 100, the standard error for̂λ is 0.51, which is smaller than 0.92 using

all stocks in Panel A. The reason is the estimateλ̂ is near zero in the ex-ante portfolios and

this shrinks the multiplier(σ2
m + λ2)/σ2

m in equation (16). The Shanken standard error is less

affected by the point estimate because it contains an additive term involving the market variance

(see an example in equation (19)). The Shanken standard error forP = 25 portfolios is 1.71 for

λ̂ versus 0.79 for all stocks. Nevertheless, Panel C also shows the fewer the portfolios used, the

larger the standard errors for the risk premia estimates.
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4 Conclusion

The finance literature has taken two approaches to specifying base assets in tests of cross-

sectional factor models. One approach is to aggregate stocks into portfolios for test assets.

Another approach is to use the whole stock universe and run cross-sectional tests directly on all

individual stocks. The motivation for creating portfolios is originally stated by Blume (1970)

that betas are estimated with error and this estimation error is diversified away by aggregating

stocks into portfolios. Numerous authors, Black, Jensen and Scholes (1972), Fama and Mac-

Beth (1973), and Fama and French (1993) have used this motivation to use portfolios as base

assets in factor model tests. These more precise estimates of factor loadings should translate

into more precise estimates, and lower standard errors, of factor risk premia.

We show analytically and confirm empirically that this motivation is wrong. The sampling

uncertainty of factor loadings is markedly reduced by grouping stocks into portfolios but this

does not translate into lower standard errors for factor risk premia estimates. The most important

determinant of the standard variance of risk premia is the cross-sectional distribution of risk

factor loadings. Intuitively, the more disperse the cross section of betas, the more information

the cross section contains to estimate risk premia. Aggregating stocks into portfolios causes

the information contained in individual stock betas to become more opaque and tends to shrink

the cross-sectional dispersion of betas. Thus, in creating portfolios, estimates of beta become

more precise, but the dispersion of beta shrinks. It is the loss of information in the cross section

of beta when stocks are grouped into portfolios that contributes to potentially large efficiency

losses in using portfolios versus individual stocks.

The most important message of our results is that using individual stocks permit more pow-

erful tests of whether factors are priced. When just two-pass cross-sectional regression esti-

mators are estimated there should be no reason to create portfolios and the tests should be run

on individual stocks. If most efficient factor premia estimates are desired, the use of portfolios

in cross-sectional tests should be carefully motivated and be restricted to settings where eco-

nomic models apply directly to portfolios, such as industries, or portfolios should be used only

in econometric tests that require non-linear procedures necessitating a parsimonious number of

test assets.
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Appendix

A Derivation of Asymptotic Variances
We restate the inverse of the Hessian here for convenience:
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To invert this we partition the matrix as:
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Note that we only list the beta for one stocki in the Hessian in equation (A-1), but there areN such equations. In
the above equation, this yields the summation overi in the second term.
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This gives the variance of̂α andλ̂ in equations (15) and (16), and the covariance ofα̂ andλ̂ in equation (20).
To evaluate the termD−1(I + CQ−1BD−1) we evaluate
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Thus,
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This gives the variance of̂βi in equation (17).
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To compute the covariances between (α̂, λ̂) andβ̂i, we simplify
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This yields the covariances in equations (21) and (22).

B Factor Risk Premia and Characteristics
Consider the data generating process

Rit = α + βiλ + ziγ + βi(Rmt − µm) + σiεit, (B-1)

wherezi is a firm-specific characteristic andεit is IID N(0, 1). Assume thatα, σi, µm, andσi are known and the
parameters of interest areΘ = (λ γ βi). We assume the intercept termα is known just to make the computations
easier. The Hessian is given by
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Using methods similar to Appendix A, we can derive var(λ̂) and var(γ̂) to be
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where we define the cross-sectional moments
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C The Approach of Fama and French (1992)
In the second-stage of the Fama and MacBeth (1973) procedure, returns,ri, are regressed onto estimated betas,β̂i

yielding a factor coefficient of

λ̂ =
cov(ri, β̂i)

var(ri)
.
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In the approach of Fama and French (1992),P portfolios are first created and then the individual stock betas
are assigned to be the portfolio beta to which that stock belongs, as in equation (25). The numerator of the Fama-
MacBeth coefficient can be written as:
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where the first to the second line follows because of equation (25). The denominator of the estimated risk premium
is
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where the equality in the third line comes from̂βp = β̂i for all i ∈ p, with N/P stocks in portfoliop having
the same value ofβp for their fitted betas. Thus, the Fama and French (1992) procedure will produce the same
Fama-MacBeth (1973) coefficient as using only the information fromp = 1, . . . , P portfolios.

D Efficiency Results for Analytical Beta Distributions

D.1 Uniform Distribution for Beta
Assume that each stock has constant idiosyncratic volatilityσ and beta is uniformly distributed over[a, b]. In this
case the cross-sectional moments of beta are given by:
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It is then straightforward to calculate the asymptotic variances of the parameters from equation (26), which are
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For theP portfolios,Ec(β2
p) can be computed as

Ec(β2
p) =

1
P

P∑
p=1

(
a +

(2p− 1)
2P

(b− a)
)2

= a2 + a(b− a) +
(b− a)2

4P 3

P∑
p=1

(2p− 1)2

= ab +
(b− a)2

4P 3

P (4P 2 − 1)
3

.

Thus, the relevant cross-sectional moments for theP portfolios are:
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where we have used a subscriptp to denote that the variances are computed using a universe of theP portfolios.

D.2 Normal Distribution
If beta is normally distributed with meanµβ and standard deviationσβ , the relevant cross-sectional moments are:
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β

varc(β2) = σ2
β .

TheP portfolios are partitioned by the pointsζp defined in equation (28), where
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Therefore, the cross-sectional moments for theP portfolio betas are:
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The ratio of the standard variance ofα̂ using theP portfolios compared to the standard variance using all
stocks is:
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where we use the subscriptp to denote the variance of the estimator computed using theP portfolios. Similarly,
we can compute

varp(λ̂)
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As expected, asP →∞, varp(α̂) → var(α̂) and varp(λ̂) → var(λ̂) since asP →∞,
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wheref(·) is the probability density function of the standard normal. From Equation (28), we have

1
P

= N(δp)−N(δp−1) ≈ N ′(δp)dδp = f(δp)dδp.

Combining the above two equations, we obtain
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D.3 A Special Case when Portfolios Have the Same Efficiency
We examine a special case where certain portfolios attain the same efficiency as using all stocks. Suppose thatα

is known and we only need to estimateλ. The variance of̂λ using all stocks is
(
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Suppose we have a portfolio with weight proportional toβi/σ2
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With this single portfolio, we can estimateλ from the time series mean of the portfolio return, that is there is no
cross section used. Since

T
β2

φ

σ2
φ

= T
∑

i

β2
i

σ2
i

,

this portfolio produces the same standard error forλ̂ as using all stocks together. What underlies this result is that
weighting byβi/σ2

i efficiently captures the same information in each cross section at timet.
By similar reasoning, in the case whereλ is known and we need to estimate onlyα, using a single portfolio

with weight proportional to1/σ2
i yields the same standard variance forα̂ as using all stocks together. These

examples are unrealistic empirical cases because no cross sectional information is used (only one portfolio is
created).
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Table 1: Variance Ratio Efficiency Losses in Monte Carlo Simulations

Number of PortfoliosP

5 10 25 50 100 250 1000 2500

Panel A: Sorting on True Betas

Alpha Efficiency Variance Ratios varp(α̂)/var(α̂)

Mean 2.99 2.99 2.97 2.94 2.89 2.74 2.23 1.60
Median 2.96 2.96 2.96 2.92 2.87 2.73 2.23 1.60
Stdev 0.17 0.17 0.16 0.16 0.16 0.14 0.10 0.06

Lambda Efficiency Variance Ratios varp(λ̂)/var(λ̂)

Mean 3.10 3.07 3.02 2.97 2.90 2.75 2.23 1.60
Median 3.09 3.05 3.00 2.95 2.89 2.74 2.23 1.60
Stdev 0.16 0.16 0.15 0.15 0.15 0.13 0.10 0.06

Panel B: Sorting on Estimated Betas

Alpha Efficiency Variance Ratios varp(α̂)/var(α̂)

Mean 5.09 5.55 5.78 5.74 5.53 4.95 3.24 1.87
Median 5.06 5.52 5.76 5.71 5.51 4.91 3.22 1.86
Stdev 0.49 0.57 0.59 0.57 0.53 0.47 0.26 0.10

Lambda Efficiency Variance Ratios varp(λ̂)/var(λ̂)

Mean 4.61 4.96 5.14 5.11 4.95 4.49 3.07 1.83
Median 4.57 4.92 5.11 5.08 4.93 4.47 3.04 1.83
Stdev 0.39 0.45 0.47 0.46 0.43 0.39 0.23 0.10

The table reports the efficiency loss variance ratios varp(θ̂)/var(θ̂) for θ = α or λ where varp(θ̂) is computed
usingP portfolios and var(θ) is computed using all stocks. We simulate 10,000 small samples ofT = 60
months withN = 5, 000 stocks using the model in equations (29) and (30). Panel A sorts stocks by true betas
in each small sample and Panel B sorts stocks by estimated betas. Betas are estimated in each small sample by
regular OLS, but the standard variances are computed using the true cross-sectional betas and idiosyncratic
volatilities. All the portfolios are formed equally weighting stocks at the end of the period.
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Table 2: Summary Statistics of Betas and Idiosyncratic Volatilities

Means Stdev Correlations

β σ ln σ β σ ln σ (β, σ) (β, ln σ) No Obs

1960-1965 1.192 0.278 -1.395 0.575 0.153 0.460 0.279 0.354 1434
1965-1970 1.342 0.350 -1.139 0.542 0.151 0.423 0.553 0.610 1821
1970-1975 1.316 0.399 -0.997 0.548 0.164 0.398 0.570 0.559 2210
1975-1980 1.276 0.338 -1.183 0.548 0.160 0.438 0.562 0.630 2054
1980-1985 1.098 0.331 -1.188 0.534 0.139 0.403 0.421 0.457 1943
1985-1990 1.057 0.381 -1.075 0.463 0.190 0.472 0.287 0.365 3670
1990-1995 0.984 0.437 -1.007 0.918 0.281 0.603 0.163 0.227 4935
1995-2000 0.935 0.563 -0.772 0.774 0.382 0.647 0.589 0.605 5723
2000-2005 1.114 0.438 -1.039 1.002 0.301 0.670 0.597 0.600 5306

Overall 1.093 0.425 -1.026 0.765 0.278 0.580 0.390 0.430 29096

The table reports the summary statistics of betas (β) and idiosyncratic volatility (σ) over each five year sample
and over the entire sample. We estimate betas and idiosyncratic volatility in each five-year non-overlapping
period using time-series regressions of monthly excess stock returns onto a constant and monthly excess
market returns. The idiosyncratic stock volatilities are annualized by multiplying by

√
12. The last column

reports the number of stock observations.
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Table 3: Estimates of a One-Factor Model

Pooled Max Lik Shanken

Num PortsP Estimate (%) SEs |t-stats| SEs t-stats SEs |t-stats|

Panel A: All Stocks

α 6.14 0.29 21.0 0.84 7.29 0.42 14.5
λ 5.24 0.26 20.2 0.92 5.70 0.79 6.60

Panel B: “Ex-Post” Portfolios

5 α 5.20 1.75 2.98 4.75 1.09 3.61 1.44
λ 4.88 1.82 2.68 4.37 1.12 3.31 1.47

10 α 5.08 1.73 2.94 3.29 1.54 2.80 1.81
λ 4.99 1.71 2.92 3.04 1.64 2.59 1.92

25 α 4.99 1.56 3.20 2.04 2.45 1.96 2.55
λ 5.06 1.46 3.48 1.90 2.67 1.85 2.74

50 α 4.99 1.34 3.71 1.42 3.51 1.53 3.25
λ 5.07 1.22 4.15 1.33 3.82 1.51 3.35

100 α 4.98 1.11 4.47 0.99 5.02 1.21 4.12
λ 5.07 1.00 5.06 0.93 5.45 1.26 4.02

Panel C: “Ex-Ante” Portfolios

5 α 11.0 1.96 5.61 1.88 5.84 3.57 3.08
λ -0.17 1.67 0.10 1.85 0.09 3.58 0.05

10 α 10.9 1.26 8.65 1.38 7.94 2.56 4.28
λ -0.11 1.06 0.11 1.34 0.08 2.62 0.04

25 α 10.9 0.78 13.9 0.91 12.0 1.61 6.74
λ -0.06 0.64 0.09 0.88 0.06 1.73 0.03

50 α 10.7 0.67 15.9 0.68 15.6 1.16 9.18
λ 0.11 0.55 0.20 0.66 0.17 1.33 0.08

100 α 10.4 0.56 18.6 0.53 19.5 0.86 12.1
λ 0.34 0.47 0.71 0.51 0.65 1.09 0.31
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Note to Table 3
The point estimates ofα andλ in equation (1) are reported over all stocks (Panel A) and various portfolio
sortings (Panels B and C). The betas are estimated by running a first-pass OLS regression of monthly ex-
cess stock returns onto monthly excess market returns over non-overlapping five-year samples beginning in
January 1960 and ending in December 2005. All of these stock returns in each five-year period are stacked
and treated as one panel. We use a second-pass cross-sectional regression to computeα̂ andλ̂. Using these
point estimates we compute the various standard errors (SEs) and absolute values of t-statistics (|t-stats|). The
columns labelled “Pooled” report robust pooled standard errors where the clustering is done at the firm or
portfolio level in each five-year period. We compute the maximum likelihood standard errors (equations (15)
and (16)) in the columns labelled “Max Lik.” The last two columns report Shanken (1992) standard errors.
In Panel B we form “ex-post portfolios,” which are formed in each five-year period by grouping stocks into
equally-weightedP portfolios based on realized estimated betas over those five years. In Panel C we form
“ex-ante portfolios,” which are formed by grouping stocks into portfolios at the beginning of each calendar
year ranking on the estimated market beta over the last five years. Equally weighted portfolios are created and
the portfolios are held for twelve months to produce monthly portfolio returns. The portfolios are rebalanced
annually at the beginning of each calendar year. The first estimation period is January 1954 to December
1959 to produce monthly returns for the calendar year 1960 and the last estimation period is January 2003 to
December 2004 to produce monthly returns for 2005. Thus, the sample period is exactly the same as using
all stocks and the ex-post portfolios. After the ex-ante portfolios are created, we follow the same procedure
as Panels A and B to compute realized OLS market betas in each non-overlapping five-year period and then
estimate a second-pass cross-sectional regression. In both Panels B and C, the second-pass cross-sectional
regression is run only on theP portfolio test assets. All estimateŝα andλ̂ are annualized by multiplying the
monthly estimates by 12.
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Figure 1: Asymptotic Variance Ratios ofα̂ andλ̂ using Portfolios versus All Stocks
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We graph the ratio of the asymptotic variance ofα̂ andλ̂ computed using only portfolios to using all stocks,
that is varp(θ̂)/var(θ̂), whereθ = α or λ and thep subscript denotes the variance is computed using onlyP
portfolios. We assume a uniform distribution for beta between[0, 2] in the top panel and a normal distribution
for beta with meanµβ = 1.2 and standard deviationσβ = 0.8. The formulas for the variance ratios are given
in Appendix D.

37



Figure 2: Standard Errors for̂β Using All Stocks or Five Portfolios
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We assume that beta is drawn from a normal distribution with meanµβ = 1.2 and standard deviationσβ =
0.8 and idiosyncratic volatility across stocks is constant atσi = σ = 0.5/

√
12. We assume a sample of size

T = 60 months withN = 1000 stocks. We graph two standard error bars ofβ̂ for the various percentiles
of the true distribution marked in circles for percentiles 0.01, 0.02, 0.05, 0.1, 0.4, 0.6, 0.8, 0.9, 0.95, 0.98,
and 0.99. The standard error bands for the portfolio betas forP = 5 portfolios are marked with crosses and
connected by the line. These are graphed at the percentiles 0.1, 0.3, 0.5, 0.7, 0.9 which correspond to the
mid-point percentiles of each portfolio. The formula for var(β̂) is given in equation (17) and the computation
for the portfolio moments are derived in Appendix D.
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Figure 3: Empirical Distributions of Betas and Idiosyncratic Volatilities
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The figure plots an empirical histogram over the 29,096 firms in non-overlapping five year samples from
1960-2005, computed by OLS estimates. Panel A plots the histogram of market betas while Panel B plots the
histogram of annualized log idiosyncratic volatility.
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