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Do Funds Make More When They Trade More?

Abstract
We model fund turnover in the presence of time-varying profit opportunities. Our model predicts a positive
relation between an active fund's turnover and its subsequent benchmark-adjusted return. We find such a
relation for equity mutual funds. This time-series relation between turnover and performance is stronger than
the cross-sectional relation, as the model predicts. Also as predicted, the turnover-performance relation is
stronger for funds trading less-liquid stocks and funds likely to possess greater skill. Turnover is correlated
across funds. The common component of turnover is positively correlated with proxies for stock mispricing.
Turnover of similar funds helps predict a fund's performance.
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ABSTRACT

We model fund turnover in the presence of time-varying profit opportunities. Our model

predicts a positive relation between an active fund’s turnover and its subsequent benchmark-

adjusted return. We find such a relation for equity mutual funds. This time-series relation

between turnover and performance is stronger than the cross-sectional relation, as the model

predicts. Also as predicted, the turnover-performance relation is stronger for funds trading

less-liquid stocks and funds likely to possess greater skill. Turnover is correlated across

funds. The common component of turnover is positively correlated with proxies for stock

mispricing. Turnover of similar funds helps predict a fund’s performance.
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Mutual funds invest trillions of dollars on behalf of retail investors. The lion’s share of this

money is actively managed, despite the growing popularity of passive investing.1 Whether

skill guides the trades of actively managed funds has long been an important question, given

active funds’ higher fees and trading costs. We take a fresh look at skill by analyzing time

variation in active funds’ trading activity. We explore a simple idea: A fund trades more

when it perceives greater profit opportunities. If the fund has the ability to identify and

exploit those opportunities, then it should earn greater profit after trading more heavily.

We formalize this idea by developing a model of fund trading in the presence of time-

varying profit opportunities. Each period, funds identify opportunities to establish positions

that yield profits in the subsequent period, net of trading costs. A fund’s optimal amount

of turnover maximizes its expected profit, conditional on equilibrium prices. Profit oppor-

tunities vary over time, jointly determining turnover and performance. A fund trades more

in periods when it has more profit opportunities. Our model’s key implication is a positive

time-series relation between fund turnover and subsequent fund performance.

Consistent with the model, we find that a fund’s turnover positively predicts the fund’s

subsequent benchmark-adjusted return. This new evidence of skill comes from our sample

of 3,126 active U.S. equity mutual funds from 1979 through 2011. The result is significant

not only statistically but also economically: a one-standard-deviation increase in turnover is

associated with a 0.66% per year increase in performance for the typical fund. Funds seem

to know when it’s a good time to trade.

We focus on the time-series relation between turnover and performance for a given fund.

In contrast, prior studies ask whether there is a turnover-performance relation across funds.

The evidence on this cross-sectional relation is mixed. For example, Elton, Gruber, Das, and

Hlavka (1993) and Carhart (1997) find a negative relation, Wermers (2000), Kacperczyk,

Sialm, and Zheng (2005), and Edelen, Evans, and Kadlec (2007) find no significant relation,

and Dahlquist, Engström and Söderlind (2000) and Chen, Jagadeesh and Wermers (2001)

find a positive relation. In accord with this mixed message, our sample delivers a cross-

sectional relation that is positive but only marginally significant.

Consistent with the empirical results, our model predicts that the time-series relation

between turnover and performance should be stronger than the cross-sectional relation. The

reason is that a given trade’s cost reduces current return, whereas its profit increases future

return. Trading costs therefore do not dampen the time-series turnover-performance relation

1As of 2013, mutual funds worldwide have about $30 trillion of assets under management, half of which
is managed by U.S. funds. About 52% of U.S. mutual fund assets are held in equity funds, and 81.6% of the
equity funds’ total net assets are managed actively (Investment Company Institute, 2014).

1



 Electronic copy available at: http://ssrn.com/abstract=2524397 

as much as they dampen the cross-sectional relation, for which the timing of profit and

trading cost is irrelevant.

Our model also predicts that funds trading less-liquid stocks should have a stronger time-

series relation between turnover and performance. The turnover of such funds optimally

responds less to profit opportunities, so a given change in turnover implies a greater change

in profit opportunities. Consistent with this prediction, we find that funds holding stocks

of small companies, or small-cap funds, have a significantly stronger turnover-performance

relation than do large-cap funds. Similarly, we find a stronger relation for small funds than

large funds, consistent with the ability of smaller funds to trade less-liquid stocks, given that

smaller funds tend to trade in smaller dollar amounts.

The model also predicts a stronger turnover-performance relation for funds that are more

skilled. Intuitively, if a less-skilled fund trades on profit opportunities that are not really

there, then some of the fund’s turnover is unrelated to future performance. Under the

plausible assumption that more-skilled funds charge higher fees, the turnover-performance

relation should be stronger for more expensive funds. That is indeed what we find.

We find strong evidence of commonality in fund turnover. Turnover’s common com-

ponent appears to be related to mispricing in the stock market. Average turnover across

funds—essentially the first principal component of turnover—is significantly related to three

proxies for potential mispricing: investor sentiment, cross-sectional dispersion in individual

stock returns, and aggregate stock market liquidity. Funds trade more when sentiment or

dispersion is high or liquidity is low, suggesting that stocks are more mispriced when funds

collectively perceive greater profit opportunities. We also find that commonality in turnover

is especially high among funds sharing similar characteristics, suggesting more comovement

in profit opportunities across similar funds.

Average turnover of similar funds positively predicts a fund’s future return, even when we

control for the fund’s own turnover. This predictive relation is significant: a one-standard-

deviation increase in similar funds’ average turnover is associated with a 0.43% per year

increase in fund performance. The relation is weaker when average turnover is computed

across all funds, consistent with lesser commonality among dissimilar funds.

The predictive ability of average turnover is consistent with the presence of error in our

empirical measure of an individual fund’s turnover. This measure aims to exclude trades

arising from a fund’s inflows and outflows, thereby reflecting only trades arising from the

fund’s decisions to replace some stocks with others, but this objective can be accomplished

only imperfectly. Due to commonality in turnover, average turnover of similar funds helps
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capture a fund’s true turnover, thereby helping predict the fund’s performance.

Average turnover should also predict returns if funds trade suboptimally in that only a

portion of their trading exploits true profit opportunities. If those opportunities are cor-

related across funds while funds’ trading mistakes are not, then higher average turnover

indicates greater profit opportunities in general. Any opportunity identified by a given fund

is likely to be more profitable if there is generally more mispricing at that time, as indicated

by other funds’ heavy trading. Our model formalizes this story. Suboptimal trading can also

explain the superior predictive power of similar funds’ average turnover, as that turnover

reflects especially relevant profit opportunities—those shared by similar funds.

The literature investigating the skill of active mutual funds is extensive. Average past

performance delivers a seemingly negative verdict, since many studies show that active funds

have underperformed passive benchmarks, net of fees.2 Yet active funds can have skill.

Skilled funds might charge higher fees, and some funds might be more skilled than others.

Moreover, with fund-level or industry-level decreasing returns to scale, skill does not equate

to average performance, either gross or net of fees.3

We provide novel evidence of skill in active management. Our results indicate that funds’

profit opportunities vary over time, and that funds have the ability to identify and exploit

these opportunities. While others have already found evidence of skill, our focus on time

variation in profit opportunities seems unique.4 In a way, we identify a new dimension of

fund skill—the ability to tell when profit opportunities are better. Our finding that funds

are able to successfully time their trading activity seems new in the literature.

While we find that funds perform better after increasing their trading activity, others

have related fund activity to performance in different ways. Kacperczyk, Sialm, and Zheng

(2005) find that funds that are more active in the sense of having more concentrated port-

folios perform better. Kacperczyk, Sialm, and Zheng (2008) find that a fund’s actions be-

tween portfolio disclosure dates, as summarized by the “return gap,” positively predict fund

performance. Cremers and Petajisto (2009) find that funds that deviate more from their

benchmarks, as measured by “active share,” perform better. Cremers, Ferreira, Matos, and

Starks (2016) find similar results. In the same spirit, Amihud and Goyenko (2013) find bet-

2See, for example, Jensen (1968), Elton, Gruber, Das, and Hlavka (1993), Malkiel (1995), Gruber (1996),
Carhart (1997), Wermers (2000), Pástor and Stambaugh (2002), and Fama and French (2010), among others.

3See Berk and Green (2004), Pástor and Stambaugh (2012), Stambaugh (2014), Berk and van Binsbergen
(2015), and Pástor, Stambaugh, and Taylor (2015).

4Studies reporting evidence of skill include Chen, Jegadeesh, and Wermers (2000), Cohen, Coval, and
Pástor (2005), Cohen, Frazzini, and Malloy (2008), Baker et al. (2010), Kacperczyk, van Nieuwerburgh, and
Veldkamp (2014), and others. Our approach and findings are quite different from those of Kacperczyk et al.
who find evidence of time variation in skill over the business cycle.
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ter performance among funds having lower R-squareds from benchmark regressions. These

studies are similar to ours in that they also find that more-active funds perform better, but

there are two important differences. First, all of these studies measure fund activity in ways

different from ours. Second, all of them identify cross-sectional relations between activity

and performance, whereas we establish a time-series relation.

As noted earlier, our measure of fund turnover aims to exclude trades induced by fund

flows, thus capturing trades that are largely discretionary. A different approach is used

by Alexander, Cici, and Gibson (2007), who classify a fund’s large stock purchases (sales)

concurrent with heavy fund outflows (inflows) as discretionary trades. Both approaches to

capturing discretionary trading are imperfect: Ours is not completely immune to flows, while

theirs includes just a subset of discretionary trades, since discretionary purchases (sales)

surely also occur during inflows (outflows). The main finding of Alexander et al.—that dis-

cretionary purchases outperform benchmarks—is similar to ours in that it points to skill in

funds’ discretionary trading. But our study differs from theirs in two critical ways. First, we

analyze time variation in the amount of discretionary trading. While Alexander et al. find

that discretionary trades are profitable, we find that funds perform better in periods when

they engage in more discretionary trading. Our findings indicate that funds’ profit oppor-

tunities are time-varying, whereas their findings do not. More generally, our primary goal is

to explore how funds trade in response to time variation in profit opportunities. This time

variation underlies our key findings of the time-series turnover-performance relation and the

commonality in turnover. Time variation in profit opportunities is central to our empirical

strategy as well as to our theoretical model, but it is not investigated by Alexander et al.

Second, we investigate how a fund’s performance relates to the amount of its discretionary

trading, aggregated across stocks traded by the fund. Alexander et al. instead investigate

the performance of stocks experiencing discretionary trading, aggregating across funds. In

other words, we relate a fund’s performance to how heavily the fund trades, whereas they

relate a stock’s performance to how heavily funds trade it.

Given our focus on time-varying opportunities, our study is also related to the literature

on time variation in mutual fund performance. Some authors, inspired by Ferson and Schadt

(1996), model performance as a linear function of conditioning variables (e.g., Avramov and

Wermers, 2006). Others relate fund performance to the business cycle (e.g., Moskowitz,

2000, Glode, 2011, Kosowski, 2011, and Kacperczyk, van Nieuwerburgh, and Veldkamp,

2016), to aggregate market returns (Glode, Hollifield, Kacperczyk, and Kogan, 2012), and

to time variation in fund risk (e.g., Brown, Harlow, and Starks, 1996, and Huang, Sialm,

and Zhang, 2011). None of these studies relate fund performance to fund turnover.
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Our analysis of the common variation in fund turnover is related to the literature on

correlated trading behavior of mutual funds, or “herding.” Early studies include Nofsinger

and Sias (1999) and Wermers (1999). More recently, Koch, Ruenzi, and Starks (2016) and

Karolyi, Lee, and van Dijk (2012) argue that such correlated trading gives rise to common-

ality in liquidity among stocks. Commonality in individual stock turnover is analyzed by Lo

and Wang (2000), Cremers and Mei (2007), and others. None of these studies examine fund

turnover. Our analysis of the common component of fund turnover is novel.

The rest of the paper is organized as follows. Section I presents our model, which implies a

positive relation between a fund’s turnover and subsequent return. Section II reports strong

evidence of such a relation in our mutual fund sample and, in the context of our model,

contrasts the time-series relation with the weaker cross-sectional relation. Section III explores

differences in the strength of the time-series relation across categories of funds differentiated

by size, fees, and investment styles. Section IV analyzes the common component of fund

turnover and its predictive power for fund returns. Section V concludes.

I. Model of the Turnover-Performance Relation

In this section we present a simple model of optimal fund turnover in the presence of

time-varying profit opportunities. A manager trades more when he identifies more alpha-

producing opportunities, so a skilled manager should perform better after he trades more.

The model implies a positive turnover-performance relation: a time-series regression in which

a fund’s turnover is positively related to the fund’s subsequent return.

A. Profit Opportunities and Trading Costs

Active mutual funds pursue alpha—profit in excess of their benchmarks. A fund perceives

opportunities for producing alpha and trades to exploit them. Let Xt denote a given level

of turnover that the fund can choose in period t. Let P (Xt) denote the resulting expected

benchmark-adjusted profit (alpha) in period t + 1, before fees and trading costs, if the fund

makes optimal buy-sell decisions conditional on its turnover being Xt. The profit represented

by P (Xt) reflects the fund’s ability to exploit opportunities in period t for which the payoff

occurs in period t + 1. A prime example is a purchase of underpriced securities in period t

followed by the correction of the mispricing in period t + 1.

If the fund wishes to maintain a well diversified portfolio of stocks, the fund is likely to

replace more of its stocks when Xt is high than when Xt is low. As the fund moves further

down its list of potential stocks to buy, the alphas on the additional stocks are likely to be

5



lower than those on stocks higher up the fund’s list. As a result, P (Xt) is likely to be concave

in Xt. We represent this concave profit function as

P (Xt) = πtX
1−θ
t , (1)

where 0 < θ < 1. Variation over time in the fund’s profit opportunities is summarized by

the parameter πt ≥ 0. The higher is πt, the more profitable are the fund’s opportunities.

Let C(Xt) denote the trading cost in period t incurred by the fund as a result of turning

over Xt in that period. We represent the trading cost function as

C(Xt) = cX1+γ
t , (2)

where γ ≥ 0 and c > 0. We allow this function to be convex because it is generally accepted

that the cost of trading a given stock is convex in the amount of that stock traded (e.g., Kyle

and Obizhaeva (2013)). To the extent that a higher value of Xt corresponds to the fund

trading more of any given stock, we would expect some convexity in C(Xt). On the other

hand, if a higher value of Xt corresponds to the fund mainly replacing a greater number of

its stocks, as opposed to trading a greater amount of any given stock, then C(Xt) should be

close to linear. That is, γ should be close to zero. As we explain below, a near-zero value of

γ is consistent with our empirical evidence on the turnover-performance relation.

B. Optimal Turnover

The fund’s chosen level of turnover maximizes expected next-period profit net of the

current trading cost incurred to produce that profit. We assume that the fund maximizes

this after-cost profit before subtracting fees charged to investors.5 Recall that P (Xt) in

equation (1) is profit before both fees and trading costs. The fund’s choice of Xt therefore

solves

max
Xt

{P (Xt) − C(Xt)} . (3)

This objective function is concave and hump-shaped in Xt. The first-order condition is

πt(1 − θ)X−θ
t − c(1 + γ)Xγ

t = 0 , (4)

from which the optimal level of turnover is

X∗

t =

[
πt(1 − θ)

c(1 + γ)

] 1

θ+γ

. (5)

5This assumption is essentially equivalent to the common assumption that fund managers maximize their
total fee. Since we do not model how the fee is determined—that is, how fund managers bargain with fund
investors over the fund’s profit—it is natural to assume that the managers maximize this profit. If the
investors have no bargaining power, as in Berk and Green (2004), then they earn zero net alpha, and the
managers’ fee rate is equal to the fund’s gross alpha. If the investors do have some bargaining power, then
the managers receive only a fraction of the profit in the form of fees. But for any given positive fraction, a
fee-maximizing manager wants to maximize the fund’s profit.
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We see that the fund trades more when its profit opportunities are better (i.e., when πt is

higher). Also, higher trading costs (c) imply less trading. Both results are intuitive.

When the fund decides how much to trade, it conditions on equilibrium prices. We do

not model the formation of equilibrium prices, which reflect the joint effects of all funds’

trading. Instead, we rely on a simple point: Whatever the price formation process, if equi-

librium prices do not offer the fund a higher profit at the fund’s chosen level of turnover

than at any other level of turnover, then the fund is not optimizing. When specifying the

fund’s optimization problem in equation (3), we assume there are many funds and that any

individual fund takes equilibrium prices—and thus its own after-cost profit opportunities—

as given when deciding how much to trade. In other words, C(Xt) does not represent price

impact that affects the equilibrium prices on which the fund conditions. Rather, C(Xt)

is best viewed as compensation to liquidity-providing intermediaries for taking short-lived

positions to facilitate the ultimate market clearing between the fund and other investors.6

C. Turnover-Performance Relation

To relate turnover to performance, we first solve equation (5) for πt, obtaining

πt =
c(1 + γ)

(1 − θ)
(X∗

t )θ+γ . (6)

Substituting for πt into equation (1) when Xt = X∗

t then gives the time-series relation

P (X∗

t ) =
c(1 + γ)

1 − θ
(X∗

t )1+γ . (7)

The profit and cost given by equations (1) and (2) can be viewed as being scaled by the

fund’s assets, so that they represent contributions to the fund’s rate of return. With that

normalization, the fund’s overall before-fee realized return in period t+1, Rt+1, equals P (X∗

t )

plus a mean-zero deviation minus C(X∗

t+1), the trading costs associated with the optimal

turnover chosen in period t + 1. That is, using equations (2) and (7),

Rt+1 =
c(1 + γ)

1 − θ
(X∗

t )1+γ − c(X∗

t+1)
1+γ + ηt+1 , (8)

where ηt+1 is the mean-zero deviation of realized before-cost profit from its expectation. We

assume that profit opportunities vary over time in a manner that allows the conditional

mean of (X∗

t+1
)1+γ given X∗

t to be well approximated as

E{(X∗

t+1)
1+γ |X∗

t } = µ(1 − ρ) + ρ(X∗

t )1+γ , (9)

where µ and ρ are constants and |ρ| < 1.7 Taking the expectation of the right-hand side of

6One might imagine funds trading with many intermediaries who access different sources of liquidity or
act at slightly different times. A similar approach is taken by Stambaugh (2014) in a general equilibrium
model of active management and price formation.

7From (5), we see that a sufficient condition for this result is that π
1+γ

γ+θ

t follows an AR(1) process.
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equation (8) conditional on X∗

t then gives

E{Rt+1|X
∗

t } =
c(1 + γ)

1 − θ
(X∗

t )1+γ − c
[
µ(1 − ρ) + ρ(X∗

t )1+γ
]

. (10)

As noted earlier, γ is likely to be close to zero if higher turnover largely corresponds to

replacing a greater number of stocks rather than buying more of a given set of stocks. We

see from (10) that a near-zero γ delivers a near-linear relation between turnover (X∗

t ) and

expected return. Our empirical analysis reveals no significant departure from linearity in

the turnover-performance relation, consistent with the assumption of γ ≈ 0. Given this

assumption, from (9) we see that µ = E(X∗

t ) and ρ is the autocorrelation of X∗

t . With

γ ≈ 0, the turnover-performance relation in (10) is well represented by the linear regression

Rt+1 = a + bX∗

t + εt+1 , (11)

where E(εt+1|X
∗

t ) = 0 ,

a = −c(1 − ρ)E(X∗

t ), (12)

and

b = c
(

1

1 − θ
− ρ

)
. (13)

Note that b is positive because 0 < θ < 1 and |ρ| < 1. In other words, a fund’s optimally

chosen turnover exhibits a positive time-series relation to the fund’s subsequent return.

D. Time-Series versus Cross-Section

Most studies investigating the relation between fund turnover and performance focus on

the cross-section. The question generally asked is whether there is a relation, across funds,

between average turnover and average return. Taking the unconditional expectation of the

time-series relation in equation (11), using equations (12) and (13), gives

E(Rt) = hE(X∗

t ) , (14)

where

h =
c θ

1 − θ
. (15)

If c and θ are the same across funds, then h is the same for each fund. In that case, equation

(14) represents the relation between average turnover and average performance across funds.

From equation (5) we see that funds typically experiencing higher values of πt, and thus

greater profit opportunities, trade more and thus have higher values of E(X∗

t ). From (14),

this higher average turnover is accompanied by higher return, because the slope in the cross-

sectional relation, h, is positive (recalling 0 < θ < 1). However, this cross-sectional slope is

lower than the slope of the time-series relation, b. Specifically, from equations (13) and (15),

b − h = c(1 − ρ) , (16)

8



which is positive. The time-series slope is greater because trading costs associated with

turnover do not subtract from the fund’s return in the same period as the profit resulting

from that turnover. In contrast, the timing of profit and trading cost is irrelevant for the

cross-sectional relation. Trading costs therefore weaken the time-series turnover-performance

relation by less than they weaken the cross-sectional relation. The empirical results in

Section II are consistent with the model’s implied difference between the time-series and

cross-sectional slopes, given in equation (16).

E. Suboptimal Trading

Our model above assumes that funds trade optimally, but we also extend the model to

a setting in which they do not. When a fund trades suboptimally, its turnover in period t,

Xt, produces less than the maximized value of expected profit in equation (3). We assume

the fund’s expected profit is instead equal to δ times that maximized value, where δ ≤ 1. In

this sense, δ reflects the fund’s skill in exploiting its profit opportunities, with maximal skill

(optimal trading) corresponding to δ = 1. We also assume that the fund’s turnover under

optimal trading, X∗

t , is on average equal to its actual turnover, Xt, and that the latter by

itself is not informative about the fund’s skill, δ.

Details of this model extension are provided in the Appendix. Here we summarize the

main implications. First, the lower is a fund’s skill, the weaker is its turnover-performance

relation. The relation one expects to observe in a pooled fund universe is given by

E(Rt+1|Xt) = ā + b̄Xt , (17)

where

ā = −c(1 − ρ)E(Xt) (18)

b̄ = c

[
1 − θ(1 − δ̄)

1 − θ
− ρ

]

, (19)

and δ̄ is the mean δ across funds. The lower is this average level of skill, the weaker is the

time-series turnover-performance relation, i.e., the lower is b̄. Similarly, the cross-sectional

turnover-performance slope is lowered by suboptimal trading. That relation now becomes

E(Rt) = h̄E(Xt) , (20)

where

h̄ =
δ̄ c θ

1 − θ
, (21)

so that h̄ is increasing in δ̄. In the optimal-trading setting where δ̄ = 1 and Xt = X∗

t for

each fund, the values of ā, b̄, and h̄ are equal to those in equations (12), (13), and (15),

9



respectively. Note, however, that

b̄ − h̄ = c(1 − ρ) , (22)

which is positive and equal to b − h in equation (16). In other words, suboptimal trading

lowers both the time-series and cross-sectional slopes, but the difference between them is

unaffected. The time-series turnover-performance relation is thus stronger than the cross-

sectional relation regardless of δ̄, the average level of skill among funds.

The average level of skill does affect the strength of the turnover-performance relation,

including its sign. From equations (19) and (21), the cross-sectional relation is positive when

δ̄ > 0, and the time-series relation is positive when δ̄ exceeds (ρ − 1)(1 − θ)/θ < 0. But if

δ̄ is sufficiently negative, so are both turnover-performance relations. This is intuitive—if

funds are so unskilled that they are expected to lose money when they trade, then more

trading implies weaker performance. This scenario seems unlikely for most professional fund

managers, but it could very well describe households. For example, Barber and Odean (2000)

show that households that trade more earn lower returns, consistent with δ̄ < 0. As long as

funds are skilled enough so that δ̄ > 0, the turnover-performance relation is positive in both

the time series and the cross section, consistent with the empirical evidence we present next.

II. Estimating the Turnover-Performance Relation

Following equation (11), we specify the time-series turnover-performance relation for a

given fund i as the linear regression

Ri,t = ai + biXi,t−1 + εi,t , (23)

where Ri,t is the fund’s benchmark-adjusted return in period t, and Xi,t−1 is the fund’s

turnover in period t − 1. As implied by our model, a positive bi reflects the fund’s skill to

identify and trade on opportunities in period t−1 for which a significant portion of the payoff

occurs in period t. One can imagine other forms of skill, outside of the model, that we would

not detect. For example, a fund could have skill to identify short-horizon opportunities,

such as liquidity provision, that deliver all of their profits in period t − 1.8 Or a fund could

identify only long-horizon opportunities that bear fruit after period t. Moreover, detecting

skill using the turnover-performance relation requires time variation in the extent to which

8In the presence of skill, a higher Xi,t−1 can contribute positively to both Ri,t−1 and Ri,t. Thus, one might
also look for a positive contemporaneous relation between turnover and return. Such a relation, however,
could simply reflect a manager’s trading in reaction to return, thereby confounding an inference about skill.
We therefore focus on the predictive turnover-performance relation in equation (23).
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profit opportunities arise, i.e., variation in πt in equation (1). Although the regression in

equation (23) cannot detect all forms of skill, it nevertheless provides novel insights into the

ability of funds to identify and exploit time-varying profit opportunities.

We explore the turnover-performance relation using the dataset constructed by Pástor,

Stambaugh, and Taylor (2015), who combine CRSP and Morningstar data to obtain a sample

of 3,126 actively managed U.S. domestic equity mutual funds covering the 1979–2011 period.

To measure the dependent variable Ri,t, we follow the above study in using the fund’s net

return minus the return on the benchmark index designated by Morningstar, plus the fund’s

monthly expense ratio taken from CRSP. Following our model, we use gross return, i.e., the

return before fees charged to investors. We estimate all regressions at a monthly frequency,

but a fund’s turnover is reported only as the total for its fiscal year. Thus, we measure

turnover, Xi,t−1, by the variable FundTurni,t−1, which is the fund’s turnover for the most

recent fiscal year that ends before month t. This measure is defined as

FundTurni,t−1 =
min (buysi,t−1, sellsi,t−1)

avg (TNAi,t−1)
, (24)

where the numerator is the lesser of the fund’s total purchases and sales over its most recent

fiscal year that ends before month t, and the denominator is the fund’s average total net

asset value over the same 12-month period. We have no discretion over this definition; this

is the measure of turnover that funds are required to report to the SEC, and it is also the

measure provided by CRSP. We discuss some properties of this measure later in Section

II.B.1. We winsorize FundTurni,t−1 at the 1st and 99th percentiles.

To increase the power of our inferences in equation (23), we estimate a panel regression

that imposes the restriction

b1 = b2 = · · · = b . (25)

Initially we pool across all funds, and then later we pool within various fund categories when

investigating heterogeneity in the turnover-performance relation. We include fund fixed ef-

fects, so that b reflects only the contribution of within-fund time variation in turnover. The

fund fixed effects correspond to the ai’s in equation (23) when the restriction in (25) is im-

posed across all funds. The regression specification combining equations (23) and (25), which

isolates the time-series relation between turnover and performance, is our main specification.

For comparison, we also consider other specifications, as we explain next.

A. Time-series versus Cross-Sectional Estimates

Table I reports the estimated slope coefficient on turnover, or b̂, for various specifications

of the panel regression capturing the turnover-performance relation. The top left cell reports
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b̂ from our main specification, which combines equations (23) and (25):

Ri,t = ai + bXi,t−1 + εi,t . (26)

This specification includes fund fixed effects, so the OLS estimate b̂ reflects only time-series

variation in turnover and performance. This statement emerges clearly from the fact that,

with fund fixed effects, b̂ is a weighted average across funds of the slope estimates from

fund-by-fund time-series regressions. The weighting scheme places larger weights on the

time-series slopes of funds with more observations as well as funds whose turnover fluctuates

more over time. See the Appendix for details.

******************** INSERT TABLE I HERE ********************

The estimate b̂ in the top left cell of Table I is positive and highly significant, with a

t-statistic of 6.67. This finding of a positive turnover-performance relation in the time series

is the main empirical result of the paper. The relation is significant not only statistically but

also economically. The average within-fund standard deviation of Xi,t−1 is 0.437. Therefore,

the estimated slope of 0.00125 implies that a one-standard-deviation increase in a fund’s

turnover translates to an increase in annualized expected return of 0.66% (= 0.00125×0.437×

1200). This number is substantial, in that it exceeds funds’ overall average annualized Ri,t,

equal to 0.47%. In other words, conditioning fund returns on turnover implies fluctuations

in the conditional expected return that are of first-order economic importance, often larger

than the unconditional expected return.

The top right cell of Table I reports b̂ from a panel regression that includes both fund

and month fixed effects. The resulting estimate, 0.00118, is only slightly smaller than its

counterpart in the top left cell, and it is similarly significant (t = 7.08). The only differ-

ence from the top left cell is the addition of month fixed effects. This addition controls for

any unobserved variables that change over time but not across funds, such as macroeco-

nomic variables, regulatory changes, and aggregate trading activity. Since the results with

and without month fixed effects are so similar, such aggregate variables cannot explain the

positive relation between turnover and performance.

The bottom left cell reports b̂ when no fixed effects are included in the panel regression.

This specification imposes not only the restriction (25) but also

a1 = a2 = · · · = a . (27)

By removing fund fixed effects from our main specification, this additional restriction brings

cross-sectional variation into play when estimating b. The estimate b̂ in the bottom left cell
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of Table I thus reflects both cross-sectional and time-series variation. The estimate, 0.00043,

is positive, with a t-statistic of 2.05.

The bottom right cell of Table I reports b̂ from a purely cross-sectional specification, in

which fund fixed effects ai are replaced by month fixed effects at:

Ri,t = at + bXi,t−1 + εi,t . (28)

The OLS estimate b̂ from this panel regression reflects only cross-sectional variation in

turnover and performance. To see this, note that including month fixed effects makes b̂

equal to a weighted average across periods of the slope estimates from period-by-period

cross-sectional regressions of performance on turnover. The weighting scheme places larger

weights on periods with more observations and periods in which the independent variable ex-

hibits more cross-sectional variance. If each period receives the same weight, then this panel

regression produces the same slope coefficient as the well known Fama-Macbeth (1973) esti-

mator. (See the Appendix.) The estimate of b from equation (28), 0.00039, is positive, with

a t-statistic of 2.04. The point estimate is smaller than in the bottom left cell, which shows

that isolating cross-sectional variation slightly weakens the turnover-performance relation.

Table I shows that the turnover-performance relation is stronger in the time series than

in the cross section. This result is predicted by our model, according to which the difference

between the time-series and cross-sectional slopes is positive and given by equation (16).

(Moreover, this difference is unchanged in a framework with suboptimal trading, as shown

in equation (22).) In fact, the difference between the two slopes in Table I is roughly in line

with equation (16), given estimates of ρ and c. For ρ, we take the average autocorrelation of

FundTurni,t−1, which is equal to 0.507. For c, we turn to Edelen, Evans, and Kadlec (2013),

who report that, on average, the equity mutual funds in their sample have annual turnover

of 82.4% and incur 1.44% of fund value annually in trading costs. The implied value of c is

then 0.0144/0.824 = 0.0175. From equation (16), the difference between the time-series and

cross-sectional slopes is then equal to c(1 − ρ) = 0.0175(1 − 0.507) = 0.0086. Given that ρ

and c are annual quantities, this value is the implied difference in slopes when annual return

is regressed on annual turnover. Table I instead reports slopes for monthly return regressed

on 12-month turnover. Multiplying the latter slopes by 12 puts them roughly on a 12-month

basis. Subtracting the cross-sectional slope in the lower-right cell of Table I from the time-

series slope in the upper-left cell, multiplying by 12, gives 12(0.00125 − 0.00039) = 0.0103,

which rounds to 0.01, just like the above implied difference of 0.0086.9

9The time-series and cross-sectional slopes when 12-month return is regressed on 12-month turnover equal
0.0200 and 0.0118, as reported in the online appendix. The difference in these slopes, 0.0082, is also quite
close to the above implied difference of 0.0086.
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In sum, consistent with our model in which fund managers identify and exploit time-

varying profit opportunities, a fund’s performance exhibits a positive relation to the fund’s

lagged turnover. The turnover-performance relation is positive in both the time series and the

cross-section, as predicted by the model. As the model also predicts, the time-series relation

is stronger than the cross-sectional relation. Moreover, the magnitude of the difference

between the time-series and cross-sectional slopes conforms well to the model.

B. Robustness

The positive time-series turnover-performance relation, which is our main result, is robust

to a variety of specification changes. We summarize the robustness results here and report

them in detail in the online appendix, which is available on our websites.

We have already shown that the turnover-performance relation obtains whether or not

month fixed effects are included in the panel regression, which rules out all aggregate variables

as the source of this relation. Furthermore, the relation obtains when we include benchmark-

month fixed effects, ruling out any variables measured at the benchmark-month level.10 An

example of such a variable is benchmark turnover, which can be reflected in a fund’s turnover

to the extent that some of the fund’s trading passively responds to reconstitutions of the

fund’s benchmark index. Adding benchmark-month fixed effects has a tiny effect on the

estimated turnover-performance relation, strengthening our interpretation of this relation as

being driven by skilled active trading. The relation also obtains, and is equally strong, when

gross fund returns are replaced by net returns.

Importantly, the positive turnover-performance relation does not obtain in a placebo test

in which we replace active funds by passive index funds, as identified by Morningstar. When

we produce the counterpart of Table I for the universe of passive funds, we find no slope

coefficient significantly different from zero. In fact, the estimated slope coefficients in the

specifications with fund fixed effects are not even positive (the corresponding t-statistics in

the top row of Table I are -0.36 and -1.02). This result is comforting because passive funds

should not exhibit any skill in identifying time-varying profit opportunities. The fact that

the turnover-performance relation emerges for active funds but not passive funds supports

our skill-based interpretation of this relation.

If a fund’s turnover is negatively correlated with the fund’s contemporaneous or lagged

return, then a finite sample tends to produce a positive sample correlation between return

and lagged turnover even if this correlation’s true value is zero. This bias, essentially the same

10Gormley and Matsa (2014), among others, advocate the use of a fixed-effects estimator as a way of
controlling for unobserved group heterogeneity in finance applications.
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as analyzed by Stambaugh (1999), arises because the sample’s relatively high (low) turnover

values tend to be accompanied by the sample’s low (high) current and past returns. Those

high (low) turnover values thus tend to precede the sample’s relatively high (low) returns,

thereby producing an apparent positive relation between return and lagged turnover. We

find that the correlations between turnover and both contemporaneous and lagged return

are negative but statistically insignificant. We nevertheless conduct a simulation analysis to

gauge the potential magnitude of the bias as well as the effectiveness of a simple remedy in

our setting—adding Ri,t−1 and Ri,t−2 as independent variables to the regression in equation

(26). The simulation reveals that the finite-sample bias is very small and that adding the

lagged returns is nevertheless effective in eliminating it. When we add Ri,t−1 and Ri,t−2 to

the regression in (26), the resulting slope on Xi,t−1 and its t-statistic barely change.

We estimate the turnover-performance relation at the monthly frequency. Even though

funds report their turnover only annually, most of the variables used in our subsequent

analysis, such as fund returns, fund size, sentiment, volatility, liquidity, and business-cycle

indicators, are available on a monthly basis. Therefore, we choose the monthly frequency in

an effort to utilize all available information. Nonetheless, when we reestimate the turnover-

performance relation by using annual fund returns, we find a positive and highly significant

time-series relation, just like in Table I. In addition, we consider a specification that allows

the slope coefficient from the monthly turnover-performance regression to depend on the

number of months between the end of the 12-month period over which FundTurn is measured

and the month in which the fund return is computed. Specifically, we add a term to the right-

hand side of the regression that interacts the above number of months with FundTurn. We

find that the interaction term does not enter significantly, suggesting that our constant-slope

specification is appropriate.

To judge the statistical significance of the turnover-performance slope estimates in the

presence of fund fixed effects, we compute standard errors clustered by sector times month,

where sector denotes a Morningstar style category. We choose this approach because there is

mild correlation between benchmark-adjusted fund returns within the same sector but very

little across sectors. For robustness, we also consider stricter clustering schemes, namely, by

month, and by fund and month, and continue to find significant results.11

Our turnover-performance relation captures the predictive power of FundTurn in a given

fiscal year for fund performance in the following fiscal year (e.g., turnover in 2014 predicts

11In turnover-performance regressions that exclude fund fixed effects, we cluster not only by sector times
month but also by fund, to account for potential residual correlation induced by the exclusion of fund fixed
effects. In subsequent regressions with FundTurn as the dependent variable, we cluster by fund, since
FundTurn is highly persistent, and by year, to allow cross-sectional dependence in FundTurn.
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returns in 2015). In principle, some fund trades could take longer to play out (e.g., a trade in

2014 could lead to profits in 2016).12 To test for such long-horizon effects, we add two more

lags of FundTurn to the right-hand side of regression (26). We find that neither of those

additional lags has any predictive power for returns after controlling for the most recent

value of FundTurn, which retains its positive and significant coefficient. Therefore, we use

only the most recent FundTurn in the rest of our analysis.

Our results are not driven by manager changes. When we replace fund fixed effects by

fund-manager fixed effects, the results are very similar. The turnover-performance relation

thus holds not only at the fund level but also at the manager level. One implication is that

our results are not driven by portfolio turnover during manager transitions. In addition, our

results easily survive the addition of controls for manager age and manager tenure.

We run a linear turnover-performance regression. Besides its natural simplicity, the

linear specification is motivated by our model. Recall that if the trading cost function is

approximately linear (γ ≈ 0), so is the turnover-performance relation (see equation (11)).

In principle, the relation could also be convex (if γ > 0), but we find no such evidence.

We estimate a nonparametric regression of Ri,t on Xi,t−1, both demeaned at the fund level.

We find that the fitted values from that regression are remarkably close to linear, providing

support for our regression specification in equation (26).

The positive turnover-performance relation emerges not only from the panel regression

in Table I, which imposes the restriction (25), but also from fund-by-fund regressions. For

each fund i, we estimate the slope bi from the time-series regression in equation (23) in the

full sample. We find that 61% of the OLS slope estimates b̂i are positive. Moreover, 9% (4%)

of the b̂i’s are significantly positive at the 5% (1%) confidence level. A weighted average of

these b̂i’s appears in the top left cell of Table I, as shown in equation (B15).13 Apart from

this brief summary, we do not analyze the b̂i estimates because their precision is generally

low given the funds’ relatively short track records. Instead, we focus on the panel-regression

estimate of b whose precision is higher thanks to information-pooling across funds. The panel-

regression slope characterizes the typical fund-month observation, rather than the typical

fund. Therefore, we do not find that the typical fund exhibits a positive turnover-performance

relation. Rather, we find that the typical fund-month exhibits a positive relation, which

implies that there must exist some funds that exhibit a positive relation.

12The relations between fund performance and funds’ investment horizons are analyzed by Yan and Zhang
(2009), Cremers and Pareek (2016), and Lan, Moneta, and Wermers (2015), among others.

13The cross-sectional correlation between b̂i and the length of fund i’s track record is insignificant at 0.01,
indicating that the turnover-performance relation is no stronger for longer-lived funds.
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Mutual funds sometimes benefit from receiving allocations of shares in initial public

offerings (IPOs) at below-market prices. Lead underwriters tend to allocate more IPO shares

to fund families from which they receive larger brokerage commissions (e.g., Reuter, 2006).

To the extent that higher commissions are associated with higher turnover, this practice

could potentially contribute to a positive turnover-performance relation. This contribution

is unlikely to be substantial, though. Fund families tend to distribute IPO shares across

funds based on criteria such as past returns and fees rather than turnover (Gaspar, Massa,

and Matos, 2006). In addition, the high commissions that help families earn IPO allocations

often reflect an elevated commission rate rather than high family turnover, and they are often

paid around the time of the IPO rather than over the previous fiscal year.14 Moreover, the

contribution of IPO allocations to fund performance seems modest. For each year between

1980 and 2013, we calculate the ratio of total money left on the table across all IPOs, obtained

from Jay Ritter’s website, to total assets of active domestic equity mutual funds, obtained

from the Investment Company Institute. This ratio, whose mean is 0.30%, exceeds the

contribution of IPO allocations to fund performance because mutual funds receive only about

25% to 41% of IPO allocations, on average.15 IPOs thus boost average fund performance

by only about 7.5 to 12 basis points per year. Furthermore, the IPO market has cooled

significantly since year 2000. Money left on the table has decreased to only 0.10% of fund

assets on average, so that IPOs have boosted average fund performance by only 2.5 to 4

basis points per year since January 2001. Yet the turnover-performance relation remains

strong during this cold-IPO-market subperiod: the slope estimates in the top row of Table I

remain positive and significant. For example, the fund-fixed-effect-only estimate is 0.00072,

which is lower than its full-sample counterpart of 0.00125 from Table I, but it remains highly

significant (t = 3.47).

If we were to redefine our dependent variable from fund returns to dollar value added

(Berk and van Binsbergen, 2015), the results would be very similar, by the following logic.

When the dependent variable is dollar value added, the independent variable should be

turnover in dollars. Making these changes amounts to multiplying both sides of our cur-

rent regression by fund size. The new regression suffers from a heteroskedasticity problem,

because larger funds have more-volatile (dollar) residuals. Adjusting for this heteroskedas-

ticity requires down-weighting larger funds, for example, by dividing both sides of the new

regression by fund size. After this division, we are back to our current regression.

We report all of our results based on the full sample period of 1979–2011. In addition, we

verify the robustness of our results in the 2000–2011 subperiod, motivated by two potential

14See, for example, Nimalendran, Ritter, and Zhang (2007) and Goldstein, Irvine, and Puckett (2011).
15These estimates are from Reuter (2006), Ritter and Zhang (2007), and Field and Lowry (2009).
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structural changes in the data. The first change relates to the way CRSP reports turnover.

Prior to September 1998, all funds’ fiscal years are reported as January–December, raising

the possibility of inaccuracy, since after 1998 the timing of funds’ fiscal years varies across

funds.16 The second change, identified by Pástor, Stambaugh, and Taylor (2015), relates to

the reporting of fund size and expense ratios before 1993. Using the 2000–2011 subperiod

provides a robustness check that is conservative in avoiding both potential structural changes.

We find that our main conclusions are robust to using the 2000–2011 subperiod. For example,

the time-series turnover-performance relation in Table I remains positive and significant, with

slope estimates of 0.00101 (t = 4.29) and 0.00084 (t = 4.09) in the top row. In the online

appendix, we report all of our tables reestimated in the 2000–2011 subperiod.

B.1. Measuring Turnover

We measure fund turnover by its official SEC definition from equation (24). One ad-

vantage of this measure is that, by taking the minimum of purchases and sales, it largely

excludes turnover arising from persistent inflows and outflows to and from the fund. For

example, if a fund experiences inflows throughout the year, it will probably use those inflows

to buy stocks, but the SEC turnover will pick up the fund’s sales, which are not driven by

flows. Similarly, if a fund experiences persistent outflows, there will be flow-driven selling,

but our turnover measure will pick up the fund’s purchases. Since fund flows are well known

to be persistent, our turnover measure is largely immune to flows. Instead, it reflects mostly

the fund’s active portfolio decisions to replace some holdings with others.

Our turnover measure is not completely immune to fund flows, though. If flows are non-

persistent then some of our turnover is flow-driven. Flow-driven trading is fairly mechanical

in that its timing is determined mostly by the fund’s investors rather than the fund’s man-

ager. Therefore, flow-driven turnover should exhibit a weaker relation to fund performance

than our turnover measure, FundTurn. To test this hypothesis, we construct two mea-

sures of flow-driven fund turnover. Both measures rely on monthly dollar flows, which we

back out from the monthly series of fund size and fund returns, and both cover the same

12-month period as FundTurn. The first measure is the sum of the absolute values of the

12 monthly dollar flows, divided by the average fund size during the 12-month period. The

second measure is the smaller of two sums, one of all positive dollar flows and one of all neg-

ative flows during the 12-month period, divided by average fund size. Consistent with our

16In private communication, CRSP explained that this change in reporting is related to the change in its
fund data provider from S&P to Lipper on August 31, 1998. CRSP has also explained the timing convention
for turnover, which is the variable turn ratio in CRSP’s fund fees file. If the variable fiscal yearend is present
in the file, turnover is measured over the 12-month period ending on the fiscal yearend date; otherwise
turnover is measured over the 12-month period ending on the date marked by the variable begdt.

18



hypothesis, we find that neither measure of flow-driven turnover has any predictive power for

fund returns, whether or not we include FundTurn as a control. Moreover, the inclusion of

flow-driven turnover does not affect the significant predictive power of FundTurn. Finally,

when we adjust our turnover measure for flows by subtracting flow-driven turnover from

FundTurn, we find that the difference strongly predicts fund performance. All these results

provide additional support for our interpretation of the turnover-performance relation.

In our final test related to fund flows, we calculate their time-series volatility, which could

in principle be related to the time variation in fund turnover. We compute flow volatility

for each fund as the standard deviation of the fund’s 12 monthly net flows during the same

period over which FundTurn is measured. When we add flow volatility as a control in our

turnover-performance regression, the control does not enter significantly and the slope on

FundTurn remains very similar and highly significant.

In addition to fund flows, some portion of turnover could be driven by other non-

discretionary forces such as manager transitions, benchmark index reconstitutions, portfolio

rebalancing, etc. Turnover driven by manager transitions cannot explain our results because

those hold up when we replace fund fixed effects by manager fixed effects, as noted earlier.

Benchmark index reconstitutions cannot explain our results either because those survive the

inclusion of benchmark-month fixed effects, as explained earlier. Another way to account

for benchmark index turnover is to estimate it from the turnover of index funds tracking

the fund’s benchmark. For each active fund, we calculate benchmark-adjusted turnover as

FundTurn minus the median turnover of all index funds in the same Morningstar cate-

gory, measured over the same period as FundTurn. When we replace FundTurn by its

benchmark-adjusted version, we continue to find a positive and highly significant turnover-

performance relation.

Regardless of its source, any trading unrelated to profit motive widens the gap between

a fund’s turnover and its optimal turnover in the context of our model. Therefore, any

such trading should make it more difficult for us to find a positive turnover-performance

relation. Yet we do find a strong relation, even without adjusting reported turnover for

non-discretionary trading. It is possible that some adjustment could enhance the predictive

power of SEC turnover, but it is not our goal to find the best predictor of fund returns. For

simplicity, we use the SEC turnover measure throughout our main analysis.

For robustness, we consider one more modification of our turnover measure. The denom-

inator of our measure is average fund size over the previous fiscal year. To see whether this

averaging somehow influences our results, we rescale our turnover measure by the ratio of
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the same average fund size to fund size at the beginning of the previous fiscal year. The

denominator of the turnover measure thus changes from average size to fund size at the

beginning of the previous fiscal year. We find that this rescaled turnover measure predicts

performance even more strongly than our standard SEC measure.

Even though we analyze equity mutual funds, some of the funds’ turnover could be due

to non-equity assets. To see whether non-equity turnover matters, we obtain data from

Morningstar on the percentage of each fund’s assets invested in stock. When we add this

percentage as a control in our turnover-performance regression, it enters with a small positive

coefficient, but the explanatory power of FundTurn is virtually unchanged.

B.2. Alternative Benchmark Models

We benchmark each fund’s performance against the index selected for the fund’s category

by Morningstar. For example, for small-cap value funds, the benchmark is the Russell 2000

Value Index; for large-cap growth funds, it is Russell 1000 Growth. There is a one-to-

one mapping between benchmarks and style categories. Morningstar assigns funds to style

categories based on the funds’ reported portfolio holdings, and it updates these assignments

over time. Since the assignments are made by Morningstar rather than by funds themselves,

there is no room for benchmark manipulation of the kind documented by Sensoy (2009). The

benchmark assigned by Morningstar can differ from that reported in the fund’s prospectus.

Our index-based approach is likely to adjust for fund style and risk more precisely than

the commonly used loadings on the three Fama-French factors. The Fama-French factors

are popular in mutual fund studies because their returns are freely available, unlike the

Morningstar benchmark index data. Yet the Fama-French factors are not obvious benchmark

choices because they are long-short portfolios whose returns cannot be costlessly achieved by

mutual fund managers. Moreover, Cremers, Petajisto, and Zitzewitz (2013) argue that the

Fama-French model produces biased assessments of fund performance, and they recommend

using index-based benchmarks instead. We follow this advice. But we find similar results

when we adjust fund returns by using the three Fama-French factors: the slope coefficients

in the top row of Table I continue to be highly significant, with t-statistics of 7.09 and 8.27.

We also find similar results when using three additional alternative benchmark models: the

four-factor model that includes the three Fama-French factors and momentum, the five-

factor model of Fama and French (2015), and the modified Fama-French three-factor model

of Cremers, Petajisto, and Zitzewitz (2013). In all three cases, our main slope coefficients

in the top row of Table I continue to be highly significant, with t-statistics ranging from
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5.93 to 9.34. The cross-sectional turnover-performance relation is less robust to the choice

of benchmark. It remains significant when we use the Fama-French five factors or Cremers-

Petajisto-Zitzewitz factors, for which the t-statistics range from 2.05 to 3.71, but it becomes

statistically insignificant when we use the other benchmarks.

We assess fund performance by subtracting Morningstar’s designated benchmark return

from the fund’s return, effectively assuming that the fund’s benchmark beta is equal to

one. This simple approach is popular in investment practice, and it circumvents the need to

estimate the funds’ betas. When we estimate those betas using OLS, we find very similar

results. To avoid using imprecise beta estimates for short-lived funds, we replace OLS betas

of funds having track records shorter than 24 months by the average beta of funds in the

same Morningstar category. Just as in Table I, we find that the slopes in the top row are

highly significant, with t-statistics close to 7.6. The slopes in the bottom row are marginally

insignificant, with t-statistics of 1.7. These results underline our earlier finding that the

time-series turnover-performance relation is stronger than the cross-sectional one.

The tests described above assume that funds’ betas are time-invariant. In separate tests,

we allow funds’ betas on benchmarks or factors to vary over time in order to assess the

extent to which turnover-related performance might reflect variation in systematic risk. If

high turnover were associated with more systematic risk, then the higher returns following

high turnover could represent risk compensation or simply factor timing—identifying factor-

related mispricing. While it is not clear a priori why higher turnover should be followed

by more as opposed to less systematic risk, we nevertheless allow time variation in funds’

betas on their Morningstar benchmarks and the factors in the four alternative factor models

described above. In those results, the turnover-performance relation weakens only modestly,

suggesting that relation might include some risk compensation or factor timing. In all cases,

however, the t-statistic for the slope on turnover exceeds five. In general, turnover can reflect

various sources of profitable trading—stock picking, industry rotation, factor timing, etc.

B.3. Out-of-Sample Evidence

Our regression evidence is based on the full sample. While full-sample regressions are

suitable for testing our model’s predictions, an investor might want to know whether turnover

can predict fund performance out of sample. We conduct an out-of-sample analysis in this

subsection, shedding more light on the strength of the turnover-performance relation.

Each month starting with January 1984 (i.e., five years after the beginning of our sample),

we estimate two panel regressions of Ri,t on fund fixed effects, using historical data only.
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The first regression includes just fund fixed effects, while the second regression also includes

FundTurni,t−1. Proceeding sequentially month by month, we obtain the times series of

out-of-sample forecasts from both regressions, as well as the series of the slope estimates on

FundTurni,t−1 from the second regression.

We find that the time series of those slope estimates is fairly stable over time.17 The

turnover-performance slope is always positive, ranging from 0.0005 to 0.0021 over the whole

sample. (The slope’s final value, 0.00125, appears in Table I.) The slope is statistically

significant in all samples ending in 1996 or later. Importantly, the second regression produces

better out-of-sample forecasts of fund performance. In other words, adding FundTurni,t−1

to the first regression reduces the average squared forecast error. This reduction is modest

in magnitude but statistically significant (t=2.63). Fund turnover thus helps predict fund

performance even when using real-time information.

III. Differences Across Funds

Our evidence so far reveals that the typical fund performs better after it trades more.

Next, we ask whether this time-series relation differs across funds. We distinguish funds

along four characteristics: fund size, expense ratio (or “fee,” for short), and two common

style classifications—small-cap versus large-cap and value versus growth. For each of these

four characteristics, we assign a fund to one of three categories. For fund size and fee, in each

month t we compute the terciles of FundSizei,t−1 and ExpenseRatioi,t−1, the most recent

values of fund i’s assets under management and fees available from CRSP prior to month t.

For the two style classifications, we use the 3 × 3 “style-box” assignments of Morningstar,

which uses a fund’s holdings to classify the fund as (i) small-cap, mid-cap, or large-cap and

(ii) value, blend, or growth.

******************** INSERT TABLE II HERE ********************

Panels A through D of Table II report the estimated slope coefficients on turnover for each

of the four characteristics used to classify funds. Each panel reports two sets of regressions.

In the first set (indicated by “Controls” as “No”), the simple regression in equation (26)

is run without additional control variables. The second set of regressions (with “Controls”

as “Yes”) controls for the other three fund characteristics by including category dummies

interacted with lagged turnover. For the latter regressions, the slopes reported in each panel

should be interpreted as applying to a fund falling in the given category of that panel’s

17The plot of the time series is available in the online appendix, along with more details.

22



characteristic and having middle-category values of the characteristics in the other three

panels. For example, the slopes in Panel A correspond to a blend fund with medium size

and medium expense ratio.

Table II reveals a significantly positive turnover-performance relation in eleven of the

twelve no-controls regressions. The only exception is large funds, having a t-statistic of 1.24

(Panel C, third column). In other words, a positive turnover-performance relation is quite

pervasive across the various subsets of funds produced by the four classifications.

We also see in Table II that turnover-performance slopes are significantly larger for small-

cap funds as compared to large-cap funds (Panel A), small funds as compared to large funds

(Panel C), and high-fee funds as compared to low-fee funds (Panel D). These significant

differences occur in both the no-controls and with-controls results, and they are rather dra-

matic. For example, in the with-control results, small-cap funds have a slope of 0.00171

(t = 3.57), nearly seven times the large-cap slope of 0.00025 (t = 0.85). The difference

associated with fund size is similarly large. The difference associated with fees is somewhat

smaller yet still statistically significant. In contrast, growth and value funds do not exhibit

a significant difference in turnover-performance slopes.

Our model helps explain the differences across funds’ turnover-performance slopes. Con-

sider Panel A of Table II, which shows a larger slope for small-cap funds than for large-cap

funds. From equation (13), the turnover-performance slope is increasing in the trading cost

per unit of turnover, c, and decreasing in the autocorrelation of turnover, ρ. If a fund has

higher trading costs (higher c), then it optimally adjusts its turnover less when profit op-

portunities πt change (equation (5)). Therefore, any observed change in turnover must be

associated with a larger change in profit opportunities and hence performance. Small-cap

stocks are generally understood to be less liquid than large-cap stocks, so c is likely to be

greater for small-cap funds. If a fund’s turnover is less persistent (lower ρ), then the profits

from last period’s high turnover are less likely to be offset by trading costs from high turnover

this period. Table III shows that the turnover of small-cap funds is less autocorrelated than

that of large-cap funds. According to our model, having both a higher c and a lower ρ makes

small-cap funds more likely to have a higher turnover-performance slope. We see from Table

II that small-cap funds indeed have a higher estimated slope.

******************** INSERT TABLE III HERE ********************

A similar interpretation applies to the results in Panel C of Table II, which reports a

significantly larger turnover-performance slope for small funds than for large funds. Small
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funds, by virtue of their trading smaller dollar amounts, are better suited for trading less-

liquid stocks than are large funds. As stock size is surely an imperfect liquidity measure, it

seems reasonable that fund size also helps proxy for the liquidity of the fund’s holdings. That

is, the c for small funds is likely to be greater than for large funds, even controlling for stock

size. In addition, we see from Table III that small-fund turnover has a significantly lower

autocorrelation than does large-fund turnover. Therefore, as with small-cap funds, having a

higher c and a lower ρ makes small funds more likely to have a higher turnover-performance

slope, also consistent with our estimates.

According to Panel B of Table II, there is no significant difference in turnover-performance

slopes for value versus growth funds. Even this result is somewhat in keeping with our

model, in that Edelen, Evans, and Kadlec (2013) report fairly similar trading costs (per unit

of turnover) for value and growth funds, consistent with c being similar for both categories.

On the other hand, we do see in Table III that turnover for growth funds has a higher

autocorrelation than does turnover of value funds.

The differences in turnover-performance slopes related to expense ratio, reported in Panel

D of Table II, can also be interpreted through our model. Recall from Section I.E that the

turnover-performance relation should be stronger for more skilled funds. Expense ratio is

closely related to the management fee rate, which may proxy for skill. One would expect

managers with more skill to receive more fee revenue (e.g., Berk and Green (2004)), and

fee revenue is proportional to the fee rate, conditional on a given fund size. The fee rate is

not necessarily positively correlated with skill unconditionally, as that correlation depends

on how size covaries with fees and skill in the cross-section, but it seems reasonable for

managers with greater skill to charge higher fee rates.18 Also, we find a higher slope for

high-fee funds regardless of whether we condition on fund size by including controls in Panel

D. Because a less-skilled (and thus lower-fee) fund trades suboptimally, some of the time

variation in its turnover is unrelated to variation in true profit opportunities, producing a

weaker turnover-performance relation.

Besides fees, we consider two additional proxies for fund skill. First, we take a fund’s

gross alpha over the fund’s lifetime. Second, we compute gross alpha adjusted for both fund-

level and industry-level returns to scale, following Pástor, Stambaugh, and Taylor (2015).

For both proxies, we find that high-skill funds exhibit an even stronger turnover-performance

relation compared to low-skill funds. These results, which are consistent with those in Table

II based on fees, are in the online appendix.

18Consistent with this idea, Kacperczyk, van Nieuwerburgh, and Veldkamp (2014) report that funds with
superior stock-picking skill charge significantly higher expense ratios.
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The appendix also shows the results from an exercise that takes a different perspective

on skill. Del Guercio and Reuter (2014) argue that broker-sold mutual funds face a weaker

incentive to generate alpha than funds sold directly to retail investors. Motivated by their

evidence, we compare the strength of the turnover-performance relation across these market

segments.19 We find that the relation is somewhat stronger in direct-sold funds than in

broker-sold funds. The turnover-performance slope is 48% larger in magnitude for direct-

sold funds, but the slope difference is only marginally significant (the p-value is 9%). This

evidence points in the direction of direct-sold funds having a stronger incentive to perform,

consistent with Del Guercio and Reuter (2014).

Finally, the average gross fund returns reported in Table III are also consistent with the

model, in two ways. In each of the four panels of Table III, the average gross return of the top

category is significantly greater than the bottom category, and the same is true for average

turnover. The observed return-turnover link is consistent with the model’s prediction of a

positive cross-sectional turnover-performance relation (cf. equations (14) and (15)), and also

with the positive cross-sectional slope in Table I.20 In addition, for three of the four panels in

Table II, the turnover-performance slope is significantly greater for the top category than for

the bottom category. According to equation (13), the slope should be larger for funds with

higher values of c and θ, holding ρ constant. According to equations (14) and (15), funds

with higher c and θ should also have higher expected gross returns, holding average turnover

constant. Therefore, the observed positive relation between the turnover-performance slope

and the average gross return also jibes well with the model.

IV. Common Variation in Fund Turnover

Given our focus on the time variation in fund turnover, it seems natural to examine the

extent to which this variation is common across funds. In this section, we aggregate turnover

across funds and explore its time variation. In Section IV.A, we analyze comovement in fund

turnover. In Section IV.B, we investigate the determinants of average fund turnover, which

captures the common component of turnover. In Section IV.C, we study the predictive power

of average turnover, constructed in various ways, for fund performance.

A. Comovement in Turnover

19To classify fund share classes by distribution channel, we use the approximation method of Sun (2014).
We treat a share class as broker-sold if it has a non-zero front load, non-zero back load, or 12b-1 fee exceeding
25 bps; otherwise, we treat it as direct-sold. Following Del Guercio and Reuter (2014), we classify a fund as
broker-sold (direct-sold) if at least 75% of its assets are broker-sold (direct-sold) on average over time.

20This evidence is also consistent with the result of Kacperczyk, van Nieuwerburgh, and Veldkamp (2014)
that funds with superior stock-picking skill have significantly higher average turnover.
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In our model, time variation in fund turnover is driven by variation in the fund’s profit

opportunities. Those opportunities are likely to be positively correlated across funds. Any

mispriced stock presents a profit opportunity to many different funds that can potentially

trade this stock. Moreover, if mispricing has market-wide causes such as liquidity disruptions

or investor sentiment, many stocks can be mispriced at the same time. If profit opportunities

are indeed correlated across funds, the model predicts comovement in fund turnover.

To see whether such comovement exists, we first compute category-level averages of

individual fund turnover. We consider the same fund categories as before: three stock-size

categories, three value-growth categories, three fund-size categories, and three expense-ratio

categories. For each category, we compute the average turnover across all funds in that

category. Specifically, average turnover in month t is the equal-weighted average turnover

across category funds in the 12-month fiscal period that includes month t.

******************** INSERT FIGURE 1 HERE ********************

Figure 1 plots the time series of the category-level average turnover from 1979 to 2011.

The figure shows strong comovement in turnover. The times series of average turnover

are highly correlated both within and across the four panels. For example, the correlation

between the average turnovers of small-cap and large-cap funds, both of which are plotted in

Panel A, is 67%. We also observe high correlations between the average turnovers of value

and growth funds (Panel B), small and large funds (Panel C), and high-fee and low-fee funds

(Panel D). All pairwise correlations within each panel are reported in Table IV. In the context

of our model, this evidence of comovement in turnover indicates that profit opportunities

are positively correlated across funds—even across funds with different characteristics.

******************** INSERT TABLE IV HERE ********************

Panel B of Figure 1 provides more evidence on the result from Table III that growth

funds trade more than value funds. Interestingly, the turnover of growth funds exceeds that

of value funds not only on average but also in every single year, and by a wide margin. Value

funds appear to be more patient than growth funds in exploiting their profit opportunities.

We also see in Panel D that more expensive funds tend to turn over more than cheaper

funds. The patterns in Panels A and C are less consistent over time.

In addition to computing average turnover at the category level, we compute it at the

aggregate level. We let AvgTurn denote the average of individual fund turnover computed

across all funds. Analogous to the category-level variable, AvgTurnt is the average turnover
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across funds’ 12-month fiscal periods that contain month t. AvgTurnt, plotted in Panel A

of Figure 2, fluctuates between 59% and 102% per year from 1979 to 2011.21 It has a 95%

correlation with the first principal component of individual fund turnover. Therefore, we

view AvgTurnt as the simplest measure of the common component of turnover.

******************** INSERT FIGURE 2 HERE ********************

To shed more light on commonality in turnover, we regress individual fund turnover in

month t on its common component, AvgTurnt.
22 To isolate time-series variation in turnover,

we run a panel regression with fund fixed effects. We report the results in the first column

of Table V. The slope coefficient from the regression of FundTurn on AvgTurn is 0.65

(t = 8.65), indicating strong evidence of commonality in turnover.

******************** INSERT TABLE V HERE ********************

The evidence of commonality becomes even stronger when we replace AvgTurn by

category-level average turnover in the above regression. For each fund i, we calculate

AvgTurn Stock Size as the average turnover across funds in the same stock-size category as

fund i. In the regression of FundTurn on AvgTurn Stock Size, the category-level average

is highly significant (t = 8.94), and the R2 exceeds that from the regression of FundTurn on

AvgTurn. We also calculate average turnover across funds in the same value-growth category

(AvgTurn Stock V G), same fund-size category (AvgTurn Fund Size), and same expense-

ratio category (AvgTurn Fund Exp). All of these category-level averages are significantly

correlated with FundTurn in simple regressions, and all except for AvgTurn Stock V G

produce higher within-fund R2’s than AvgTurn (see columns 2 through 5 of Table V). In a

multiple regression of FundTurn on all four category-level averages, three of the averages ob-

tain significant slopes; only AvgTurn Stock V G is insignificant (see column 6). Finally, we

calculate average turnover across “similar” funds, AvgTurnSim, by averaging across funds

in the same stock-size, fund-size, and expense-ratio categories. (We exclude value-growth

due to its insignificance in column 6.) In a univariate regression, this variable produces a

higher within-fund R2 than any of the category-level averages. In a multiple regression of

FundTurn on AvgTurn and AvgTurnSim, both averages come in significantly, and the

21CRSP turnover data are missing in 1991 for unknown reasons. We therefore treat AvgTurn as missing
in 1991 in our regressions. In Figure 2, though, we fill in average turnover in 1991 by using Morningstar data,
for aesthetic purposes. We rely on CRSP turnover data in our analysis because Morningstar is ambiguous
about the timing of funds’ fiscal years.

22For the purpose of this regression, we recalculate AvgTurnt corresponding to each fund i as the average
turnover across all funds j 6= i. By excluding fund i from the calculation of average turnover, we exclude
any mechanical correlation that could create a spurious perception of commonality. Analogously, we exclude
fund i from all other measures of average turnover discussed in the following paragraph.
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t-statistic on AvgTurnSim is higher (7.66 vs. 5.71; see column 8). This evidence shows that

commonality in turnover is especially strong among funds with similar characteristics.

B. Mispricing and Trading

When do funds trade more than usual? In our model, funds trade more when their profit

opportunities are better. If such opportunities arise from mispricing, then funds should trade

more in periods with more mispricing. We thus ask whether fund turnover is higher when

mispricing is more likely. We use three proxies for the likelihood of mispricing: Sentimentt,

V olatilityt, and Liquidityt. We plot the three series in Panel B of Figure 2.

The first mispricing proxy, Sentimentt, is the value in month t of Baker and Wurgler’s

(2006, 2007) investor-sentiment index. If sentiment-driven investors participate more heavily

in the stock market during high-sentiment periods, the mispricing such investors create is

more likely to occur during those periods (e.g., Stambaugh, Yu, and Yuan, 2012). We thus

expect funds exploiting such mispricing to trade more when sentiment is high. Indeed, time-

series regressions of both FundTurni,t and AvgTurnt on Sentimentt produce significantly

positive slopes (t = 3.27 and t = 3.17, respectively), as shown in columns 1 and 5 of Table VI.

We include a time trend in both regressions, given the positive trend in AvgTurnt evident

in Figure 2. The time trend is significant in the latter regression but not in the former.

The R2 in the regression of AvgTurnt on Sentimentt and the time trend exceeds the R2

from the regression on the time trend alone by 0.171. Sentiment, in other words, explains a

substantial fraction of the time variation in aggregate fund turnover.

******************** INSERT TABLE VI HERE ********************

The second mispricing proxy, V olatilityt, is the cross-sectional standard deviation in

month t of the returns on individual U.S. stocks.23 The rationale for this variable is that

higher volatility corresponds to greater uncertainty about future values and thus greater

potential for investors to err in assessing those values. As a result, periods of high volatility

admit greater potential mispricing, and we expect funds exploiting such mispricing to trade

more when volatility is high. Consistent with this prediction, regressions of both FundTurni,t

and AvgTurnt on V olatilityt produce significantly positive slopes (t = 7.69 and t = 7.23,

respectively), as shown in columns 2 and 6 of Table VI. The R2 in the latter regression,

which again includes a time trend, exceeds the R2 in the trend-only regression by 0.188.

The third proxy, Liquidityt, is the value in month t of the stock-market liquidity measure

of Pástor and Stambaugh (2003). Empirical evidence suggests that higher liquidity is accom-

23We thank Bryan Kelly for providing this series.
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panied by greater market efficiency (e.g., Chordia, Roll, and Subrahmanyam, 2008, 2011).

In other words, periods of lower liquidity are more susceptible to mispricing. Therefore, we

might expect funds to trade more when liquidity is lower. On the other hand, lower liquid-

ity also implies higher transaction costs, which could discourage funds from trading. Our

evidence suggests that the former effect is stronger: Regressing FundTurni,t and AvgTurnt

on Liquidityt yields significantly negative slope estimates (t = −4.53 and t = −4.14, re-

spectively), reported in columns 3 and 7 of Table VI. Including Liquidityt increases the R2

versus the trend-only regression by a more modest amount than the other two proxies.

When all three mispricing proxies are included simultaneously as regressors, each enters

with a coefficient and t-statistic similar to when included just by itself. These all-inclusive

regressions, reported in columns 4 and 8 of Table VI, also add two additional variables that

control for potential effects of the business cycle and recent stock-market returns, but neither

variable enters significantly. (The two variables are the Chicago Fed National Activity Index

and the return on the CRSP value-weighted market index over the previous 12 months.)

The combined ability of the three mispricing proxies to explain variance in AvgTurnt is

substantial: the R2 exceeds that of the trend-only regression by 0.324.24 Overall, the results

make sense: funds trade more when there is more mispricing.

What mispricing are funds exploiting? To see whether funds trade based on well-known

market anomalies, we regress the returns of eleven such anomalies, as well as their composite

return, on lagged average fund turnover. The eleven anomalies, whose returns we obtain from

Stambaugh, Yu, and Yuan (2012), involve sorting stocks based on two measures of financial

distress, two measures of stock issuance, accruals, net operating assets, momentum, gross

profitability, asset growth, return on assets, and the investment-to-assets ratio. We find no

significant slopes on average turnover. To the extent that funds trade more when there is

more mispricing, they are exploiting mispricing beyond these eleven anomalies.

Finally, we consider the role of stock market turnover in explaining AvgTurnt. We

measure market turnover as total dollar volume over the previous 12 months divided by

total market capitalization of ordinary common shares in CRSP. Market turnover reflects

trading by all entities, including mutual funds, so it could potentially be related to AvgTurnt.

It could also be related to Sentimentt, which is constructed as the first principal component

24If we exclude the time trend from the regressions, we find results similar to those reported in Table VI.
V olatility and Liquidity continue to enter significantly with the same signs as in Table VI, and the business
cycle and market return remain insignificant. The only difference relates to Sentiment, whose coefficient
retains the positive sign but loses statistical significance in the regression that involves AvgTurn (it remains
significant in the regression that involves FundTurn). This evidence suggests that Sentiment is better at
capturing deviations of AvgTurn from its trend than in capturing the raw variation in AvgTurn.
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of six variables that include NYSE turnover. However, when we add market turnover to the

all-inclusive specification in column 8 of Table VI, it does not enter significantly, whereas

the slope on Sentimentt remains positive and significant. The other two mispricing proxies

also retain their signs and significance, and the remaining variables remain insignificant. In

short, adding market turnover does not affect our inferences in Table VI.

C. Predicting Fund Performance

Given its significant link to the mispricing proxies, it is natural to ask whether the

common component of fund turnover helps predict fund performance. In fact, a positive

relation between the common component and future fund performance can be motivated

directly within our model, in two different ways.

First, we assume that funds trade optimally but their turnover is observed with error.

In the model, optimal fund turnover, X∗

t from equation (5), results solely from the fund’s

decision to change the composition of its portfolio. In the data, however, inflows and outflows

of investors’ capital also give rise to trading by the fund. The reported turnover measure

that we observe empirically, X̃t, abstracts from flow effects, but only imperfectly, so it is not

precisely equal to X∗

t . In other words, we observe

X̃t = X∗

t + ut , (29)

where ut denotes the measurement error. We assume that ut has mean zero and is un-

correlated with X∗

t . With many funds in the market, an additional explanatory variable

useful in addressing this error-in-variable problem is the cross-sectional average turnover,

which we denote by Xt. Intuitively, since turnover comoves across funds, average turnover

contains additional information about a fund’s true turnover beyond the information in our

imperfect FundTurn measure. We assume that there are sufficiently many funds that the

measurement errors in turnover diversify away when computing Xt. Let

X∗

t = βXXt + φt , (30)

and assume that φt is uncorrelated with X t and that the residuals φt, ut, and εt+1 are mutually

uncorrelated. Let σ2
u and σ2

φ denote the variances of ut and φt, respectively. Consider the

linear regression of the fund’s return Rt+1 on fund turnover X̃t and average turnover X t:

Rt+1 = θ̂0 + θ̂1X̃t + θ̂2Xt + et+1 . (31)

As we show in the Appendix, the slope coefficients have probability limits

θ1 =

(
σ2

φ

σ2
φ + σ2

u

)

b (32)
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θ2 =

(
βXσ2

u

σ2
φ + σ2

u

)

b . (33)

Both θ1 and θ2 are positive as long as b from equation (11) and βX from equation (30) are

positive, which is consistent with the data (see Tables I and V). Moreover, the coefficient on

average turnover (θ2) is large when the measurement error in turnover is large (i.e., σ2
u large)

and when the commonality in turnover is large (i.e., σ2
φ small). Given our strong evidence of

commonality, our model suggests a role for average turnover in predicting fund performance.

Since the commonality is especially strong among funds with similar characteristics, average

turnover of similar funds could be particularly useful in predicting performance.

Another way to motivate the role for average turnover, again hinging on commonality in

turnover, relies on the model’s extension with suboptimal trading (Section I.E). Suppose that

funds trade suboptimally, so that only a fraction of their turnover involves exploiting true

profit opportunities. Also suppose that funds’ profit opportunities are positively correlated

over time (i.e., there is common variation in funds’ πt’s), as they are when the degree of

mispricing varies over time in a way that many funds can exploit. Given the commonality

in πt, equation (5) implies common variation in funds’ X∗

t ’s. Any given fund’s observed

turnover Xt is a noisy proxy for its optimal unobserved turnover X∗

t , but averaging Xt

across many funds gives a less-noisy proxy for the average X∗

t . Given the common variation

in X∗

t , that proxy for the average X∗

t provides information about any given fund’s X∗

t in

addition to the information provided by the fund’s own Xt. As shown in the Appendix,

a fund’s performance depends on both its Xt and its X∗

t , so not only its own Xt but also

the average Xt predicts the fund’s performance. Intuitively, a fund trades more—and the

fund’s subsequent performance is better—when the fund identifies more profit opportunities.

When many funds identify such opportunities, average turnover is higher, and there is more

mispricing in general. That is, heavier trading by other funds indicates more mispricing.

Even when a fund’s own manager does not identify unusually many opportunities in a given

period, the opportunities he does identify are likely to be more profitable if there is generally

more mispricing in that period. In this way, suboptimal trading also creates a role for the

turnover of other funds, especially similar funds, in predicting fund performance.

We find such a role in the data. We run a panel regression of the gross benchmark-

adjusted fund return (Ri,t) on average lagged turnover, with fund fixed effects. We con-

sider two measures of average turnover: AvgTurnSim, averaging across similar funds, and

AvgTurn, averaging across all funds. Specifically, we calculate AvgTurnSimi,t−1 by av-

eraging FundTurnj,t−1 across funds j 6= i in the same stock-size, fund-size, and expense-

ratio category as fund i. We calculate AvgTurni,t−1 by averaging FundTurnj,t−1 across all
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funds j 6= i.25 Column 1 of Table VII shows that the slope from the regression of Ri,t on

AvgTurnSimi,t−1 is positive and significant (t = 3.29), indicating that the common compo-

nent of similar funds’ trading helps predict individual fund performance. The magnitude of

the estimate, 0.0021, implies substantial economic significance. Given the average time-series

standard deviation of AvgTurnSimi,t−1, 0.172, a one-standard-deviation increase in the vari-

able translates to an increase in expected return of 0.43% per year (= 0.0021×0.172×1200).26

******************** INSERT TABLE VII HERE ********************

Since we find more commonality among similar funds, we expect AvgTurnSim to predict

performance better than AvgTurn does. This is indeed what we find: column 2 of Table

VII shows a positive but statistically insignificant relation between Ri,t and AvgTurni,t−1.

The information in AvgTurnSim about a fund’s subsequent performance is undiminished

by conditioning on the fund’s own turnover. Column 4 of Table VII shows that the slope

and t-statistic for AvgTurnSim are little changed by controlling for FundTurn. Similarly,

the significance of the slope on FundTurn is little changed by controlling for AvgTurnSim.

The fund’s performance is predictable by both similar funds’ average turnover and the fund’s

own turnover. In the context of our model, we find θ̂1 > 0 and θ̂2 > 0 in equation (31).

Finally, when all three turnover measures are included on the right-hand side of the regres-

sion, both AvgTurnSim and FundTurn enter significantly whereas the slope on AvgTurn

is positive but insignificant. Again, we see that averaging turnover across similar funds,

which exhibit stronger commonality in turnover compared to dissimilar funds, improves the

predictive power. In short, Table VII shows that a fund’s performance is predictable not

only by the fund’s own turnover but also by the average turnover of similar funds.

V. Conclusions

We develop a model of fund trading in the presence of time-varying profit opportuni-

ties. The model’s key implication is a positive time-series relation between an active fund’s

25Note that AvgTurnSimi,t−1 and AvgTurni,t−1 use only information available before month t because
they are averages of turnovers computed over 12-month periods that end before month t. It is thus reasonable
to use AvgTurnSimi,t−1 and AvgTurni,t−1 to predict performance in month t. Also note that the notation
for time subscripts is complicated by the fact that funds report turnover only annually. In Section IV.A,
we let AvgTurnt denote average turnover across funds’ 12-month fiscal periods that contain month t. That
notation is slightly inconsistent with the notation in this section because given our definition of FundTurni,t,
the contemporaneous average turnover in Section IV.A is the average of FundTurni,t+11 across i. We prefer
to use the notation AvgTurnt (instead of AvgTurnt+11) in Section IV.A to emphasize the contemporaneous
nature of the analysis in that section. We hope the reader will pardon this slight abuse of notation.

26The regressions in Table VII exclude a time trend, but the results are very similar if we include one.

32



turnover and its subsequent benchmark-adjusted return. We find strong support for this

implication in a large sample of active equity mutual funds. Funds exhibit an ability to

identify time-varying profit opportunities and adjust their trading activity accordingly. This

time-series relation between turnover and performance is stronger than the cross-sectional

relation, as our model predicts. The model also predicts a stronger time-series relation for

funds trading less-liquid stocks. Indeed, we find a stronger relation for small-stock funds and

small funds. We also find a stronger relation for funds that charge higher fees, consistent

with such funds having greater skill in identifying time-varying profit opportunities.

We provide strong evidence of commonality in fund turnover. Turnover’s common com-

ponent, average turnover, is positively correlated with mispricing proxies. Funds trade more

when investor sentiment is high, when cross-sectional stock volatility is high, and when

stock market liquidity is low, consistent with funds identifying more profit opportunities in

periods when mispricing is more likely. Commonality in turnover is especially high among

funds sharing similar characteristics. Average turnover of similar funds positively predicts

fund returns, even controlling for the fund’s own turnover. This predictive ability of average

turnover is consistent with an individual fund’s observed turnover being a noisy proxy for the

fund’s true turnover. Average turnover of similar funds helps capture a fund’s true turnover

and thereby helps predict the fund’s performance. Average turnover’s predictive ability is

also consistent with suboptimal trading by funds, where only some trades exploit true profit

opportunities. Whatever opportunities a fund does identify are likely to be more profitable

when mispricing is more prevalent, as indicated by similar funds trading more heavily.

Heavier trading by funds when mispricing is more likely underscores the role of active

management in the price discovery process. While the active management industry may not

provide superior net returns to its investors (consistent with both theory and evidence), it

creates a valuable externality. The combined trading of many funds helps correct prices and

thereby enables more efficient capital allocation. French (2008) characterizes his estimated

cost of active management as a societal cost of price discovery. Stambaugh’s (2014) calibra-

tion of a general equilibrium model implies that active management corrects a large portion

of the mispricing that would otherwise exist in the presence of noise traders. Our results

support this view of active management’s societal value, given our evidence that funds have

skill and that they more actively apply that skill when mispricing is more likely.
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Appendix A. Model Extension: Suboptimal Trading

Here we extend our basic model to incorporate suboptimal trading by funds. When a

fund trades suboptimally, its trading in period t achieves less than the maximized value of

expected profit in equation (3). Its turnover Xt need not equal X∗

t , and its trades may be less

profitable than if they were chosen optimally, so that equation (1) no longer characterizes the

relation between turnover and before-cost profit. We assume the fund’s expected after-cost

profit arising from its turnover Xt is equal to

Yt = δ[P (X∗

t ) − C(X∗

t )] , (A1)

with δ ≤ 1. Optimal trading corresponds to δ = 1. We also assume that

E(X∗

t |Xt, δ) = Xt (A2)

and

E(δ|Xt) = E(δ) ≡ δ̄ . (A3)

We also assume that the autoregressive process in equation (9) applies to Xt.

The fund’s before-fee realized return in period t + 1, Rt+1, is given by realized after-

cost profit arising from turnover in period t—expected profit Yt plus a random deviation

ηt+1—plus the difference between trading costs in periods t and t + 1:

Rt+1 = Yt + C(Xt) − C(Xt+1) + ηt+1 . (A4)

The difference in trading costs arises because the cost of the trading included in computing

expected profit, Yt, is incurred in period t and thus does not enter Rt+1. That return instead

includes the cost of trading in period t + 1. Combining (2), (7), and (A1) with (A4) gives

Rt+1 = δ

[
c(1 + γ)

1 − θ
(X∗

t )1+γ − c(X∗

t )1+γ

]

+ c(Xt)
1+γ − c(Xt+1)

1+γ + ηt+1 . (A5)

As discussed in Section IV, both Xt and (the unobserved) X∗

t contain information about

Rt+1. To obtain the time-series relation containing just Xt, we again assume γ ≈ 0 and then

apply (9) and (A2) to obtain

E(Rt+1|Xt, δ) = ā + b̃Xt , (A6)

where

ā = −c(1 − ρ)E(Xt) (A7)

b̃ = c

[
1 − θ(1 − δ)

1 − θ
− ρ

]

. (A8)
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Note that b̃ is increasing in δ. The lower is this dimension of a fund’s skill, the weaker is the

fund’s turnover-performance relation. In the optimal-trading case of δ = 1, b̃ = b in (13).

The time-series relation in (A6) pertains to a given fund with a given δ, but the values

of δ can differ across funds. Given (A3), taking the expectation of (A6) with respect to δ,

applying the rule of iterated expectations, yields (17) through (19). Taking the unconditional

expectation of (17), using (A7) and (19), then yields the cross-sectional turnover-performance

relation given by (20) and (21).

Appendix B. The Pooled Fixed-Effects Slope Estimator for an Unbalanced

Panel as a Weighted Average of Single-Equation Slope Estimators

Here we derive a result supporting the interpretations of the time-series and cross-

sectional slopes in Table I as weighted averages of fund-by-fund and period-by-period re-

gressions. The result also sheds light on the well-known estimator of Fama and MacBeth

(1973). Consider the fixed-effects panel regression model

yij = ai + bxij + eij , (B1)

where i takes N different values in the data. Let mi denote the number of observations

whose first subscript is equal to i. For each i, define

yi: mi × 1 vector of yij observations,

xi: mi × 1 vector of xij observations,

ιi: mi × 1 vector of ones.

Also define the sample variance of the elements of xi,

σ̂2

xi
=

x′

ixi

mi

−

(
ι′ixi

mi

)2

, (B2)

and the single-equation least-squares estimator,
[

âi

b̂i

]

= (X ′

iXi)
−1X ′

iyi, where Xi = [ιi xi] . (B3)

Note that the slope coefficient b̂i can be written as

b̂i =
1

σ̂2
xi

(
x′

iyi

mi

− x̄iȳi

)

, (B4)
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where x̄i and ȳi are the sample means of xi and yi, respectively (i.e., x̄i = ι′ixi/mi and

ȳi = ι′iyi/mi). For the pooled sample, define

X =





ι1 0 · · · 0 x1

0 ι2
... x2

...
. . . 0

...
0 · · · 0 ιN xN




, y =





y1

...
yN



 , x =





x1

...
xN



 , (B5)

and the least-squares estimator





â1

...
âN

b̂




= (X ′X)−1X ′y . (B6)

PROPOSITION A1. The fixed-effects slope estimator b̂ obeys the relation

b̂ =
N∑

i=1

wib̂i , (B7)

where

wi =
miσ̂

2
xi∑N

k=1
mkσ̂2

xk

. (B8)

Proof. First observe

X ′X =





ι′1 0 · · · 0

0 ι′2
...

...
. . . 0

0 ι′N
x′

1 x′

2 · · · x′

N









ι1 0 · · · 0 x1

0 ι2
... x2

...
. . . 0

...
0 · · · 0 ιN xN





=





m1 0 · · · 0 ι′
1
x1

0 m2

... ι′
2
x2

...
. . . 0

...
0 · · · 0 mN ι′NxN

ι′1x1 ι′2x2 · · · ι′NxN x′x





(B9)

=

[
D v
v′ q

]

,

and therefore

(X ′X)−1 =

[
D−1 + D−1v(q − v′D−1v)−1v′D−1 −D−1v(q − v′D−1v)−1

−(q − v′D−1v)−1v′D−1 (q − v′D−1v)−1

]

. (B10)
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Next observe that the ith element of the vector D−1v contains the sample mean of the

elements of xi,

D−1v =





(ι′1x1)/m1

...
(ι′NxN)/mN



 =





x̄1

...
x̄N



 = x̄ , (B11)

and that

q − v′D−1v = x′x − x̄′Dx̄

= x′

1
x1 + · · · + x′

NxN −m1x̄
2

1
− · · · − mN x̄2

N

= m1

(
x′

1
x1

m1

− x̄2
1

)

+ · · · + mN

(
x′

NxN

mN

− x̄2
N

)

= m1σ̂
2

x1
+ · · · + mN σ̂2

xN
. (B12)

Also,

X ′y =





ι′1 0 · · · 0

0 ι′2
...

...
. . . 0

0 ι′N
x′

1 x′

2 · · · x′

N









y1

y2

...
yN




=





ι′1y1

ι′2y2

...
ι′NyN

x′y





. (B13)

The last element of the pooled least-squares estimator in (B6) can now be computed by

pre-multiplying the vector in (B13) by the last row of the matrix in (B10), using (B11) and

(B12) and then (B4), to obtain

b̂ =
(
m1σ̂

2
x1

+ · · · + mN σ̂2
xN

)
−1

(−x̄1ι
′

1y1 − · · · − x̄Nι′NyN + x′

1y1 + · · · + x′

NyN)

=
(
m1σ̂

2

x1
+ · · · + mN σ̂2

xN

)
−1

[(x′

1y1 − m1x̄1ȳ1) + · · · + (x′

NyN − mN x̄N ȳN )]

=
(
m1σ̂

2

x1
+ · · · + mN σ̂2

xN

)
−1

[

m1

(
x′

1
y1

m1

− x̄1ȳ1

)

+ · · · + mN

(
x′

NyN

mN

− x̄N ȳN

)]

=
(
m1σ̂

2

x1
+ · · · + mN σ̂2

xN

)
−1 [

m1σ̂
2

x1
b̂1 + · · · + mN σ̂2

xN
b̂N

]

=
N∑

i=1

wib̂i . (B14)

Q.E.D.

We can now interpret the time-series coefficient in the upper-left cell of Table I. Let b̂i

denote the estimated slope from the time-series regression in equation (23). Then b̂ from

equation (26) is given by

b̂ =
N∑

i=1

wib̂i , (B15)

where the weights wi are given by

wi =
Tiσ̂

2
xi∑N

n=1 Tnσ̂2
xn

, (B16)
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Ti is the number of observations for fund i, and σ̂2
xi

is the sample variance of Xi,t−1 across t.

Similarly, we can interpret the cross-sectional coefficient in the bottom-right cell of Table

I. Let b̂t denote the slope from the cross-sectional regression of Ri,t on Xi,t−1 estimated at

time t. Then b̂ from equation (28) obeys the relation

b̂ =
T∑

t=1

wtb̂t , (B17)

where the weights wt are given by

wt =
Ntσ̂

2
xt∑T

s=1 Nsσ̂2
xs

, (B18)

Nt is the number of observations at time t, and σ̂2
xt

is the sample variance of Xi,t−1 across

i. The relation in equation (B17) is very general and therefore of independent interest. It

provides an explicit link between panel regressions with time fixed effects and pure cross-

sectional regressions. It also sheds light on the well-known estimator of Fama and MacBeth

(1973), which is an equal-weighted average of b̂t. The Fama-MacBeth estimator is a special

case of equation (B17) if the panel is balanced (i.e., Nt = N for all t) and the cross-sectional

variance of Xi,t−1 is time-invariant (i.e., σ̂2
xt

= σ̂2
x for all t).

Appendix C. Proof of Statements in Equations (32) and (33)

We now prove the statements related to equations (32) and (33) from Section IV.C.

Combining equations (11) and (30) gives

Rt+1 = a + bβXXt + bφt + εt+1 , (C1)

and combining (29) and (30) gives

X̃t = βXX t + φt + ut . (C2)

The probability limits of the estimated regression slope coefficients in (31) are given by

[
θ1

θ2

]

=

[
Var(X̃t) Cov(X̃t, Xt)

Cov(X̃t, X t) Var(X t)

]
−1 [

Cov(Rt+1, X̃t)
Cov(Rt+1, Xt)

]

. (C3)

Let σ2

X̄
denote the variance of Xt. Equations (C1) and (C2), along with the assumptions

that all quantities on the right-hand sides of those equations are mutually uncorrelated, allow
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(C3) to be simplified as

[
θ1

θ2

]

=

[
β2

Xσ2

X̄
+ σ2

φ + σ2
u βXσ2

X̄

βXσ2

X̄
σ2

X̄

]
−1 [

b(β2
Xσ2

X̄
+ σ2

φ)
bβXσ2

X̄

]

=
1

σ2

X̄
(σ2

φ + σ2
u)

[
σ2

X̄
−βXσ2

X̄

−βXσ2

X̄
β2

Xσ2

X̄
+ σ2

φ + σ2
u

] [
b(β2

Xσ2

X̄
+ σ2

φ)
bβXσ2

X̄

]

=





(
σ2

φ

σ2
φ
+σ2

u

)
b

βX

(
σ2

u

σ2
φ
+σ2

u

)
b



 . (C4)
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Figure 1. Average Turnover Across Fund Categories. Each panel splits funds

into three categories and plots the time series of category-level average turnover. Aver-

age turnover in month t is the equal-weighted average turnover across category funds in the

12-month period that includes month t. Panel A compares small-cap, mid-cap, and large-

cap funds; we use Morningstar’s stock-size classification. Panel B compares growth, blend,

and value funds; we use Morningstar’s value-growth classification. Panel C categorizes funds

according to their size, splitting the sample each month into terciles based on their lagged

assets under management. Panel D categorizes funds according to their expense ratio, split-

ting the sample each month into terciles based on their lagged expense ratio. Data are from

1979–2011.
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Figure 2. Average Turnover, Sentiment, Volatility, and Liquidity over time.

Panel A plots the time series of AvgTurnt, the equal-weighted average turnover across sam-

ple funds in the 12-month period that includes month t. Panel B plots the time series of

Sentiment (from Baker and Wurgler, 2007); V olatility (the cross-sectional standard devia-

tion in monthly stock returns); and Liquidity (the level of aggregate liquidity from Pástor

and Stambaugh, 2003).
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Table I

Turnover-Performance Relation in the Cross Section and Time Series

The table reports the estimated slope coefficients from four different panel regressions of Ri,t on

FundTurni,t−1. Ri,t is fund i’s net return plus expense ratio minus Morningstar’s designated

benchmark return in month t. FundTurni,t−1 is fund i’s turnover for the most recent fiscal year

that ends before month t. The four regressions differ only in their treatment of fixed effects.

Heteroskedasticity-robust t-statistics clustered by sector × month are in parentheses, where “sector”

is defined as Morningstar style category. Data are from 1979–2011. There are 282,738 fund-month

observations in the panel.

Month Fixed Effects

Fund Fixed Effects No Yes

Yes 0.00125 0.00118
(6.67) (7.08)

No 0.00043 0.00039
(2.05) (2.04)
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Table II: Heterogeneity in the Turnover-Performance Relation

This table shows how the slope of fund performance on lagged turnover varies across funds. Each

panel contains results from two regressions, one without controls, one with. The dependent variable

in all regressions is Ri,t, fund i’s net return plus expense ratio minus Morningstar’s designated

benchmark return in month t. We tabulate the slope coefficients for FundTurni,t−1 interacted

with three dummy variables for the categories denoted in each panel’s first row. All regressions

include fund fixed effects. The specifications with controls also include FundTurni,t−1 interacted

with the following variables: dummies for small-cap and large-cap funds (except in Panel A),

dummies for growth and value (except in Panel B), dummies for small and large fund size (except

in Panel C), and dummies for low and high expense ratio (except in Panel D). The tabulated slopes

in specifications with controls in Panel A (for example) can therefore be interpreted as the slopes for

a medium-sized, medium-expense ratio, blend fund. Heteroskedasticity-robust t-statistics clustered

by sector × month are in parentheses, where “sector” is defined as Morningstar style category.

Data are from 1979–2011.

Panel A: Stock Size Categories
Small Cap Mid Cap Large Cap Small - Large Controls
0.00302 0.00114 0.00100 0.00202 No
(7.60) (3.38) (4.17) (4.49)

0.00171 0.00014 0.00025 0.00145 Yes
(3.57) (0.35) (0.85) (3.17)

Panel B: Stock Value-Growth Categories
Growth Blend Value Growth–Value Controls
0.00155 0.00111 0.00184 -0.00029 No
(5.61) (4.85) (4.35) (-0.54)

0.00062 0.00014 0.00077 -0.00016 Yes
(1.56) (0.35) (1.42) (-0.29)

Panel C: Fund Size Categories
Small Medium Large Small–Large Controls

0.00195 0.00089 0.00037 0.00158 No
(7.86) (4.12) (1.24) (4.51)

0.00113 0.00014 -0.00025 0.00138 Yes
(2.76) (0.35) (-0.59) (3.49)

Panel D: Fund Expense Ratio Categories
High Medium Low High–Low Controls

0.00161 0.00099 0.00077 0.00084 No
(6.02) (5.02) (3.60) (3.09)

0.00065 0.00014 0.00003 0.00062 Yes
(1.47) (0.35) (0.08) (2.05)

43



Table III: Properties of Fund Turnover and Performance Across Fund

Categories

This table contains summary statistics on fund turnover (FundTurn) and returns in the full sample

(Panel A) as well as in categories of funds formed on Morningstar’s stock-size categories (Panel

B), Morningstar’s value-growth categories (panel C), monthly terciles of fund assets (Panel D), and

monthly terciles of fund expense ratios (Panel E). When counting funds per category, we assign each

fund to the category in which it most often appears. The volatility of FundTurn equals the stan-

dard deviation of fund-demeaned FundTurn. The next column shows the correlation between the

current and previous year’s fund-demeaned turnover, pooling all fund/years. For the FundTurn

variables, we test for differences across fund categories by reporting the heteroskedasticity-robust

t-statistics clustered by fund and year. For return variables, we test for differences across categories

by reporting the heteroskedasticity-robust t-statistic clustered by Sector × month and (since we

omit fund fixed effects) fund. Data are from 1979–2011.

Average benchmark-
Funds Number Fund turnover (fraction/year) adjusted return (%/month)

included of funds Average Volatility Autocorr. Gross Net

Panel A: Full Sample
All 2721 0.850 0.450 0.507 0.0389 -0.0585

Panel B: Stock Size Categories
Small-Cap 572 0.914 0.418 0.479 0.1913 0.0896

Mid-Cap 597 0.974 0.485 0.511 -0.0068 -0.1074
Large-Cap 1291 0.758 0.425 0.507 0.0161 -0.0783

Small – Large 0.156 -0.007 -0.028 0.1752 0.1679
(t-statistic) (4.62) (-0.34) (-0.92) (3.81) (3.75)

Panel C: Stock Value-Growth Categories
Growth 1016 1.056 0.499 0.504 0.1097 0.0136

Blend 803 0.772 0.434 0.534 0.0019 -0.0939
Value 639 0.611 0.335 0.424 0.0154 -0.0834

Growth – Value 0.445 0.164 0.081 0.0943 0.0971
(t-statistic) (15.41) (9.04) (2.37) (2.20) (2.28)

Panel D: Fund Size Categories

Small 1258 0.908 0.478 0.422 0.0519 -0.0489
Medium 802 0.897 0.464 0.496 0.0533 -0.0525
Large 659 0.759 0.410 0.603 0.0146 -0.0761

Small – Large 0.149 0.068 -0.181 0.0373 0.0272
(t-statistic) (5.39) (3.95) (-5.35) (2.48) (1.81)

Panel E: Fund Expense Ratio Categories

High 1019 0.978 0.511 0.485 0.0812 -0.0619
Medium 848 0.837 0.422 0.519 0.0287 -0.0705

Low 854 0.730 0.377 0.492 0.0074 -0.0611
High – Low 0.248 0.134 -0.006 0.0738 -0.0009
(t-statistic) (7.75) (6.86) (-0.20) (4.58) (-0.05)

44



Table IV: Correlations of Average Turnover Across Fund Categories

This table shows the pairwise correlations between the time series plotted in Figure 1. The

table’s four panels correspond to Figure 1’s four panels.

Stock Size S M L Stock Value-Growth G B V

Small 1.00 Growth 1.00
Mid 0.59 1.00 Blend 0.76 1.00
Large 0.67 0.18 1.00 Value 0.80 0.62 1.00

Fund Size S M L Fund Expense Ratio L M H

Small 1.00 Low 1.00
Medium 0.54 1.00 Medium 0.76 1.00
Large 0.52 0.44 1.00 High 0.74 0.74 1.00
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Table V: Commonality in Fund Turnover

The dependent variable is turnover of fund i in the fiscal year that includes month t

(FundTurni,t). The regressors are averages of turnover across funds j 6= i in month t.

AvgTurn is the average across all funds, AvgTurn Stock Size is the average across funds in

the same stock-size category as fund i, AvgTurn Stock V G across funds in the same stock

value-growth category as fund i, AvgTurn Fund Size across funds in the same size-tercile

category as fund i, and AvgTurn Fund Exp across funds in the same expense ratio-tercile

category as fund i. AvgTurnSim is the average across funds in the same stock-size, fund-

size, and expense-ratio category as fund i. All regressions include fund fixed effects. We

compute robust t-statistics clustering by fund and calendar year. Data are from 1979–2011.

(1) (2) (3) (4) (5) (6) (7) (8)

AvgTurn 0.651 0.425
(8.65) (5.71)

AvgTurn Stock Size 0.547 0.181
(8.94) (2.21)

AvgTurn Stock V G 0.452 0.0971
(6.65) (1.39)

AvgTurn Fund Size 0.629 0.287
(10.65) (4.02)

AvgTurn Fund Exp 0.577 0.275
(11.15) (4.13)

AvgTurnSim 0.351 0.267
(9.54) (7.66)

Observations 303,933 270,449 270,449 303,564 282,738 259,714 259,234 259,234
Within-fund R2 (%) 1.28 1.65 1.20 1.77 1.80 2.62 1.84 2.29
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Table VI: What Explains Turnover?

The dependent variable in columns 1–4 is FundTurni,t, fund i’s turnover during the fiscal

year that includes month t. The dependent variable in columns 5–8 is AvgTurnt, the average

turnover across funds in month t. Sentimentt, measured in month t, is from Baker and

Wurgler (2007, JEP). V olatilityt is the cross-sectional standard deviation of CRSP stock

returns in month t. Liquidityt is the month-t level of aggregate liquidity from Pástor and

Stambaugh (2003). Business Cyclet is the Chicago Fed National Activity Index in month t.

Market Returnt is the return on the CRSP market portfolio from months t − 12 to month

t− 1. T ime Trendt equals the number of months since January 1979. We estimate columns

1–4 as an OLS panel regression with fund fixed effects, clustering by fund and calendar year.

We estimate columns 5–8 as a Newey-West time-series regression using 60 months of lags.

Columns 1–4 show within-fund R2 values. R2 −R2(trend only) equals the R2 from the given

regression minus the R2 from a regression on the time trend only. Data are from 1979–2011.

t-statistics are in parentheses.

Dependent variable: FundTurnit Dependent variable: AvgTurnt

(1) (2) (3) (4) (5) (6) (7) (8)

Sentimentt 0.0359 0.0232 0.0531 0.0487
(3.27) (2.87) (3.17) (4.65)

V olatilityt 0.747 0.540 0.938 0.809

(7.69) (5.56) (7.23) (7.98)

Liquidityt -0.192 -0.0869 -0.212 -0.138

(-4.53) (-3.88) (-4.14) (-4.58)

Business Cyclet -0.0122 -0.00334
(-1.84) (-0.66)

Market Returnt -0.0365 0.0171

(-1.34) (0.34)

T ime Trendt 0.0000 -0.0001 -0.0001 -0.0001 0.0006 0.0004 0.0005 0.0005
(0.06) (-0.53) (-0.83) (-0.47) (5.21) (3.88) (3.44) (5.20)

R2 0.002 0.008 0.001 0.010 0.524 0.541 0.377 0.677
R2 − R2(trend only) 0.002 0.008 0.001 0.010 0.171 0.188 0.024 0.324
Observations 263,895 272,413 272,413 263,895 372 382 382 372
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Table VII: Relation Between Fund Performance and Average Turnover

The dependent variable in each regression model is Ri,t, fund i’s net return plus expense

ratio minus Morningstar’s designated benchmark return in month t. AvgTurnSimi,t−1 is

the lagged average turnover across funds j 6= i that are in the same stock-size, fund-size, and

expense-ratio category as fund i. AvgTurni,t−1 is the lagged average turnover across funds

j 6= i. FundTurni,t−1 is fund i’s lagged turnover. All regressions include fund fixed effects.

Heteroskedasticity-robust t-statistics clustered by sector × month are in parentheses. Data

are from 1979–2011.

(1) (2) (3) (4) (5) (6)

AvgTurnSimi,t−1 0.00210 0.00184 0.00158
(3.29) (2.76) (2.92)

AvgTurni,t−1 0.00359 0.00339 0.00133
(1.52) (1.42) (0.53)

FundTurni,t−1 0.00125 0.00135 0.00118 0.00134
(6.67) (7.30) (6.88) (7.54)

Observations 281,406 306,897 282,738 259,234 282,738 259,234
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