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Abstract

We provide robust empirical evidence of size effects in corporate investments. Small firms have significantly
higher investment rates than large firms, even after controlling for standard empirical proxies of firm real
investment opportunities and financial status, including Tobin’s Q and cash flow. Firm size is at least as
important as Tobin’s Q and cash flow, both economically and statistically, in explaining variation in corporate
investments. Unlike the cash flow effect, however, the size effect is robust to measurement error in Tobin’s Q.
Contrary to common wisdom, the empirical evidence suggests that firm size improves the measurement of
firms’ real investment opportunities rather than reflecting differences in firms’ financing frictions. Using
simulated method of moments, we estimate a neoclassical model of investment and show that technological
decreasing returns to scale, along with measurement error in Tobin’s Q, replicates successfully the empirical
evidence on size effects.
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ABSTRACT

We provide robust empirical evidence of size effects in ooae investments. Small firms have
significantly higher investment rates than large firms, eaftar controlling for standard empirical
proxies of firm real investment opportunities and finandiatiss, including Tobin’s Q and cash flow.
Firm size is at least as important as Tobin’s Q and cash flothy boonomically and statistically, in
explaining variation in corporate investments. Unlike dash flow effect, however, the size effect
is robust to measurement error in Tobin’s Q. Contrary to cemwisdom, the empirical evidence
suggests that firm size improves the measurement of firmkimeasstment opportunities rather than
reflecting differences in firms’ financing frictions. Usinignailated method of moments, we estimate
a neoclassical model of investment and show that technzdbdécreasing returns to scale, along with
measurement error in Tobin’s Q, replicates successfullyethpirical evidence on size effects.
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1 Introduction

We investigate the dynamics of firm growth in the United Stafhe focus is on the relationship between
firm size and investment rates. The gross investment ratebditly traded firms in the bottom decile of the
size distribution averages about3®ercent per annum, and is about two times that of firms indpsize
decile. This inverse capital growth-size relationship besn previously documented under different forms
in the empirical industrial organization IiteratLHeHowever, little is known about whether the dependence
on size holds conditionally, that is even after controlliog variables known to affect a firm’s optimal
investment policy. While much progress has been made inrgtaheling the role of Tobin’s Q and cash
flow in investment regressions, several fundamental quesstill remain unanswered. Why do small firms
invest significantly more than large ones? What is the rofemfsize and how quantitatively important is
it in explaining the dynamics of corporate investment? I fize relevant because the economy is finite
and diminishing technological returns and/or potentiadigreasing cost of capital (due to capital market
imperfections) set in eventually? These questions argal@ntunderstanding the investment dynamics at

the firm level and have important implications for aggregatestment and economic growth.

Modern theories of firm investment identify in Tobin’s Q aratsh flow measures the main observable
determinants of optimal corporate investments as they saanmenrelevant information about a firm’s ex-
pected future profitability and financing conditions. Adtiogly, we investigate whether there is any role
for firm size even after accounting for standard empiricaki@s of heterogeneity in firms’ technological
investment opportunities and financial status. We prowitesice of a size effect in corporate investment
rates: a firm’s investment rate is inversely related to ite $as measured by its capital stock) even after
controlling for factors known to affect a firm’s optimal irstenent policy such as Tobin’s Q and cash flow,

among others.

The size effect in corporate investment is both econonyicatld statistically meaningful. The eco-

nomic relevance of variation in firm size is at least twicerapartant as that in Tobin’s Q and cash flow.

1Among others, Evans (1987) and Hall (1987) provide evidehee the growth rate of manufacturing firms is negatively
associated with firm size and firm age. Using different dasasith only a limited time span available, they measure firme s
using mainly employment data.



Statistically, firm size accounts for a sizable fractiontwd total variation in corporate investment and its
contribution is of the same order of magnitude as Tobin’s @ eash flow. The size effect is robust to
the choice of empirical proxies of investment opportusitad financial status, timing of variables, sam-
ple selection, nonlinear specifications, alternative daspagged investment effects (Eberly, Rebelo and
Vincent, 2011), and classical measurement errors. Givee\fdence in Erickson and Whited (2000), the
robustness of the size effect to measurement error in ToQims of particular concern. Using instrumental
variable estimation, alternative measures of Tobin’s hdSummins, Hassett and Oliner (2006), and the
methodology in Erickson and Whited (2005), we find no evidethat the size effect is driven by classical
measurement error in Tobin’s Q. Most importantly, the ietathip between firm size and investment is
more robust to possible measurement errors in the proxieBotuin’s Q than is the relationship between
investment and cash flows. Therefore, firm size not only dautes to explaining first-order variation in

investment, but also, and unlike cash flow, its contribut®more robust to measurement error in Tobin’s

Q.

These strong size-investment relationship findings mititlee natural question of why size matters.
For instance, Tobin's Q and cash flow may not be sufficientssizg for investment opportunities and
financial status, but rather may be only imperfect obseevphibxies. According to the neoclassical theory
of investment (Hayashi, 1982; Abel and Eberly, 1994), hoemajty of equal degree of a firm’s operating
profit and investment cost functions makes Tobin’s Q propoal to marginal g, and hence a sufficient
statistic for investment. However, departures from homegg due to technological frictions (Gomes,
2001; Cooper and Ejarque, 2003; Alti, 2003; Cooper and hlatinger, 2006; Gala, 2012; Abel and
Eberly, 2010) and/or the existence of financial friction®iiHessy, 2004; Hennessy and Whited, 2007;
Hennessy, Levy and Whited, 2007; Bolton, Chen, and Wang2R0hay drive a wedge between the
observable Tobin’s Q and the unobservable marginal q, #mdirig to an omitted variables problem in
standard empirical specifications of investment. In thistext, the inclusion of firm size may improve the
measurement of the true unobservable future investmertrtypities and financing conditions. Specif-

ically, our findings suggest that size may be capturing sospects of a firm’'s technological decreasing



returns to scale and/or increasing returns to scale in thiecf@xternal financing not captured by Tobin’s

Q and cash flow.

We investigate whether firm size captures mismeasuremeasabinvestment opportunities and/or fi-
nancial status. If a firm’s size captures mismeasuremenfioh& financial status, then we would expect
the size effect for financially constrained firms to diffesrfy those for financially unconstrained firms, ce-
teris paribus. We identify financially constrained firmsngsihe three most prominent empirical measures
of a firm financial status, namely the Kaplan-Zingales (19879 Whited-Wu (2006), and the Hadlock-
Pierce (2010) indexes. We find no evidence of significanesfices in the estimates between financially
constrained and unconstrained firms, suggesting that ttiedjs do not arise because of mismeasurement

in financial status.

We further investigate whether a firm’s size captures mismesnent of a firm’s true unobservable
technological investment opportunity set. In this case, fthdings would require larger firms to have
lower investment rates because firms’ profits exhibit desingareturns to scale in capital, ceteris paribus.
If this was the case, we would expect the (negative) coefficia firm size to depend positively on the
degree of technological returns to scale in firms’ profits.ddleument the existence of such a relationship
across industries. Hence, the empirical evidence sugtiesitshe size effect captures some aspects of a

firm’s technological investment opportunity set that is captured by Tobin’s Q and cash flow.

Overall, the empirical evidence suggests that firm sizeurapttechnological decreasing returns to
scale rather than differences in financial status. Comgistéh such evidence, we focus on a simple Q-
theory model of investment with no financial frictions to liegte quantitatively the empirical findings of
a size effect. Using simulated method of moments (SMM), winede a simple neoclassical model of
investment with curvature in the profit function and convestoof capital adjustment. We then show in
simulated data how technological decreasing returns te,smad measurement error in Tobin’s Q, can gen-
erate quantitatively the empirical relationship betweiee and investment results. The model replicates
successfully not only the magnitude of the estimates, aat tile corresponding variance decomposition

of investment in actual data.



The presence of curvature in the profit function, reflectiing,example, market power or decreasing
returns to scale in production, allows to replicate the sifect via mismeasurement of margirgal The
significance of firm size would therefore reflect the fact tihad world of many state variables a single
variable like Tobin’sQ may not capture all available information. In fact, the usibn of firm size in
a simple investment equation would improve the measureofehe underlying variation in margina,
and hence in investment. With only two state variables inntioelel, and consistent with the findings in
Erickson and Whited (2000), we include measurement errdbbin’s Q to generate cash flow effects in

investment regressions, and thus the size effettath Tobin's Q and cash flow.

Our findings have several implications. First, the empir®madence shows that firm size is at least
as important as Tobin’s Q and cash flow, both economicatigt statistically, in explaining variation in
corporate investments. Unlike cash flow, however, the darton of firm size to explain first-order

variation in investment is more robust to measurement @mrdobin’s Q.

Second, we provide empirical evidence on the role of firm Bizexplaining observed corporate in-
vestment policies. In the existing literature, firm sizesvier used, is employed at times either as a catch-all
variable to mitigate omitted variable bias or as sortingalde for identification of financially constrained
firms prior to estimation of investment equations. Our erogiranalysis provides an explicit role for firm
size as proxy for unobservable real investment opporesiti the estimation of investment equations. The
evidence suggests that standard homogeneity assumpgitiomsdeling a firm'’s profit function are indeed
violated in firm-level data, and hence the dependence ofiment on the unobservable marginal g can

be better measured empirically by accounting for the oladdevTobin’s Q/cash flownd firm size.

Third, we show that a neoclassical model of investment wittvatture in the profit function and
guadratic capital adjustment costs can genegatmtitativelyan important size effect. Our aim is ob-
viously not to provide a new model of investment, but ratleestiow how, even a simple model with
no financial frictions, which realistically departs fromettraditional homogeneity assumptions, implies
the use of firm size to explain first-order variation in inwesht. Such implication is present in many
recent models of investment with curvature. However, ekémpGala and Gomes (2016), most of the

attention in the literature has been devoted mainly on wwtaleding cash flow effects and other financial



variables, while largely ignoring the fact that firm sizeslfsas state variable is a first-order determinant of

investment. Our contribution then naturally complementfthdings of such models.

The remainder of this paper proceeds as follows. Sectios@ibes the data employed in the empirical
analysis and presents our main empirical results on theae#hip between firm size and investment rates.
Section 4 investigates the role of firm size as proxy for rea$tment opportunities and/or financial status.
Section 4 explains the model and presents the estimatiatig@scluding evidence on our model’s ability
to explain the size effect. Section 5 concludes. The appgirdvides details about the robustness tests on

the empirical analysis, estimation of technological nesuio scale, and SMM estimation of the model.

2 Empirical Results

In this section we first describe the data used in the empmitalysis, and then we conduct formal tests

for the presence of a size effect in investment.

2.1 Data

Our main sample of firms is a balanced panel of US firms from Gatgt with annual data for the period
1980-2006. The sample includes 340 firms with 9,180 firm-pdeervations. We use data for the four
main variables present in this study: investmeniK(, Tobin’s Q @), cash flow CF), and firm size K).
Investment is defined as capital expenditures in propeidnt and equipment scaled by the beginning-of-
year capital stock. The capital stock is defined as net ptggdant and equipment. Tobin@ is computed

as the market value of assets (defined as the book value a$ ghse the market value of common stock
minus the book value of common stock) scaled by the book m‘lw&sse@ Cash flow is calculated as
the sum of end-of-year earnings and depreciation scaledebgdginning-of-year capital stock. Firm size
is the natural logarithm of the beginning-of-year capitack. We describe the data and sample selection

in more detail in Appendix A.

2Erickson and Whited (2006) show that using a perpetual iorgralgorithm to estimate the replacement cost of capital
and/or a recursive algorithm to estimate the market valuwkebf barely improves the measurement quality of the varoosies
for Q.



We focus on a balanced panel to mitigate potential concexlased to the entry and exit of firms in
the database and because the time dimension of the datadeitifying the dynamics of the model. We
also investigate the robustness of our size effect resui@ a large unbalanced panel of US firms from
Compustat for the period 1962-2006; and (ii) a panel of mgonal firms from Thomson Financial’s
Worldscope for the period 1980-2005. We report summarystita for the main variables of interest and

the results for the size effect tests based on these adalisamples in Appendix A.

2.2 The Role of Size in Firm Investments

We begin our examination of the relationship between firre sizd investment by sorting all firms into

separate size decile portfolios. We calculate the sizdalbotakpoints and rebalance the portfolios each
year. We then compute an equal-weighted average of firmtimesd rates for each size decile. Table 1

reports the mean investment rate and its correspondingst@tandard errors for each size decile. The
mean investment rate declines from the smallest size dectlee largest decile. The annual investment
rate of firms in the bottom decile of the size distributionraggs about 33.3 percent, and is about two times
that of firms in the top size decile. The strong negative i@iahip between size deciles and investment

rates provides a clear preliminary evidence of a size effewing the firms in our sampte.

We now turn to formally test whether the importance of sizielbgonditionally in a regression frame-
work. Table€2 reports the estimation results for varioussjgations of the investment regression #?).
We use the beginning-of-year capital stock as a measurenofsizél. We begin by testing an uncondi-
tional size effect among our sample of firms by estimating iganiate regression of investment rates on
firm size. The results in specification (1) show clearly tmaaBer firms grow faster than large firms. The
coefficient estimate is about -0.02 and statistically sigaint. This magnitude is quite large in economic

terms, as a one standard deviation increase in the log siaefioh leads to an average decrease in its

3The sizefinvestment relationship is even stronger in thmlamced panel of US firms for the period 1962-2006. The gross
investment rate for firms in the smallest size decile (45.8/&bout 2.3 times that of firms in the largest size decile8%9.
Results available upon request.

4We obtain similar results when using past lags of capitaliseither in place of or as instrument for beginning-of-yespital
stock. Given that we also scale end-of-year investment binbhang-of-year capital, this rules out any possibilitatiour findings
are mechanically driven. Results reported in Appendix A.



investment rate of about 4.3 percent per annum. Our redalsly reject the proposition of Gibrat (1939)

that growth rates and size are independent.

The negative relationship between firm size and investnrettieé empirical tests may be driven by
heterogeneity in firms’ investment opportunities and/oaticial status. For instance, small firms tend
to have higher values of Tobin’s Q compared to large firms,witidherefore tend to have also higher
investment rates according to the Q-theory of investmerg.ndiv test for the presence of a conditional
size effect, or the proposition that small firms grow fasbantlarge firms even after controlling for proxies
of investment opportunities and financial status. The sstphapproach to control for heterogeneity in
the determinants of firm investments is to include firm andetommmies to the baseline regression. As
shown in the second column of Table 2, the negative reladtiprizetween firm size and investment remains
unaffected even after controlling for general unobsenegiogeneity. With fixed effects, a one-standard
deviation increase in firm size above its average value leeald5.4 percent investment reduction relative

to its average investment rate.

According to the Q-theory of investment (Hayashi, 1982)haterogeneity in the determinants of firm
investments can be conveniently summarized in a singlebai namely Tobin's Q. Hence, we include
Tobin’s Q in the set of control variables proxying for theatetinants of firm investment. Specification
(3) in Tabld2 shows that the coefficient on firm size is stilyatve and statistically significant, even after
controlling for variation in Tobin’s Q. The inclusion of Tots Q, while increasing the adjust&f from 27
to 32 percent, has overall only a marginal impact on the dfeeteestimate. With fixed effects and Tobin’s
Q, a one-standard deviation increase in firm size above @#sage value leads to an average decrease in
investment rates by 14.5 percent relative to its averagestnvent rate. For comparison, a one standard
deviation increase in Tobin’s Q above its average valuesléadn average increase of about 5.1 percent

in a firm’s investment rate relative to its average value.

Traditional investment-Q regressions are often augmewitdcash flow variables to describe firm
investments. Cash flow is generally used either as proxy fones financial status (Fazzari, Hubbard,
and Petersen, 1988; Hubbard, 1998) or interpreted as thedwygt of mismeasurement in marginal q (Er-

ickson and Whited, 2000; Gomes, 2001; Cooper and Ejarq0®;2Bala and Gomes, 2012). In addition,



Erickson and Whited (2000, 2006 and 2012) make also a comgelase for substantial measurement
error in Tobin's Q. Hence, we include also cash flow in our $atomtrol variables proxing for a firm'’s
investment opportunities and/or financial status. Spetiéin (4) in Tablé R confirms the presence of size
effects. The inclusion of cash flow affects only marginally cesults, with the adjuste®? increasing only

up to 35 percent and the size estimate being virtually uotte The empirical results also confirm the
economic importance of firm size relative to Tobin’s Q andhciaw. A one standard deviation increase
in a firm size above its average value leads to a 10.9 percesstinent reduction relative to its average
investment rate. For comparison, a one standard deviaiimease in Tobin’s Q above its average value
leads to a 3.8 percent investment increase relative to ésage investment rate. Similarly, a one standard
deviation increase in cash flow above its average value keaalgl.7 percent investment increase relative

to its average investment rate.

The results reported in Tallé 2 provide strong evidencezef sffects in corporate investment among
publicly traded firms: small firms grow faster than large firragen after controlling for differences in
Tobin’s Q and cash flow. Our estimates show that firm size ieatltwice as economically important as

Tobin’s Q and cash flow in explaining differences in investbrates.

We confirm our results in a large battery of robustness tégteng others, we investigate the robust-
ness of the size effect to measurement error in Tobin’s Qpkaselection, omitted variables, timing of
variables, nonlinear specifications, and alternative $asnjn the interest of clarity and ease of exposition,

we discuss and report these additional tests in Appendix A.

2.3 \Variance Decomposition of Firm Investments

We now examine the relative importance of the determinahisvestment rates by performing an anal-
ysis of covariance based on various specifications of thestnvent regression ir?g). Table[3 reports

the results of this covariance decomposition for severati§ipations. Following Lemmon, Roberts and
Zender (2008), we calculate the Type Il partial sum of sgadior each effect and scale it by the total sum

of squares for each specificatBnThe normalization by total Type Ill partial sum of squarescés the

SWe use Type Il sum of squares because the sum of squaressemsitive to the ordering of the covariates.
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column values to sum to one and each number reported is iatedoas the fraction of the model sum of
squares attributed to that particular effect (i.e. firm,ry@abin’s Q, etc.). We also report the adjust®l

for each specification.

The first column of Tablgl3 reports the results with only firnd gear fixed effects. The adjust&d in-
dicates that firm and year fixed effects account for 22 pemfdiie variation in investment rates, of which
about 80 percent can be attributable to firm fixed effectsaaldimis confirms the importance of including
firm fixed effects to control for unobserved long-run or steathte heterogeneity in the determinants of
firm investments. Year fixed effects, which capture unolegtaggregate variation, account instead for, at

most, only 20 percent of the total explained variation irestment.

The addition of firm size increases the adjudido 27 percent, with 17 percent of the total explained
variation in investment attributable to firm size alone. T@usion of Tobin's Q as a control for observed
time-varying heterogeneity in the determinants of firm stueents brings the adjust&d up to 32 percent.
Importantly, firm size still contributes to about 14 percehthe total explained variation in investment,
which is about as much as Tobin’s Q. The full specificationuding also cash flow as a control for
heterogeneity in a firm’s investment opportunities andfuaricial status has an adjusftiof 35 percent.
Most importantly, the fraction of the explained sum of sgsaattributable to firm size (9 percent) is of the

same order of magnitude as Tobin's Q (10 percent) and casi{I®wercent).

Overall, the variance decomposition in Table 3 highligthis guantitative importance of size. Firm
size is at least as important as Tobin’s Q and cash flow, bathauicallyand statistically, in explaining

variation in corporate investments.

3 Financial Frictions or Real Investment Opportunities?

The economic and statistical of a size effect in corporatestment motivates the question of why firm
size matters. For instance, Tobin’s Q and cash flow may noaiffieient statistics for investment opportu-

nities and financial status, but rather may be only impedbservable proxies. Itis well known that under



the standard Hayashi (1982) conditions of linear homodgmeia firm’s profit function, average Tobin’s
Q is identical to marginal g and hence a sufficient statistidifm investment decisions. However, various
violations of these conditions due to technological anéfdernal financing frictions, including market
power, decreasing returns to scale in production, inhomegeas costs of investment and/or external fi-
nancing, may drive a wedge between the “observable” Tolg)nand the unobservable marginal g, thus
leading to an omitted variables problem in standard engdidpecifications of investment. In this context,
the inclusion of firm size may improve the measurement ofrilee inobservable future investment oppor-
tunities and financing conditions. Specifically, our findirgyiggest that firm size may be capturing some
aspects of technological decreasing returns to scale im&fprofit function and/or increasing returns to
scale in the cost of external financing not captured by Telihand cash flow. In other words, the larger
the firm size, the lower the return on investment and/or theengostly the external financing, and the

lower the firm growth, ceteris paribus.

In this section, we investigate whether firm size capturesmaasurement of technological investment

opportunities and/or financial status - i.e. a firm’s degffeexternal financing constraints.

3.1 Firm Size and Financial Frictions

We first examine whether our size effect estimates are simgblgcting the degree of external financing
constraints that a firm may be facing. If firm size truly refieitte degree of external financing constraints,
then the empirical findings would require larger firms to be@nmonstrained compared to smaller firms,
and thus experience more costly external financing and liwestment. However, this interpretation
would be at odds, for instance, with the empirical evidemcélénnessy and Whited (2007), and more
generally the large literature on cash flow sensitivitiesaéstment, which often uses firm size as a sorting
variable to identify financially constrained firms, withdar firms actually thought to be less constrained
compared to smallerfirms, ceteris pariBJAl a minimum, if a firm’s size captures mismeasurement of a
firm’s financial status, then we would expect the magnitudthefsize effect for financially constrained

firms to differ from that of financially unconstrained firmgteris paribus.

5Hennessy and Whited (2007) provide structural evidendesthall firms face more costly external financing.

10



We identify financially constrained firms using the three tmqm®minent empirical measures of a
firm’s financial status, namely the Kaplan-Zingales (1987 ,Whited-Wu (2006), and the Hadlock-Pierce
(2010) indexe. We construct a series of dummy variables based on whethenaditks high or low in
these indices and interact these dummies with the contriglblas and firm size. We also include the index
itself as a contrtQ The interaction term between the financial status dummy amddize estimates the
difference the size/investment relationship betweentcaimed and unconstrained firms. Table 4 reports
the results. For comparison, specification (1) reports #szlne regression results without the financial
status dummy. Specification (2) includes a dummy varialileceal to one if the firm’'s WW index is less
than the median and zero otherwise. Specification (3) iedwddummy variable set equal to one if the
firm's KZ index is less than the median and zero otherwise.ciipation (4) includes a similar dummy
variable, based on the median of SA index. Specificationth(dugh (7) construct two dummy variables,
with the first dummy set equal to one if the value of the respedndices is less than the first quartile of
the distribution, and the second dummy is set equal to oreeivalue of the respective indices exceeds

the third quartile of the distribution.

The results in Tablé]4 suggest that the size effect is umetlet measures of financial status. The
estimates of the size effect for high WW index and low WW inflaxs are statistically indistinguishable.
The same results holds when the firms are sorted by the KZ iodéxe SA index. Column (5) shows
that the size effect for firms in the top quartile of the WW irdke not different from that of firms in the
bottom quartile of the index. The results in Columns (6) afjche similar. To the extent that these indices
capture the degree of a firm’s external financing constratnésresults in Tablel 4 suggest that the negative

relationship between firm size and investment rates doeefiett differences in financial status.

We perform further robustness analysis on these findingsleeavailable upon request). Since the KZ
index contains Tobin’s Q and cash flow as components, themig concern that the estimates reported in
Table[4 may be biased as Q and cash flow enter the investmeessemn separately. Further, the presence

of measurement error in Q can cause this bias to spill ovehier oegressors, because Q is correlated with

"The SA index, proposed by Hadlock and Pierce (2010), is défisg-0.737*Size)+(0.043*Sizp(0.040*Age), where Size
is the log of the inflation adjusted book value of assets angli&ghe number of years a firm has been available on Compustat.
8For brevity, the interaction terms with Tobin’s Q and caskvfls well as the coefficient on the dummy itself are not inatide
in the table, but are available upon request.

11



all of the variables in the regressions. To address thigjsse strip Tobin’s Q and cash flow out of the
KZ index. Similarly, we exclude cash flow and firm size when poting the WW index, and firm size
when computing the SA index. We then re-estimate the investmegression specifications reported in
Table[4 using these pseudo KZ, WW and SA indexes. The unexpogsults are similar, suggesting that
this concern does not drive the findings. Moreover, as artiaddl alternative to the KZ, WW and SA
indexes, we use credit ratings to identify a firm’s financtaliss. We classify firms with debt ratings as
financially unconstrained because they are more likely ¥ lgaeater access to external financing through
capital markets. We consider firms without ratings as firahciconstrained. The unreported results
are consistent with the findings in Tallle 4, suggesting thatriegative relationship between firm size
and investment rates does not reflect differences in finesigtus. We also confirm our findings on the

relationship between the size effect and financial comgsdn a larger unbalanced sample of firms.

3.2 Firm Size and Real Investment Opportunities

We now investigate whether firm size captures mismeasureafienfirm’s true unobservable technolog-
ical investment opportunity set. That is, whether firm simatains additional information about future
investment opportunities that is not already incorporatetthe standard proxies including Tobin’s Q and

cash flow.

If firm size truly reflects unobservable real investment appaties, then the empirical findings would
require larger firms to have lower investment rates because’fimarginal return to investment exhibit
decreasing returns to scale in capital, ceteris paribuhidfwas the case, we would expect, for instance,
the firm scale coefficierft in (?7?) to depend positively on the degree of technological rettionscale in
firms’ operating profits with respect to capital. The highes tegree of returns to scale in firms’ profits,
the lower the sensitivity of the marginal profitability ofgital, and thus of investment rate, to changes
in the capital stock. Hence, the higher the degree of retiorrsgale, the lower in magnitude, and thus
the less negative, the firm size estimgbe, We expect this same pattern to hold even conditional on
imperfect control variables such as Tobin’s Q and cash flow. caéhfirm these theoretical relationships

using simulated data from a neoclassical model of investinghe section below.

12



In this section, instead, we empirically test for such a fpasirelationship between the degree of
technological returns to scale and the firm size coefficierfis identify significant differences in the
degree of technological returns to scale, we perform theirggapanalysis at the two-digit SIC industry
level. Since the main balanced panel of only 340 firms doesomdtitute a representative sample for all
industries, we use instead a large unbalanced panel ofG8€rins over the sample period 1962-2006 (see
details in Appendix A). The longer time series and the largenber of firms in the unbalanced sample

allow to better identify the variation in the degree of tealagical returns to scale across industries.

We first estimate the firm size coefficighfor each two-digit SIC industry using the investment spec-
ification in (??) including fixed effects. We estimate both unconditionadl aonditional size effect co-
efficients. We include Tobin’s Q and cash flow in the set of auiniariables for the estimation of the
conditional firm size coefficient. We then employ the methogy of Cooper and Haltiwanger (2006) to
obtain estimates of the degree of technological returngatesn capital,8, by estimating a log-linear
guasi-differenced regression of revenues on capital shackach two-digit SIC industry. Appendix B
provides details for the estimation 6fand the construction of the relevant variables. Both inguss-
timates off3 and 6 are obtained from a panel of firms within each industry usiegnsingly unrelated
regressions. Tablg 5 reports the firm size and returns te poaht estimates and standard errors for each

of the two-digit industries included in our sample.

We then estimate a cross-industry regression of the caafficion firm sizef3, on the estimates of
technological returns to scal®, Table[6 reports the results including standard errorssteljufor the
sampling variation in the generated regressors. Spedifisal) and (3) report the results for the uncon-
ditional and conditional firm size estimates, respectivil find evidence of a positive relation between
the firm size estimate and technological returns to scale in capi€alThis relationship is significant at

conventional levels, even when accounting for the samplar@tion in generated regressors.

We also estimate the firm size coefficierfis,and the technological returns to scaleusing aggre-
gated industry-level data rather than firm-level data withdustries. For each two-digit SIC industry, we
compute the industry-level counterpart of the variablemigfrest. For example, the industry revenues are

calculated as the sum of firm revenues within the industrg&mh year, and the industry investment rate is
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computed as the sum of firm investments divided by the sumrafdapital within the industry. As shown

in specifications (2) and (4) of Tallé 6, the results are sinmégardless of the estimation methodology.

The empirical evidence at the industry level confirms thetexice of a relationship between the degree
of the size effect in investment and and technological rstup scale. Overall, our findings suggest
that firm size does capture information about a firm’s dednga®chnological returns to scale not fully
accounted by standard empirical proxies such as Tobin’sdZash flow. As such, firm size improves the

measurement of a firm’s unobservable investment oppoytseit

4 A Neoclassical Model of Firm Size and Investment

The empirical evidence suggests that firm size capturemddmtical decreasing returns to scale rather
than differences in financial status. We now focus on a Qrthewdel of investment with no financial

frictions and curvature in the profit function that genesadirm size effect consistent with the empirical
results. We first present the model, then we proceed witltritstsiral estimation via the simulated method

of moments and assess its ability to quantitatively repdithe empirical findings.

4.1 Q-Theory of Investment with Curvature

We examine the optimal investment decision of a firm that mézes the market value of current share-
holders’ wealth in the absence of any financing frictionsthdit loss of generality, we assume that the
firm is financed entirely by equity. The firm’s per period prdfinction isTi(A,K), whereK is capital
andA is a profitability shock. The profit functiort(A,K) is continuous and concave, with(0,A) = 0,

Ta (A K) > 0, Tk (A,K) > 0, Tkk (A,K) < 0 and limk_ Tk (A,K) = 0. We use the standard functional
form

(A K) = AK® 1)

where 0< 8 < 1 captures the curvature of the profit function, which sa&ssfiontinuity, concavity and

the Inada boundary condition. The reduced form profit flarctit(A,K), can be obtained from the firm’s
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optimization over freely adjustable factors of producti@ee Appendix B). As such, the shock to the
profit function, A, reflects variations in productivity, input prices and aitdemand. We can interpret the
curvature of the profit function as reflecting the presenagesfeasing returns to scale in production as in

Gomes (2001), and/or firm market power as in Cooper and Eaf203).

The profitability shockA, follows a stationary first-order Markov process with titioa probability
f (A',A), where a prime indicates a variable in the next period. We@uiently parameterize the shock

process as AR(1) in logs:

log (A') = u(1—p)+plog(A)+¢€ (2)

where|p| < 1 ande¢’ follows a (truncated) normal distribution with O mean, stard deviation ofs and

finite support/A, A].

The capital stock also lies in a compact @ﬂ?] As in Gomes (2001), we defin€ as:
Tk (AK)—(r+38)=0

where 0< & < 1 is the capital depreciation rate and- 0 is the opportunity cost of fund¥ equates the
maximum value of the marginal profitability of capitaly (K,K), to the user cost of capital,+ o. As
such,K always lies in the intervaﬂO,K] becaus& > K is not economically profitable. The compactness

of the state space and continuity of the profit functidi, K) ensure thatt(A,K) is bounded.

The firm purchases and sells capitalat a price of one and incurs standard quadratic adjustnostg c

that are given by

2
C(l,K):‘é’<'R—i*> K 3)

wherey > 0. This specification implies that capital adjustment cesesnon negative and minimized at
the natural rate of investmerit As standard in the investment literature, we assume teatdltural rate
of investmentj*, is equal to the depreciation rat®,implying that adjustment costs apply on net capital

formation.
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The firm chooses$ each period to maximize the value of discounted expectaddutash flowsy.

The Bellman equation for the problem is:

V(K,A) = mlax{n(A,K) —1-C(I,K) +1—L/V (K, A)df (A’,A)} 4)

where next period capitdd’ evolves as
K'=(1-3)K+I.

The first three terms if{4) represent the value of currenitydistributions net of any securities issuance,
and the last term represents the continuation value of yqdihe assumptions above ensure that the
dynamic model is well behavied and satisfies the conditiariBhieorem 9.6 in Stokey and Lucas (1989)

for the existence of a solution to the Bellman equatiohin (4)

4.2 Optimal Investment Policy

In this subsection we develop the intuition behind the meddlility to generate the size effect effect by

examining its optimality conditions.

The firm chooses investmehusing its conditional expectations of future profitabijliy, and given
the current capital stockK. The optimal solution to the firm’s problem ih](4) satisfieg fiirst-order
condition with respect td, which requires, at the optimum, the equivalence betweengima cost and

benefit of investment:

1+G(1,K) = %/VK (K’7A/)df (A/,A), )

The right side of this expression, which represents the imargenefit of investment, is termed “marginal
g". Given the operating profit function in{(1) and the quadradjustment cost i [3), the optimal invest-
ment policy is then given by

1,1
g =i +\—/[q(K,A)—1]. (6)
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Our choice of quadratic adjustment costs makes the optimaktment policy in[{(6) consistent with
the linear investment specification used for the empiriestist of size effects. The empirical specification,
however, includes also an error term and fixed effects. Taeseften introduced in the model by allowing
the adjustment cost function to include both fixed effect$ astochastic term through the natural rate of
investmenti*. We opt instead for an alternative interpretation of themreterm as measurement error
since we pursue the implications of misspecification caumethe substitution of average for marginal
g. Moreover, in order to render our simulated data comparablee actual data, we remove unobserved

heterogeneity from the actual data using fixed effects &ubtd introducing it in the model simulated data.

The presence of curvature in the profit function in an otheewtraditional investment model with
guadratic adjustment costs violates the homogeneity tiondi(Hayashi, 1982; Abel and Eberly, 1994).
As such, marginad) differs from (average) Tobin'® , which is now only an imperfect, yet observable,
proxy. In addition, the violation of the homogeneity coiatis makes marginaj not only a function of the
profitability shockA (as it would be under homogeneity), but also of the capitalisiK. This dependence
makes the capital stock itself a natural observable expanaariable for investment, even in the presence

of Tobin’s Q.

With two state variablesandK), Tobin’sQ and the capital stock convey different information. When
controlling for the capital stock, Tobin’s Q, which is monotonically related to the profitability shock
A, is likely to capture most of its variation. The significanaifirm size in this case would therefore
reflect the fact that in a world of many state variables a singriable like Tobin’€Q may not capture all
available information. In fact, the inclusion of firm sizedrsimple investment equation would improve the
measurement of the underlying variation in margigaand hence in investment. Without any additional
state variable, and consistent with the findings in Erickaad Whited (2000), we then generate cash flow

effects by introducing classical measurement error inTslg).
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4.3 Model Estimation

We solve the model numerically using standard value fundt'mrationg Given that there is no analytical

representation for the model-implied moments, we estintademodel using the simulated method of
moments (SMM) proposed by Lee and Ingram (1991). Specificatt choose model parameters that set
moments of artificial data simulated from the model as claspassible to the corresponding empirical

data moments.

Following the empirical investment literature, we set tle@mrtciation rated, and the discount rate,
to their conventional values of 16 and Q05, respectively. These parameters are in line with the nigaie
values and estimates used in previous studies (Cooper angugj 2003; Hennessy and Whited, 2007).
Given the general consensus concerning their numericaésathese parameters provide essentially no
degrees of freedom for generating the quantitative reslllesrestrict the scaling parameteof the shock
process in[(R) so that the steady-state capital stock is alzred to We then estimate the following
parameters: profit function curvatur®, shock serial correlationp; shock standard deviatioms; and
the capital adjustment cost, We focus on the moments most directly related to the modanpeters.
Specifically, the moment vector includes the mean and vegiaf Tobin's Q, the variance and serial
correlation of investment, and the variance of operatirgfipfcash row Appendix C contains details

concerning the choice of moments and the estimation of thdemo

Table 6 presents the estimation results. Panel A reportatheal and simulated moments with t-
statistics for the difference between the two. Panel B tspoarameter point estimates, standard errors
and a test of over-identifying restrictions (J-test) foe tyeneral specification. Taking into account the
parsimony of our model, the J-statistic takes on a reasprabhll value. The J-test does not provide
rejection at the one percent level, implying that overa#t thodel matches reasonable well the set of

empirical moments viewed collectively, particularly whemnsidering the low degrees of freedom. Most

9We first discretize the state space for the two state vasabendA following the procedure in Tauchen and Hussey (1991).
We then solve the model via iteration on the Bellman equa@prwhich produces the value function(K, A), and the investment
policy function,| (K, A).

101n the steady-state, the capital stockig = [8exp(p) / (r +6)]1/<l’9), which equates the marginal product of capital with
its user cost + o.
11n simulations, one can see that the moments are quite rsispedn variations in the values of the parameters.
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simulated moments in Panel A match the corresponding dataemis well, and all simulated moments are
statistically indistinguishable from their empirical ctarparts at conventional significance levels. Even
if statistically insignificant, only the serial correlatimf investment and the variance of Tobin’s Q have
simulated values that differ slightly from their corresdomg values in the data. The serial correlation
of investment in simulated data.@F) is lower than its empirical counterpart3@). The quantitative gap
between actual and simulated moments is not large, patlgwhen compared with the results in Cooper
and Ejarque (2003), which fail to match this particular matreporting a gap of at least3B. We attribute
our improved performance mainly to a larger adjustment essitnatey, of 1.13. Convex costs, which
prevent firms from swiftly investing in response to persisfgroductivity shocks, imply investment that is
positively autocorrelated with many relatively small atjuents. Hence, highgrgenerates more serially
correlated investment so that firms optimally economizehercbsts of capital adjustment. An even larger
adjustment cost would certainly increase the serial caticel of investment, but at the expense of a less

volatile investment series.

The high variance of Tobin’s Q in the data4@) exceeds only slightly its simulated counterpar8@).
Matching the high variance of Tobin's Q, which also drives aige adjustment cost estimate, is noto-
riously difficult for most adjustment-cost models. For argte, Eberly, Rebelo and Vincent (2011), who
exclude the variance of Tobin's Q from their target momergsort a gap of about 80. As emphasized in
Erikson and Whited (2000), a potential additional sourceotdtility is measurement error in Tobin’s|€3.

In the next subsection, we follow their lead and incorporatmsurement error in Tobin’s Q to generate
a cash flow effect in investment regressions. Our choicedinde the variance of Tobin’s Q among the
set of target moments, despite its challenges, naturatlyighees useful additional restrictions on plausible

values for the magnitude of measurement error in Tobin’s Q.

The quadratic adjustment cost parametehas received enormous attention in the literature since

a regression of investment rates on measures of averagebor'sTQ identifies this parameter when the

12pdditional sources of volatility in Tobin's Q can also berittited to differences between the intrinsic value and taeket
value of equity. Some supporting evidence can be found nf&tance, in measures of Q that do not rely on the market vdlue o
equity and perform better than traditional ones in exptajrinvestment. These alternative measures include essnhatsed on
cash-flow forecasts (Abel and Blanchard, 1986; Gilchristldimmelberg, 1995), analyst forecasts of earnings gro®timgins,
Hassett, and Oliner,2006), and bond prices (Philippon9200
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operating profit and the cost of capital adjustment are tigdgomogeneous. Using the Q-theoretic ap-
proach, estimates gfrange from over 20 as in Hayashi (1982) to as low as 3 in Gatlarid Himmelberg
(1995). One noticeable exception is the recent study by [@&a02) in which he estimates average (across
industries) quadratic capital adjustment costs of abdit.0Nhile direct comparison with other estimates
should be viewed with caution given differences in methaus datasets, our estimate of 1.13 is compa-
rable to previous studies, though higher than the estinat8s17-0.23 reported in Cooper and Ejarque
(2003). The inclusion of the high variance of Tobin’s Q amdhg set of target empirical moments,
along with the reasonably good match of the high serial tafiom of investment in the data, are mainly

responsible for our understandably larger estimatg of

Our estimate of the curvature of the profit functidh,is 0.91. Despite differences in estimation
methods and datasets, this value is consistent with estamaported in previous studies. For instance,
Burnside (1996) estimates a value of 0.80 for the averageedegf returns to scale across industries.
More recently, DeAngelo, DeAngelo and Whited (2011) estareavalue of 0.79 using a more complex
dynamic model of investment and capital structure decssi@ifferently from Cooper and Ejarque (2003),
who estimate a value of 0.70, the larger estimate in our daimsonsistent with the lower average value of
Tobin's Q. Despite its relatively higher value, our estienat 6 also confirms the existence of substantial

technological decreasing returns to scale.

The point estimate of the serial correlatiqn) @nd standard deviation of profit shocks) @re 0.46
and 1.04, respectively. These values are qualitativelypawable with estimates displayed in previous
studies. For instance, our estimate of the standard deniafi profit shocks d) is close to the value of
0.90 reported in Cooper and Ejarque (2003), though is giypaigher than values reported in more recent
studies, which estimate directly these parameters usilygrwoments of the empirical distribution of oper-
ating profit (Hennessy and Whited, 2007; DeAngelo, DeAngeld Whited, 2011). Our higher estimates,
instead, are not only driven by the high volatility of op@rgtprofits, but also, and most importantly, by

the high empirical variance of Tobin’s Q.

While it is unlikely that our relatively simple model prowd a complete description of the empirical

relation between investment amadl its determinants, it delivers overall a fairly good parsimoas ap-
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proximation given the focus of the paper on generating tlopgmnties of investment from technological

decreasing returns to scale.

4.4 Simulated Investment Regressions

In this section we investigate the model ability to genegat@ntitatively the size effects found in corporate
investment data. We report the simulation results in Tablor easy of comparison, we also include their

empirical counterparts from Table 2.

As shown in Panel A of Table 7, the coefficient estimate of #grassion of investment rate on firm
size is—0.05 in simulated data versus its empirical counterpart oftiab®.07. Hence, the unconditional
size effect, which arises because of decreasing returrtate, $s similar and significant in both simulated

and empirical data.

Given the model-implied linear investment equation, aesgion with three variables, Tobin's Q,
cash flow and size, all highly correlated to the two only statéables,A andK, would not reproduce in
simulations a size effect conditional bothTobin’s Q and cash flow comparable to the data. For instance,
given firm size and Tobin’s Q, cash flow would be informatibpakdundant in simulated investment
regressions. Therefore, in order to generate also a caslefteat as in the data, we follow Erickson and

Whited (2000), and allow for classical measurement errdioloin’s Qf

As emphasized in Erickson and Whited (2000), classical areasent error in Tobin’s Q naturally
generates a cash flow effect in investment regressions, wlien Tobin’s Q is a sufficient statistic for
investment - i.e. under linear homogeneity assumptionsckldn our inhomogeneous investment model,
where marginat) rather than Tobin’s Q is a sufficient statistic for investtpemeasurement error in Tobin’s
Q allows to generate a sizeeffect conditionalbmth Tobin's Q and cash flow as in the data, rather than a

size effect conditional orither Tobin’s Qor cash flow only.

13The introduction of measurement error in Tobin’s Q to geteetash flow effects is also consistent with the empiricalente
reported in Tabl€ A2 Applying the reverse regression methodology in Ericksaah \Athited (2005), we find that, also in our
data, the cash flow effect is particularly sensitive to mezsent error in Tobin's Q.

14alternatively, one could generate a cash flow effect by iimng financial frictions as in Gomes (2001) and Hennesasyy L
and Whited (2007). We opt, instead, for measurement errdobin’s Q given our aim of showing how size effects naturally
arise from the curvature of the profit function, even in theaatze of financial frictions.
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Specifically, we suppose that the econometrician obsergbm$ Q with error,Q = Q+ ¢, where
e ~N(0,0%). We then set? equal to a proportionx, of the variance of the tru@. Panel B of Table 7
reports the results for different values of the variance eisurement errax, The inclusion of the variance
of Tobin’s Q among the set of target moments for the estimatibthe structural parameters imposes
discipline over the plausible range of values fo1Given the variance of Tobin’s Q of 878 in simulated
data, a plausible value for the upper boundxoran be obtained by allowing for an increase378 x
(1+x), that matches the upper bound of the 95 percent confideneevahiof the empirical variance of
Tobin’s Q, 0482 (= Q414+ 1.96 x 0.035). We set the upper bound gro a conservative value ofZb,
which is slightly below such a number,28 (~ 0.482/0.378— 1), and still an order of magnitude smaller

than the value implied by Erikson and Whited (2000).

Our natural benchmark foris 0.10, which brings the simulated variance of Tobin’s (B8) close to
the empirical one, .@1 The coefficient on firm size, conditional on Tobin’Q and caslwflis about a
significant—0.042 in simulated data, and very close to its empirical capaig of —0.050. The coeffi-

cients on Tobin’s Q and cash flow are also significant and coalybato their empirical counterparts.

Within the plausible range of values for the variance of meament error, the model-implied invest-
ment regressions generate conditional size effects variasito the data. The coefficient on Tobin's Q
decreases monotonically with the variance of measurenmeortfeom 0087 to 0035. Even though there
are multiple regressors, this pattern is consistent wittetidence on the attenuation bias in the estimation
of capital adjustment costs using mismeasured Tobin’s @K&wn and Whited, 2000; Cooper and Ejar-
gue, 2003). The coefficient on cash flow increases subdtgntidh the variance of measurement error
and ranges from.Q66 to 0246. The high sensitivity of cash flow to measurement errdfobin’s Q is
also consistent with previous findings in Erickson and Wh{2000, 2005). The coefficient on firm size,
instead, decreases only slightly with the variance of mmessent error from-0.042 to—0.064. These
findings concerning the sensitivity to measurement errdmipin’s Q are also in line with our empirical

investigation. Applying the reverse regression methagipia Erickson and Whited (2005), whose results

15Gomes (2001) also uses a value for the variance of the meastigror equal to 1/10 of the variance of Q.
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are reported in Table Al.2 in Appendix, &ve confirm that the size effect is substantially less sesesiind

as such more robust, than the cash flow effect to measurementreTobin’s Q.

4.5 Simulated Variance Decomposition

We now investigate further the quantitative implicatiofi@or simple neoclassical model with a variance
decomposition of investment. Table 8 compares the varidecemposition of investment in simulated
and actual data. In order to make the actual results comleatalour simulations, which produce i.i.d.
firms, we remove unobserved heterogeneity from the actual loka using fixed firm and year effects.
Hence, we report theithin variance decomposition for the regression in actual data.n@/malize the
Type Il partial sum of squares for each effect by the aggeegartial sum of squares across all effects in

the regression specification, so that each column sums to one

In our simulated data, the only sources of error in the imaestt regression consist of mismeasurement
in marginalq and classical measurement error in Tobin’s Q. As such, thestsdiR? for the investment
regression in simulated data of aboub® naturally exceeds its corresponding value @&20in actual
dat Most importantly, however, the relative contribution otkavariable to the variance of investment
both in simulated and actual data are fairly similar. In oatunal benchmark with modest amount of
measurement errok (& 0.10), about 41% of the explained variation in investment carattributed to
Tobin’s Q alone versus 31% in actual data. As expected, tlsendhe measure of Tobin's Q, the lowerits
contribution to the variance of investment. About 45% o&styent variation in simulated data can instead
be attributed to cash flow versus 42% in actual data. The cashvfriable becomes relatively more
important with substantial measurement error in Tobin's-@n size contributes about 14% of investment
variation in simulated data against 27% in actual data. ®Viill lower than its empirical counterpart,
the size contribution increases up to 17% with the measureereor in Tobin’s Q. Consistent with our
empirical investigation of the impact of measurement eimofobin’s Q, the contribution of firm size is

much less sensitive than cash flow to measurement error in'Sap.

16The introduction of additional shocks, for instance, stmtit shocks to adjustment costs, which are commonly us#tin
investment literature, and/or different curvature of thguatment cost function would contribute towards a reductf theR?
for the investment regression in simulated data.

23



While it is unlikely that our parsimonious investment modedvides a complete description of all the

shocks underlying the investment dynamics in actual diessliyields a reasonably good approximation.

4.6 Firm Size and Technological Returns to Scale

In this section we investigate in simulated data the ratatietween the curvature of the operating profit
function, 6, and the size effect estimafg, This relation underlies the identification of the firm siffeet

arising from technological returns to scale and supponsmss-industry empirical analysis above.

Table 10 reports the size coefficient estimates in simuldegd for different values of the curvature
of the profit function,8. Panel A provides the estimate from a regression of investmate (/K) on
firm size (InK) only. The higher the operating profit curvatuéethe higher (less negative) the size effect
estimatef3. In the absence of any other variable, firm size effectivelgtares the marginal profitability
of capital. With decreasing returns to scale, the higherctireent capital stock, the lower the marginal
return to capital and hence the lower the equilibrium investt rate, ceteris paribus. How much lower is
the marginal return to capital, and hence investment ratgegiids on the operating profit curvat#eThe
higher©, the lower the sensitivity of the marginal return to capitaid thus investment rate, to changes
in the capital stock. Hence, the higher the curvafyrthe lower in magnitude the size effect estimfie,
As 6 approaches constant returns to scélle( 1), the marginal return to capital becomes insensitive to

changes in the capital stock, and any size effect progedgsilissipatesff — 0).

Panel B of Table 9 provides the conditional size effect emtiim from a regression of investment rate
(1/K) on firm size (IrK), cash flow (K) and Tobin’s Q Y /K), for various levels of measurement error
in Tobin's Q. The same pattern between the operating prafitature,0, and size effect estimates holds
even conditional on imperfect control variables such asiifel) and cash flow. As such, firm size
complements any information about decreasing return tdataready incorporated in these imperfect
controls. The noisier the measure of Tobin’s Q, the strotigesize effect as firm size becomes relatively
more informative about the marginal return to capital, ietgaribus. As the curvature approaches constant

returns to scalef(— 1), Tobin's Q becomes a sufficient statistic for investmdime, marginal return to
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capital becomes insensitive to changes in the capital stn# the conditional size effect coefficients

approach zerd(— 0). The less noisy the Tobin’s Q, the faster the size effept@grhes zero.

5 Conclusion

A large literature in economics has investigated the datemts of firm growth dynamics. On one side,
the industrial organization and growth literature haveufmx on the role of firm size, on the other side, the
corporate finance literature has focused on the role of Kirand cash flow. This paper links the two
streams of literature and examines whether size dependeimgportant in corporate investment decisions

even after controlling for standard proxies for firm investrhopportunities and financial status.

The results of our empirical analysis provide robust evigethat small firms invest significantly more
than large firms even after controlling for Tobin’s Q and cflelv. We find that firm size is at least
as important as Tobin’s Q and cash flow, both economicatig statistically, in explaining variation in
corporate investments. Interestingly, the size effectasamobust to measurement error in Tobin’s Q than
the cash flow effect. Furthermore, the empirical evidenagests that the firm size effect reflects the
mismeasurement of firms’ unobservable real investmentriypity set rather than reflecting differences

in firms’ financing frictions.

Consistent with the empirical evidence, we confirm that go#en®Q-theory model of investment with
curvature in the profit function and capital adjustment €asin replicate quantitatively the empirical
findings of a firm size effect in corporate investment. As suwlen a simple model with no financial
frictions, which realistically departs from the traditalrhomogeneity assumptions, recommends the use

of firm size to explain first-order variation in investment.
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Appendix

This section contains three appendices with details albmutdbustness tests on the empirical analysis,

estimation of technological returns to scale, and SMM ediiom of the model.
Appendix A

In this appendix we discuss in more detail the data sets usatld empirical analysis and the robustness

tests on the size effect findings.
A.1 Data

We construct three samples of firms for the empirical anslyBhe unbalanced sample of US firms is taken
from the combined annual research, full coverage, and tndu€ OMPUSTAT files for the years 1962 to
2006. We omit utilities (SIC 4900-4999) and financial firmEX$000-6999) from the sample. We keep
all firm-years in our main sample that have non-missing miation available to construct the primary
variables of interest, namely investment in property, pdand equipment, total capital (net property, plant
and equipment), book value of total assets, market valuss#ta (book value of assets plus the market
value of common stock minus the book value of common stockniegs before extraordinary items,
depreciation, stock price at the fiscal year close, and th#en of common shares outstanding. We deflate
capital expenditures and net property, plant and equipimgtiie deflator for non-residential investment
from the NIPA tables. The remaining data items are deflatgtyube consumer price index. To ensure
that our measure of investment captures the purchase oéipypplant and equipment, we eliminate any
firm-year in which a firm in the sample made a major acquisitde then trim the variables (investment
rates, Q, cash flow rate) at the 1st and 99th percentiles of distributions to reduce the influence of
outliers, which are common in accounting ratios. This pdoce yields a sample of 130,108 firm-years

representing 13,986 different firms.

We also construct a sample of US firms in a balanced panel. rcheled in the balanced sample, a
firm must have sufficient data available to measure Tobin®gstment, cash flow, and capital stock for

every year from 1980 to 2006. In addition, to ensure that ogasuare of investment captures purchases
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of property, plant and equipment, we eliminate any firm thayrhave made a major acquisition during
the sample period. These criteria yield a sample of 9,180 y&ars composed of 340 firms that have data

available in each of the 27 years in the sample period.

Our last sample is composed of international firm level dedenfThomson Financial's Worldscope
database. Worldscope provides the broadest coverageeafi@tional data, covering companies in more
than 50 developed and emerging markets and accounting fi than 96 percent of the market value of
publicly traded companies across the globe. We use datarnos fiiom Australia, Brazil, Canada, France,
Germany, Japan, South Korea and the United Kingdom for ¢éeimiational sample as these eight countries
have the widest coverage for non-US firms in the Worldscopebdae. We keep all firm-years in each
of these countries with non-missing data for investmems,atobin’s Q, cash flow and net property plant
and equipment. The international sample has 62,745 firmsymanposed of 10,839 firms over the period

1980 to 2005.

Table[A.1 reports summary statistics of the main variabfasterest for the unbalanced sample, bal-
anced sample and international sample of firms. Overall,vatinbles of interest are comparable with
previous studies, except for the slightly higher mean itmaest rate due to the scaling of capital expendi-

tures by net property, plant and equipment rather than gmaggerty, plant and equipment or total assets.
A.2 Robustness

We now conduct a large battery of robustness tests to addoession concerns associated with the esti-

mation of investment regressions.

Measurement error. A potential concern with the interpretation of the tests dime effects is the
presence of measurement error in Tobin’s Q. We now investigdnether classical measurement error
in our proxy for Tobin’s Q affect our estimates. In our firspagach, we employ a classical errors-in-
variables methodology by instrumenting for Tobin’s Q. We tso sets of instruments: (i) lagged cash
flow; and (ii) lagged cash flow and lagged Tobin’s Q. The rasoftthe instrumental variables estimation
are reported in the first two columns of TableJA.2. In both satiee magnitude and statistical significance

of the firm size is virtually no different from previous retsul
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As a second approach, we investigate whether the qualityropmxy for Tobin’s Q can explain the
consistently negative coefficient we obtain on firm size i@ ifivestment regressions. To test whether
measurement error is driving the sign of the coefficient om fiize, we employ the methodology of
Erickson and Whited (2005). This method allows a researthairaw inferences about the signs of
coefficients in the presence of a mismeasured regressothifdeolumn of Tablé A.R reports the results
of the reverse regression in the methodology of Erickson \&inited (2005), whereby we regress the
proxy for Tobin’s Q on investment, cash flow, and firm size. \&efom that the coefficient on firm size in
this reverse regression maintains its negative sign, stiggethat the possible measurement error in our
proxy for Tobin’s Q is not responsible for the negative sidrihe coefficient in the baseline investment
regression. Interestingly, the sign on the cash flow coefiicéwitches from positive to negative in the
reverse regression, suggesting that the cash flow sefysitizinvestment is sensitive to measurement

error in Tobin’s Q.

As a third approach, we use an alternative measure of ToQipgoposed by Cummins, Hassett and
Oliner (2006), which employ firm-specific earnings foresasbm securities analysts rather than stock
market values. We follow this approach and estimate the natiorefor Tobin’s Q using IBES analysts’
consensus earnings forecasts. Similar to Cummins et abj200r sample period is 1982 to 1999. We
further require that each firm included in the final sampleehat/least two consecutive years of non-
missing data. The fourth column of Tallle A.2 reports the ltesaf the investment regression with the
analyst-based estimate of Tobin’s Q. We find that the madaiaind statistical significance of firm size is

similar to the estimates from the regression with the stoekket based Tobin's Q.

Selection bias.Given that our sample is made up of publicly traded firms froomPustat, a potential
concern is that the results may be due to sample selectisn Becifically, while small and fast growing
firms are more likely to enter and remain in Compustat ovee tismall firms initially in the database that
did not experience growth over time are more likely to exiende, our inability to observe these small
firms exiting the database may create a bias in favor of oumigsd However, the Compustat database,
which includes only firms with publicly traded securities also more likely to represent mostly the large

firms with good growth prospects in the overall economy. Herthe left-truncation of the true size
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distribution of all firms in the economy as represented ingample may bias against finding evidence of
a size effect given that only firms that are likely to be larged have higher growth rates will be included

in the sample. Overall, the direction of these biases mak wiofiavor as well as against our findings.

We use a two-stage Heckman-type procedure to control fopleaselection bias. We first model the
exit decision of firms in the large unbalanced panel as aimmaf firm size, Tobin’s Q, cash flows, cash
holdings, and leverage. We then obtain the inverse Milltgrand include it on the right hand side of
the conditional investment regression. Specification i{5)able[A.2 reports the results. Controlling for

selection bias does not affect our findings.

Timing of variables. In the baseline regression we scale end-of-year investbyemeginning-of-year
capital on the left hand side, and include the log of begignuifiyear capital on the right hand side of
the regression. One potential concern is that the negatiefficient on log of firm size may be mechan-
ically driven. In response, we replace l§g_1 with logK;;_» in the investment regression. As shown in

specification (1) of Tablg_Al3, the economic and statistigihificance of firm size remains unaffected.

Since we use beginning-of-year Tobin's Q and lagged cash tihoexplain end-of-year investment,
our proxy variables might only partially reflect changeskhia thvestment opportunities and/or financial
status occuring over the year. Specification (2) reporisnasts including contemporaneous Tobin’s Q
and cash flow. Controlling for the change in Q and cash flow dweinvestment period does not affect

the significance of firm size.

Our measure of future investment opportunities and/or Giimstatus might be inadequate if there are
lags between when a firm has investment opportunities and tihleeactual investment is measured. These
lags may be due to accounting practices as well as timeitd-bansiderations. The next specification
include additional lags of Tobin’s Q and cash flow in resporSem size still preserves its economic and

statistical significance.

We conclude that the timing of our proxy variables for inmesit opportunities and/or financial status

has no effect on the results.

1"We obtain similar results when using I8k, for k= 3,4,5, either in place of or as instrument for lkig ;.
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Omitted variables. The size effect may result because of omitted variablesngiatly capturing
investment opportunities and/or financial status. Foraimst, Eberly, Rebelo and Vincent (2011) provide
evidence that lagged investment is an important deterrhiniaimvestment. Specification (4) reports the
results of the conditional investment regression inclgdagged investment. Since the lagged dependent
variable is correlated with the firm fixed effect, we emplog #hrellano-Bond dynamic panel estimator
to obtain consistent estimates. Consistent with the ecielém Eberly, Rebelo and Vincent (2011), the
coefficient on lagged investment is significant and positidewever, controlling for lagged investment

does not affect the significance of firm size.

Early studies by Evans (1987) and Hall (1987), and more tgcéy Cooley and Quadrini (2001),
discuss the evidence of firm growth dependence on both firmasiz firm age. Following Fama and
French (2001) and Pastor and Veronesi (2003), we proxy fomadge using the number of years since a

firm became public. As shown in specification (5), the inadasidf firm age does not affect our findings.

In specification (6), we include additional control varieblfor a firm’s financial status. Following
Lang, Ofek and Stulz (1996), and Kaplan and Zingales (198&)include the following controls: cash
holdings, defined as cash and short-term investment scglamtd) assets; leverage, defined as the sum of
short-term and long-term debt scaled by total assets;retuassets, defined as netincome scaled by total
assets; and a dividend payer dummy set equal to one if the &ig® @ cash dividend in a given year. We
note that the inclusion of these additional controls dogschange the magnitude or significance of firm

size.

Nonlinear specifications. In specification (7), we investigate whether firm size is igkup non-
linearities in the relationship between investment andifslf) and cash flow. We estimate a complete
second order polynomial in these variables. Specificakyinglude (but do not report for brevity) squared
terms of the control variables, as well as their interactiorhe results in Table A.3 show that the inclusion

of high-order polynomials does not affect the magnitudeigmiBcance of firm size.
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Alternative samples. In specification (8) of Table_Al3, we report the convergeneates based on a
large unbalanced panel of US firms from Compustat for theodetB62-2006. We confirm the presence

of a size effect in the unbalanced sample.

We also investigate the presence of size effects in eigkt attuntries. From the Worldscope database,
we obtain firm level data for the period 1980-2005 for AussraBrazil, Canada, France, Germany, Japan,
South Korea, and the United Kingdom. The investment regmesdor each international sample are
reported in Table_Al4. We confirm that in each of the eight ¢oes, there is significant evidence of size
effects comparable to that found in the US data. Therefoeeganclude that our findings are not limited

to the sample of US firms.

Additional robustness. We consider, but do not report for brevity, a number of adddl robustness
tests: (1) we run investment regressions over differentssubples; (2) to reduce the influence of out-
liers we deflate investment and cash flow by total assetsrridtha capital; (3) we trimmed relevant firm
variables at different percentiles of their unconditiodstribution; (4) we include firms with negative in-
vestments and firm-years observations with large acouisiti(5) we use the change in net property, plant
and equipment instead of capital expenditures to measuestment; (6) we add the leasing of property,
plant and equipment to capital expenditures as an altgenateasure of investment. The main results
are statistically robust. In addition, we obtain similaidfings across alternative estimation methodologies
including (1) OLS with firm and year fixed effects estimatedfipst differencing the actual observations,

and (2) Fama-MacBeth (1973) regressions.
Appendix B

In this section, we discuss the measurement and estimatitectionological returns to scale. We first

derive the profit function, and then we discuss the estimatigtails.
B.1 Measurement of Technological Returns to Scale

We assume that each productive unit has a Cobb-Douglas giroddunction given byy = zK9KL9%, z
denotes the productivity shock, is physical capitall is the variable factor(s), and is the price of the

variable factor(s). The equations that follow are based o @riable factor for expositional purposes
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but extend easily to multiple variable factors. We furtherenassume that the inverse demand function
with constant elasticity is given by = ey~ with corresponding revenue function Bfy) = y*", where

€ denotes a demand shock. Optimization of the profit functiger the variable factor
mLax[R(y) — L]
yields a revenue functioR(A, K) and profit functior(A,K) given by

m&mziixe (7

and

M(AK) = AK® (8)

whereA = (1— @) |2 (@¢/w)? Y reflects shocks to the production function, output demant an
variations in variable factors’ cost8,= ax (1—n)/(1—¢) and@= o, (1—n). There are decreasing
technological returns to scale< 1, as long agak + o) (1—n) < 1. Even with inelastic demand func-
tion (n = 0), the presence of decreasing returns to scale in prodyotio+ o < 1, is sufficient to generate

curvature in the profit functior§ < 1.

The coefficient orK measuring the degree of returns to scale in cap®pln both the revenue and
profit functions is the same. Moreover, the properties ofstiecks to revenue and profits are the same up
to a factor of proportionality. Hence, we can estinffeom either a log-linear profit or revenue regression
on the capital stock. We opt for the latter since there ismi@hy less measurement error involved. There
are a small number of observations with negative measusdiagable profits but by construction there
are no businesses with negative real revenue. In the agatygie paper we report the estimateBdfom
the real revenue regression, but this is not critical forrdported results. Real revenues are measured as

total sales, deflated by the consumer price index from NIPA.
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B.2 Estimation of Technological Returns to Scale

We follow closely Cooper and Haltiwanger (2006) to estimtie curvature paramet®. We refer to
profit or revenue functions interchangeably because thiydiffier for a factor of proportionality. In the
following analysis, we use the subscriptandt to denote firm and time, respectively. We use lower case

letters to denote the logs of the corresponding upper catbles.

Leta; = In(A;) have the following structure

it = Yt +Eit

wherey; is a common shock, argl is a firm-specific shock, whose dynamics are given by

&t = Nj + Pe€it—1 + Wit

wherew; ~ MA(0) andn; is a firm-specific time-invariant effect capturing hetenogiéy in the average

firm profitability shocks. Taking logs and quasi-differemgithe profit equation i {8) yields

TG = PeTht—1 + OKit — PeOKit—1 + Yt — PeYt—1 + Ni + Wit

or
Th = BTG —1 + Bokit + Bakit—1 -+ Y + Ni + Wt
whereB = pe, B2 = 6, B3 = —peB, andy; =y — PeVt-—1.

Whenever the standard assumption on the initial conditianid (E [x;0¢] =0 fort =2,...,T), then
by first differencing, we have

E [Xt—sAwy] =0
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wherex; = (ki, T ) for s> 2. This allows the use of suitably lagged levels of the vaesias instruments,
after the equation has been first-differenced to eliminhgefirm-specific effects (Arellano and Bond,

1991) as:

AT = B1ATh 1 + BoAki + Balki—1 + Ay + Awy .

We estimate this equation via 2SLS estimator using a comslet of time dummies to capture the ag-
gregate shocks and using lagged and twice-lagged capiatvwdoe-lagged profits as instruments. The

estimation ofd is performed for each two-digit SIC industry separately.

Appendix C

This appendix provides details concerning the estimatfdheomodel and the choice of moments.
C.1 Model Estimation

We follow closely the estimation procedure in Lee and Ingfa891) and estimate the structural param-
eters of the model using the simulated method of moments (EMivst, we estimate a set of selected
data momentspy;, using an empirical sample of length Without loss of generality, the selected data

moments can be represented as the solution to the maxiomzzta criterion function
Py = arg rr(})ax] (Yn, P)

whereYy is a data matrix of lengtN. Then, we construck data sets based on simulations of the model
under a given parameter vectar For each simulated data setwe estimate the corresponding selected

momentsg (v), as the solution to the maximization of an analogous caitefiinction:

@ (v)=arg max) (¥;, )

wherey; denotes a simulated data matrix of lengfthe SMM estimator of the parameter vectomini-

mizes the distance between the selected empirical andatieduinoments as
Vv =arg rr\}inéf\,\MGN
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whereGy = [EJN ~isS @ (v)] andW is an arbitrary positive definite matrix that converges iotyar

bility to a deterministic positive definite matri%. The optimal weighting matrix is
~ ~ \1-1
Wy = [N var(CDN)] : 9)

Given that the selected empirical momeribs;, can be represented as ordinary least squares regression
coefficients, we estimate their variance-covariance maising the seemengly unrelated regression ap-
proach. Specifically, we first estimate each regressionraggha using ordinary least squares, which pro-
vides consistent estimates for each moment as well as ségmedisturbances. Then, we estimate the
variance-covariance matrixar (@N), allowing for heteroskedestacity and cross-correlatimorg firms

in the panel as well as for correlation across regressions.

We solve the model using value-function iteration and sataulLO artificial panels of 340 independent
and identically distributed firms each with 270 years of date compute the simulated moments using
the last Za@ears of simulated data, which corresponds tdine span of the balanced sample from

Compust v The indirect estimator is asymptotically normal for fix&d

VN(@© —vo) & A (0, Avar (V)
with the asymptotic variance-covariance matrix of theneated parameters

Avar (V) = <1+é> [m'wn]

~ ~ ~ -1
wherel = plimy_.« 0G (Vo) /0V' andW = {Nvar(d)(vo))] = [Nvar(cp(vo)ﬂ . We estimatd1 by
numerically differentiatingf%(ﬁ) with respect toy, andW by usingW as in [9). Further, we perform a

test of the overidentifying restrictions of the model, with

NS A A A2
15 SONYWNGN = Xaim(@)—dim(v)
18We consider only the last part of the series to avoid the inflaeof a possibly suboptimal starting point.
19vichaelides and Ng (2000) point out that good finite-sammefggmance of an indirect inference estimator requires a
simulated sample that is approximately ten times as largfeeaactual data sample.
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where thex? distribution has degrees of freedom equal to the dimensiaelected moments, difd),

minus the dimension of parameters, dim.

Finally, we verify the properties of our SMM estimation pedcire by using a simple robustness check.
Starting with a known parameter vector,we simultate a panel of firms and compute the seleceted simu-
lated momentsp(V). We then use the SMM procedure described above to fit theseemtsrand recover
the true parameter vector(which generated the data). Failure to recover the truenpeters may indicate
lack of identification of the model parameters or inadeqestenation procedure. We find that our esti-
mation procedure can recover reasonably well the true petearmectory, even across SMM runs with

different starting values.
C.2 Choice and Estimation of Moments

We choose the following five moments to match: the mean andn@e of Tobin’s Q, the variance and
serial correlation of investment, and the variance of apagarofit (cash flow). All of the model param-
eters affect all of these moments in some way. The varianopefating profit (cash flow) helps identify
the shock varianceg. Highero produces more volatile operating profit. The variance oéatmnent rate
helps identify both the curvature of the profit functid,and the adjustment cost parameterl.ower 6
and highery produce less volatile investment. The serial correlatibimaestment contributes to identify
the shock serial correlatiop, and the adjustment cost parametetligherp andy generate more serially
correlated investment because of the convex capital aa@mtcosts. The mean of Tobin's Q is primar-
ily informative about the curvature of the profit functidh, Lower 8 produces higher Tobin’s Q, ceteris
paribus. The variance of Tobin’s Q is mainly informative abthe shock variances, and the adjustment

cost parametey,. Highero andy generate more volatile Tobin's Q, ceteris paribus.

One final issue concerns the estimation of the empirical nmbengiven the presence of unobserved
heterogeneity in our data from Compustat. Since our sinamatproduce i.i.d. firms, in order to make
our simulated data comparable to our actual data, we caereitid heterogeneity to the simulations, or
remove the heterogeneity from the actual data. We opt fotatiher approach using firm and year fixed

effects in the estimation of our empirical moments.
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Table 1
Investment Rates by Size Deciles

This table reports mean investment rates and correspostinglard errors across firm size deciles. Portfolios araddreach
year by allocating firms into size deciles. We report an egueighted average of firm investment rates. The sample gésio
1980 to 2006.

Size Decile (1) (2) (3) 4) (5) (6) (7) (8) 9) (10)

Mean 0.333 0.276 0.246 0.237 0.225 0.229 0.212 0.199 0.201700.
Std. Error  0.010 0.007 0.005 0.005 0.004 0.004 0.004 0.008030.0.003
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Table 2
Firm Size and Corporate Investment

This table reports estimates from regressions of the type:

lit
Kit-1

=0 +BlogKit_1+@X¢_1 4Vt +Eit,

where the left-hand-side is end-of year capital expenelitgcaled by beginning-of-year property, plant and equipniee right-
hand-side variables include firm fixed effeats, year fixed effectsy, logK;:_1 is the natural logarithm of beginning-of-year
capital stock, an&; ;1 denotes a set of control variables, namely Tobin’s Q and tash Standard errors are clustered by firm
and are reported in bracke®? denotes adjuste?. The sample period is 1980 to 2006.

1) 2) 3) (4)
logKit_1 -0.020 -0.071 -0.066 -0.050
[0.002]*** [0.006]*** [0.006]*** [0.005]***
Qit-1 0.061 0.046
[0.006]*** [0.006]***
CFi_1 0.096
[0.019]***
Observations 9,180 9,180 9,180 9,180
R? 0.07 0.27 0.32 0.35
Firm FE No Yes Yes Yes
Year FE No Yes Yes Yes
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Table 3
Variance Decomposition of Firm Investments

This table reports a variance decomposition for severatipations of the investment regression. The left-hamt# 36 end-
of year capital expenditures scaled by beginning-of-yeapgrty, plant and equipment. The right-hand-side incdudiéferent
combinations of firm fixed effects, year fixed effects, Tobi@, cash flow, and the natural logarithm of beginning-of-yespital
stock. The table reports the Type IlI partial sum of squasegch effect in the model normalized by the sum across fhetsf
forcing each column to sum to on@2 denotes adjustel@2. The sample period is 1980 to 2006.

Variabe (1) (2 (3) @
FrmFE  0.80 0.73 062 061
Year FE 020 0.10 0.08 0.07

Log(K) 0.17 0.14 0.09
Tobin's Q 0.16 0.10
Cash Flow 0.13
R2 0.22 0.27 0.32 0.35
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Table 4
Firm Size and Financial Constraints

This table reports estimates from regressions of the type:

lit
Kit—1

=0 +BlogKit—1+@Xjt_1+ P1Dindex+ P2Dindexx 109Kt 1+ P3Dindexx Xit—1+ ¥t +Eit,

where the left-hand-side is the end-of year capital expares scaled by beginning-of-year property, plant andpgant. The right-hand-side variables include firm fixedffe
and year fixed effects, the log of the firm's capital stdbkqex iS an indicator variable set equal to one based on the disiib of the Kaplan-Zingales (1997) KZ index, the
Whited-Wu (2006) WW index, or the Hadlock-Pierce (2010) 84dx, andX; ;1 is a set of additional control variables, namely Tobin’s @ aash flow. Specifications (2) through
(4) set the dummy variable equal to one if the value of thexrfdea particular firm is below the median of the distributi@pecifications (5) through (7) set one dummy equal to
one if the index for a particular firm is below the first quartiind another dummy equal to one if the index exceeds thedhartile of the distributionR? denotes adjuste2.
Standard errors clustered at the firm level are reportedaiokets.

(1) (2 3 4) ©) (6) )
logK -0.050 -0.064 -0.051 -0.053 -0.059 -0.052 -0.052
[0.005]*** [0.007]*** [0.005]*** [0.006]*** [0.006]*** [ 0.005]*** [0.005]***
Q 0.046 0.041 0.057 0.047 0.049 0.050 0.050
[0.006]*** [0.022]*** [0.024]*** [0.008]*** [0.007]*** [ 0.008]*** [0.006]***
CF 0.096 0.054 0.057 0.089 0.083 0.166 0.090
[0.019]***  [0.007]**  [0.008]*** [0.020]*** [0.020]*** [0 .021]*** [0.009]***
Low WWx log K 0.008
[0.008]
Low KZ x log K -0.000
[0.003]
Low SAx log K 0.002
[0.002]
WV\bz5>< log K -0.011
[0.009]
WWsq75% log K -0.012
[0.009]
KZgosx log K -0.002
[0.004]
KZ75x log K 0.001
[0.003]
SAgsx log K 0.001
[0.001]
SAisx log K -0.005
[0.007]
Observations 9,180 9,180 9,180 9,180 9,180 9,180 9,180

R 0.35 0.39 0.40 0.42 0.40 0.41 0.42




Table 5

Industry Returns to Scale and Firm Size Estimates

Two-Digit SIC  Industry Ok sg6k) Bk se(fk)
01 Agricultural Production Crops 0.443 0.031 -0.008 0.081
13 Oil and Gas Extraction 0.454 0.062 -0.014 0.004
14 Mining and Quarrying of Nonmetallic Minerals  0.442 0.141-0.125 0.018
16 Heavy Construction 0.170 0.071 -0.193 0.014
20 Food and Kindred Products 0.437 0.032 -0.067 0.003
21 Tobacco Products -0.039 0.189 -0.169 0.028
22 Textile Mill Products 0.492 0.131 0.041 0.057
23 Apparel 0.884 0.086 -0.048 0.008
24 Lumber and Wood Products 0.263 0.124  -0.057 0.006
25 Furniture and Fixtures 0.584 0.072 -0.021 0.009
26 Paper and Allied Products 0.245 0.052 -0.177 0.009
27 Printing, Publishing, and Allied Industries 0.540 0.099-0.058 0.005
28 Chemicals and Allied Products 0.545 0.086 -0.027  0.002
29 Petroleum Refining and Related Industries 0.260 0.073 0360. 0.003
30 Rubber and Miscellaneous Plastics 0.755 0.110 -0.028 050.0
31 Leather and Leather Products 0.128 0.071 -0.155 0.068
32 Stone, Clay, Glass, and Concrete Products 0.347 0.075009-0. 0.012
33 Primary Metal Industries 0.530 0.107 -0.143 0.004
34 Fabricated Metal Products 0.251 0.052 -0.102 0.023
35 Industrial and Commercial Machinery 0.499 0.043  -0.071.008
36 Electronic Equipment and Components 0.677 0.061  -0.0740030
37 Transportation Equipment 0.185 0.052 -0.045 0.003
38 Photographic, Medical, and Optical Goods 0.379 0.066 1070. 0.008
39 Miscellaneous Manufacturing Industries -0.062 0.080 .126 0.020
40 Railroad Transportation 0.128 0.098 -0.029 0.003
42 Motor Freight Transportation and Warehousing 0.728 ®.080.015 0.010
44 Water Transportation 0.673 0.100 -0.088 0.017
45 Air Transportation 0.670 0.071 -0.035 0.010
a7 Transportation Services 0.121 0.094 -0.216 0.039
48 Communications 0.080 0.066 -0.056 0.004
50 Wholesale Trade-Durable Goods 0.468 0.094 -0.053 0.006
51 Wholesale Trade-Nondurable Goods 0.166 0.062 -0.152 120.0
52 Building Materials 0.628 0.135 -0.035 0.026
53 General Merchandise Stores 0.776 0.080 -0.037 0.016
54 Food Stores 0.361 0.057 -0.098 0.008
55 Automotive Dealers and Gasoline Stations 0.230 0.065 0350. 0.033
56 Apparel and Accesory Stores 0.864 0.208 -0.056 0.023
57 Home Furniture and Furnishings Stores 0.196 0.104  -0.16B035
58 Eating and Drinkign Places 0.367 0.067 -0.011 0.004
59 Miscellaneous Retail 0.583 0.061 -0.004 0.014
70 Hotels and Other Lodging Places 0.689 0.153 -0.046  0.008
72 Personal Services 0.631 0.150 -0.102 0.022
73 Business Services 0.137 0.047 -0.070 0.006
75 Automotive Repair and Services 0.365 0.150 -0.059 0.084
79 Amusement and Recreation Services 0.059 0.096 -0.103 700.0
80 Health Services 0.622 0.160 -0.057 0.006
99 Nonclassifiable Establishments 0.663 0.175 -0.028 0.006
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Table 6
Firm Size and Technological Returns to Scale

This table reports estimates from regressions of the type:
B = a1 + 028k + &,

where the left-hand-side variable is the industry-levehfgize estimatey, computed as the coefficient on the log of firm size
from an investment regression including fixed effects anétao§ control variables. We use no control variables for the u
conditional By estimates used in Panel A. We include Tobin’s Q and cash flowhfo conditionalBy estimates used in Panel
B. The right-hand-side variable is the estimate of techgiokd returns to scaldy, from a log-linear quasi-differenced revenue
regression on firm size. Appendix B provides estimationilietén Specifications (1) and (3), both the size effect aruthte-
logical returns to scale estimates are obtained from a pHrigms using firm-level data within each two-digit SIC indiys In
Specifications (2) and (4), both the size effect and teclyicdd returns to scale estimates are obtained using indaggregated
data at the two-digit SIC level. Standard errors are regdrtdrackets, and standard errors adjusted for the samgginigtion

in generated regressors are reported in parenthesis.

A: Unconditional B: Conditionalp3
1) 2) 3) 4)

Firm-Level Industry Firm-Level Industry

&  0.119 0.120 0.120 0.122
[0.046]*  [0.047]** [0.032]*** [0.031]***
(0.061)*  (0.063)*  (0.056)**  (0.055)*

Z

47 47 47 47
R? 0.13 0.13 0.15 0.15
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Table 7
Simulated Moments Estimation

This table reports results from SMM estimation of the inre=tit model based on the balanced sample of US firms for thederi
1980 to 2006. Panel A reports the simulated and estimatedemisnalong with the t-statistics for their differences. &d
reports the estimated structural parameters, with stdnefaors in parenthesey.is the capital adjustment cost parameteis
the curvature of the profit function; apdando denote the serial correlation and standard deviation ditmtoocks, respectively.
The J-test is thg? test for the overidentifying restrictions of the model, wiits p-value reported below in parenthesis.

Panel A: Moments
Actual Moments Simulated Moments t-Stats

Average of Tobin’s QV /K) 1571 1578 0215
Variance of Tobin’s QY /K) 0.414 Q378 —1.045
Variance of Cash Flowr{/K) 0.125 Q125 0011
Variance of Investment (K) 0.022 Q023 0604
Serial Correlation of Investment (K) 0.309 0268 —1.795

Panel B: Parameter Estimates

Y 0 p o J-Test
1.132 Q912 0463 1040 4964
(0.048 (0.005) (0.021) (0.048 (0.026)
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Table 8
Simulated Investment Regressions

This table reports results of investment regressions frisnulations of the baseline model. We simulate 10 artificahgs

of 340 firms each with 270 years of data. We estimate the imesst regressions using the last 27 years of simulated data,
which corresponds to the time span of the balanced sampie @ompustat. We report the average coefficient estimates and
standard errors across artificial panels. Panel A repoetsiticonditional size effect estimates. Panel B reports dhelitional

size effect estimates for different values of measuremeat & Tobin’s Q. The variance of the measurement error pgessed

as percentage of the variance of Tobin's Q in simulated data.

Panel A: Unconditional Size Effects

Data Simulations
Firm Size (IrK) —-0.071 —0.050
(0.006)"** (0.003"**

Panel B: Conditional Size Effects
Measurement Error (%)

0.10 015 020 025
Data Simulations
Tobin’s Q V /K) 0.046 Q087 Q059 Q045 Q035
(0.006) " (0.008™* (0.006)"* (0.005"** (0.004)***
Cash Flow (K) 0.096 0166 Q208 0231 Q246
(0.019"* (0.028* (0.026)* (0.025"* (0.024)™"
Firm Size (IrK) —0.050 —0.042 —0.053 —0.060 —0.064

(0.005"*  (0.005)*** (0.004"* (0.004)*** (0.004)"*
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Table 9
Simulated Variance Decomposition

This table reports the variance decomposition of the cardit investment regression from simulations of the base-
line model.We simulate 10 artificial panels of 340 firms each with 270 yedidata. We estimate the conditionavestment
regression an@erform the variance decomposition using the last 27 yefassnwlated data, which corresponds to the time
span of the balanced sample from Compustat. We compute e Mypartial sum of squares for each effect in the model
normalized by the sum across the effects, forcing each aolisnsum to one. We report the average Type Il partial sum of
squares and adjust&d for different values of measurement error in Tobin’s Q. Theance of the measurement error
is expressed as percentage of the variance of Tobin’s Q ulated data. The column “Data” reports for comparison
thewithin-variance decomposition of the conditional investmentesgion in actual data.

Measurement Error (%)

0.10 015 020 025

Data Simulations
Tobin's Q ¥/K) 0.31 041 020 011 Qo7
Cash Flow {y/K) 0.42 045 063 072 Q76
Firm Size (IK)  0.27 014 017 017 017
R? 0.22 056 055 055 054
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Table 10
Firm Size and Technological Returns to Scale

This table reports results of investment regressions friomulations of the baseline model for different values of tuevature

of the profit function @). We simulate 10 artificial panels of 340 firms each with 278rgeof data. We estimate the investment
regressions using the last 27 years of simulated data, wbithsponds to the time span of the balanced sample from @siatp
We report the average coefficient estimates across aittifieiaels. Panel A reports the unconditional size effechesgs.
Panel B reports the conditional size effect estimates fifergint values of measurement error in Tobin's Q. The vagaof the
measurement error is expressed as percentage of the waafmobin’s Q in simulated data.

Measurement Error (%)
0.10 015 020 025

Curvature §) A: Unconditionalp3 B: Conditional3
0.60 —0.087 —0.066 —-0.091 -0.104 -0.113
0.70 —0.074 —0.055 -0.078 -0.089 -0.097
0.80 —0.063 —0.047 -0.066 -0.076 —0.082
0.90 —0.048 —0.038 —-0.051 -0.058 -0.062
0.95 —0.027 —0.030 -0.034 -0.037 -0.038
0.99 —0.005 —0.003 —-0.004 -0.005 -0.005
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Table A.1
Summary Statistics

This table reports summary statistics for the primary \@és used in the empirical analysis. Investment is definechpial
expenditures in property, plant and equipment scaled bpéginning-of-year capital stock. The capital stock is dafias net
property, plant and equipment. Tobir(sis defined as the market value of assets scaled by the book shhssets. Cash flow

is calculated as the sum of end-of-year earnings and depiatiscaled by the beginning-of-year capital stock. Fiipe $s

the natural logarithm of the beginning-of-year capitatktoThe summary statistics are reported for each of thre@lesmthe
unbalanced sample of US firms from Compustat, the balanasel paUS firms from Compustat, and an international sample of
eight countries (Australia, Brazil, Canada, France, Geymapan, South Korea, and the United Kingdom) from the Wigodpe
database.

Panel A: Unbalanced Sample
Variable Obs. Mean Median Std. Dev.
Investment 130,108 0.301 0.213 0.298
Tobin'sQ 130,108 1.550 0.966 2.917
Cash Flow 130,108 0.517 0.332 0.889
Firm Size 130,108 3.562 3.408 2.341
Panel B: Balanced Sample
Variable Obs. Mean Median Std. Dev.
Investment 9,180 0.233 0.196 0.170
Tobin'sQ 9,180 1.571 1.321 0.820
Cash Flow 9,180 0.425 0.327 0.489
Firm Size 9,180 5.328 5.282 2.182
Panel C: International Sample
Variable Obs. Mean Median Std. Dev.
Investment 62,745  0.245 0.149 0.365
Tobin'sQ 62,745 1.016 0.678 1.446
Cash Flow 62,745 0.377 0.203 1.981
Firm Size 62,745 13.008 12.920 3.807




Table A.2
Measurement Error and Selection Bias
This table reports estimates from regressions of the type:

lit
Kit-1

=0 +BlogKit_1+@X¢_1 4Vt +Eit,

where the left-hand-side is end-of year capital expenelitigcaled by beginning-of-year property, plant and equipm&he
right-hand-side variables include a firm fixed effemt, year fixed effectsy, logK;_1 is the natural logarithm of beginning-of-
year capital stock, an¥;;_; denotes a set of control variables, namely Tobin’s Q and fltash Specifications (1)—(2) report
instrumental variables estimation results using lagQeahd cash flow as instruments for Tobis Specification (3) reports the
reverse regression estimates using the methodology dtdeicand Whited(2005). The results from the reverse reigresse
re-arranged in the table to put investment on the left haohel Specification (4) uses an alternative measure of ToQibbased on
earnings forecasts from securities analysts as in Cummdimssett and Oliner, (2006). Specification (5) reports ticersé-stage
estimation results from a Heckman type procedure, wheréristage models the probability of exiting the Compustaalase
as a function of firm size, Tobin®, cash flow, cash holdings, and leverag® denotes adjuste?. Standard errors are clustered
by firm and are reported in brackets.

1) (2) 3) (4) (5)

logKit—1 -0.043 -0.050 -0.056 -0.048 -0.048

[0.005]***  [0.005]***  [0.008]*** [0.004]*** [0.005]***
Qit-1 0.049 0.045 1.110 0.008 0.049

[0.010]***  [0.009]***  [0.128]*** [0.001]*** [0.007]***
CFRi-1 0.105 0.092 -0.554 0.141 0.101

[0.012]***  [0.014]***  [0.008]*** [0.017]*** [0.019]***
Inv. Mills Ratio -0.001

[0.004]

Observations 8,840 8,840 9,180 8,252 9,180
R? 0.35 0.36 0.44 0.58 0.35
Instruments CRKi_» CFRi_2,Qit_2




Table A.3
Additional Robustness Tests

This table reports robustness estimates from variatiotiseobaseline regression:

|.
K 't’t = ai + BlogKjt—1 + @11+ Wt + &,
it—

where the left-hand-side is end-of year capital expenelitscaled by beginning-of-year property, plant and equipmghe right-hand-side variables include firm fixed effects
aj, year fixed effectsy;, logK;_1 is the natural logarithm of beginning-of-year capital &toandX;;_1 denotes a set of control variables, namely Tobin's Q and ash
Specification (1) includes Idg§ ;> in place of logK; ;1. Specification (2) includes contemporaneous Tobin’s Q asti low. Specification (3) includes additional lags of Ttshin

Q and cash flow. Specification (4) reports the estimates frorrallano-Bond dynamic panel-data regression includagged investment. Specification (5) includes firm age,
defined as the number of years since a firm became public. figja¢ioin (6) includes cash holdings, book leverage, returassets, and a dividend payer dummy. Specification (7)
includes squared and interaction terms for the controbixes (not reported). Specification (8) reports estimaassd on a large unbalanced panel of US firms from Compustat
for the period 1962-2006. Standard errors are clusterednyafind are reported in bracke® denotes adjustefd?.



Table A.3
Additional Robustness Tests

@) @ 3 4 ®) 6) ) 8
log Ki—1 -0.051 -0.050 -0.132 -0.050 -0.051 -0.052 -0.081
[0.005]***  [0.005]***  [0.004]*** [0.005]*** [0.005]*** [ 0.006]*** [0.002]***
Qit-1 0.047 0.044 0.050 0.068 0.046 0.03 0.072 0.032
[0.006]*** [0.006]*** [0.007]*** [0.005]*** [0.006]*** [ 0.006]*** [0.010]*** [0.001]***
CFRt_1 0.079 0.102 0.109 0.151 0.096 0.08 0.219 0.088
[0.018]*** [0.014]*** [0.014]*** [0.006]*** [0.019]*** [ 0.017]*** [0.028]*** [0.002]***
log Ki_» -0.059
[0.005]***
Qit 0.002
[0.006]
CF -0.005
[0.004]
Qit-2 -0.007
[0.006]
CFRi_2 -0.013
[0.006]**
lit-1/Kit—2 0.019
[0.0107*
Age -0.006
[0.015]
Cash -0.071
[0.029]**
Leverage 0.007
[0.009]
ROA 0.412
[0.046]***
Dividend Payer 0.033
[0.010]***
Observations 9,180 9,180 8,840 8,840 9,180 9,180 9,180 1030,
R? 0.35 0.36 0.35 0.39 0.35 0.38 0.39 0.41




Table A.4
Firm Size in Corporate Investment: International Evidence

This table reports estimates from regressions of the type:
lit
S =0 + BlogKi 1 + @Xi (—1 + % +Ei,

Kit-1
where the left-hand-side is end-of year capital expenelitgicaled by beginning-of-year property, plant and equipmEhe right-hand-side variables include a firm fixed effect
aj, year fixed effectsy, logK;_1 is the natural logarithm of beginning-of-year total capgmck, andX; ;_, denotes a set of control variables, namely Tobin's Q and iash

R2 denotes adjuste2. Standard errors are clustered by firm and are reported akéts

Australia Brazil Canada France Germany Japan South KoreaitedJdingdom
logKii-1 -0.036 -0.012 -0.036 -0.040 -0.043 -0.016 -0.033 -0.034
[0.004]***  [0.006]**  [0.003]*** [0.004]*** [0.005]*** [0 .002]***  [0.005]*** [0.002]***
Qit-1 0.061 0.033 0.074 0.088 0.081 0.060 0.098 0.059
[0.007]**  [0.020]*  [0.006]*** [0.013]*** [0.013]*** [0. 006]***  [0.014]*** [0.003]***
CFRt_1 0.026 0.053 0.011 0.036 0.033 0.036 0.025 0.022
[0.004]**+ [0.012]***  [0.005]**  [0.011]*** [0.006]*** [0 .006]***  [0.009]*** [0.003]***
Observations 5,564 1,533 7,931 4,559 2,998 19,241 3,964 5988,
R? 0.31 0.49 0.36 0.39 0.40 0.37 0.36 0.35
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