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ABSTRACT

We provide robust empirical evidence of size effects in corporate investments. Small firms have
significantly higher investment rates than large firms, evenafter controlling for standard empirical
proxies of firm real investment opportunities and financial status, including Tobin’s Q and cash flow.
Firm size is at least as important as Tobin’s Q and cash flow, both economically and statistically, in
explaining variation in corporate investments. Unlike thecash flow effect, however, the size effect
is robust to measurement error in Tobin’s Q. Contrary to common wisdom, the empirical evidence
suggests that firm size improves the measurement of firms’ real investment opportunities rather than
reflecting differences in firms’ financing frictions. Using simulated method of moments, we estimate
a neoclassical model of investment and show that technological decreasing returns to scale, along with
measurement error in Tobin’s Q, replicates successfully the empirical evidence on size effects.
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1 Introduction

We investigate the dynamics of firm growth in the United States. The focus is on the relationship between

firm size and investment rates. The gross investment rate of publicly traded firms in the bottom decile of the

size distribution averages about 33.3 percent per annum, and is about two times that of firms in the top size

decile. This inverse capital growth-size relationship hasbeen previously documented under different forms

in the empirical industrial organization literature.1 However, little is known about whether the dependence

on size holds conditionally, that is even after controllingfor variables known to affect a firm’s optimal

investment policy. While much progress has been made in understanding the role of Tobin’s Q and cash

flow in investment regressions, several fundamental questions still remain unanswered. Why do small firms

invest significantly more than large ones? What is the role offirm size and how quantitatively important is

it in explaining the dynamics of corporate investment? Is firm size relevant because the economy is finite

and diminishing technological returns and/or potentiallyincreasing cost of capital (due to capital market

imperfections) set in eventually? These questions are central to understanding the investment dynamics at

the firm level and have important implications for aggregateinvestment and economic growth.

Modern theories of firm investment identify in Tobin’s Q and cash flow measures the main observable

determinants of optimal corporate investments as they summarize relevant information about a firm’s ex-

pected future profitability and financing conditions. Accordingly, we investigate whether there is any role

for firm size even after accounting for standard empirical proxies of heterogeneity in firms’ technological

investment opportunities and financial status. We provide evidence of a size effect in corporate investment

rates: a firm’s investment rate is inversely related to its size (as measured by its capital stock) even after

controlling for factors known to affect a firm’s optimal investment policy such as Tobin’s Q and cash flow,

among others.

The size effect in corporate investment is both economically and statistically meaningful. The eco-

nomic relevance of variation in firm size is at least twice as important as that in Tobin’s Q and cash flow.

1Among others, Evans (1987) and Hall (1987) provide evidencethat the growth rate of manufacturing firms is negatively
associated with firm size and firm age. Using different datasets with only a limited time span available, they measure firm size
using mainly employment data.
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Statistically, firm size accounts for a sizable fraction of the total variation in corporate investment and its

contribution is of the same order of magnitude as Tobin’s Q and cash flow. The size effect is robust to

the choice of empirical proxies of investment opportunities and financial status, timing of variables, sam-

ple selection, nonlinear specifications, alternative samples, lagged investment effects (Eberly, Rebelo and

Vincent, 2011), and classical measurement errors. Given the evidence in Erickson and Whited (2000), the

robustness of the size effect to measurement error in Tobin’s Q is of particular concern. Using instrumental

variable estimation, alternative measures of Tobin’s Q as in Cummins, Hassett and Oliner (2006), and the

methodology in Erickson and Whited (2005), we find no evidence that the size effect is driven by classical

measurement error in Tobin’s Q. Most importantly, the relationship between firm size and investment is

more robust to possible measurement errors in the proxies for Tobin’s Q than is the relationship between

investment and cash flows. Therefore, firm size not only contributes to explaining first-order variation in

investment, but also, and unlike cash flow, its contributionis more robust to measurement error in Tobin’s

Q.

These strong size-investment relationship findings motivate the natural question of why size matters.

For instance, Tobin’s Q and cash flow may not be sufficient statistics for investment opportunities and

financial status, but rather may be only imperfect observable proxies. According to the neoclassical theory

of investment (Hayashi, 1982; Abel and Eberly, 1994), homogeneity of equal degree of a firm’s operating

profit and investment cost functions makes Tobin’s Q proportional to marginal q, and hence a sufficient

statistic for investment. However, departures from homogeneity due to technological frictions (Gomes,

2001; Cooper and Ejarque, 2003; Alti, 2003; Cooper and Haltinwanger, 2006; Gala, 2012; Abel and

Eberly, 2010) and/or the existence of financial frictions (Hennessy, 2004; Hennessy and Whited, 2007;

Hennessy, Levy and Whited, 2007; Bolton, Chen, and Wang, 2012), may drive a wedge between the

observable Tobin’s Q and the unobservable marginal q, thus leading to an omitted variables problem in

standard empirical specifications of investment. In this context, the inclusion of firm size may improve the

measurement of the true unobservable future investment opportunities and financing conditions. Specif-

ically, our findings suggest that size may be capturing some aspects of a firm’s technological decreasing
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returns to scale and/or increasing returns to scale in the cost of external financing not captured by Tobin’s

Q and cash flow.

We investigate whether firm size captures mismeasurement ofreal investment opportunities and/or fi-

nancial status. If a firm’s size captures mismeasurement of afirm’s financial status, then we would expect

the size effect for financially constrained firms to differ from those for financially unconstrained firms, ce-

teris paribus. We identify financially constrained firms using the three most prominent empirical measures

of a firm financial status, namely the Kaplan-Zingales (1997), the Whited-Wu (2006), and the Hadlock-

Pierce (2010) indexes. We find no evidence of significant differences in the estimates between financially

constrained and unconstrained firms, suggesting that the findings do not arise because of mismeasurement

in financial status.

We further investigate whether a firm’s size captures mismeasurement of a firm’s true unobservable

technological investment opportunity set. In this case, the findings would require larger firms to have

lower investment rates because firms’ profits exhibit decreasing returns to scale in capital, ceteris paribus.

If this was the case, we would expect the (negative) coefficient on firm size to depend positively on the

degree of technological returns to scale in firms’ profits. Wedocument the existence of such a relationship

across industries. Hence, the empirical evidence suggeststhat the size effect captures some aspects of a

firm’s technological investment opportunity set that is notcaptured by Tobin’s Q and cash flow.

Overall, the empirical evidence suggests that firm size captures technological decreasing returns to

scale rather than differences in financial status. Consistent with such evidence, we focus on a simple Q-

theory model of investment with no financial frictions to replicate quantitatively the empirical findings of

a size effect. Using simulated method of moments (SMM), we estimate a simple neoclassical model of

investment with curvature in the profit function and convex cost of capital adjustment. We then show in

simulated data how technological decreasing returns to scale, and measurement error in Tobin’s Q, can gen-

erate quantitatively the empirical relationship between size and investment results. The model replicates

successfully not only the magnitude of the estimates, but also the corresponding variance decomposition

of investment in actual data.
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The presence of curvature in the profit function, reflecting,for example, market power or decreasing

returns to scale in production, allows to replicate the sizeeffect via mismeasurement of marginalq. The

significance of firm size would therefore reflect the fact thatin a world of many state variables a single

variable like Tobin’sQ may not capture all available information. In fact, the inclusion of firm size in

a simple investment equation would improve the measurementof the underlying variation in marginalq,

and hence in investment. With only two state variables in themodel, and consistent with the findings in

Erickson and Whited (2000), we include measurement error inTobin’s Q to generate cash flow effects in

investment regressions, and thus the size effect onbothTobin’s Q and cash flow.

Our findings have several implications. First, the empirical evidence shows that firm size is at least

as important as Tobin’s Q and cash flow, both economicallyand statistically, in explaining variation in

corporate investments. Unlike cash flow, however, the contribution of firm size to explain first-order

variation in investment is more robust to measurement errorin Tobin’s Q.

Second, we provide empirical evidence on the role of firm sizein explaining observed corporate in-

vestment policies. In the existing literature, firm size, ifever used, is employed at times either as a catch-all

variable to mitigate omitted variable bias or as sorting variable for identification of financially constrained

firms prior to estimation of investment equations. Our empirical analysis provides an explicit role for firm

size as proxy for unobservable real investment opportunities in the estimation of investment equations. The

evidence suggests that standard homogeneity assumptions in modeling a firm’s profit function are indeed

violated in firm-level data, and hence the dependence of investment on the unobservable marginal q can

be better measured empirically by accounting for the observable Tobin’s Q/cash flowandfirm size.

Third, we show that a neoclassical model of investment with curvature in the profit function and

quadratic capital adjustment costs can generatequantitativelyan important size effect. Our aim is ob-

viously not to provide a new model of investment, but rather to show how, even a simple model with

no financial frictions, which realistically departs from the traditional homogeneity assumptions, implies

the use of firm size to explain first-order variation in investment. Such implication is present in many

recent models of investment with curvature. However, except for Gala and Gomes (2016), most of the

attention in the literature has been devoted mainly on understanding cash flow effects and other financial
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variables, while largely ignoring the fact that firm size itself as state variable is a first-order determinant of

investment. Our contribution then naturally complement the findings of such models.

The remainder of this paper proceeds as follows. Section 2 describes the data employed in the empirical

analysis and presents our main empirical results on the relationship between firm size and investment rates.

Section 4 investigates the role of firm size as proxy for real investment opportunities and/or financial status.

Section 4 explains the model and presents the estimation results including evidence on our model’s ability

to explain the size effect. Section 5 concludes. The appendix provides details about the robustness tests on

the empirical analysis, estimation of technological returns to scale, and SMM estimation of the model.

2 Empirical Results

In this section we first describe the data used in the empirical analysis, and then we conduct formal tests

for the presence of a size effect in investment.

2.1 Data

Our main sample of firms is a balanced panel of US firms from Compustat with annual data for the period

1980-2006. The sample includes 340 firms with 9,180 firm-yearobservations. We use data for the four

main variables present in this study: investment (I/K), Tobin’s Q (Q), cash flow (CF), and firm size (K).

Investment is defined as capital expenditures in property, plant and equipment scaled by the beginning-of-

year capital stock. The capital stock is defined as net property, plant and equipment. Tobin’sQ is computed

as the market value of assets (defined as the book value of assets plus the market value of common stock

minus the book value of common stock) scaled by the book valueof assets2. Cash flow is calculated as

the sum of end-of-year earnings and depreciation scaled by the beginning-of-year capital stock. Firm size

is the natural logarithm of the beginning-of-year capital stock. We describe the data and sample selection

in more detail in Appendix A.

2Erickson and Whited (2006) show that using a perpetual inventory algorithm to estimate the replacement cost of capital
and/or a recursive algorithm to estimate the market value ofdebt barely improves the measurement quality of the variousproxies
for Q.
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We focus on a balanced panel to mitigate potential concerns related to the entry and exit of firms in

the database and because the time dimension of the data helpsidentifying the dynamics of the model. We

also investigate the robustness of our size effect results in (i) a large unbalanced panel of US firms from

Compustat for the period 1962-2006; and (ii) a panel of international firms from Thomson Financial’s

Worldscope for the period 1980-2005. We report summary statistics for the main variables of interest and

the results for the size effect tests based on these additional samples in Appendix A.

2.2 The Role of Size in Firm Investments

We begin our examination of the relationship between firm size and investment by sorting all firms into

separate size decile portfolios. We calculate the size decile breakpoints and rebalance the portfolios each

year. We then compute an equal-weighted average of firm investment rates for each size decile. Table 1

reports the mean investment rate and its corresponding robust standard errors for each size decile. The

mean investment rate declines from the smallest size decileto the largest decile. The annual investment

rate of firms in the bottom decile of the size distribution averages about 33.3 percent, and is about two times

that of firms in the top size decile. The strong negative relationship between size deciles and investment

rates provides a clear preliminary evidence of a size effectamong the firms in our sample.3

We now turn to formally test whether the importance of size holds conditionally in a regression frame-

work. Table 2 reports the estimation results for various specifications of the investment regression in (??).

We use the beginning-of-year capital stock as a measure of firm size4. We begin by testing an uncondi-

tional size effect among our sample of firms by estimating a univariate regression of investment rates on

firm size. The results in specification (1) show clearly that smaller firms grow faster than large firms. The

coefficient estimate is about -0.02 and statistically significant. This magnitude is quite large in economic

terms, as a one standard deviation increase in the log size ofa firm leads to an average decrease in its

3The size/investment relationship is even stronger in the unbalanced panel of US firms for the period 1962-2006. The gross
investment rate for firms in the smallest size decile (45.3%)is about 2.3 times that of firms in the largest size decile (19.8%).
Results available upon request.

4We obtain similar results when using past lags of capital stock either in place of or as instrument for beginning-of-yearcapital
stock. Given that we also scale end-of-year investment by beginning-of-year capital, this rules out any possibility that our findings
are mechanically driven. Results reported in Appendix A.
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investment rate of about 4.3 percent per annum. Our results clearly reject the proposition of Gibrat (1939)

that growth rates and size are independent.

The negative relationship between firm size and investment in the empirical tests may be driven by

heterogeneity in firms’ investment opportunities and/or financial status. For instance, small firms tend

to have higher values of Tobin’s Q compared to large firms, andwill therefore tend to have also higher

investment rates according to the Q-theory of investment. We now test for the presence of a conditional

size effect, or the proposition that small firms grow faster than large firms even after controlling for proxies

of investment opportunities and financial status. The simplest approach to control for heterogeneity in

the determinants of firm investments is to include firm and time dummies to the baseline regression. As

shown in the second column of Table 2, the negative relationship between firm size and investment remains

unaffected even after controlling for general unobserved heterogeneity. With fixed effects, a one-standard

deviation increase in firm size above its average value leadsto a 15.4 percent investment reduction relative

to its average investment rate.

According to the Q-theory of investment (Hayashi, 1982), all heterogeneity in the determinants of firm

investments can be conveniently summarized in a single variable, namely Tobin’s Q. Hence, we include

Tobin’s Q in the set of control variables proxying for the determinants of firm investment. Specification

(3) in Table 2 shows that the coefficient on firm size is still negative and statistically significant, even after

controlling for variation in Tobin’s Q. The inclusion of Tobin’s Q, while increasing the adjustedR2 from 27

to 32 percent, has overall only a marginal impact on the size effect estimate. With fixed effects and Tobin’s

Q, a one-standard deviation increase in firm size above its average value leads to an average decrease in

investment rates by 14.5 percent relative to its average investment rate. For comparison, a one standard

deviation increase in Tobin’s Q above its average value leads to an average increase of about 5.1 percent

in a firm’s investment rate relative to its average value.

Traditional investment-Q regressions are often augmentedwith cash flow variables to describe firm

investments. Cash flow is generally used either as proxy for afirm’s financial status (Fazzari, Hubbard,

and Petersen, 1988; Hubbard, 1998) or interpreted as the byproduct of mismeasurement in marginal q (Er-

ickson and Whited, 2000; Gomes, 2001; Cooper and Ejarque,2003; Gala and Gomes, 2012). In addition,
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Erickson and Whited (2000, 2006 and 2012) make also a compelling case for substantial measurement

error in Tobin’s Q. Hence, we include also cash flow in our set of control variables proxing for a firm’s

investment opportunities and/or financial status. Specification (4) in Table 2 confirms the presence of size

effects. The inclusion of cash flow affects only marginally our results, with the adjustedR2 increasing only

up to 35 percent and the size estimate being virtually unaffected. The empirical results also confirm the

economic importance of firm size relative to Tobin’s Q and cash flow. A one standard deviation increase

in a firm size above its average value leads to a 10.9 percent investment reduction relative to its average

investment rate. For comparison, a one standard deviation increase in Tobin’s Q above its average value

leads to a 3.8 percent investment increase relative to its average investment rate. Similarly, a one standard

deviation increase in cash flow above its average value leadsto a 4.7 percent investment increase relative

to its average investment rate.

The results reported in Table 2 provide strong evidence of size effects in corporate investment among

publicly traded firms: small firms grow faster than large firms, even after controlling for differences in

Tobin’s Q and cash flow. Our estimates show that firm size is at least twice as economically important as

Tobin’s Q and cash flow in explaining differences in investment rates.

We confirm our results in a large battery of robustness tests.Among others, we investigate the robust-

ness of the size effect to measurement error in Tobin’s Q, sample selection, omitted variables, timing of

variables, nonlinear specifications, and alternative samples. In the interest of clarity and ease of exposition,

we discuss and report these additional tests in Appendix A.

2.3 Variance Decomposition of Firm Investments

We now examine the relative importance of the determinants of investment rates by performing an anal-

ysis of covariance based on various specifications of the investment regression in (??). Table 3 reports

the results of this covariance decomposition for several specifications. Following Lemmon, Roberts and

Zender (2008), we calculate the Type III partial sum of squares for each effect and scale it by the total sum

of squares for each specification.5 The normalization by total Type III partial sum of squares forces the

5We use Type III sum of squares because the sum of squares is notsensitive to the ordering of the covariates.
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column values to sum to one and each number reported is interpreted as the fraction of the model sum of

squares attributed to that particular effect (i.e. firm, year, Tobin’s Q, etc.). We also report the adjustedR2

for each specification.

The first column of Table 3 reports the results with only firm and year fixed effects. The adjustedR2 in-

dicates that firm and year fixed effects account for 22 percentof the variation in investment rates, of which

about 80 percent can be attributable to firm fixed effects alone. This confirms the importance of including

firm fixed effects to control for unobserved long-run or steady-state heterogeneity in the determinants of

firm investments. Year fixed effects, which capture unobserved aggregate variation, account instead for, at

most, only 20 percent of the total explained variation in investment.

The addition of firm size increases the adjustedR2 to 27 percent, with 17 percent of the total explained

variation in investment attributable to firm size alone. Theinclusion of Tobin’s Q as a control for observed

time-varying heterogeneity in the determinants of firm investments brings the adjustedR2 up to 32 percent.

Importantly, firm size still contributes to about 14 percentof the total explained variation in investment,

which is about as much as Tobin’s Q. The full specification including also cash flow as a control for

heterogeneity in a firm’s investment opportunities and/or financial status has an adjustedR2 of 35 percent.

Most importantly, the fraction of the explained sum of squares attributable to firm size (9 percent) is of the

same order of magnitude as Tobin’s Q (10 percent) and cash flow(13 percent).

Overall, the variance decomposition in Table 3 highlights the quantitative importance of size. Firm

size is at least as important as Tobin’s Q and cash flow, both economicallyand statistically, in explaining

variation in corporate investments.

3 Financial Frictions or Real Investment Opportunities?

The economic and statistical of a size effect in corporate investment motivates the question of why firm

size matters. For instance, Tobin’s Q and cash flow may not be sufficient statistics for investment opportu-

nities and financial status, but rather may be only imperfectobservable proxies. It is well known that under
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the standard Hayashi (1982) conditions of linear homogeneity in a firm’s profit function, average Tobin’s

Q is identical to marginal q and hence a sufficient statistic for firm investment decisions. However, various

violations of these conditions due to technological and/orexternal financing frictions, including market

power, decreasing returns to scale in production, inhomogeneous costs of investment and/or external fi-

nancing, may drive a wedge between the “observable” Tobin’sQ and the unobservable marginal q, thus

leading to an omitted variables problem in standard empirical specifications of investment. In this context,

the inclusion of firm size may improve the measurement of the true unobservable future investment oppor-

tunities and financing conditions. Specifically, our findings suggest that firm size may be capturing some

aspects of technological decreasing returns to scale in a firm’s profit function and/or increasing returns to

scale in the cost of external financing not captured by Tobin’s Q and cash flow. In other words, the larger

the firm size, the lower the return on investment and/or the more costly the external financing, and the

lower the firm growth, ceteris paribus.

In this section, we investigate whether firm size captures mismeasurement of technological investment

opportunities and/or financial status - i.e. a firm’s degree of external financing constraints.

3.1 Firm Size and Financial Frictions

We first examine whether our size effect estimates are simplyreflecting the degree of external financing

constraints that a firm may be facing. If firm size truly reflects the degree of external financing constraints,

then the empirical findings would require larger firms to be more constrained compared to smaller firms,

and thus experience more costly external financing and lowerinvestment. However, this interpretation

would be at odds, for instance, with the empirical evidence in Hennessy and Whited (2007), and more

generally the large literature on cash flow sensitivities ofinvestment, which often uses firm size as a sorting

variable to identify financially constrained firms, with larger firms actually thought to be less constrained

compared to smallerfirms, ceteris paribus.6 At a minimum, if a firm’s size captures mismeasurement of a

firm’s financial status, then we would expect the magnitude ofthe size effect for financially constrained

firms to differ from that of financially unconstrained firms, ceteris paribus.

6Hennessy and Whited (2007) provide structural evidence that small firms face more costly external financing.

10



We identify financially constrained firms using the three most prominent empirical measures of a

firm’s financial status, namely the Kaplan-Zingales (1997),the Whited-Wu (2006), and the Hadlock-Pierce

(2010) indexes.7 We construct a series of dummy variables based on whether a firm ranks high or low in

these indices and interact these dummies with the control variables and firm size. We also include the index

itself as a control.8 The interaction term between the financial status dummy and firm size estimates the

difference the size/investment relationship between constrained and unconstrained firms. Table 4 reports

the results. For comparison, specification (1) reports the baseline regression results without the financial

status dummy. Specification (2) includes a dummy variable set equal to one if the firm’s WW index is less

than the median and zero otherwise. Specification (3) includes a dummy variable set equal to one if the

firm’s KZ index is less than the median and zero otherwise. Specification (4) includes a similar dummy

variable, based on the median of SA index. Specifications (5)through (7) construct two dummy variables,

with the first dummy set equal to one if the value of the respective indices is less than the first quartile of

the distribution, and the second dummy is set equal to one if the value of the respective indices exceeds

the third quartile of the distribution.

The results in Table 4 suggest that the size effect is unrelated to measures of financial status. The

estimates of the size effect for high WW index and low WW indexfirms are statistically indistinguishable.

The same results holds when the firms are sorted by the KZ indexor the SA index. Column (5) shows

that the size effect for firms in the top quartile of the WW index is not different from that of firms in the

bottom quartile of the index. The results in Columns (6) and (7) are similar. To the extent that these indices

capture the degree of a firm’s external financing constraints, the results in Table 4 suggest that the negative

relationship between firm size and investment rates does notreflect differences in financial status.

We perform further robustness analysis on these findings (results available upon request). Since the KZ

index contains Tobin’s Q and cash flow as components, there issome concern that the estimates reported in

Table 4 may be biased as Q and cash flow enter the investment regression separately. Further, the presence

of measurement error in Q can cause this bias to spill over to other regressors, because Q is correlated with

7The SA index, proposed by Hadlock and Pierce (2010), is defined as (-0.737*Size)+(0.043*Size2)-(0.040*Age), where Size
is the log of the inflation adjusted book value of assets and Age is the number of years a firm has been available on Compustat.

8For brevity, the interaction terms with Tobin’s Q and cash flow as well as the coefficient on the dummy itself are not included
in the table, but are available upon request.
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all of the variables in the regressions. To address this issue, we strip Tobin’s Q and cash flow out of the

KZ index. Similarly, we exclude cash flow and firm size when computing the WW index, and firm size

when computing the SA index. We then re-estimate the investment regression specifications reported in

Table 4 using these pseudo KZ, WW and SA indexes. The unreported results are similar, suggesting that

this concern does not drive the findings. Moreover, as an additional alternative to the KZ, WW and SA

indexes, we use credit ratings to identify a firm’s financial status. We classify firms with debt ratings as

financially unconstrained because they are more likely to have greater access to external financing through

capital markets. We consider firms without ratings as financially constrained. The unreported results

are consistent with the findings in Table 4, suggesting that the negative relationship between firm size

and investment rates does not reflect differences in financial status. We also confirm our findings on the

relationship between the size effect and financial constraints in a larger unbalanced sample of firms.

3.2 Firm Size and Real Investment Opportunities

We now investigate whether firm size captures mismeasurement of a firm’s true unobservable technolog-

ical investment opportunity set. That is, whether firm size contains additional information about future

investment opportunities that is not already incorporatedin the standard proxies including Tobin’s Q and

cash flow.

If firm size truly reflects unobservable real investment opportunities, then the empirical findings would

require larger firms to have lower investment rates because firms’ marginal return to investment exhibit

decreasing returns to scale in capital, ceteris paribus. Ifthis was the case, we would expect, for instance,

the firm scale coefficientβ in (??) to depend positively on the degree of technological returns to scale in

firms’ operating profits with respect to capital. The higher the degree of returns to scale in firms’ profits,

the lower the sensitivity of the marginal profitability of capital, and thus of investment rate, to changes

in the capital stock. Hence, the higher the degree of returnsto scale, the lower in magnitude, and thus

the less negative, the firm size estimate,β. We expect this same pattern to hold even conditional on

imperfect control variables such as Tobin’s Q and cash flow. We confirm these theoretical relationships

using simulated data from a neoclassical model of investment in the section below.

12



In this section, instead, we empirically test for such a positive relationship between the degree of

technological returns to scale and the firm size coefficients. To identify significant differences in the

degree of technological returns to scale, we perform the empirical analysis at the two-digit SIC industry

level. Since the main balanced panel of only 340 firms does notconstitute a representative sample for all

industries, we use instead a large unbalanced panel of 130,108 firms over the sample period 1962-2006 (see

details in Appendix A). The longer time series and the largernumber of firms in the unbalanced sample

allow to better identify the variation in the degree of technological returns to scale across industries.

We first estimate the firm size coefficientβ for each two-digit SIC industry using the investment spec-

ification in (??) including fixed effects. We estimate both unconditional and conditional size effect co-

efficients. We include Tobin’s Q and cash flow in the set of control variables for the estimation of the

conditional firm size coefficient. We then employ the methodology of Cooper and Haltiwanger (2006) to

obtain estimates of the degree of technological returns to scale in capital,θ, by estimating a log-linear

quasi-differenced regression of revenues on capital stockfor each two-digit SIC industry. Appendix B

provides details for the estimation ofθ and the construction of the relevant variables. Both industry es-

timates ofβ and θ are obtained from a panel of firms within each industry using seemingly unrelated

regressions. Table 5 reports the firm size and returns to scale point estimates and standard errors for each

of the two-digit industries included in our sample.

We then estimate a cross-industry regression of the coefficients on firm size,β, on the estimates of

technological returns to scale,θ. Table 6 reports the results including standard errors adjusted for the

sampling variation in the generated regressors. Specifications (1) and (3) report the results for the uncon-

ditional and conditional firm size estimates, respectively. We find evidence of a positive relation between

the firm size estimatesβ and technological returns to scale in capital,θ. This relationship is significant at

conventional levels, even when accounting for the samplingvariation in generated regressors.

We also estimate the firm size coefficients,β, and the technological returns to scale,θ, using aggre-

gated industry-level data rather than firm-level data within industries. For each two-digit SIC industry, we

compute the industry-level counterpart of the variables ofinterest. For example, the industry revenues are

calculated as the sum of firm revenues within the industry foreach year, and the industry investment rate is
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computed as the sum of firm investments divided by the sum of firm capital within the industry. As shown

in specifications (2) and (4) of Table 6, the results are similar regardless of the estimation methodology.

The empirical evidence at the industry level confirms the existence of a relationship between the degree

of the size effect in investment and and technological returns to scale. Overall, our findings suggest

that firm size does capture information about a firm’s decreasing technological returns to scale not fully

accounted by standard empirical proxies such as Tobin’s Q and cash flow. As such, firm size improves the

measurement of a firm’s unobservable investment opportunity set.

4 A Neoclassical Model of Firm Size and Investment

The empirical evidence suggests that firm size captures technological decreasing returns to scale rather

than differences in financial status. We now focus on a Q-theory model of investment with no financial

frictions and curvature in the profit function that generates a firm size effect consistent with the empirical

results. We first present the model, then we proceed with its structural estimation via the simulated method

of moments and assess its ability to quantitatively replicate the empirical findings.

4.1 Q-Theory of Investment with Curvature

We examine the optimal investment decision of a firm that maximizes the market value of current share-

holders’ wealth in the absence of any financing frictions. Without loss of generality, we assume that the

firm is financed entirely by equity. The firm’s per period profitfunction isπ(A,K), whereK is capital

andA is a profitability shock. The profit functionπ(A,K) is continuous and concave, withπ(0,A) = 0,

πA (A,K) > 0, πK (A,K) > 0, πKK (A,K) < 0 and limK→∞ πK (A,K) = 0. We use the standard functional

form

π(A,K) = AKθ (1)

where 0< θ < 1 captures the curvature of the profit function, which satisfies continuity, concavity and

the Inada boundary condition. The reduced form profit function, π(A,K), can be obtained from the firm’s
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optimization over freely adjustable factors of production(see Appendix B). As such, the shock to the

profit function,A, reflects variations in productivity, input prices and output demand. We can interpret the

curvature of the profit function as reflecting the presence ofdecreasing returns to scale in production as in

Gomes (2001), and/or firm market power as in Cooper and Ejarque (2003).

The profitability shock,A, follows a stationary first-order Markov process with transition probability

f (A′,A), where a prime indicates a variable in the next period. We conveniently parameterize the shock

process as AR(1) in logs:

log
(
A′)= µ(1−ρ)+ρ log(A)+ ε′ (2)

where|ρ| < 1 andε′ follows a (truncated) normal distribution with 0 mean, standard deviation ofσ and

finite support
[
A,A

]
.

The capital stock also lies in a compact set
[
0,K

]
. As in Gomes (2001), we defineK as:

πK
(
A,K

)
− (r +δ)≡ 0

where 0< δ < 1 is the capital depreciation rate andr > 0 is the opportunity cost of funds.K equates the

maximum value of the marginal profitability of capital,πK
(
A,K

)
, to the user cost of capital,r + δ. As

such,K always lies in the interval
[
0,K

]
becauseK > K is not economically profitable. The compactness

of the state space and continuity of the profit functionπ(A,K) ensure thatπ(A,K) is bounded.

The firm purchases and sells capital,I , at a price of one and incurs standard quadratic adjustment costs

that are given by

C(I ,K) =
γ
2

(
I
K
− i∗

)2

K (3)

whereγ > 0. This specification implies that capital adjustment costsare non negative and minimized at

the natural rate of investmenti∗. As standard in the investment literature, we assume that the natural rate

of investment,i∗, is equal to the depreciation rate,δ, implying that adjustment costs apply on net capital

formation.
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The firm choosesI each period to maximize the value of discounted expected future cash flows,V.

The Bellman equation for the problem is:

V (K,A) = max
I

{
π(A,K)− I −C(I ,K)+

1
1+ r

∫
V
(
K′,A′)d f

(
A′,A

)}
(4)

where next period capitalK′ evolves as

K′ = (1−δ)K + I .

The first three terms in (4) represent the value of current equity distributions net of any securities issuance,

and the last term represents the continuation value of equity. The assumptions above ensure that the

dynamic model is well behavied and satisfies the conditions in Theorem 9.6 in Stokey and Lucas (1989)

for the existence of a solution to the Bellman equation in (4).

4.2 Optimal Investment Policy

In this subsection we develop the intuition behind the model’s ability to generate the size effect effect by

examining its optimality conditions.

The firm chooses investmentI using its conditional expectations of future profitability, A′, and given

the current capital stock,K. The optimal solution to the firm’s problem in (4) satisfies the first-order

condition with respect toI , which requires, at the optimum, the equivalence between marginal cost and

benefit of investment:

1+CI (I ,K) =
1

1+ r

∫
VK

(
K′,A′)d f

(
A′,A

)
. (5)

The right side of this expression, which represents the marginal benefit of investment, is termed “marginal

q”. Given the operating profit function in (1) and the quadratic adjustment cost in (3), the optimal invest-

ment policy is then given by

I
K

= i∗+
1
γ
[q(K,A)−1] . (6)
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Our choice of quadratic adjustment costs makes the optimal investment policy in (6) consistent with

the linear investment specification used for the empirical tests of size effects. The empirical specification,

however, includes also an error term and fixed effects. Theseare often introduced in the model by allowing

the adjustment cost function to include both fixed effects and a stochastic term through the natural rate of

investmenti∗. We opt instead for an alternative interpretation of the error term as measurement error

since we pursue the implications of misspecification causedby the substitution of average for marginal

q. Moreover, in order to render our simulated data comparableto the actual data, we remove unobserved

heterogeneity from the actual data using fixed effects instead of introducing it in the model simulated data.

The presence of curvature in the profit function in an otherwise traditional investment model with

quadratic adjustment costs violates the homogeneity conditions (Hayashi, 1982; Abel and Eberly, 1994).

As such, marginalq differs from (average) Tobin’sQ , which is now only an imperfect, yet observable,

proxy. In addition, the violation of the homogeneity conditions makes marginalq not only a function of the

profitability shockA (as it would be under homogeneity), but also of the capital stock,K. This dependence

makes the capital stock itself a natural observable explanatory variable for investment, even in the presence

of Tobin’s Q.

With two state variables (A andK), Tobin’sQ and the capital stock convey different information. When

controlling for the capital stock,K, Tobin’s Q, which is monotonically related to the profitability shock

A, is likely to capture most of its variation. The significanceof firm size in this case would therefore

reflect the fact that in a world of many state variables a single variable like Tobin’sQ may not capture all

available information. In fact, the inclusion of firm size ina simple investment equation would improve the

measurement of the underlying variation in marginalq, and hence in investment. Without any additional

state variable, and consistent with the findings in Ericksonand Whited (2000), we then generate cash flow

effects by introducing classical measurement error in Tobin’s Q.
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4.3 Model Estimation

We solve the model numerically using standard value function iterations.9 Given that there is no analytical

representation for the model-implied moments, we estimatethe model using the simulated method of

moments (SMM) proposed by Lee and Ingram (1991). Specifically, we choose model parameters that set

moments of artificial data simulated from the model as close as possible to the corresponding empirical

data moments.

Following the empirical investment literature, we set the depreciation rate,δ, and the discount rate,r,

to their conventional values of 0.15 and 0.05, respectively. These parameters are in line with the numerical

values and estimates used in previous studies (Cooper and Ejarque, 2003; Hennessy and Whited, 2007).

Given the general consensus concerning their numerical values, these parameters provide essentially no

degrees of freedom for generating the quantitative results. We restrict the scaling parameterµ of the shock

process in (2) so that the steady-state capital stock is normalized to 1.10 We then estimate the following

parameters: profit function curvature,θ; shock serial correlation,ρ; shock standard deviation,σ; and

the capital adjustment cost,γ. We focus on the moments most directly related to the model parameters.

Specifically, the moment vector includes the mean and variance of Tobin’s Q, the variance and serial

correlation of investment, and the variance of operating profit (cash flow).11 Appendix C contains details

concerning the choice of moments and the estimation of the model.

Table 6 presents the estimation results. Panel A reports theactual and simulated moments with t-

statistics for the difference between the two. Panel B reports parameter point estimates, standard errors

and a test of over-identifying restrictions (J-test) for the general specification. Taking into account the

parsimony of our model, the J-statistic takes on a reasonably small value. The J-test does not provide

rejection at the one percent level, implying that overall the model matches reasonable well the set of

empirical moments viewed collectively, particularly whenconsidering the low degrees of freedom. Most

9We first discretize the state space for the two state variables K andA following the procedure in Tauchen and Hussey (1991).
We then solve the model via iteration on the Bellman equation(4), which produces the value function,V (K,A), and the investment
policy function,I (K,A).

10In the steady-state, the capital stock isKss= [θexp(µ)/(r +δ)]1/(1−θ), which equates the marginal product of capital with
its user cost,r +δ.

11In simulations, one can see that the moments are quite responsive to variations in the values of the parameters.
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simulated moments in Panel A match the corresponding data moments well, and all simulated moments are

statistically indistinguishable from their empirical counterparts at conventional significance levels. Even

if statistically insignificant, only the serial correlation of investment and the variance of Tobin’s Q have

simulated values that differ slightly from their corresponding values in the data. The serial correlation

of investment in simulated data (0.27) is lower than its empirical counterpart (0.31). The quantitative gap

between actual and simulated moments is not large, particularly when compared with the results in Cooper

and Ejarque (2003), which fail to match this particular moment reporting a gap of at least 0.33. We attribute

our improved performance mainly to a larger adjustment costestimate,γ, of 1.13. Convex costs, which

prevent firms from swiftly investing in response to persistent productivity shocks, imply investment that is

positively autocorrelated with many relatively small adjustments. Hence, higherγ generates more serially

correlated investment so that firms optimally economize on the costs of capital adjustment. An even larger

adjustment cost would certainly increase the serial correlation of investment, but at the expense of a less

volatile investment series.

The high variance of Tobin’s Q in the data (0.41) exceeds only slightly its simulated counterpart (0.38).

Matching the high variance of Tobin’s Q, which also drives our large adjustment cost estimate, is noto-

riously difficult for most adjustment-cost models. For instance, Eberly, Rebelo and Vincent (2011), who

exclude the variance of Tobin’s Q from their target moments,report a gap of about 0.30. As emphasized in

Erikson and Whited (2000), a potential additional source ofvolatility is measurement error in Tobin’s Q.12

In the next subsection, we follow their lead and incorporatemeasurement error in Tobin’s Q to generate

a cash flow effect in investment regressions. Our choice to include the variance of Tobin’s Q among the

set of target moments, despite its challenges, naturally provides useful additional restrictions on plausible

values for the magnitude of measurement error in Tobin’s Q.

The quadratic adjustment cost parameter,γ, has received enormous attention in the literature since

a regression of investment rates on measures of average or Tobin’s Q identifies this parameter when the

12Additional sources of volatility in Tobin’s Q can also be attributed to differences between the intrinsic value and the market
value of equity. Some supporting evidence can be found, for instance, in measures of Q that do not rely on the market value of
equity and perform better than traditional ones in explaining investment. These alternative measures include estimates based on
cash-flow forecasts (Abel and Blanchard, 1986; Gilchrist and Himmelberg, 1995), analyst forecasts of earnings growth (Cumins,
Hassett, and Oliner,2006), and bond prices (Philippon, 2009).
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operating profit and the cost of capital adjustment are linearly homogeneous. Using the Q-theoretic ap-

proach, estimates ofγ range from over 20 as in Hayashi (1982) to as low as 3 in Gilchrist and Himmelberg

(1995). One noticeable exception is the recent study by Hall(2002) in which he estimates average (across

industries) quadratic capital adjustment costs of about 0.91. While direct comparison with other estimates

should be viewed with caution given differences in methods and datasets, our estimate of 1.13 is compa-

rable to previous studies, though higher than the estimatesof 0.17-0.23 reported in Cooper and Ejarque

(2003). The inclusion of the high variance of Tobin’s Q amongthe set of target empirical moments,

along with the reasonably good match of the high serial correlation of investment in the data, are mainly

responsible for our understandably larger estimate ofγ.

Our estimate of the curvature of the profit function,θ, is 0.91. Despite differences in estimation

methods and datasets, this value is consistent with estimates reported in previous studies. For instance,

Burnside (1996) estimates a value of 0.80 for the average degree of returns to scale across industries.

More recently, DeAngelo, DeAngelo and Whited (2011) estimate a value of 0.79 using a more complex

dynamic model of investment and capital structure decisions. Differently from Cooper and Ejarque (2003),

who estimate a value of 0.70, the larger estimate in our dataset is consistent with the lower average value of

Tobin’s Q. Despite its relatively higher value, our estimate of θ also confirms the existence of substantial

technological decreasing returns to scale.

The point estimate of the serial correlation (ρ) and standard deviation of profit shocks (σ) are 0.46

and 1.04, respectively. These values are qualitatively comparable with estimates displayed in previous

studies. For instance, our estimate of the standard deviation of profit shocks (σ) is close to the value of

0.90 reported in Cooper and Ejarque (2003), though is generally higher than values reported in more recent

studies, which estimate directly these parameters using only moments of the empirical distribution of oper-

ating profit (Hennessy and Whited, 2007; DeAngelo, DeAngeloand Whited, 2011). Our higher estimates,

instead, are not only driven by the high volatility of operating profits, but also, and most importantly, by

the high empirical variance of Tobin’s Q.

While it is unlikely that our relatively simple model provides a complete description of the empirical

relation between investment andall its determinants, it delivers overall a fairly good parsimonious ap-
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proximation given the focus of the paper on generating the properties of investment from technological

decreasing returns to scale.

4.4 Simulated Investment Regressions

In this section we investigate the model ability to generatequantitatively the size effects found in corporate

investment data. We report the simulation results in Table 7. For easy of comparison, we also include their

empirical counterparts from Table 2.

As shown in Panel A of Table 7, the coefficient estimate of the regression of investment rate on firm

size is−0.05 in simulated data versus its empirical counterpart of about −0.07. Hence, the unconditional

size effect, which arises because of decreasing returns to scale, is similar and significant in both simulated

and empirical data.

Given the model-implied linear investment equation, a regression with three variables, Tobin’s Q,

cash flow and size, all highly correlated to the two only statevariables,A andK, would not reproduce in

simulations a size effect conditional onbothTobin’s Q and cash flow comparable to the data. For instance,

given firm size and Tobin’s Q, cash flow would be informationally redundant in simulated investment

regressions. Therefore, in order to generate also a cash floweffect as in the data, we follow Erickson and

Whited (2000), and allow for classical measurement error inTobin’s Q.13,14

As emphasized in Erickson and Whited (2000), classical measurement error in Tobin’s Q naturally

generates a cash flow effect in investment regressions, evenwhen Tobin’s Q is a sufficient statistic for

investment - i.e. under linear homogeneity assumptions. Hence, in our inhomogeneous investment model,

where marginalq rather than Tobin’s Q is a sufficient statistic for investment, measurement error in Tobin’s

Q allows to generate a sizeeffect conditional onbothTobin’s Q and cash flow as in the data, rather than a

size effect conditional oneitherTobin’s Qor cash flow only.

13The introduction of measurement error in Tobin’s Q to generate cash flow effects is also consistent with the empirical evidence
reported in Table A.2. Applying the reverse regression methodology in Erickson and Whited (2005), we find that, also in our
data, the cash flow effect is particularly sensitive to measurement error in Tobin’s Q.

14Alternatively, one could generate a cash flow effect by introducing financial frictions as in Gomes (2001) and Hennessy, Levy
and Whited (2007). We opt, instead, for measurement error inTobin’s Q given our aim of showing how size effects naturally
arise from the curvature of the profit function, even in the absence of financial frictions.
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Specifically, we suppose that the econometrician observes Tobin’s Q with error,Q̃ = Q+ ε, where

ε ∼ N
(
0,σ2

ε
)
. We then setσ2

ε equal to a proportion,x, of the variance of the trueQ. Panel B of Table 7

reports the results for different values of the variance of measurement error,x. The inclusion of the variance

of Tobin’s Q among the set of target moments for the estimation of the structural parameters imposes

discipline over the plausible range of values forx. Given the variance of Tobin’s Q of 0.378 in simulated

data, a plausible value for the upper bound onx can be obtained by allowing for an increase, 0.378×

(1+x), that matches the upper bound of the 95 percent confidence interval of the empirical variance of

Tobin’s Q, 0.482 (= 0.414+1.96×0.035). We set the upper bound onx to a conservative value of 0.25,

which is slightly below such a number, 0.28 (≃ 0.482/0.378−1), and still an order of magnitude smaller

than the value implied by Erikson and Whited (2000).

Our natural benchmark forx is 0.10, which brings the simulated variance of Tobin’s Q, 0.38, close to

the empirical one, 0.41.15 The coefficient on firm size, conditional on Tobin’Q and cash flow, is about a

significant−0.042 in simulated data, and very close to its empirical counterpart of−0.050. The coeffi-

cients on Tobin’s Q and cash flow are also significant and comparable to their empirical counterparts.

Within the plausible range of values for the variance of measurement error, the model-implied invest-

ment regressions generate conditional size effects very similar to the data. The coefficient on Tobin’s Q

decreases monotonically with the variance of measurement error from 0.087 to 0.035. Even though there

are multiple regressors, this pattern is consistent with the evidence on the attenuation bias in the estimation

of capital adjustment costs using mismeasured Tobin’s Q (Erickson and Whited, 2000; Cooper and Ejar-

que, 2003). The coefficient on cash flow increases substantially with the variance of measurement error

and ranges from 0.166 to 0.246. The high sensitivity of cash flow to measurement error inTobin’s Q is

also consistent with previous findings in Erickson and Whited (2000, 2005). The coefficient on firm size,

instead, decreases only slightly with the variance of measurement error from−0.042 to−0.064. These

findings concerning the sensitivity to measurement error inTobin’s Q are also in line with our empirical

investigation. Applying the reverse regression methodology in Erickson and Whited (2005), whose results

15Gomes (2001) also uses a value for the variance of the measurment error equal to 1/10 of the variance of Q.
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are reported in Table A.2 in Appendix A, we confirm that the size effect is substantially less sensitive, and

as such more robust, than the cash flow effect to measurement error in Tobin’s Q.

4.5 Simulated Variance Decomposition

We now investigate further the quantitative implications of our simple neoclassical model with a variance

decomposition of investment. Table 8 compares the variancedecomposition of investment in simulated

and actual data. In order to make the actual results comparable to our simulations, which produce i.i.d.

firms, we remove unobserved heterogeneity from the actual data by using fixed firm and year effects.

Hence, we report thewithin variance decomposition for the regression in actual data. We normalize the

Type III partial sum of squares for each effect by the aggregate partial sum of squares across all effects in

the regression specification, so that each column sums to one.

In our simulated data, the only sources of error in the investment regression consist of mismeasurement

in marginalq and classical measurement error in Tobin’s Q. As such, the adjustedR2 for the investment

regression in simulated data of about 0.55 naturally exceeds its corresponding value of 0.22 in actual

data.16 Most importantly, however, the relative contribution of each variable to the variance of investment

both in simulated and actual data are fairly similar. In our natural benchmark with modest amount of

measurement error (x = 0.10), about 41% of the explained variation in investment can be attributed to

Tobin’s Q alone versus 31% in actual data. As expected, the noisier the measure of Tobin’s Q, the lowerits

contribution to the variance of investment. About 45% of investment variation in simulated data can instead

be attributed to cash flow versus 42% in actual data. The cash flow variable becomes relatively more

important with substantial measurement error in Tobin’s Q.Firm size contributes about 14% of investment

variation in simulated data against 27% in actual data. While still lower than its empirical counterpart,

the size contribution increases up to 17% with the measurement error in Tobin’s Q. Consistent with our

empirical investigation of the impact of measurement errorin Tobin’s Q, the contribution of firm size is

much less sensitive than cash flow to measurement error in Tobin’s Q.

16The introduction of additional shocks, for instance, stochastic shocks to adjustment costs, which are commonly used inthe
investment literature, and/or different curvature of the adjustment cost function would contribute towards a reduction of theR2

for the investment regression in simulated data.
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While it is unlikely that our parsimonious investment modelprovides a complete description of all the

shocks underlying the investment dynamics in actual data, it still yields a reasonably good approximation.

4.6 Firm Size and Technological Returns to Scale

In this section we investigate in simulated data the relation between the curvature of the operating profit

function,θ, and the size effect estimate,β. This relation underlies the identification of the firm size effect

arising from technological returns to scale and supports our cross-industry empirical analysis above.

Table 10 reports the size coefficient estimates in simulateddata for different values of the curvature

of the profit function,θ. Panel A provides the estimate from a regression of investment rate (I/K) on

firm size (lnK) only. The higher the operating profit curvature,θ, the higher (less negative) the size effect

estimate,β. In the absence of any other variable, firm size effectively captures the marginal profitability

of capital. With decreasing returns to scale, the higher thecurrent capital stock, the lower the marginal

return to capital and hence the lower the equilibrium investment rate, ceteris paribus. How much lower is

the marginal return to capital, and hence investment rate, depends on the operating profit curvature,θ. The

higherθ, the lower the sensitivity of the marginal return to capital, and thus investment rate, to changes

in the capital stock. Hence, the higher the curvatureθ, the lower in magnitude the size effect estimate,β.

As θ approaches constant returns to scale (θ → 1), the marginal return to capital becomes insensitive to

changes in the capital stock, and any size effect progressively dissipates (β → 0).

Panel B of Table 9 provides the conditional size effect estimates from a regression of investment rate

(I/K) on firm size (lnK), cash flow (/K) and Tobin’s Q (V/K), for various levels of measurement error

in Tobin’s Q. The same pattern between the operating profit curvature,θ, and size effect estimates holds

even conditional on imperfect control variables such as Tobin’s Q and cash flow. As such, firm size

complements any information about decreasing return to capital already incorporated in these imperfect

controls. The noisier the measure of Tobin’s Q, the strongerthe size effect as firm size becomes relatively

more informative about the marginal return to capital, ceteris paribus. As the curvature approaches constant

returns to scale (θ → 1), Tobin’s Q becomes a sufficient statistic for investment,the marginal return to
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capital becomes insensitive to changes in the capital stock, and the conditional size effect coefficients

approach zero (β → 0). The less noisy the Tobin’s Q, the faster the size effect approaches zero.

5 Conclusion

A large literature in economics has investigated the determinants of firm growth dynamics. On one side,

the industrial organization and growth literature have focused on the role of firm size, on the other side, the

corporate finance literature has focused on the role of Tobin’s Q and cash flow. This paper links the two

streams of literature and examines whether size dependenceis important in corporate investment decisions

even after controlling for standard proxies for firm investment opportunities and financial status.

The results of our empirical analysis provide robust evidence that small firms invest significantly more

than large firms even after controlling for Tobin’s Q and cashflow. We find that firm size is at least

as important as Tobin’s Q and cash flow, both economicallyand statistically, in explaining variation in

corporate investments. Interestingly, the size effect is more robust to measurement error in Tobin’s Q than

the cash flow effect. Furthermore, the empirical evidence suggests that the firm size effect reflects the

mismeasurement of firms’ unobservable real investment opportunity set rather than reflecting differences

in firms’ financing frictions.

Consistent with the empirical evidence, we confirm that a simple Q-theory model of investment with

curvature in the profit function and capital adjustment costs can replicate quantitatively the empirical

findings of a firm size effect in corporate investment. As such, even a simple model with no financial

frictions, which realistically departs from the traditional homogeneity assumptions, recommends the use

of firm size to explain first-order variation in investment.
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Appendix

This section contains three appendices with details about the robustness tests on the empirical analysis,

estimation of technological returns to scale, and SMM estimation of the model.

Appendix A

In this appendix we discuss in more detail the data sets used for the empirical analysis and the robustness

tests on the size effect findings.

A.1 Data

We construct three samples of firms for the empirical analysis. The unbalanced sample of US firms is taken

from the combined annual research, full coverage, and industrial COMPUSTAT files for the years 1962 to

2006. We omit utilities (SIC 4900–4999) and financial firms (SIC 6000-6999) from the sample. We keep

all firm-years in our main sample that have non-missing information available to construct the primary

variables of interest, namely investment in property, plant and equipment, total capital (net property, plant

and equipment), book value of total assets, market value of assets (book value of assets plus the market

value of common stock minus the book value of common stock), earnings before extraordinary items,

depreciation, stock price at the fiscal year close, and the number of common shares outstanding. We deflate

capital expenditures and net property, plant and equipmentby the deflator for non-residential investment

from the NIPA tables. The remaining data items are deflated using the consumer price index. To ensure

that our measure of investment captures the purchase of property, plant and equipment, we eliminate any

firm-year in which a firm in the sample made a major acquisition. We then trim the variables (investment

rates, Q, cash flow rate) at the 1st and 99th percentiles of their distributions to reduce the influence of

outliers, which are common in accounting ratios. This procedure yields a sample of 130,108 firm-years

representing 13,986 different firms.

We also construct a sample of US firms in a balanced panel. To beincluded in the balanced sample, a

firm must have sufficient data available to measure Tobin’s Q,investment, cash flow, and capital stock for

every year from 1980 to 2006. In addition, to ensure that our measure of investment captures purchases
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of property, plant and equipment, we eliminate any firm that may have made a major acquisition during

the sample period. These criteria yield a sample of 9,180 firm-years composed of 340 firms that have data

available in each of the 27 years in the sample period.

Our last sample is composed of international firm level data from Thomson Financial’s Worldscope

database. Worldscope provides the broadest coverage of international data, covering companies in more

than 50 developed and emerging markets and accounting for more than 96 percent of the market value of

publicly traded companies across the globe. We use data on firms from Australia, Brazil, Canada, France,

Germany, Japan, South Korea and the United Kingdom for our international sample as these eight countries

have the widest coverage for non-US firms in the Worldscope database. We keep all firm-years in each

of these countries with non-missing data for investment rates, Tobin’s Q, cash flow and net property plant

and equipment. The international sample has 62,745 firm-years composed of 10,839 firms over the period

1980 to 2005.

Table A.1 reports summary statistics of the main variables of interest for the unbalanced sample, bal-

anced sample and international sample of firms. Overall, ourvariables of interest are comparable with

previous studies, except for the slightly higher mean investment rate due to the scaling of capital expendi-

tures by net property, plant and equipment rather than grossproperty, plant and equipment or total assets.

A.2 Robustness

We now conduct a large battery of robustness tests to addresscommon concerns associated with the esti-

mation of investment regressions.

Measurement error. A potential concern with the interpretation of the tests forsize effects is the

presence of measurement error in Tobin’s Q. We now investigate whether classical measurement error

in our proxy for Tobin’s Q affect our estimates. In our first approach, we employ a classical errors-in-

variables methodology by instrumenting for Tobin’s Q. We use two sets of instruments: (i) lagged cash

flow; and (ii) lagged cash flow and lagged Tobin’s Q. The results of the instrumental variables estimation

are reported in the first two columns of Table A.2. In both cases, the magnitude and statistical significance

of the firm size is virtually no different from previous results.
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As a second approach, we investigate whether the quality of our proxy for Tobin’s Q can explain the

consistently negative coefficient we obtain on firm size in the investment regressions. To test whether

measurement error is driving the sign of the coefficient on firm size, we employ the methodology of

Erickson and Whited (2005). This method allows a researcherto draw inferences about the signs of

coefficients in the presence of a mismeasured regressor. Thethird column of Table A.2 reports the results

of the reverse regression in the methodology of Erickson andWhited (2005), whereby we regress the

proxy for Tobin’s Q on investment, cash flow, and firm size. We confirm that the coefficient on firm size in

this reverse regression maintains its negative sign, suggesting that the possible measurement error in our

proxy for Tobin’s Q is not responsible for the negative sign of the coefficient in the baseline investment

regression. Interestingly, the sign on the cash flow coefficient switches from positive to negative in the

reverse regression, suggesting that the cash flow sensitivity of investment is sensitive to measurement

error in Tobin’s Q.

As a third approach, we use an alternative measure of Tobin’sQ proposed by Cummins, Hassett and

Oliner (2006), which employ firm-specific earnings forecasts from securities analysts rather than stock

market values. We follow this approach and estimate the numerator for Tobin’s Q using IBES analysts’

consensus earnings forecasts. Similar to Cummins et al (2006), our sample period is 1982 to 1999. We

further require that each firm included in the final sample have at least two consecutive years of non-

missing data. The fourth column of Table A.2 reports the results of the investment regression with the

analyst-based estimate of Tobin’s Q. We find that the magnitude and statistical significance of firm size is

similar to the estimates from the regression with the stock-market based Tobin’s Q.

Selection bias.Given that our sample is made up of publicly traded firms from Compustat, a potential

concern is that the results may be due to sample selection bias. Specifically, while small and fast growing

firms are more likely to enter and remain in Compustat over time, small firms initially in the database that

did not experience growth over time are more likely to exit. Hence, our inability to observe these small

firms exiting the database may create a bias in favor of our findings. However, the Compustat database,

which includes only firms with publicly traded securities, is also more likely to represent mostly the large

firms with good growth prospects in the overall economy. Hence, the left-truncation of the true size
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distribution of all firms in the economy as represented in oursample may bias against finding evidence of

a size effect given that only firms that are likely to be largerand have higher growth rates will be included

in the sample. Overall, the direction of these biases may work in favor as well as against our findings.

We use a two-stage Heckman-type procedure to control for sample selection bias. We first model the

exit decision of firms in the large unbalanced panel as a function of firm size, Tobin’s Q, cash flows, cash

holdings, and leverage. We then obtain the inverse Mill’s ratio and include it on the right hand side of

the conditional investment regression. Specification (5) in Table A.2 reports the results. Controlling for

selection bias does not affect our findings.

Timing of variables. In the baseline regression we scale end-of-year investmentby beginning-of-year

capital on the left hand side, and include the log of beginning-of-year capital on the right hand side of

the regression. One potential concern is that the negative coefficient on log of firm size may be mechan-

ically driven. In response, we replace logKi,t−1 with logKi,t−2 in the investment regression. As shown in

specification (1) of Table A.3, the economic and statisticalsignificance of firm size remains unaffected.17

Since we use beginning-of-year Tobin’s Q and lagged cash flowto explain end-of-year investment,

our proxy variables might only partially reflect changes in the investment opportunities and/or financial

status occuring over the year. Specification (2) reports estimates including contemporaneous Tobin’s Q

and cash flow. Controlling for the change in Q and cash flow overthe investment period does not affect

the significance of firm size.

Our measure of future investment opportunities and/or financial status might be inadequate if there are

lags between when a firm has investment opportunities and when the actual investment is measured. These

lags may be due to accounting practices as well as time-to-build considerations. The next specification

include additional lags of Tobin’s Q and cash flow in response. Firm size still preserves its economic and

statistical significance.

We conclude that the timing of our proxy variables for investment opportunities and/or financial status

has no effect on the results.
17We obtain similar results when using logKi,t−k, for k= 3,4,5, either in place of or as instrument for logKi,t−1.
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Omitted variables. The size effect may result because of omitted variables potentially capturing

investment opportunities and/or financial status. For instance, Eberly, Rebelo and Vincent (2011) provide

evidence that lagged investment is an important determinant of investment. Specification (4) reports the

results of the conditional investment regression including lagged investment. Since the lagged dependent

variable is correlated with the firm fixed effect, we employ the Arellano-Bond dynamic panel estimator

to obtain consistent estimates. Consistent with the evidence in Eberly, Rebelo and Vincent (2011), the

coefficient on lagged investment is significant and positive. However, controlling for lagged investment

does not affect the significance of firm size.

Early studies by Evans (1987) and Hall (1987), and more recently by Cooley and Quadrini (2001),

discuss the evidence of firm growth dependence on both firm size and firm age. Following Fama and

French (2001) and Pastor and Veronesi (2003), we proxy for a firm age using the number of years since a

firm became public. As shown in specification (5), the inclusion of firm age does not affect our findings.

In specification (6), we include additional control variables for a firm’s financial status. Following

Lang, Ofek and Stulz (1996), and Kaplan and Zingales (1997),we include the following controls: cash

holdings, defined as cash and short-term investment scaled by total assets; leverage, defined as the sum of

short-term and long-term debt scaled by total assets; return on assets, defined as net income scaled by total

assets; and a dividend payer dummy set equal to one if the firm pays a cash dividend in a given year. We

note that the inclusion of these additional controls does not change the magnitude or significance of firm

size.

Nonlinear specifications. In specification (7), we investigate whether firm size is picking up non-

linearities in the relationship between investment and Tobin’s Q and cash flow. We estimate a complete

second order polynomial in these variables. Specifically, we include (but do not report for brevity) squared

terms of the control variables, as well as their interactions. The results in Table A.3 show that the inclusion

of high-order polynomials does not affect the magnitude or significance of firm size.

30



Alternative samples. In specification (8) of Table A.3, we report the converge estimates based on a

large unbalanced panel of US firms from Compustat for the period 1962-2006. We confirm the presence

of a size effect in the unbalanced sample.

We also investigate the presence of size effects in eight other countries. From the Worldscope database,

we obtain firm level data for the period 1980-2005 for Australia, Brazil, Canada, France, Germany, Japan,

South Korea, and the United Kingdom. The investment regressions for each international sample are

reported in Table A.4. We confirm that in each of the eight countries, there is significant evidence of size

effects comparable to that found in the US data. Therefore, we conclude that our findings are not limited

to the sample of US firms.

Additional robustness. We consider, but do not report for brevity, a number of additional robustness

tests: (1) we run investment regressions over different sub-samples; (2) to reduce the influence of out-

liers we deflate investment and cash flow by total assets rather than capital; (3) we trimmed relevant firm

variables at different percentiles of their unconditionaldistribution; (4) we include firms with negative in-

vestments and firm-years observations with large acquisitions; (5) we use the change in net property, plant

and equipment instead of capital expenditures to measure investment; (6) we add the leasing of property,

plant and equipment to capital expenditures as an alternative measure of investment. The main results

are statistically robust. In addition, we obtain similar findings across alternative estimation methodologies

including (1) OLS with firm and year fixed effects estimated byfirst differencing the actual observations,

and (2) Fama-MacBeth (1973) regressions.

Appendix B

In this section, we discuss the measurement and estimation of technological returns to scale. We first

derive the profit function, and then we discuss the estimation details.

B.1 Measurement of Technological Returns to Scale

We assume that each productive unit has a Cobb-Douglas production function given byy = zKαK LαL . z

denotes the productivity shock,K is physical capital,L is the variable factor(s), andω is the price of the

variable factor(s). The equations that follow are based on one variable factor for expositional purposes
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but extend easily to multiple variable factors. We furthermore assume that the inverse demand function

with constant elasticity is given byp= εy−η with corresponding revenue function ofR(y) = y1−η, where

ε denotes a demand shock. Optimization of the profit function over the variable factor

max
L

[R(y)−ωL]

yields a revenue functionR(A,K) and profit functionΠ(A,K) given by

R(A,K) =
A

1−φ
Kθ (7)

and

Π(A,K) = AKθ (8)

whereA= (1−φ)
[
εz(1−η) (φ/ω)φ

]1/(1−φ)
reflects shocks to the production function, output demand and

variations in variable factors’ costs,θ = αK (1−η)/(1−φ) and φ = αL (1−η). There are decreasing

technological returns to scale,θ < 1, as long as(αK +αL)(1−η)< 1. Even with inelastic demand func-

tion (η = 0), the presence of decreasing returns to scale in production, αK +αL < 1, is sufficient to generate

curvature in the profit function,θ < 1.

The coefficient onK measuring the degree of returns to scale in capital (θ) in both the revenue and

profit functions is the same. Moreover, the properties of theshocks to revenue and profits are the same up

to a factor of proportionality. Hence, we can estimateθ from either a log-linear profit or revenue regression

on the capital stock. We opt for the latter since there is potentially less measurement error involved. There

are a small number of observations with negative measured real variable profits but by construction there

are no businesses with negative real revenue. In the analysis in the paper we report the estimate ofθ from

the real revenue regression, but this is not critical for thereported results. Real revenues are measured as

total sales, deflated by the consumer price index from NIPA.
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B.2 Estimation of Technological Returns to Scale

We follow closely Cooper and Haltiwanger (2006) to estimatethe curvature parameterθ. We refer to

profit or revenue functions interchangeably because they only differ for a factor of proportionality. In the

following analysis, we use the subscriptsi andt to denote firm and time, respectively. We use lower case

letters to denote the logs of the corresponding upper case variables.

Let ait = ln(Ait ) have the following structure

ait = γt + εit

whereγt is a common shock, andεit is a firm-specific shock, whose dynamics are given by

εit = ηi +ρεεit−1+ωit

whereωit ∼ MA(0) andηi is a firm-specific time-invariant effect capturing heterogeneity in the average

firm profitability shocks. Taking logs and quasi-differencing the profit equation in (8) yields

πit = ρεπit−1+θkit −ρεθkit−1+ γt −ρεγt−1+ηi +ωit

or

πit = β1πit−1+β2kit +β3kit−1+ γ∗t +ηi +ωit

whereβ1 = ρε, β2 = θ, β3 =−ρεθ, andγ∗t = γt −ρεγt−1.

Whenever the standard assumption on the initial conditionshold (E [xi1ωit ] = 0 for t = 2, ...,T), then

by first differencing, we have

E [xit−s∆ωit ] = 0
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wherexit = (kit ,πit ) for s≥ 2. This allows the use of suitably lagged levels of the variables as instruments,

after the equation has been first-differenced to eliminate the firm-specific effects (Arellano and Bond,

1991) as:

∆πit = β1∆πit−1+β2∆kit +β3∆kit−1+∆γ∗t +∆ωit .

We estimate this equation via 2SLS estimator using a complete set of time dummies to capture the ag-

gregate shocks and using lagged and twice-lagged capital and twice-lagged profits as instruments. The

estimation ofθ is performed for each two-digit SIC industry separately.

Appendix C

This appendix provides details concerning the estimation of the model and the choice of moments.

C.1 Model Estimation

We follow closely the estimation procedure in Lee and Ingram(1991) and estimate the structural param-

eters of the model using the simulated method of moments (SMM). First, we estimate a set of selected

data moments,̂ΦN, using an empirical sample of lengthN. Without loss of generality, the selected data

moments can be represented as the solution to the maximization of a criterion function

Φ̂N = argmax
Φ

J(YN,Φ)

whereYN is a data matrix of lengthN. Then, we constructSdata sets based on simulations of the model

under a given parameter vectorν. For each simulated data sets, we estimate the corresponding selected

moments,̂φs
n (ν), as the solution to the maximization of an analogous criterion function:

φ̂s
n (ν) = argmax

φ
J(ys

n,φ)

whereys
n denotes a simulated data matrix of lenghn.The SMM estimator of the parameter vectorν mini-

mizes the distance between the selected empirical and simulated moments as

ν̂ = argmin
ν

Ĝ′
NŴNĜN
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whereĜN ≡
[
Φ̂N − 1

S∑S
s=1 φ̂s

n (ν)
]

andŴN is an arbitrary positive definite matrix that converges in proba-

bility to a deterministic positive definite matrixW. The optimal weighting matrix is

ŴN =
[
N var

(
Φ̂N

)]−1
. (9)

Given that the selected empirical moments,Φ̂N, can be represented as ordinary least squares regression

coefficients, we estimate their variance-covariance matrix using the seemengly unrelated regression ap-

proach. Specifically, we first estimate each regression separately using ordinary least squares, which pro-

vides consistent estimates for each moment as well as regression disturbances. Then, we estimate the

variance-covariance matrix,var
(

Φ̂N

)
, allowing for heteroskedestacity and cross-correlation among firms

in the panel as well as for correlation across regressions.

We solve the model using value-function iteration and simulate 10 artificial panels of 340 independent

and identically distributed firms each with 270 years of data. We compute the simulated moments using

the last 27 years of simulated data, which corresponds to thetime span of the balanced sample from

Compustat.18,19 The indirect estimator is asymptotically normal for fixedS:

√
N(ν̂−ν0)

d→ N (0,Avar(ν̂))

with the asymptotic variance-covariance matrix of the estimated parameters

Avar(ν̂) =
(

1+
1
S

)[
Π′WΠ

]−1

whereΠ = plimN→∞ ∂Ĝ(ν0)/∂ν′ andW =
[
Nvar

(
Φ̂(ν0)

)]−1
=

[
Nvar

(
φ̂(ν0)

)]−1
. We estimateΠ by

numerically differentiatingĜ(ν̂) with respect toν, andW by usingŴN as in (9). Further, we perform a

test of the overidentifying restrictions of the model, with

NS
1+S

Ĝ′
NŴNĜN

d→ χ2
dim(Φ)−dim(ν)

18We consider only the last part of the series to avoid the influence of a possibly suboptimal starting point.
19Michaelides and Ng (2000) point out that good finite-sample performance of an indirect inference estimator requires a

simulated sample that is approximately ten times as large asthe actual data sample.
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where theχ2 distribution has degrees of freedom equal to the dimension of selected moments, dim(Φ),

minus the dimension of parameters, dim(ν).

Finally, we verify the properties of our SMM estimation procedure by using a simple robustness check.

Starting with a known parameter vector,ν, we simultate a panel of firms and compute the seleceted simu-

lated moments,̂φ (ν). We then use the SMM procedure described above to fit these moments and recover

the true parameter vectorν (which generated the data). Failure to recover the true parameters may indicate

lack of identification of the model parameters or inadequateestimation procedure. We find that our esti-

mation procedure can recover reasonably well the true parameter vector,ν, even across SMM runs with

different starting values.

C.2 Choice and Estimation of Moments

We choose the following five moments to match: the mean and variance of Tobin’s Q, the variance and

serial correlation of investment, and the variance of operating profit (cash flow). All of the model param-

eters affect all of these moments in some way. The variance ofoperating profit (cash flow) helps identify

the shock variance,σ. Higherσ produces more volatile operating profit. The variance of investment rate

helps identify both the curvature of the profit function,θ, and the adjustment cost parameter,γ. Lower θ

and higherγ produce less volatile investment. The serial correlation of investment contributes to identify

the shock serial correlation,ρ, and the adjustment cost parameter,γ. Higherρ andγ generate more serially

correlated investment because of the convex capital adjustment costs. The mean of Tobin’s Q is primar-

ily informative about the curvature of the profit function,θ. Lower θ produces higher Tobin’s Q, ceteris

paribus. The variance of Tobin’s Q is mainly informative about the shock variance,σ, and the adjustment

cost parameter,γ. Higherσ andγ generate more volatile Tobin’s Q, ceteris paribus.

One final issue concerns the estimation of the empirical moments given the presence of unobserved

heterogeneity in our data from Compustat. Since our simulations produce i.i.d. firms, in order to make

our simulated data comparable to our actual data, we can either add heterogeneity to the simulations, or

remove the heterogeneity from the actual data. We opt for thelatter approach using firm and year fixed

effects in the estimation of our empirical moments.
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Table 1
Investment Rates by Size Deciles

This table reports mean investment rates and correspondingstandard errors across firm size deciles. Portfolios are formed each

year by allocating firms into size deciles. We report an equal-weighted average of firm investment rates. The sample period is

1980 to 2006.

Size Decile (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Mean 0.333 0.276 0.246 0.237 0.225 0.229 0.212 0.199 0.201 0.170
Std. Error 0.010 0.007 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.003
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Table 2
Firm Size and Corporate Investment

This table reports estimates from regressions of the type:

Ii,t
Ki,t−1

= αi +β logKi,t−1+φXi,t−1+ γt + εit ,

where the left-hand-side is end-of year capital expenditures scaled by beginning-of-year property, plant and equipment. The right-

hand-side variables include firm fixed effects,αi , year fixed effects,γt , logKi,t−1 is the natural logarithm of beginning-of-year

capital stock, andXi,t−1 denotes a set of control variables, namely Tobin’s Q and cashflow.. Standard errors are clustered by firm

and are reported in brackets.R2 denotes adjustedR2. The sample period is 1980 to 2006.

(1) (2) (3) (4)
logKi,t−1 -0.020 -0.071 -0.066 -0.050

[0.002]*** [0.006]*** [0.006]*** [0.005]***
Qi,t−1 0.061 0.046

[0.006]*** [0.006]***
CFi,t−1 0.096

[0.019]***
Observations 9,180 9,180 9,180 9,180
R2 0.07 0.27 0.32 0.35
Firm FE No Yes Yes Yes
Year FE No Yes Yes Yes
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Table 3
Variance Decomposition of Firm Investments

This table reports a variance decomposition for several specifications of the investment regression. The left-hand-side is end-

of year capital expenditures scaled by beginning-of-year property, plant and equipment. The right-hand-side includes different

combinations of firm fixed effects, year fixed effects, Tobin’sQ, cash flow, and the natural logarithm of beginning-of-year capital

stock. The table reports the Type III partial sum of squares for each effect in the model normalized by the sum across the effects,

forcing each column to sum to one.R2 denotes adjustedR2. The sample period is 1980 to 2006.

Variable (1) (2) (3) (4)
Firm FE 0.80 0.73 0.62 0.61
Year FE 0.20 0.10 0.08 0.07
Log(K) 0.17 0.14 0.09
Tobin’s Q 0.16 0.10
Cash Flow 0.13
R2 0.22 0.27 0.32 0.35
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Table 4
Firm Size and Financial Constraints

This table reports estimates from regressions of the type:

Ii,t
Ki,t−1

= αi +β logKi,t−1+φX i,t−1+ρ1Dindex+ρ2Dindex× logKi,t−1+ρ3Dindex×X i,t−1+ γt + εit ,

where the left-hand-side is the end-of year capital expenditures scaled by beginning-of-year property, plant and equipment. The right-hand-side variables include firm fixed effect
and year fixed effects, the log of the firm’s capital stock,Dindex is an indicator variable set equal to one based on the distribution of the Kaplan-Zingales (1997) KZ index, the
Whited-Wu (2006) WW index, or the Hadlock-Pierce (2010) SA index, andXi,t−1 is a set of additional control variables, namely Tobin’s Q and cash flow. Specifications (2) through
(4) set the dummy variable equal to one if the value of the index for a particular firm is below the median of the distribution. Specifications (5) through (7) set one dummy equal to
one if the index for a particular firm is below the first quartile and another dummy equal to one if the index exceeds the thirdquartile of the distribution.R2 denotes adjustedR2.
Standard errors clustered at the firm level are reported in brackets.

(1) (2) (3) (4) (5) (6) (7)
log K -0.050 -0.064 -0.051 -0.053 -0.059 -0.052 -0.052

[0.005]*** [0.007]*** [0.005]*** [0.006]*** [0.006]*** [ 0.005]*** [0.005]***
Q 0.046 0.041 0.057 0.047 0.049 0.050 0.050

[0.006]*** [0.022]*** [0.024]*** [0.008]*** [0.007]*** [ 0.008]*** [0.006]***
CF 0.096 0.054 0.057 0.089 0.083 0.166 0.090

[0.019]*** [0.007]** [0.008]*** [0.020]*** [0.020]*** [0 .021]*** [0.009]***
Low WW× log K 0.008

[0.008]
Low KZ× log K -0.000

[0.003]
Low SA× log K 0.002

[0.002]
WWQ25× log K -0.011

[0.009]
WWQ75× log K -0.012

[0.009]
KZQ25× log K -0.002

[0.004]
KZ75× log K 0.001

[0.003]
SAQ25× log K 0.001

[0.001]
SA75× log K -0.005

[0.007]
Observations 9,180 9,180 9,180 9,180 9,180 9,180 9,180
R2 0.35 0.39 0.40 0.42 0.40 0.41 0.42
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Table 5
Industry Returns to Scale and Firm Size Estimates

Two-Digit SIC Industry θ̂k se(θ̂k) β̂k se(β̂k)

01 Agricultural Production Crops 0.443 0.031 -0.008 0.081
13 Oil and Gas Extraction 0.454 0.062 -0.014 0.004
14 Mining and Quarrying of Nonmetallic Minerals 0.442 0.141-0.125 0.018
16 Heavy Construction 0.170 0.071 -0.193 0.014
20 Food and Kindred Products 0.437 0.032 -0.067 0.003
21 Tobacco Products -0.039 0.189 -0.169 0.028
22 Textile Mill Products 0.492 0.131 0.041 0.057
23 Apparel 0.884 0.086 -0.048 0.008
24 Lumber and Wood Products 0.263 0.124 -0.057 0.006
25 Furniture and Fixtures 0.584 0.072 -0.021 0.009
26 Paper and Allied Products 0.245 0.052 -0.177 0.009
27 Printing, Publishing, and Allied Industries 0.540 0.099-0.058 0.005
28 Chemicals and Allied Products 0.545 0.086 -0.027 0.002
29 Petroleum Refining and Related Industries 0.260 0.073 -0.036 0.003
30 Rubber and Miscellaneous Plastics 0.755 0.110 -0.028 0.005
31 Leather and Leather Products 0.128 0.071 -0.155 0.068
32 Stone, Clay, Glass, and Concrete Products 0.347 0.075 -0.009 0.012
33 Primary Metal Industries 0.530 0.107 -0.143 0.004
34 Fabricated Metal Products 0.251 0.052 -0.102 0.023
35 Industrial and Commercial Machinery 0.499 0.043 -0.071 0.008
36 Electronic Equipment and Components 0.677 0.061 -0.074 0.003
37 Transportation Equipment 0.185 0.052 -0.045 0.003
38 Photographic, Medical, and Optical Goods 0.379 0.066 -0.107 0.008
39 Miscellaneous Manufacturing Industries -0.062 0.080 -0.126 0.020
40 Railroad Transportation 0.128 0.098 -0.029 0.003
42 Motor Freight Transportation and Warehousing 0.728 0.086 0.015 0.010
44 Water Transportation 0.673 0.100 -0.088 0.017
45 Air Transportation 0.670 0.071 -0.035 0.010
47 Transportation Services 0.121 0.094 -0.216 0.039
48 Communications 0.080 0.066 -0.056 0.004
50 Wholesale Trade-Durable Goods 0.468 0.094 -0.053 0.006
51 Wholesale Trade-Nondurable Goods 0.166 0.062 -0.152 0.012
52 Building Materials 0.628 0.135 -0.035 0.026
53 General Merchandise Stores 0.776 0.080 -0.037 0.016
54 Food Stores 0.361 0.057 -0.098 0.008
55 Automotive Dealers and Gasoline Stations 0.230 0.065 -0.035 0.033
56 Apparel and Accesory Stores 0.864 0.208 -0.056 0.023
57 Home Furniture and Furnishings Stores 0.196 0.104 -0.1630.035
58 Eating and Drinkign Places 0.367 0.067 -0.011 0.004
59 Miscellaneous Retail 0.583 0.061 -0.004 0.014
70 Hotels and Other Lodging Places 0.689 0.153 -0.046 0.008
72 Personal Services 0.631 0.150 -0.102 0.022
73 Business Services 0.137 0.047 -0.070 0.006
75 Automotive Repair and Services 0.365 0.150 -0.059 0.084
79 Amusement and Recreation Services 0.059 0.096 -0.103 0.070
80 Health Services 0.622 0.160 -0.057 0.006
99 Nonclassifiable Establishments 0.663 0.175 -0.028 0.006
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Table 6
Firm Size and Technological Returns to Scale

This table reports estimates from regressions of the type:

βk = α1+α2θk+ εk,

where the left-hand-side variable is the industry-level firm size estimate,βk, computed as the coefficient on the log of firm size

from an investment regression including fixed effects and a set of control variables. We use no control variables for the un-

conditionalβk estimates used in Panel A. We include Tobin’s Q and cash flow for the conditionalβk estimates used in Panel

B. The right-hand-side variable is the estimate of technological returns to scale,θk, from a log-linear quasi-differenced revenue

regression on firm size. Appendix B provides estimation details. In Specifications (1) and (3), both the size effect and techno-

logical returns to scale estimates are obtained from a panelof firms using firm-level data within each two-digit SIC industry. In

Specifications (2) and (4), both the size effect and technological returns to scale estimates are obtained using industry-aggregated

data at the two-digit SIC level. Standard errors are reported in brackets, and standard errors adjusted for the samplingvariation

in generated regressors are reported in parenthesis.

A: Unconditionalβ B: Conditionalβ
(1) (2) (3) (4)

Firm-Level Industry Firm-Level Industry

θk 0.119 0.120 0.120 0.122
[0.046]** [0.047]** [0.032]*** [0.031]***
(0.061)* (0.063)* (0.056)** (0.055)**

N 47 47 47 47
R2 0.13 0.13 0.15 0.15
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Table 7
Simulated Moments Estimation

This table reports results from SMM estimation of the investment model based on the balanced sample of US firms for the period

1980 to 2006. Panel A reports the simulated and estimated moments along with the t-statistics for their differences. Panel B

reports the estimated structural parameters, with standard errors in parentheses.γ is the capital adjustment cost parameter;θ is

the curvature of the profit function; andρ andσ denote the serial correlation and standard deviation of profit shocks, respectively.

The J-test is theχ2 test for the overidentifying restrictions of the model, with its p-value reported below in parenthesis.

Panel A: Moments
Actual Moments Simulated Moments t-Stats

Average of Tobin’s Q (V/K) 1.571 1.578 0.215
Variance of Tobin’s Q (V/K) 0.414 0.378 −1.045
Variance of Cash Flow (π/K) 0.125 0.125 0.011
Variance of Investment (I/K) 0.022 0.023 0.604
Serial Correlation of Investment (I/K) 0.309 0.268 −1.795

Panel B: Parameter Estimates
γ θ ρ σ J-Test

1.132 0.912 0.463 1.040 4.964
(0.048) (0.005) (0.021) (0.048) (0.026)
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Table 8
Simulated Investment Regressions

This table reports results of investment regressions from simulations of the baseline model. We simulate 10 artificial panels

of 340 firms each with 270 years of data. We estimate the investment regressions using the last 27 years of simulated data,

which corresponds to the time span of the balanced sample from Compustat. We report the average coefficient estimates and

standard errors across artificial panels. Panel A reports the unconditional size effect estimates. Panel B reports the conditional

size effect estimates for different values of measurement error in Tobin’s Q. The variance of the measurement error is expressed

as percentage of the variance of Tobin’s Q in simulated data.

Panel A: Unconditional Size Effects
Data Simulations

Firm Size (lnK) −0.071 −0.050
(0.006)∗∗∗ (0.003)∗∗∗

Panel B: Conditional Size Effects
Measurement Error (%)

0.10 0.15 0.20 0.25
Data Simulations

Tobin’s Q (V/K) 0.046 0.087 0.059 0.045 0.035
(0.006)∗∗∗ (0.008)∗∗∗ (0.006)∗∗∗ (0.005)∗∗∗ (0.004)∗∗∗

Cash Flow (/K) 0.096 0.166 0.208 0.231 0.246
(0.019)∗∗∗ (0.028)∗∗∗ (0.026)∗∗∗ (0.025)∗∗∗ (0.024)∗∗∗

Firm Size (lnK) −0.050 −0.042 −0.053 −0.060 −0.064
(0.005)∗∗∗ (0.005)∗∗∗ (0.004)∗∗∗ (0.004)∗∗∗ (0.004)∗∗∗
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Table 9
Simulated Variance Decomposition

This table reports the variance decomposition of the conditional investment regression from simulations of the base-
line model.We simulate 10 artificial panels of 340 firms each with 270 years of data. We estimate the conditionalinvestment
regression andperform the variance decomposition using the last 27 years of simulated data, which corresponds to the time

span of the balanced sample from Compustat. We compute the Type III partial sum of squares for each effect in the model

normalized by the sum across the effects, forcing each column to sum to one. We report the average Type III partial sum of

squares and adjustedR2 for different values of measurement error in Tobin’s Q. The variance of the measurement error
is expressed as percentage of the variance of Tobin’s Q in simulated data. The column “Data” reports for comparison
thewithin-variance decomposition of the conditional investment regression in actual data.

Measurement Error (%)
0.10 0.15 0.20 0.25

Data Simulations
Tobin’s Q (V/K) 0.31 0.41 0.20 0.11 0.07
Cash Flow (π/K) 0.42 0.45 0.63 0.72 0.76
Firm Size (lnK) 0.27 0.14 0.17 0.17 0.17
R2 0.22 0.56 0.55 0.55 0.54
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Table 10
Firm Size and Technological Returns to Scale

This table reports results of investment regressions from simulations of the baseline model for different values of thecurvature

of the profit function (θ). We simulate 10 artificial panels of 340 firms each with 270 years of data. We estimate the investment

regressions using the last 27 years of simulated data, whichcorresponds to the time span of the balanced sample from Compustat.

We report the average coefficient estimates across artificial panels. Panel A reports the unconditional size effect estimates.

Panel B reports the conditional size effect estimates for different values of measurement error in Tobin’s Q. The variance of the

measurement error is expressed as percentage of the variance of Tobin’s Q in simulated data.

Measurement Error (%)
0.10 0.15 0.20 0.25

Curvature (θ) A: Unconditionalβ B: Conditionalβ
0.60 −0.087 −0.066 −0.091 −0.104 −0.113
0.70 −0.074 −0.055 −0.078 −0.089 −0.097
0.80 −0.063 −0.047 −0.066 −0.076 −0.082
0.90 −0.048 −0.038 −0.051 −0.058 −0.062
0.95 −0.027 −0.030 −0.034 −0.037 −0.038
0.99 −0.005 −0.003 −0.004 −0.005 −0.005
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Table A.1
Summary Statistics

This table reports summary statistics for the primary variables used in the empirical analysis. Investment is defined ascapital

expenditures in property, plant and equipment scaled by thebeginning-of-year capital stock. The capital stock is defined as net

property, plant and equipment. Tobin’sQ is defined as the market value of assets scaled by the book value of assets. Cash flow

is calculated as the sum of end-of-year earnings and depreciation scaled by the beginning-of-year capital stock. Firm size is

the natural logarithm of the beginning-of-year capital stock. The summary statistics are reported for each of three samples: the

unbalanced sample of US firms from Compustat, the balanced panel of US firms from Compustat, and an international sample of

eight countries (Australia, Brazil, Canada, France, Germany, Japan, South Korea, and the United Kingdom) from the Worldscope

database.

Panel A: Unbalanced Sample
Variable Obs. Mean Median Std. Dev.
Investment 130,108 0.301 0.213 0.298
Tobin’s Q 130,108 1.550 0.966 2.917
Cash Flow 130,108 0.517 0.332 0.889
Firm Size 130,108 3.562 3.408 2.341

Panel B: Balanced Sample
Variable Obs. Mean Median Std. Dev.
Investment 9,180 0.233 0.196 0.170
Tobin’s Q 9,180 1.571 1.321 0.820
Cash Flow 9,180 0.425 0.327 0.489
Firm Size 9,180 5.328 5.282 2.182

Panel C: International Sample
Variable Obs. Mean Median Std. Dev.
Investment 62,745 0.245 0.149 0.365
Tobin’s Q 62,745 1.016 0.678 1.446
Cash Flow 62,745 0.377 0.203 1.981
Firm Size 62,745 13.008 12.920 3.807
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Table A.2
Measurement Error and Selection Bias

This table reports estimates from regressions of the type:

Ii,t
Ki,t−1

= αi +β logKi,t−1+φXi,t−1+ γt + εit ,

where the left-hand-side is end-of year capital expenditures scaled by beginning-of-year property, plant and equipment. The

right-hand-side variables include a firm fixed effect,αi , year fixed effects,γt , logKi,t−1 is the natural logarithm of beginning-of-

year capital stock, andXi,t−1 denotes a set of control variables, namely Tobin’s Q and cashflow. Specifications (1)–(2) report

instrumental variables estimation results using laggedQ and cash flow as instruments for Tobin’sQ. Specification (3) reports the

reverse regression estimates using the methodology of Erickson and Whited(2005). The results from the reverse regression are

re-arranged in the table to put investment on the left hand side. Specification (4) uses an alternative measure of Tobin’sQ based on

earnings forecasts from securities analysts as in Cummins,Hassett and Oliner, (2006). Specification (5) reports the second-stage

estimation results from a Heckman type procedure, where thefirst stage models the probability of exiting the Compustat database

as a function of firm size, Tobin’sQ, cash flow, cash holdings, and leverage.R2 denotes adjustedR2. Standard errors are clustered

by firm and are reported in brackets.

(1) (2) (3) (4) (5)

logKi,t−1 -0.043 -0.050 -0.056 -0.048 -0.048
[0.005]*** [0.005]*** [0.008]*** [0.004]*** [0.005]***

Qi,t−1 0.049 0.045 1.110 0.008 0.049
[0.010]*** [0.009]*** [0.128]*** [0.001]*** [0.007]***

CFi,t−1 0.105 0.092 -0.554 0.141 0.101
[0.012]*** [0.014]*** [0.008]*** [0.017]*** [0.019]***

Inv. Mills Ratio -0.001
[0.004]

Observations 8,840 8,840 9,180 8,252 9,180
R2 0.35 0.36 0.44 0.58 0.35
Instruments CFi,t−2 CFi,t−2, Qi,t−2
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Table A.3
Additional Robustness Tests

This table reports robustness estimates from variations ofthe baseline regression:

Ii,t
Ki,t−1

= αi +β logKi,t−1+φXi,t−1+ γt + εit ,

where the left-hand-side is end-of year capital expenditures scaled by beginning-of-year property, plant and equipment. The right-hand-side variables include firm fixed effects,
αi , year fixed effects,γt , logKi,t−1 is the natural logarithm of beginning-of-year capital stock, andXi,t−1 denotes a set of control variables, namely Tobin’s Q and cashflow.
Specification (1) includes logKi,t−2 in place of logKi,t−1. Specification (2) includes contemporaneous Tobin’s Q and cash flow. Specification (3) includes additional lags of Tobin’s
Q and cash flow. Specification (4) reports the estimates from an Arellano-Bond dynamic panel-data regression including lagged investment. Specification (5) includes firm age,
defined as the number of years since a firm became public. Specification (6) includes cash holdings, book leverage, return on assets, and a dividend payer dummy. Specification (7)
includes squared and interaction terms for the control variables (not reported). Specification (8) reports estimates based on a large unbalanced panel of US firms from Compustat
for the period 1962-2006. Standard errors are clustered by firm and are reported in brackets.R2 denotes adjustedR2.
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Table A.3
Additional Robustness Tests

(1) (2) (3) (4) (5) (6) (7) (8)

log Kt−1 -0.051 -0.050 -0.132 -0.050 -0.051 -0.052 -0.081
[0.005]*** [0.005]*** [0.004]*** [0.005]*** [0.005]*** [ 0.006]*** [0.002]***

Qi,t−1 0.047 0.044 0.050 0.068 0.046 0.03 0.072 0.032
[0.006]*** [0.006]*** [0.007]*** [0.005]*** [0.006]*** [ 0.006]*** [0.010]*** [0.001]***

CFi,t−1 0.079 0.102 0.109 0.151 0.096 0.08 0.219 0.088
[0.018]*** [0.014]*** [0.014]*** [0.006]*** [0.019]*** [ 0.017]*** [0.028]*** [0.002]***

log Kt−2 -0.059
[0.005]***

Qi,t 0.002
[0.006]

CFi,t -0.005
[0.004]

Qi,t−2 -0.007
[0.006]

CFi,t−2 -0.013
[0.006]**

Ii,t−1/Ki,t−2 0.019
[0.010]*

Age -0.006
[0.015]

Cash -0.071
[0.029]**

Leverage 0.007
[0.009]

ROA 0.412
[0.046]***

Dividend Payer 0.033
[0.010]***

Observations 9,180 9,180 8,840 8,840 9,180 9,180 9,180 130,108
R2 0.35 0.36 0.35 0.39 0.35 0.38 0.39 0.41
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Table A.4
Firm Size in Corporate Investment: International Evidence

This table reports estimates from regressions of the type:
Ii,t

Ki,t−1
= αi +β logKi,t−1+φXi,t−1+ γt + εit ,

where the left-hand-side is end-of year capital expenditures scaled by beginning-of-year property, plant and equipment. The right-hand-side variables include a firm fixed effect,
αi , year fixed effects,γt , logKi,t−1 is the natural logarithm of beginning-of-year total capital stock, andXi,t−1 denotes a set of control variables, namely Tobin’s Q and cashflow.
R2 denotes adjustedR2. Standard errors are clustered by firm and are reported in brackets.

Australia Brazil Canada France Germany Japan South Korea United Kingdom

logKi,t−1 -0.036 -0.012 -0.036 -0.040 -0.043 -0.016 -0.033 -0.034
[0.004]*** [0.006]** [0.003]*** [0.004]*** [0.005]*** [0 .002]*** [0.005]*** [0.002]***

Qi,t−1 0.061 0.033 0.074 0.088 0.081 0.060 0.098 0.059
[0.007]*** [0.020]* [0.006]*** [0.013]*** [0.013]*** [0. 006]*** [0.014]*** [0.003]***

CFi,t−1 0.026 0.053 0.011 0.036 0.033 0.036 0.025 0.022
[0.004]*** [0.012]*** [0.005]** [0.011]*** [0.006]*** [0 .006]*** [0.009]*** [0.003]***

Observations 5,564 1,533 7,931 4,559 2,998 19,241 3,964 18,598
R2 0.31 0.49 0.36 0.39 0.40 0.37 0.36 0.35
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