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The Innovation Premium

Abstract
Firms that engage in innovative product development, as measured by the fraction of their investment that
goes to Research and Development (R&D) activities, earn higher risk-adjusted equity returns. A portfolio that
goes long the most innovative and shorts the least innovative firms earns a risk-adjusted return in excess of 7%
per annum. R&D-intensive firms also tend to charge higher price markups. Combining insights from
industrial organization with a production-based asset pricing framework, I propose a model in which
heterogeneous firms produce vertically differentiated goods and market them to heterogeneous consumers.
Firms are subject to aggregate demand and supply shocks, which are both priced by investors, and thus the
return premium of innovative firms is explained by their differential exposures to these shocks. In addition to
explaining this return spread, the model makes predictions on firm investments, future profit markups, and
firm size that are consistent with the data.
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Abstract

Firms that engage in innovative product development, as measured by the frac-
tion of their investment that goes to Research and Development (R&D) activities,
earn higher risk-adjusted equity returns. A portfolio that goes long the most inno-
vative and shorts the least innovative �rms earns a risk-adjusted return in excess
of 7% per annum. R&D-intensive �rms also tend to charge higher price markups.
Combining insights from industrial organization with a production-based asset
pricing framework, I propose a model in which heterogeneous �rms produce ver-
tically di�erentiated goods and market them to heterogeneous consumers. Firms
are subject to aggregate demand and supply shocks, which are both priced by
investors, and thus the return premium of innovative �rms is explained by their
di�erential exposures to these shocks. In addition to explaining this return spread,
the model makes predictions on �rm investments, future pro�t markups, and �rm
size that are consistent with the data.
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1 Introduction

Research and development (R&D) activities are widely cited as a key driver of both �rm-speci�c

technological progress and aggregate economic growth. R&D is becoming an increasingly important

investment activity for private corporations in particular, as �rms shift from dependence on physi-

cal capital to intangible and knowledge capital (Congressional Budget O�ce (2005)). This shift is

perhaps best illustrated by the change in investment composition: Figure 1 plots the cumulative

growth in both physical capital investment and R&D investment over time. Growth in R&D in-

vestment has clearly and signi�cantly outpaced growth in physical investment, a trend that holds

across industries and �rm size. For example, manufacturing �rms alone now spend over $100 billion

in R&D annually, more than the (in�ation-adjusted) R&D spending of the entire public and private

sectors 40 years ago. Both within industries and across industries, there is signi�cant variation in

how much investment �rms attribute to R&D.

Figure 1: Cumulative Growth in Average Investment per Firm

This paper shows that �rms that devote more of their investment to R&D activities earn higher

risk-adjusted equity returns. It also rationalizes this �nding with a model featuring heterogeneous
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�rms and heterogeneous consumers which generates a risk premium for R&D through a novel

product market channel. In examining returns to R&D investments, this paper compares those

returns to returns on the most signi�cant other form of investment: investments in physical capital.

To this end, the measure of a �rm's R&D intensity employed in this analysis will be the fraction

of total investment expense in a given year allocated to R&D. This metric is clearly an important

determinant for �rm equity returns: Figure 2 plots the cumulative annual stock returns for �rms

with low levels of R&D/total investment, �rms with high levels of R&D/total investment, and the

aggregate value-weighted market. Firms with a higher ratio of R&D/investment earn signi�cantly

higher cumulative returns.

Figure 2: Portfolio Cumulative Excess Returns to $1 invested in January 1962

Are these returns compensation for risk? This paper shows that standard risk factors do not

explain these returns. Relative to the most common models for expected returns in the literature,

�rms that allocate most of their investment towards R&D continue to earn higher returns than

predicted. Speci�cally, these �rms generate an annual return over 7% higher than that predicted

by the Fama-French 3-factor model and an annual return that is 10% above the expected return

predicted by the Fama-French 5-factor model. In any rational asset pricing framework, these excess
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returns must be attributable to some risk factor not spanned by these existing models. Moreover,

this paper �nds that the risk factor captured by the R&D/investment ratio is important not only

to understand the returns of R&D-intensive �rms, but also to understand the entire cross-section of

stock returns. In Fama-MacBeth tests, the risk factor embedded in these high R&D-intensity �rms

has a positive and signi�cant price of risk for the entire cross-section.

To understand the risks of these high-R&D �rms, it is important to �rst understand why �rms

would want to devote a signi�cant fraction of their investment towards intangible capital. While

expenditures such as research salaries, blueprint and patent creation, and technology development

may not directly enable a �rm to produce a higher quantity of products, they often enable it

to produce products of a higher quality. Indeed, for many �rms, signi�cant R&D expenses are

necessary to maintain a competitive market position. This is re�ected in the empirical �nding

documented in the paper that these high-R&D �rms also charge signi�cantly higher price markups

over cost for their products. Furthermore, the returns on these high-R&D �rms can be linked to

consumers' expenditures on luxury goods, which are also typically high-markup products (as studied

by Ait-Sahalia et al. (2004)).

The �nal contribution of the paper is then to integrate this key insight that high R&D is

connected with higher product quality and price markup into a production-based asset pricing

model. The model features heterogeneous �rms that create products of di�erent quality levels, with

�rms that produce higher quality products requiring a greater amount of R&D per unit of physical

capital used for production. These �rms o�er price and quality combinations to heterogeneous

consumers, who choose the product that maximizes their utility every period. The economy is

subject to total factor productivity shocks which a�ect the productivity of physical capital and

demand shocks which a�ect the preferences of consumers. The model parsimoniously captures the

empirical observation that higher-R&D �rms are more exposed to demand �uctuations. This higher

exposure explains their higher returns. The model also matches the size and markup dynamics in

the data.

This paper is related to several strands of the existing literature. First, there have been several

empirical asset pricing studies that focus on how some form of intangible investment a�ects future
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equity returns. Perhaps the most noted of these is the 2001 paper by Chan, Lakonishok, and

Sougiannis showing that a �rm's ratio of R&D expenditures to market equity is related to its future

abnormal equity return. Li (2011) studies the interaction between measures of R&D expenditures

and �nancial constraints. Several other papers have studied variants on the R&D anomaly by

focusing on �rms that have been successful in past R&D (Cohen et al. (2013)) and innovative

e�ciency (Hirshleifer et al. (2013). These papers have found interesting results in focusing on

segments of high R&D-intensity �rms that seem to drive the broader set of results. This paper,

however, will take the view that another measure of R&D intensity is more informative altogether.

In particular, the metric in this paper is important for understanding the returns of larger and

more economically important �rms and helps to price the entire cross-section of stock returns, two

sign�ciant deviations from the existing literature. Finally, a recent paper by Kogan et al. (2016)

has argued that patent creation is important for aggregate economic growth, which will be outside

the scope of the analysis considered in this paper.

Second, there have been several structural asset pricing papers which have considered the rela-

tionship between equity returns and intangible investment or capital. Lin (2012) is the closest to

this analysis; he proposes a model in which intangible capital reduces adjustment costs to physical

capital and so drives excess returns of high R&D/Investment �rms. Other similar papers include

Corhay, Kung, and Schmid (2015), who propose a model linking markups, competition, and stock

returns, and Eisfeldt and Papanikolaou (2013), who link organizational capital and expected stock

returns. This paper will di�er from all of those studies by introducing a di�erent and largely

novel mechanism of product market competition to drive the cross-sectional implications. It dif-

fers from the �rst two by also focusing on the cross-section of expected risk-adjusted returns. The

R&D/investment measure considered in this paper is also not closely related to the organizational

capital measure of Eisfeldt and Papanikolau (2015). Lastly, several papers have focused on the idea

that R&D expenditures by �rms can drive endogenous growth in the aggregate economy, such as

Kung and Schmid (2015) and Ai, Croce, and Li (2012), but this paper will focus on a di�erent

channel and will have signi�cantly di�erent cross-sectional implications.

The rest of the paper proceeds as follows. Section 2 describes the data used in the paper, the
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empirical asset pricing results of the paper, and the empirical motivation for the model. Next,

section 3 introduces the model and discusses each component. Section 4 presents the calibration

and results of the model. Finally, section 5 concludes.

2 Data and Empirical Results

2.1 Data Sources and De�nitions

The data from this project come primarily from the CRSP/Compustat Merged dataset on WRDS.

Firm-level accounting data come from Compustat and include balance sheet items (stocks of capital,

assets, and capital structure measures) and income and cash �ow statement items (revenue, cost of

goods sold, R&D expenses, and capital expenditures). Due to the often signi�cant seasonality of

many of these series, such as investment expenditures and revenues, observations are collected on

an annual basis. The SIC codes 0-999 (agriculture, �shing, hunting), 4900-4999 (utilities), 6000-

6999 (�nancials), 8888 (foreign governments), and 9000-9999 (international/non-operating) were

also eliminated for most of the analyses in this paper. Finally, companies that did not report R&D

expenditures (about half of the �rm-year observations in the sample) were eliminated. The asset

pricing results for these �rms were quantitatively similar to those for �rms that reported zero values

of R&D expenditures.

The key ratio of interest for much of this paper will be the fraction of total investment spent

on R&D expenses. For this purpose, total investment will be de�ned as the sum of R&D expenses

and capital expenditures. The reporting standard for �rms are set by the Generally Accepted

Accounting Principles (GAAP), which de�nes R&D expenses as part of the �planned search or

critical investigation aimed at discovery of new knowledge...in developing a new product or service or

a new process or technique� or part of the �translation of research �ndings into a plan or design for a

new product or process.� R&D is typically di�erentiated into product development (developing new

products or services) and process development (developing new techniques or methods to produce

existing o�erings) and includes expenses such as research wages, patent development, and software

development, with wages making up up to 50% of total R&D in some industries (Hall and Lerner

(2010)). Capital expenditures, meanwhile, include all costs in purchasing and making ready for use
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property, plant, and equipment additions. These typically include long-lived tangible assets such as

land, buildings, machinery, equipment, �xtures, and others.

Some have also suggested that selling, general, and administrative (SG&A) expenses and R&D

expenses are cross-reported by �rms, with some �rms reporting as an R&D expense what other �rms

would report as an SG&A expense (see e.g. Peters and Taylor (2016)). To take this consideration

into account, the empirical asset pricing results are also computed using the ratio of the sum of

R&D and SG&A expenses to the sum of R&D expenses, SG&A expenses, and capital expenditures.

The results are quantitatively similar. Of the �rm-year observations for which R&D expenditures

are reported, 17% of those observations have reported values of 0 R&D expenses. Of the remaining

83%, the distribution is fairly uniform, as illustrated in Figure 5.

Another de�nition employed by the paper is a metric of markups, which is used for one result in

Section 2.4. While there are many measures of aggregate markups that have been used in similar

papers and in the industrial organization literature, in order to get a �rm-speci�c measure of price

markups, this paper simply uses the ratio of Revenues to Cost of Goods Sold (COGS) minus 1. This

gives the percentage markup over the cost of goods that �rms are charging. Others have suggested

including other expenses in COGS, such as SG&A expenses, and these changes do not impact the

results in Section 2.4. Summary statistics of �rms by their level of R&D/Investment are available

in Table 4. Higher R&D/Investment �rms tend to be smaller, less levered, and have fewer tangible

assets. They also tend to charge higher prices relative to product costs and earn higher revenues

relative to physical capital (but not total assets, perhaps a re�ection of other intangible capital that

is included in their asset base).

The Compustat data was then merged with equity returns from CRSP based on the permanent

�permco� link between the two. Monthly CRSP returns were collected and are the basis for all of

the asset pricing results to follow. From French's website, the monthly excess returns of the market,

HML, SMB, RMW, and CMA factors were obtained. Finally, the data series on luxury good sales

used by Ait-Sahalia et al. (2004) was also obtained from Yogo's website.
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2.2 Alpha Sorts

This section is devoted to the analysis of the question of whether the higher returns associated with

more R&D-intensive �rms are compensation for a recognized risk factor. To analyze this, this paper

starts by analyzing the returns of R&D-intensive �rms relative to the benchmark model for excess

return used in the vast majority of the empirical asset pricing literature, the Fama-French 3-factor

model. This model says that excess returns on a given security should be given by equation (1):

reit = αi + βrmrfit RMRFt + βhmlit HMLt + βsmbit SMBt + εit (1)

where reit represents the return on stock i at time t in excess of the risk free rate. If the model

holds, then the average α over the cross-section of stocks (or for any portfolio of stocks) should

be zero, and the only factors a�ecting excess returns should be exposures to the excess return on

the value-weighted market factor RMRF , the high minus low book equity to market equity factor

(value minus growth) HML, and the small minus big market cap factor SMB (Fama and French

(1992)).

To test this model, �rms are sorted into eleven portfolios based on their R&D/Investment ratio.

One portfolio contains the �rms which report 0 R&D values, while the remaining ten represent the

�rms which fall into each decile of the R&D/Investment distribution. As Figure 5 illustrates, the

approximately uniform distribution of the R&D/Investment measure means that the unit support

of R&D/Investment will be fairly evenly divided among these deciles. The portfolios are rebalanced

every year with new accounting data, which means that �rms will move across deciles as their

level of R&D/Investment changes every year. Table 5 gives the transition matrix from one year to

the next for the R&D/Investment deciles. The persistence of this measure is signi�cantly higher

than those for commonly cited asset pricing anomalies, such as the book-to-market, pro�tability,

investment, and momentum factors, as evidenced by Opp and van Binsbergen (2016).

The value-weighted returns of the �rms in the portfolio form the time series of returns for each

portfolio. To test the Fama-French 3-factor model, the time series of returns for each portfolio is

regressed on the time series of returns for the market excess return and the HML and SMB factors.
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If the Fama-French 3-factor model correctly prices these assets, then the average excess returns of

these portfolio should be explained by their exposures to these three factors and there should be no

signi�cant intercept term in the regression results. Table 1 presents the results for the intercept and

coe�cient terms for each portfolio. The columns of the table represent the various portfolios, from

0 (the portfolio of �rms that report R&D values of 0) to the deciles of R&D/Investment (1-10), to

�10-1�, which represents the zero-cost portfolio of buying portfolio 10 and short-selling portfolio 1

(similar results hold if one short-sells portfolio 0). Examining the �rst two rows, which report the

intercept (α) regression results and their Newey-West t-statistics, one sees that the pricing errors

increase in the R&D/Investment decile, becoming positive and signi�cant for deciles 6, 7, 8, 10 and

the long-short 10-1 portfolio. This implies that if one buys portfolio 10 and short-sells portfolio 1,

he earns a monthly return of 58bps (7.2% annualized) in excess of what the Fama-French 3-factor

model would predict based on this portfolio's exposures to the three Fama-French factors. This α

is statistically signi�cant at the 5% level and thus indicates a violation of the model.

R&D/Investment Decile

0 1 2 3 4 5 6 7 8 9 10 10-1

α
-0.026 -0.057 0.028 0.065 -0.026 0.094 0.219 0.301 0.470 0.099 0.523 0.580

(-0.36) (-0.61) (0.32) (0.75) (-0.30) (1.01) (2.33) (2.63) (3.34) (0.61) (2.90) (2.78)

RMRF 0.909 0.890 1.064 1.046 1.037 1.015 0.950 1.023 1.036 1.025 1.095 0.206

HML 0.130 0.155 0.153 -0.036 -0.139 -0.299 -0.354 -0.450 -0.602 -0.830 -0.794 -0.950

SMB -0.142 -0.226 -0.158 0.078 0.004 0.035 0.022 0.137 0.238 0.592 0.848 1.074

Table 1: R&D/Investment Decile Portfolio Regressions on Fama-French 3 Factors.
First row gives Fama-French 3-Factor alphas, with Newey-West t-statistics below. Bottom 3 rows
give portfolio betas with respect to Fama-French 3 factors.

The bottom three rows also reveal information about the risks of the �rms in these portfolios.

Exposure to the aggregate market risk factor, RMRF, is roughly constant across deciles, indicating

that there are no signi�cant di�erences in the exposures of the high-R&D versus the low-R&D

�rms to the risks spanned by the aggregate stock market. This is an interesting result in itself as it

suggests that the connection between R&D-intensive �rms and high-beta �rms is not as close as some

have suggested, which may be due to the focus on just the composition of investment (rather than

the composition and amount of investment which some measures combine). There are, however,
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signi�cant di�erences in the exposures of these �rms to HML and SMB. High R&D/Investment

�rms tend to load far more negatively on HML than do low R&D/Investment �rms. This pattern

indicates that these �rms have lower ratios of book equity to market equity and are more growth

�rms than value �rms, consistent with what one might expect. Similarly, high R&D/Investment

�rms load more positively on SMB than do low R&D/Investment �rms, indicating that these �rms

tend to be smaller. Still, after accounting for these exposures (which have somewhat o�setting

e�ects due to their opposite signs), the Fama-French 3-factor model fails to fully explain the higher

returns of the high R&D/Investment �rms.

In response to the documented failures of the Fama-French 3-factor model to explain certain

anomalies related to investment and pro�tability (see e.g. Hou et al. (2015) and Novy-Marx

(2013)), Fama and French updated their model to include two additional factors designed to capture

the variation in expected returns associated with �rms' investment policies and pro�tability. The

updated model is expressed in equation (2):

reit = αi + βrmrfit RMRFt + βhmlit HMLt + βsmbit SMBt + βrmwit RMW t + βcmait CMAt + εit (2)

where the �rst four terms on the right hand side are identical to the previous model and the

excess return now includes compensation for the return's exposure to RMW , which represents

robust operating pro�tability minus weak and CMA, which represents conservative investment

minus aggressive. Note that operating pro�tability is computed as Revenues−COGS−Interest−SG&A
Book Equity

and so does not explicitly include either R&D expenses or capital expenditures. Similarly, Fama and

French de�ne investment as the growth of total assets in the previous year divided by the amount

of assets two years past, so neither measure is mechanically linked to the R&D/Investment measure

in this paper (Fama and French (2015)).

Given that these revisions explicitly seek to address investment-based anomalies, it is natural to

ask whether the R&D/Investment factor which targets the composition of investment can still be

used to generate portfolios which earn abnormal returns under the Fama-French 5-factor model. One

can perform the same test as before: run a time series regression of the value-weighted returns of each

R&D/Investment portfolio on the �ve Fama-French factors and report the intercept and coe�cient
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values for each portfolio, checking to see whether the portfolios generate positive intercepts. Table

2 gives those results.

Beginning again with the regression intercepts, an even more striking pattern is apparent. Not

only are the α values still increasing in the R&D/Investment deciles, but the magnitudes are now sig-

ni�cantly higher. Whereas the long high R&D/Investment and short low R&D/Investment portfolio

earned risk-adjusted monthly excess returns of 58bps per month under the Fama-French 3-factor,

it now earns risk-adjusted excess returns of 82bps per month, or over 10% per year, relative to the

Fama-French 5-factor model. One can see why this is the case by examining the factor exposures

of this portfolio. The �rst three coe�cients follow similar patterns to their counterparts in the

Fama-French 3-factor results. Namely, exposures do the market do not seem to have a signi�cant

pattern as R&D/Investment varies but high R&D/Investment �rms seem to be more growth �rms

(negatively exposed to HML) and smaller �rms (positively exposed to SMB).

What is di�erent is that these �rms are also fairly negatively exposed to the pro�tability fac-

tor, RMW. This result is somewhat consistent with the observation that these �rms also tend

to have lower Revenue/Asset ratios and lower Asset/Book Equity ratios. Interestingly, the high-

R&D/Investment �rms and low R&D/Investment �rms have very similar exposures to the invest-

ment factor. This latter observation suggests that the decomposition between the amount of invest-

ment and the composition of investment is an important one. Combined, the exposures to RMW

and CMA lower the benchmark for the returns of these high R&D/Investment portfolios under the

Fama-French 5-factor model and thus lead to the more signi�cant intercept term.

Tables 21-23 demonstrate that this measure is also robust to other �rm-level characteristics.

Higher R&D/Investment is positively associated with higher risk-adjusted equity returns after con-

trolling for both gross and net pro�tability. Within pro�tability quintiles, �rms which do more

R&D relative to total investment earn signi�cantly higher Fama-French 3-factor and 5-factor al-

phas. Similarly, double-sorting �rst by the amount of investment (relative to total assets) that a

�rm spends and then by R&D/Investment still produces increasing alphas in the R&D/Investment

ratio. This e�ect is present for all but the �rms which invest the least (those in the bottom 20%

11



R&D/Investment Deciles

0 1 2 3 4 5 6 7 8 9 10 10-1

α
-0.077 -0.054 -0.015 0.085 0.023 0.206 0.240 0.361 0.769 0.325 0.768 0.821

(-1.01) (-0.53) (-0.16) (0.90) (0.27) (2.17) (2.35) (3.06) (5.39) (2.00) (4.32) (3.18)

RMRF 0.929 0.900 1.076 1.035 1.028 0.997 0.946 1.005 0.959 0.993 1.070 0.169

HML 0.066 0.091 0.106 0.003 -0.076 -0.287 -0.403 -0.423 -0.410 -0.875 -0.860 -0.951

SMB -0.130 -0.254 -0.136 0.077 -0.007 -0.035 0.001 0.093 0.106 0.406 0.632 0.887

RMW 0.044 -0.109 0.103 0.010 -0.075 -0.252 -0.056 -0.179 -0.523 -0.706 -0.868 -0.758

CMA 0.152 0.146 0.107 -0.075 -0.125 -0.050 0.092 -0.091 -0.476 0.017 0.095 -0.050

Table 2: R&D/Investment Decile Portfolio Regressions on Fama-French 5 Factors
First row gives Fama-French 5-Factor alphas, with Newey-West t-statistics below. Bottom 5
rows give portfolio betas with respect to Fama-French 5 factors.

of the Investment/Assets ratio.) These results are also robust to other factor-based models for

equity returns. Table 24 demonstrates that this e�ect is ampli�ed when the Quality-minus-Junk

factor proposed by Asness et al. (2013) is included as a risk factor. Similarly, Table 25 presents the

robustness of these results to the inclusion of a momentum factor.

There are several important di�erences between these results and those of earlier papers. First,

portfolio returns are value-weighted rather than the equal-weighted returns found in the literature.

Value-weighting these returns is important for several reasons. First, value-weighting portfolio

returns both prevents big price changes to small market cap �rms from having an outsized impact

on portfolio returns. Thus value-weighting focuses on the larger and more central �rms and is

thus more meaningful from an economic standpoint. Table 15 shows this explicitly by double-

sorting �rms into groups based on assets and then R&D measures. For the R&D/Investment metric

employed in this paper, there is a signi�cant return di�erential attributable to R&D-intensive �rms

across all size quintiles. In comparison, for the R&D/Market Equity measure, the e�ect is only

signi�cant at a 5% level or stronger for the smallest quintile of �rms, whose median asset values are

0.25% of those of �rms in the highest quintile. This pattern is similar for most other existing R&D

measures in the literature.

Second, value-weighting is more in keeping with the asset allocation of one who would hold this

portfolio. Equal-weighting requires constant rebalancing of a portfolio and very high associated

transactions costs. It is di�cult to interpret the returns from such a portfolio as an asset pricing

anomaly if the costs of exploiting the strategy outweigh the potential bene�ts. Thus it is important
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to value-weight the returns within a portfolio. It is even more important when one considers

that the signi�cant asset pricing results that one obtains using equal-weighted portfolio returns

with existing asset pricing measures disappear under value-weighting of portfolio returns, as shown

in Table 6. Thus, the equal-weighted results arbitrarily overemphasize the importance of small

market cap �rms and may not truly represent an anomaly. By showing that the results in this

paper hold for value-weighted (as well as equal-weighted in Table 7) these concerns are eliminated.

Another important di�erence the measures of R&D intensity are fairly di�erent. Tables 16-20 report

the similarities between the measure introduced in this paper and �ve other common measures:

R&D/Market Equity, R&D/Sales, R&D Capital/Market Equity, R&D/R&D Capital, and SG&A

Capital/Assets. The percentage of �rms which fall in the same decile when sorted by the measure

in this paper as when sorted by these measures is fairly low. This is also evidenced by the fact that

the measures themselves are not highly correlated: the highest Pearson or rank correlation between

the measure in this paper and any of the existing measures is 0.4. These low correlations re�ect an

important economic insight captured by the R&D/Investment measure: its focus on the composition

of investment. While other measures combine the composition of investment and the amount of

investment, the focus on what type of investment a �rm is doing, rather than how much it is doing,

is an important di�erentiating factor of this measure. Finally, this measure is the �rst R&D-based

measure to be signi�cantly priced in the full cross-section. This is important as it means that the

empirical asset pricing results in this paper are important for understanding the entire cross-section

of equity returns.

The Fama-French 3-factor results and 5-factor results clearly indicate that high R&D/Investment

portfolios earn signi�cant positive risk-adjusted returns. These �rms tend to be smaller, more

growth �rms, and less pro�table by the Fama-French metric but to load similarly on the aggregate

market factor and the investment factor as their low R&D/Investment counterparts. Despite these

di�erential loadings, the higher returns of the high R&D/Investment portfolios are not rationalizable

by any of the Fama-French factors.
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2.3 Fama-MacBeth Results

In any rational asset pricing model, these higher returns must be attributable to some additional

source of risk faced by these high R&D/Investment �rms and a�ecting investors' discount rates.

A natural follow-up question would then be to ask whether the risk encapsulated in these high

R&D/Investment �rms is important only for them or for a broader number of �rms. This risk

is captured by the return of the portfolio going long high R&D/Investment �rms and short low

R&D/Investment �rms, so, to answer this question, this section presents the cross-sectional asset

pricing results using this �10-1� portfolio as a factor.

A Fama-Macbeth procedure tests whether this innovation risk factor measure is priced for a

larger cross-section of assets. For this analysis, both industry portfolios and the entire dataset of

monthly stock returns (not just those of stocks who report R&D values). For the industry portfolio

results, the largest cross-section of industries categorized by Fama and French is used for the longest

timespan for which all data is available. This results in 49 industries over a period of 559 months.

The Fama-Macbeth procedure is computed as follows. First, for each industry/stock at each point in

time, rolling-window betas with respect to the High R&D/Investment minus Low R&D/Investment

(henceforth referred to as the innovation factor or R&D) and either the Fama-French 3-factor model

or the Fama-French 5-factor model. To account for possible covariances between the factors, these

betas are estimated simultaneously in two groups: one group with the innovation factor and the

Fama-French 3 factors and one group with the innovation factor and the Fama-French 5 factors,

given by equations (1) and (2), respectively. After that, at each point in time, a cross-sectional

regression of excess returns on betas is computed (again, separate regressions for the 3 factors and

R&D from the 5 factors and R&D), and the prices of risk extracted as the λ values in speci�cations

(3) and (4):

reit = αi + βrmrfit λrmrft + βhmlit λhmlt + βsmbit λsmbt + βR&D
it λR&D

t + εit (3)

reit = αi + βrmrfit λrmrft + βhmlit λhmlt + βsmbit λsmbt + βrmwit λrmwt + βcmait λcmat + βR&D
it λR&D

t + εit (4)
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The choice of test assets (whether industries or individual stocks) represents a trade-o� between

accuracy of beta estimation and use of a larger cross-section. While the use of portfolios mitigates

the errors-in-variables problem associated with estimating time-varying betas for individual stocks

and using those estimated betas in a second-stage estimation, the construction and number of the

portfolios need to be carefully considered. Industry portfolios are utilized here so that the potential

issue of sorting portfolios by characteristics is avoided. Moreover, the broadest set of industries

reported is used to obtain as large a cross-section (and hence as powerful a test as possible.) The

procedure is also replicated with individual stocks and the results are displayed in Table 9 in the

appendix.

Table 3 presents the Fama-Macbeth results for the Fama-French 3-factors and the innovation

factor, using the 49 industry portfolios as de�ned on French's website. Both equally-weighted

and value-weighted portfolio returns are considered (with the factor weighting matching the return

weighting); the results are robust to choice of portfolio and factor weighting. Across the speci�ca-

tions, both the market factor and the innovation factor both have positive and signi�cant coe�cients.

Thus, exposure to the market and innovation risk factors are associated with signi�cantly higher

expected returns. In particular, an increase by one in market beta is associated with an increased

monthly industry return of 42-59 bps, and an increase by one in innovation beta is associated with

an increased monthly industry return of 86-89 bps. Moreover, SMB is not signi�cant in either spec-

i�cation and HML is only signi�cant in one of the speci�cations. Thus, these results suggest that

both innovation risk and market risk have signi�cant pricing power for the cross section of industry

returns.

These results are robust to other speci�cations. Table 8 in the appendix presents the industry

Fama-Macbeth results for the innovation factor and Fama-French 5 factors. In those tests, the

market risk factor is the most signi�cant, followed by the innovation risk factor (which is signi�cant

for equally-weighted portfolio returns but less so for value-weighted portfolio returns). None of the

other factors are signi�cant in either test. Table 9 in the appendix presents the Fama-Macbeth

results for value-weighted individual stock returns. With respect to the three-factor model, the

innovation factor is signi�cant at the 10% level and has a t-statistic fairly similar in magnitude to

that of two other factors, the excess market return and SMB. HML, however, is no longer signi�cant

with either speci�cation. More formally, the test of whether HML is spanned by the RMRF, SMB,

and innovation factors produces no signi�cant intercept for HML and thus indicates that it is
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λ Values

High− Low
RD
Inv

0.888* 0.856**
(1.83) (2.35)

Mkt− rf 0.591*** 0.425*
(2.89) (1.77)

HML
0.156 0.408**
(0.97) (2.15)

SMB
0.078 0.249
(0.48) (1.27)

Weights Value Equal

Table 3: Fama-Macbeth Industry Results for Fama-French 3 Factors and Innovation Factor
This table reports the Fama-Macbeth prices of risk from the two-stage Fama-Macbeth regression
presented in the paper for value- and equal-weighted industry returns. Values reported as percent-
age points per month. First, for each industry at each point in time, 72-month rolling-window betas
with respect to the innovation factor and simultaneously the Fama-French 3-factor model. After
that, at each point in time, a cross-sectional regression of excess returns on betas is computed, and
the prices of risk extracted as the λ values in speci�cation (3). Speci�cally, each estimate reported
is an estimate of a lambda value based on a time-series average of the lambdas estimated for each
cross-sectional second-stage regression. Results robust to value vs. equal weighting of factors and
di�erent horizons for rolling window estimation. *** indicates signi�cant at the 1% level, ** indi-
cates signi�cant at the 5% level, and * indicates signi�cant at the 10% level. Numbers in parentheses
are t-statistics corrected for autocorrelation over time.

spanned by the other three. In contrast, the innovation factor is not spanned by the three traditional

Fama-French factors. For the �ve factor results, the innovation factor is signi�cant at the 5% level.

The same patterns from the 3-factor model are still apparent, namely that RMRF and SMB are

signi�cant but HML is not. Additionally, CMA is no longer signi�cant (again indicating that this

contrast between the composition of investment and the intensity of investment is important) and

RMW has a negative price of risk.

Across all of these speci�cations, the key result is the consistent signi�cance of the innovation

factor, which indicates that the risk spanned by this factor is important for the entire cross-section

of excess industry and stock returns, and that it is not spanned by the other factors in the Fama-

French models. Second, adding the innovation factor seems to eliminate the explanatory power of

HML for the cross-section of equity returns.
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2.4 Evidence on Markups and Luxury Goods

The previous sections have clearly documented that high R&D/Investment �rms earn not only

higher equity returns, but also higher returns after accounting for the most common equity return

factor model predictions. Rational asset pricing models imply that this must be a compensation for

some form of risk which matters to investors, and the Fama-MacBeth results indicate that this risk

matters not only for the returns of high R&D/Investment �rms, but also for the entire cross-section

of equity returns. Having documented this return pattern and the importance of the risk factor

spanned by these high R&D/Investment �rms, the goal is now to try to understand this risk factor

and to link it to underlying economic quantities.

For this task it is helpful to think about why these �rms do so much R&D relative to other

forms of investment. Numerous theories for this have been advanced, but one that has received

general acceptance is that R&D acts as a way for �rms to maintain their competitive advantages.

In particular, for �rms that produce di�erentiated products and rely on being able to charge pre-

miums for those products, one important way to maintain their di�erentiation and the willingness

of consumers to pay premia is to continue to innovate. Indeed, the summary statistics con�rm that

�rms which do more R&D relative to total investment charge higher price markups relative to cost

(have a higher Revenue/Cost of Goods Sold ratio.) The results in Table 10 provide further stronger

evidence on this point�the regression results of future markup on the ratio of R&D/Investment,

�rm size, and controls for industry and year �xed e�ects indicate a positive and signi�cant e�ect of

R&D/Investment on future �rm markups. This evidence is also consistent with �rm-level evidence

by Cassiman and Vanormelingen (2013), who �nd that product innovations increase �rm markups

by an average of 5.1% and process innovations increase �rm markups by 3.8% on average.

But why are higher markups in themselves more risky and why is this risk important to investors?

One clue comes in the relation between the returns to the long-short R&D/Investment portfolio and

the luxury sales index compiled by Ait-Sahalia et al. (2004). Table 11 shows that the growth in

luxury good sales helps to explain the risk premium associated with this long-short portfolio, which

indicates that the risk implied by the sale of luxury goods, another high markup item, is similar

to that spanned by the R&D/Investment factor. In particular, the luxury consumption risk that
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Ait-Sahalia and his coauthors identify seems to be linked to the risk of these high R&D/Investment

�rms. One can think of this more broadly as demand risks that a�ect all �rms, but particularly �rms

which rely on being able to charge high markups, as both their prices and quantities are potentially

more prone to shifts in consumer preferences. The next section builds on this key insight and

introduces a model which formalizes this intuition.

3 Model Setup

The model features a number of di�erent elements which will be described in this section. Its most

novel feature is the integration of product market competition into a production-based asset pricing

framework, as will be described later. The model is in�nite horizon and discrete time and contains

heterogeneous consumers, heterogeneous �rms, and two state variables. The consumers, �rms, and

environment are described in the following subsections.

3.1 Consumers

Consumers in this model are the source of demand for the �rms. Each period, a unit mass of

consumers enters the market for a good and views the menu of options o�ered by �rms. An option

o�ered by a �rm consists of a quality level of product and corresponding price, as will be discussed in

greater detail later. For now, it su�ces to say that quality is a feature which vertically di�erentiates

products�that is, all consumers prefer a higher quality product, all else equal. Each consumer

evaluates the menu of o�erings and chooses the product that maximizes his utility. The consumer

may choose to buy either one unit of one product or not to buy at all. What di�erentiates consumers

is their willingness to pay for an increase in a product's quality.

Formally, the willingness of consumer j to pay for a higher quality product is represented by

the parameter θj . The quality of products is indexed by s and the indirect utility that a consumer

with preference parameter θj maximizes every period is given by:
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Uj =

{
u0 + θsj − p if purchase good of type s at price p

0 else

}

That is, consumers get some base utility from purchasing a product of any quality level u0, then

some utility which depends on both their preference for quality and the quality of the good they

purchase. Finally, they internalize the price of the good which they purchase. This framework is

a fairly standard one for vertically di�erentiated goods, see e.g. Tirole (1988). The consumers are

price takers and so have no ability to impact prices; their decisions are independent of the decisions

of the other consumers. Therefore the consumer's problem can be expressed as:

max
si
{u0 + θsi − p (si) , 0} (5)

The parameter θ is the only di�erentiating factor among consumers and thus what drives any

di�erences in their decisions. In wanting to tie the distribution of θ to empirical counterparts, several

options were considered. Existing evidence suggests that factors which derive heterogeneity across

households include income, age, wealth, and other sources, but, for the purposes of this model,

perhaps income is the most salient. The distribution of income has been extensively studied and

researchers have suggested a number of di�erent distributions to match the cross-sectional patterns

of income, including the exponential distribution, the lognormal distribution, and the generalized

Pareto distribution. Among these, the exponential is chosen in this paper because of its property

as a distribution governed by one parameter. Given that there is no precise data counterpart to the

preference parameter, the goal is to calibrate as close to the data as possible, and having relatively

fewer parameters for the distribution of preferences helps achieve that goal. The results, however,

are robust to the other distributions with similar properties.

The dynamics of the θ distribution vary over time in the model with one of the model's two

state variables, Xt. This state variable can be interpreted as a demand or preference shock and it

is set equal to the mean (or the inverse of the scale parameter) of the exponential distribution of θ.

That is, higher values of Xt imply a distribution which skews more towards greater willingness to

pay for quality, while lower values imply a distribution which skews more towards lower willingness
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to pay for quality, as illustrated in Figure 6. The log of Xt will follow an AR(1) process, given by

equation (6).

xt+1 = (1− ρx) x̄+ ρxxt + σxε
x
t+1 (6)

where εxt+1 is a standard normal random variable. The parameters for this process can be directly

tied down by the aggregate markups in the model economy, as will be discussed in the calibration

section.

3.2 Firms and Good Quality

The other type of agent in the economy is a �rm. Firms will produce the goods and will face

constraints on their production from both consumer demand and the supply and productivity of

capital. Firms will maintain two types of capital�intangible and physical�which will a�ect their

pro�ts and values di�erentially. Finally, �rms will be heterogeneous, with a su�cient statistic for

�rm heterogeneity being the quality level of products that they produce. Firms will choose both

their quality level and the price which they set for their goods, and this will determine their capital

needs and pro�t.

At any given point in time, �rms maintain two stocks of capital. One is physical capital Kt,

which is required for production. Production follows a standard AK-technology, where total output

Yt can be represented as Yt = AtKt and At represents the state of capital productivity in the

economy. At is the second state variable in this model and again its log follows an AR(1) process,

displayed in equation (7).

at+1 = (1− ρa) ā+ ρaat + σaε
a
t+1 (7)

where εat+1 is a standard normal random variable uncorrelated with εxt+1. Firms also maintain levels

of intangible capital IKt. Unlike physical capital, intangible capital is not used directly in the

production process. Rather, it helps to di�erentiate products. Speci�cally, �rms that maintain
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higher levels of intangible capital relative to their total capital produce higher quality products. For

a �rm i with capital levels Kit and IKit, the quality of goods that it produces is sit = IKit
IKit+Kit

.

The intuition for this feature is as follows: physical capital is needed for the actual production of

products, but intangible capital helps to di�erentiate goods. The more intangible capital, in the

form of research, thought, innovation, testing, process development, etc. that goes into the product,

the higher the quality that the product will be and the more that consumers will be willing to pay

for it. This will also help match the empirical �nding that �rms that do more R&D/Investment

charge higher markups over cost for their products. One could akternatively envision N production

functions for goods of di�erent qualities requiring certain ratios of physical and intangible capital.

Such a setting would be isomorphic to this one, and the �exibility of the setup allows for a wide

range of interpretation of R&D expenses.

There are a �nite number of quality levels s1, s2, . . . sN at which a product can produced, evenly

spaced throughout the unit interval that de�nes the quality spectrum. The economy features N

�rms; at time 0, �rm i is born into quality level si. That is, at time 0, there is exactly one �rm

per quality level. As long as this continues to be the case, this single �rm acts a monopolist in the

market for goods of that speci�c quality level. Of course, the prices that such a �rm can set will be

constrained by the prices set by other �rms, but this �rm can earn positive pro�ts. If multiple �rms

are producing the same quality product, however, these �rms will engage in Bertrand competition

and their pro�ts will both be 0. While there is no �rm entry, �rms are able to endogenously choose

their quality level and switch into any of the N good quality markets. As Proposition 1 states (and

Appendix B proves), as long as there is some positive switching cost c, this will never happen in

the Pareto e�cient Nash equilibrium.1

Proposition 1. If there is a positive cost of switching quality levels, no �rm will ever switch from

its initial quality level in the Pareto e�cient Nash equilibrium.

1This result is similar to that in Chapter 3 of Grossman and Helpman: �Innovation and Growth in the Global
Economy�.
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Firms rent their physical and intangible capital at rental rates rK and rIK respectively. One

could view this as resulting from the inelastic supply of these two inputs from an unmodeled section

of the economy. One could also alternatively think of �rms owning their capital and being able to

freely adjust it intro-period after observing the aggregate state variables. In that case the costs of

capital would be the di�erence between the price paid today and the discounted depreciated amount

for which it can be sold in the following period and so would be stochastic. The quantitative results

of the model, however, do not change under this formulation.

3.3 Final Goods Market and Firm Problem

Figure 3 illustrates the interactions of consumers and �rms in the market for �nal goods.

Every period, each �rm (representing one of the N di�erent quality levels) decides on a price to

set for its product after observing the realizations of the two state variables. Based on that price

and the prices and qualities set by all of the other �rms, consumers will choose the product o�ering

which maximizes their utility. The aggregation of consumers who choose a particular product will

determine the quantity demanded for that product. In equilibrium, �rms will know this quantity,

and so will rent the exact amount of physical and intangible required to product that many units

of their quality level.

Figure 3: Interaction of Consumers and Firms in Product Market
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Each �rm will set its price taking into account its own quality level and those of other �rms, as

well as its beliefs about the prices that the other �rms set (which will be correct in equilibrium).

It will account for the two aggregate states in the economy, At and Xt, and the decision-making

problem of the consumers. Since capital is adjustable each period, �rms will incorporate the cost

of capital into their pricing decision, and, by choosing the price they set (and thus the quantity

they will sell), they also choose their optimal capital levels. As a result, the solution methodology

does not require tracking the capital distribution of �rms over time. The �rm's problem can thus

be written as maximizing pro�t given in equation (8) subject to the demand constraint in equation

(9).

πit (At, Lt, si) = max
Pit,si

PitAtKit − rKKit −
rIKsiKit

(1− si)︸ ︷︷ ︸
rIKIKit

− c1{switch}

 (8)

s.t. AtKit =

ˆ
1{argmax(Uj)=si}f (j) dj (9)

where the latter conditions enforces that �rms produce exactly enough to meet the quantity de-

manded. (One could also make this last equality a weak inequality and have �rms maximize over

their capital stocks, but it is clear that no �rm would want to rent more capital than required to

meet its demand.)

3.4 Firm Value

Firms are entirely equity �nanced and earn pro�ts that are weakly greater than 0 every period. As

a result, the value of a �rm is simply its discounted dividend stream, where the dividends are equal

to the pro�ts earned by a �rm in a given period. Firm value Vt can be expressed as:

Vit (At, Xt, si) = πit + Et [Mt+1Vit+1] (10)
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where Mt+1 represents the stochastic discount factor in the economy. This discount factor has

exposures to both shocks At and Xt, as well as time-varying prices of risks for both shocks. Mt+1

is thus given by equations (11) - (13).

log (Mt+1) = log(β) + γat (at − at+1) + γxt (xt − xt+1) (11)

γat = γa0 + γa1 (at − ā) (12)

γxt = γx0 + γx1 (xt − x̄) (13)

4 Model Calibration and Results

4.1 Model Calibration

Despite the novel product market dynamics in the model, the number of parameters to calibrate

is quite limited. The model contains 13 parameters and is calibrated on a monthly basis. The

parameters can be grouped into four categories: the SDF parameters β, γa0, γa1, γx0, and γx1, the

rental rates rK and rIK , and the parameters governing the productivity shock ā, σa, and ρa and

those governing the preference shock x̄, σx, and ρx.

Two groups of these parameters can be estimated directly from the data. First, the rental rates

are tied to the rates of depreciation on the two forms of capital, as discussed in Section 3. Thus,

these monthly parameters can be tied to the annual depreciation rates of physical and intangible

capital found in Lin (2012). Lin �nds the rate of depreciation on tangible capital to be 0.1 and the

rate of depreciation on intangible capital to be 0.2. Given that these rental rates also re�ect some

cost of discounting, the monthly rental rates for tangible and intangible capital are set at 0.01 and

0.02, respectively. Second, the parameters governing the productivity shock are standard in much
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of this literature and have been estimated and used by a number of papers. This paper follows the

calibration in Zhang (2005) for the monthly AR(1) process governing productivity shocks.

This leaves two sets of parameters which have to be calibrated. The �rst is the set of three

parameters governing the demand shock process. Given the di�culty of observing this process

directly in the data, the challenge is to �nd a readily observable empirical series to which the

demand shock can be closely linked. In this model, given the previous two sets of parameters, the

demand shock determines the markups set by each �rm. Thus, one can directly link the demand

shock to the aggregate markup that this model produces. Fortunately, Kung, Schmid, and Corhay

(2015) have estimated an AR(1) process for the aggregate price markup series, and so this paper

calibrates the demand shock process to most closely match the parameters that they estimate. The

values for the parameters in the paper can be found in Table 12 and the resulting values for the

aggregate markup process in Table 13.

The last set of parameters is the one governing the SDF. There are �ve parameters in the SDF,

and thus one needs at least �ve data counterparts with which to identify these parameters. This

paper follows the lead of Zhang (2005) in taking three of these data counterparts to be the mean

and volatility of the risk-free rate and the Sharpe ratio of the market portfolio. The remaining

two parameters are used to target the returns to low R&D/Investment �rms and the returns to

high R&D/Investment �rms. All of the estimated parameters can be found in Table 12, while the

risk-free rate and market return moments can be found in Table 13. The returns to high and low

R&D/Investment �rms will be discussed in the next section.

4.2 Model Results

The most novel feature of the model is the product market dynamic and thus it makes sense to start

there. While the e�ects of the productivity shock are fairly standard, the e�ects of the consumer

preference shock are perhaps not so readily understood. One way to understand the e�ects of these

shocks is to look at their impacts on the decisions which consumers make. Figure 4 illustrates the

e�ect of a shock to preference on consumer decisions.

The graph on the left represents the distribution of consumers under the median state of con-
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sumer preference, while the graph on the right represents the distribution of consumers following a

positive preference shock. The x-axis displays the θ parameter of consumers while the y-axis gives

the density (which integrates to 1 in both cases.) Ignoring the colors, one notices that the distribu-

tion shifts towards higher θ values following a positive preference shock. What is more interesting is

the e�ect that this has on the product choice of consumers. The colors on the graph represent the

product choices that consumers make, going from red (lowest quality) to magenta (highest quality).

One sees that consumers shift signi�cantly towards higher quality products following a positive

preference shock and shift away from products of lower qualities. Figure 7 shows that this example

is consistent with the global behavior of the model: the higher the preference parameter, the lower

the market shares of low-quality products and the higher the market shares of high quality products.

This is in keeping with one's intuition: as consumers' tastes shift more towards higher quality, we

should see the market shares of these companies growing.

Figure 4: E�ect of a Shock to Consumer Preferences on Decisions and Quantities
X represents the aggregate demand state of the economy, while theta represents the preference
parameter of a consumer

The other component to the �rm's pro�ts, besides its market share, is its pro�t margin, or

the amount of pro�t that it earns for every unit that it sells. Figure 8 plots the pro�t margins of

low-, medium-, and high-quality �rms as a function of the underlying preference state. Consistent

with empirical evidence (see e.g. Nekarda and Ramey (2013)), markups are fairly insensitive to
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demand shocks. However, the markups of high-quality �rms are more procyclical with respect to

demand shocks than those of low- or medium-quality �rms, whose markups are essentially acyclical.

Combined with the di�erential exposures of quantities to demand shocks, this implies that the

pro�ts (cash �ows) of high-quality �rms covary much more positively with demand shocks than do

those of low-quality �rms, whose cash �ows covary somewhat negatively with demand shocks.

This hetereogeneous exposure to demand shocks is key for the asset pricing implications of the

paper. Firms of all qualities have similar exposures to productivity shocks. This is because a positive

productivity shock reduces the amount of capital required to produce a certain amount of output,

which also reduces the amount of intangible capital required. The former e�ect is more signi�cant

for low-quality �rms and the latter is more signi�cant for high-quality �rms, but, on balance, the

total e�ects are similar. What di�erentiates �rms, then, is their exposure to the demand shock.

Since both shocks are priced by investors, the similar loading of all �rms to the productivity shock

will drive a risk factor which is essentially common to all �rms. In a CAPM sense, this will be

the risk factor that the market prices. The covariance with respect to the demand shock will be a

priced risk factor whose quantity of risk di�ers signi�cantly across �rms, and this is what will drive

the heterogeneity in returns. Since the high-quality �rms are more exposed to this shock, they will

earn higher returns in equilibrium.

This result is consistent with the earlier empirical evidence on the reliance of these �rms on

markups and the comovement of their returns with the growth of luxury sales. It is precisely these

quantities that are most directly tied to preference shocks as those shocks most strongly a�ect

whether consumers purchase high-markup products and are willing to pay high premia for them. It

should thus not be surprising that this risk factor also drives the higher returns of R&D-intensive

�rms that are also dependent on markups.

Table 14 presents the models results on returns and �rm size. The model matches the CAPM

alpha and beta results fairly well. In addition, despite not being calibrated to match �rm sizes,

the product market implications for �rm size match the empirical distribution of �rm size by ratio

of R&D/Investment closely. High R&D/Investment �rms tend to be smaller and to earn higher

CAPM alphas despite their slightly higher CAPM betas. The fact that these �rms are smaller on
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average is important for the model. Since the magnitude of the covariance of these �rms' cash

�ows with the demand shock is much higher than the magnitude of the covariance for the lower

R&D/Investment �rms, one needs that these �rms account for less of the market value than the low

R&D/Investment �rms in order for the value-weighted market portfolio to have minimal exposure

to the demand shocks. Finally, the model does not match the Fama-French 3 or 5 factor models

simply because there are not enough shocks in the model to capture asset pricing cross-sectional

heterogeneity on more than two dimensions, but this is an interesting area for future research.

5 Conclusion

This paper focuses on the returns to this innovation at the �rm level by proposing a novel character-

istic that examines the fraction of investment attributed to R&D expenses. This metric is important

for the entire cross-section of �rms, including larger, more economically signi�cant �rms. The asset

pricing implications examine how risk and returns vary with the composition of investment chosen

by a �rm.

Relative to the Fama-French 3-factor model, a portfolio which goes long the highest R&D/Investment

�rms and short the lowest R&D/Investment �rms earns monthly excess returns of 58bps per month,

or just over 7% annually. This is after accounting for the fact that these high R&D/Investment

�rms have slightly higher betas and tend to be small, growth �rms. These results are signi�cant

at the 1% level, and, in contrast to previous studies on R&D, hold for value-weighted portfolios.

Compared to the Fama-French 5-factor model, the results are even more signi�cant: the long-short

portfolio earns risk-adjusted returns of 82bps per month, which corresponds to over 10% per annum.

The main reason for the di�erence in the results is that these high-R&D �rms load more negatively

on the Fama-French pro�tability factor, despite earning higher revenues relative to both costs and

tangible capital. The risk spanned by these high R&D/Investment �rms is not just important for

those �rms, however. In the Fama-MacBeth test, the long-short portfolio has signi�cant explanatory

power for the entire cross-section of excess returns and (along with the market and SMB factors)

spans HML such that it is no longer signi�cant. Combined, these results indicate very strongly that

high R&D/Investment �rms are earning signi�cantly higher returns than those predicted by the
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leading models of expected returns, and that the risk spanned by these �rms is important for the

entire cross-section of equity returns.

In seeking to explain this pattern, this paper focused on the exposure of these �rms to the high

markups which they charge. There is signi�cant evidence that high R&D/Investment �rms charge

signi�cantly higher markups over cost, even after controlling for industry, size, and year e�ects.

Moreover, the excess returns of these �rms correlate signi�cantly with the sales growth of another

high-markup item, luxury goods. This e�ect holds even after controlling for the usual Fama-French

factors. Combined, these pieces of evidence suggest that the risk encapsulated by the sales of these

high-markup products is important to understand the higher returns of R&D-intensive �rms.

The �nal contribution of this paper is a model which formalizes this intuition. The model

integrates a standard production-based asset pricing framework with the novel mechanism of product

market interactions between heterogeneous �rms and heterogeneous consumers. In the product

(�nal goods) market, heterogeneous �rms o�er vertically di�erentiated products to consumers with

di�erent levels of willingness to pay for higher quality products. The equilibrium between these

two agents results in the purchase of lower-quality goods by consumers who are less willing to

pay for quality and the purchase of higher-quality goods at higher markups by consumers who are

more willing to pay for quality. The aggregation of consumers choosing a particular �rm's product

determines the quantity that it decides to produce, but this quantity (and the price that the �rm

sets) are subject to both supply shocks in the form of productivity shocks and demand shocks in the

form of changes to the distribution of consumer preferences. While �rms have similar exposures to

supply shocks, the model generates the endogenous result that �rms o�ering higher-quality products

are more exposed to demand shocks. This risk factor is not spanned by the market risk factor and

thus generates excess returns for these �rms. The model also matches the size distribution of �rms

and the markup dynamics of the economy.

While these targets are certainly �rst-order, one could imagine many other goals for such a

model in capturing the dynamics of more sophisticated return models or matching �rm leverage or

investment timing choices more closely. This product market mechanism seems to be a good �rst

step on the path towards these goals, which are left for future research.
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Appendix A: Tables and Figures

Table 4: Summary Statistics

R&D/Investment
0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

Assets ($MM) 4344 2280 2491 1444 448
Leverage (%) 25.3 23.2 20.3 14.8 19.6

PPE/Assets (%) 38.9 28.0 22.0 16.2 10.8

Revenue/Cogs (%) 159.3 169.5 192.0 239.5 246.5
Revenue Growth (%) 21.1 21.1 26.1 33.2 32.9

Revenue/PPE 4.75 6.27 7.73 10.2 16.4
Revenue/Assets 1.19 1.23 1.14 1.02 0.79

Capex/Assets (%) 9.86 7.27 6.02 4.91 2.38
R&D/Assets (%) 0.98 3.15 6.14 12.1 32.9

R&D/Investment (%) 0.10 0.30 0.50 0.70 0.92

Note: Table presents mean of each variable by R&D/Investment group. All variables or ratios
winsorized at the 1% and 99% levels. Firm-year observation level.
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Table 5: R&D/Investment Transition Matrix

% of R&D/Inv obs Time t+ 1 R&D/Inv Decile
1 2 3 4 5 6 7 8 9 10

T
im
e
t
R
&
D
/I
n
v
D
ec
il
e 1 98.1% 0.5% 0.5% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1%

2 3.4% 65.4% 25.3% 3.1% 1.2% 0.6% 0.1% 0.5% 0.2% 0.2%
3 1.3% 6.7% 67.0% 17.3% 4.1% 1.7% 0.9% 0.5% 0.3% 0.3%
4 0.6% 0.7% 17.4% 50.8% 19.4% 6.1% 2.3% 1.5% 0.9% 0.4%
5 0.4% 0.3% 3.7% 21.0% 43.4% 18.1% 7.3% 3.3% 1.7% 0.8%
6 0.3% 0.1% 1.4% 5.7% 20.4% 37.6% 20.4% 8.3% 4.1% 1.8%
7 0.3% 0.1% 0.9% 2.3% 6.9% 21.4% 33.7% 20.8% 9.9% 3.8%
8 0.1% 0.1% 0.5% 1.2% 3.1% 8.7% 22.2% 34.3% 21.6% 8.2%
9 0.3% 0.1% 0.4% 0.8% 1.7% 4.1% 9.3% 22.8% 38.5% 22.1%
10 0.4% 0.0% 0.3% 0.5% 0.9% 1.7% 3.6% 8.0% 22.3% 62.2%

Note: Annual transition matrix for R&D/Investment deciles. Value in ijth entry represents
the probability that a �rm in the ith R&D/Investment decile in year t is in the jth decile in year
t + 1. Firm-year observation level.This measure is signi�cantly more persistent than the book-to-
market, pro�tability, investment, and momentum measures. Numbers in each row sum to 100%
(with possible rounding error).
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Table 6: Equal-Weighted vs. Value-Weighted Results for Other R&D Measures

Equal-weighted:

Alphas 1 2 3 4 5 6 7 8 9 10 10-1

R&D/Sales

α
-0.094 -0.039 0.075 0.113 0.310 0.297 0.394 0.428 0.282 0.269 0.364*

(-1.05) (-0.48) (0.90) (1.35) (3.17) (2.61) (3.12) (3.10) (1.77) (1.36) (1.81)

R&D Capital/Market Equity

α
-0.436 -0.189 -0.142 -0.013 -0.069 0.170 0.217 0.356 0.712 1.381 1.817***

(-5.08) (-2.78) (-1.93) (-0.18) (-0.82) (1.79) (2.00) (2.67) (4.25) (6.15) (7.89)

R&D/R&D Capital

α
0.455 0.431 0.350 0.251 0.331 0.177 0.108 0.148 -0.217 -0.102 -0.691***

(2.94) (3.46) (3.95) (2.96) (4.12) (1.97) (1.11) (1.10) (-1.73) (-0.55) (-4.08)

Value-weighted:

Alphas 1 2 3 4 5 6 7 8 9 10 10-1

R&D/Sales

α
-0.010 0.040 -0.040 0.025 0.086 0.084 -0.003 0.413 0.416 0.055 0.154

(-0.92) (0.46) (-0.42) (0.28) (0.98) (0.92) (-0.03) (3.12) (2.53) (0.27) (0.62)

R&D Capital/Market Equity

α
-0.013 0.003 0.160 0.198 0.134 0.095 0.194 0.145 0.087 0.092 0.105

(-0.12) (0.03) (1.94) (2.23) (1.46) (0.95) (1.72) (1.14) (0.63) (0.63) (0.55)

R&D/R&D Capital

α
-0.003 0.178 0.092 0.121 0.023 0.108 0.168 0.052 0.084 -0.001 -0.144

(-0.03) (1.92) (1.21) (1.60) (0.29) (1.06) (1.60) (0.38) (0.57) (-0.01) (-0.61)

Note: Tables present Fama-French 3-factor equal- and value-weighted alphas sorted by deciles
of common R&D measures in the literature. Alphas are reported as basis points (bps) per month.
In the last column, *** indicates signi�cant at the 1% level, ** indicates signi�cant at the 5% level,
and * indicates signi�cant at the 10% level. These results use the same data sample and portfolio
construction methodology as the R&D/Investment results presented in the paper. Numbers in
parentheses are Newey-West t-statistics.
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Table 7: Equal-Weighted R&D/Investment Results

R&D/Investment Decile
0 1 2 4 6 8 10 10-1

α
-0.130 -0.258 -0.132 0.049 0.266** 0.429*** 0.767*** 1.025***
(-1.17) (-2.84) (-1.59) (0.60) (2.60) (3.19) (3.85) (5.27)

RMRF 0.993 1.090 1.059 1.062 1.066 1.045 1.049 -0.041
HML 0.408 0.333 0.323 0.087 -0.225 -0.333 -0.297 -0.630
SMB 0.895 0.569 0.651 0.746 0.948 1.158 1.557 0.988

Note: Table reports Fama-French 3-factor equal-weighted alphas and betas by deciles of R&D/Investment
measure. Alphas are reported as basis points (bps) per month. In the top row, *** indicates sig-
ni�cant at the 1% level, ** indicates signi�cant at the 5% level, and * indicates signi�cant at the
10% level. These results use the same data sample and portfolio construction methodology as the
value-weighted results presented in the paper. Numbers in parentheses are Newey-West t-statistics.
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Table 8: Industry Fama-Macbeth Results for Fama-French 5 Factors and Inno-
vation Factor

λ Values

High− Low
RD
Inv

0.599 0.658*
(1.32) (1.87)

Mkt− rf 0.594*** 0.551**
(2.91) (2.34)

HML
0.126 0.249
(0.79) (1.39)

SMB
0.063 0.242
(0.39) (1.29)

RMW
-0.076 -0.163
(-0.60) (-1.20)

CMA
0.174 0.223
(1.50) (1.66)

Weights Value Equal

Note: This table reports the Fama-Macbeth prices of risk from the two-stage Fama-Macbeth
regression presented in the paper for value- and equal-weighted industry returns. Values reported
as percentage points per month. First, for each industry at each point in time, 72-month rolling-
window betas with respect to the innovation factor and simultaneously the Fama-French 5-factor
model. After that, at each point in time, a cross-sectional regression of excess returns on betas
is computed, and the prices of risk extracted as the λ values in speci�cation (4). Speci�cally,
each estimate reported is an estimate of a lambda value based on a time-series average of the
lambdas estimated for each cross-sectional second-stage regression. Results robust to value vs. equal
weighting of factors and di�erent horizons for rolling window estimation. *** indicates signi�cant
at the 1% level, ** indicates signi�cant at the 5% level, and * indicates signi�cant at the 10% level.
Numbers in parentheses are t-statistics corrected for autocorrelation over time.
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Table 9: Individual Stock Fama-Macbeth Results

λ Values

High− Low
RD
Inv

0.474* 0.520**
(1.84) (2.05)

Mkt− rf 0.405** 0.397**
(2.12) (2.08)

HML
0.035 0.047
(0.26) (0.37)

SMB
0.336** 0.327**
(2.43) (2.42)

RMW
-0.193**
(-2.06)

CMA
0.102
(1.15)

Note: This table reports the Fama-Macbeth prices of risk from the two-stage Fama-Macbeth
regression presented in the paper for value-weighted stock returns. Values reported as percentage
points per month. First, for each stock at each point in time, 60-month rolling-window betas with
respect to the innovation factor and simultaneously the Fama-French 3-factor model or the Fama-
French 5-factor model. After that, at each point in time, a cross-sectional regression of excess
returns on betas is computed (again, separate regressions for the 3 factors and R&D from the 5
factors and R&D), and the prices of risk extracted as the λ values in speci�cations (3) and (4).
Speci�cally, each estimate reported is an estimate of a lambda value based on a time-series average
of the lambdas estimated for each cross-sectional second-stage regression. *** indicates signi�cant
at the 1% level, ** indicates signi�cant at the 5% level, and * indicates signi�cant at the 10% level.
Numbers in parentheses are t-statistics corrected for autocorrelation over time.
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Table 10: R&D/Investment and Firm Markup

Markupt+1

RDt
Invt

0.424***
(3.20)

ln(Assetst) 0.048
Industry FE Yes
Year FE Yes

Obs. 129,097

Note: Markup is de�ned as Revenue/Cost of Goods Sold -1. *** indicates signi�cant at the 1%
level. Numbers reported in parantheses are standard errors clustered at industry level. All variables
or ratios winsorized at the 1% and 99% levels. Firm-year observation level.
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Table 11: R&D/Investment Returns and Luxury Good Sales

ret1,t ret10,t ret10−1,t

Lt
-0.278 0.664* 0.942**
(-1.48) (1.82) (2.41)

RMRFt 0.860 1.194 0.334
HMLt 0.209 -0.714 -0.923
SMBt -0.102 1.247 1.348
Intercept -0.114 0.491 0.605

Obs. 192 192 192
Overall −R2 75.32 79.64 69.23

Note: Lt measure is real growth in luxury sales from Ait-Sahalia et al. (2004). ret10 represents
the value-weighted return on the �rms in the highest R&D/Investment decile. The coe�cient can
be interpreted as follows: a 1 standard deviation increase in luxury good sales is associated with a 66
bps increase in the monthly returns of the high R&D/Investment portfolio and a 28 bps decrease in
the monthly returns of the low R&D/Investment portfolio, after controlling for the exposure of this
portfolio to the Fama-French 3 factors. For Lt, * indicates signi�cant at the 10% level. Numbers
reported in parantheses are Newey-West standard errors. Firm-year observation level.
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Table 12: Calibrated Parameters

Parameter Value Moment/Target

β -0.006 rf mean
γa0 35 rf std dev
γa1 -700 rM Sharpe
γx0 .5 rHI mean
γx1 -10 rLO mean

rk 0.01 physical cap dep
rik 0.02 intangible cap dep

ρa 0.998
Zhang (2005)µa 0

σa 0.002

ρx 0.998 Markup series ρ
µx 1.0 Markup series µ
σx 0.06 Markup series σ

Note: Calibration is at a monthly frequency. See discussion in Section 4.1.
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Table 13: Model vs. Data Moments

Moment Model Data Source

rf mean 0.022 0.018 Campbell (2001)
rf std dev 0.029 0.030 Campbell (2001)
rM Sharpe 0.41 0.43 Campbell (2001)

Markup series ρ 0.99 0.9 Corhay, Kung, Schmid (2015)
Markup series µ 0.1413 0.1339 Corhay, Kung, Schmid (2015)
Markup series σ 0.0306 0.0230 Corhay, Kung, Schmid (2015)

Note: See discussion in Section 4.1. Return moments are presented on a monthly basis as in
Zhang (2005) while markup moments are presented at a quarterly frequency as in Corhay, Kung,
and Schmid (2015).
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Table 14: Model Predictions for Returns and Size

CAPM Results
α β

Model Data Model Data

Low R&D/Inv -0.007 -0.016 1.001 0.925
Medium R&D/Inv 0.11 0.084 0.993 1.074
High R&D/Inv 0.18 0.271 1.065 1.270

Size
Model Data

Low R&D/Inv 9.04 9.24
Medium R&D/Inv 3.26 5.68
High R&D/Inv 1 1 (normalized)

Note: Firms divided into three categories by level of R&D/Investment in both data and model.
Size measured as Net PP&E. Alphas are reported as basis points (bps) per month. Model moments
taken as mean of 1,000 samples of 600 observations, data counterparts also use 600 observations.
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Table 15: Doublesorts on Firm Size and R&D Measures

FF3-Alpha R&D/Investment Quintile
1 2 3 4 5 5-1

A
ss
et
s
Q
u
in
ti
le

1
-0.652 -0.337 -0.125 -0.259 0.126 0.778***
(-3.73) (-1.70) (-0.56) (-1.02) (0.44) (2.57)

2
-0.417 0.175 0.341 0.028 0.133 0.550**
(-2.65) (1.17) (1.63) (0.20) (0.69) (2.26)

3
-0.225 -0.089 0.565 0.423 0.433 0.658***
(-1.59) (-0.71) (3.67) (2.76) (2.68) (3.22)

4
-0.212 0.091 0.019 0.119 0.558 0.770***
(-1.96) (0.75) (0.17) (1.00) (4.35) (4.60)

5
-0.047 -0.057 0.045 0.017 0.438 0.484***
(-0.45) (-0.64) (0.51) (0.19) (4.94) (3.08)

FF3-Alpha R&D/Market Equity Quintile
1 2 3 4 5 5-1

A
ss
et
s
Q
u
in
ti
le

1
-0.909 -0.140 -0.079 0.350 0.894 1.782***
(-4.35) (-0.62) (-0.40) (1.53) (2.91) (4.99)

2
0.039 0.255 -0.185 0.236 0.602 0.563*
(0.22) (1.76) (-1.29) (1.44) (2.66) (1.96)

3
0.265 0.238 0.364 0.299 0.428 0.164
(1.70) (1.80) (2.66) (2.17) (2.56) (0.73)

4
0.229 0.158 0.091 0.172 0.245 0.016
(1.78) (1.52) (0.85) (1.43) (1.30) (0.07)

5
0.032 0.236 0.058 0.052 0.029 -0.004
(0.37) (3.23) (0.68) (0.50) (0.23) (-0.02)

Note: Firms sorted �rst into quintiles on Assets and then on quintiles based on R&D measures.
Table reports Fama-French 3-factor value-weighted alphas by group. Alphas are reported as basis
points (bps) per month. In the last column, *** indicates signi�cant at the 1% level, ** indicates
signi�cant at the 5% level, and * indicates signi�cant at the 10% level. These results use the same
data sample and portfolio construction methodology as the value-weighted results presented in the
paper. Numbers in parentheses are Newey-West t-statistics. Insigni�cance of factor for higher asset
quintiles is similar for most other existing R&D measures, including R&D Capital/Market Equity
and R&D/R&D Capital.

44



Table 16: R&D/Investment and R&D/Market Equity Similarity Matrix

% of R&D/Inv obs R&D/Market Equity Decile

1 2 3 4 5 6 7 8 9 10

R
&
D
/
In
v
D
ec
il
e

1 51.06% 19.51% 9.28% 5.14% 3.13% 2.31% 2.01% 1.80% 1.99% 3.78%

2 20.92% 24.30% 17.67% 12.27% 7.90% 5.25% 3.44% 2.43% 1.76% 4.06%

3 9.10% 17.45% 18.17% 15.51% 12.25% 9.44% 6.43% 4.50% 3.04% 4.11%

4 5.21% 11.26% 14.83% 15.07% 13.89% 12.00% 9.49% 6.90% 4.89% 6.46%

5 3.70% 8.11% 11.14% 13.06% 14.03% 13.44% 11.87% 10.28% 7.71% 6.66%

6 3.04% 5.96% 8.78% 10.90% 12.74% 13.58% 13.94% 12.49% 10.63% 7.96%

7 2.14% 4.42% 6.90% 9.13% 11.33% 12.97% 14.17% 14.86% 13.81% 10.26%

8 1.77% 3.92% 5.50% 7.86% 9.56% 11.55% 13.79% 15.39% 17.54% 13.11%

9 1.46% 2.84% 4.28% 5.84% 7.95% 10.44% 13.52% 16.44% 19.34% 17.90%

10 1.89% 2.72% 4.07% 5.74% 7.49% 9.24% 11.38% 14.69% 18.93% 23.86%

Note: Value in ijth entry represents the probability that a �rm in the ith R&D/Investment decile
in year t is in the jth R&D/Market Equity decile in year t. Firm-year observation level. Numbers
in each row sum to 100% (with possible rounding error).
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Table 17: R&D/Investment and R&D/Sales Similarity Matrix

% of R&D/Inv obs R&D/Sales Decile

1 2 3 4 5 6 7 8 9 10

R
&
D
/
In
v
D
ec
il
e

1 64.61% 20.71% 8.06% 3.14% 1.60% 0.62% 0.35% 0.23% 0.33% 0.34%

2 22.51% 35.18% 19.68% 11.26% 5.21% 2.73% 1.35% 0.85% 0.66% 0.58%

3 6.67% 23.00% 27.07% 19.43% 9.73% 6.04% 3.24% 2.13% 1.57% 1.11%

4 2.42% 10.17% 20.65% 23.00% 17.91% 11.12% 6.41% 3.92% 2.73% 1.67%

5 1.34% 4.59% 10.655 17.78% 20.22% 17.15% 12.06% 8.07% 5.08% 3.07%

6 0.48% 2.27% 5.39% 10.84% 17.45% 19.24% 17.66% 13.64% 8.37% 4.65%

7 0.30% 1.24% 3.16% 6.06% 12.10% 16.86% 19.65% 19.50% 14.45% 6.68%

8 0.10% 0.54% 1.82% 3.50% 7.35% 13.18% 19.28% 22.11% 20.77% 11.25%

9 0.10% 0.40% 1.05% 2.54% 4.78% 8.65% 13.54% 19.39% 25.64% 23.91%

10 0.25% 0.34% 0.84% 1.62% 2.52% 3.79% 6.31% 10.67% 22.27% 51.37%

Note: Value in ijth entry represents the probability that a �rm in the ith R&D/Investment decile
in year t is in the jth R&D/Sales decile in year t. Firm-year observation level. Numbers in each
row sum to 100% (with possible rounding error).
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Table 18: R&D/Investment and R&D Capital/Market Equity Similarity Matrix

% of R&D/Inv obs R&D Capital/Market Equity Decile

1 2 3 4 5 6 7 8 9 10

R
&
D
/
In
v
D
ec
il
e

1 45.11% 19.88% 10.98% 6.60% 3.96% 2.73% 2.43% 2.33% 2.32% 3.65%

2 19.42% 21.59% 17.23% 13.44% 9.21% 6.14% 4.19% 2.72% 1.89% 4.16%

3 9.47% 16.09% 16.63% 14.63% 12.79% 10.45% 7.36% 5.13% 3.35% 4.10%

4 6.58% 10.43% 13.43% 13.98% 13.55% 12.07% 10.18% 7.73% 5.45% 6.60%

5 4.96% 8.19% 10.76% 12.52% 12.94% 13.04% 12.11% 10.22% 8.41% 6.86%

6 4.33% 6.77% 8.82% 10.34% 11.83% 12.66% 13.54% 12.67% 10.76% 8.29%

7 3.14% 5.54% 7.28% 9.09% 10.80% 12.21% 13.36% 14.17% 13.94% 10.45%

8 2.84% 4.56% 6.00% 7.78% 9.35% 11.34% 13.35% 15.26% 16.72% 12.79%

9 2.20% 3.84% 4.88% 6.41% 8.30% 10.38% 12.44% 15.32% 18.34% 17.88%

10 2.39% 3.63% 4.61% 5.72% 7.58% 9.18% 10.99% 14.05% 18.41% 23.43%

Note: Value in ijth entry represents the probability that a �rm in the ith R&D/Investment decile
in year t is in the jth R&D Capital/Market Equity decile in year t. R&D Capital calculated as
t∑

τ=t−5
(1− .2 ∗ (t− τ))RDτ . Firm-year observation level. Numbers in each row sum to 100% (with

possible rounding error).
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Table 19: R&D/Investment and R&D/R&D Capital Similarity Matrix

% of R&D/Inv obs R&D/R&D Capital Decile

1 2 3 4 5 6 7 8 9 10

R
&
D
/
In
v
D
ec
il
e

1 18.17% 11.07% 10.29% 8.42% 7.57% 7.50% 8.35% 8.18% 12.01% 8.43%

2 10.99% 10.27% 12.17% 10.68% 10.82% 9.79% 9.61% 8.25% 11.20% 6.22%

3 8.57% 9.77% 11.43% 12.27% 11.90% 11.21% 10.05% 8.71% 10.75% 5.34%

4 7.85% 9.01% 10.50% 12.46% 12.24% 11.55% 11.20% 8.96% 11.29% 4.93%

5 7.31% 9.29% 9.69% 11.11% 11.72% 10.76% 11.62% 10.64% 12.46% 5.39%

6 7.27% 8.87% 9.95% 9.84% 11.30% 10.96% 12.03% 11.48% 12.82% 5.48%

7 7.57% 9.29% 9.18% 9.56% 10.72% 10.98% 11.83% 11.38% 13.74% 5.75%

8 7.52% 9.69% 9.44% 9.57% 10.50% 9.97% 11.59% 11.68% 14.62% 5.42%

9 10.05% 10.81% 9.27% 8.41% 8.84% 9.28% 10.49% 11.28% 14.94% 6.63%

10 15.02% 11.60% 8.55% 7.19% 6.69% 7.84% 9.12% 9.94% 15.73% 8.22%

Note: Value in ijth entry represents the probability that a �rm in the ith R&D/Investment
decile in year t is in the jth R&D/R&D Capital decile in year t. R&D Capital calculated as
t∑

τ=t−5
(1− .2 ∗ (t− τ))RDτ . Firm-year observation level. Numbers in each row sum to 100% (with

possible rounding error).
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Table 20: R&D/Investment and Organizational Capital Similarity Matrix

% of R&D/Inv obs SG&A Capital/Assets Decile

1 2 3 4 5 6 7 8 9 10

R
&
D
/
In
v
D
ec
il
e

1 43.24% 15.88% 9.86% 7.01% 6.00% 4.87% 4.24% 3.13% 3.06% 2.73%

2 20.99% 18.94% 14.06% 11.45% 8.79% 7.13% 5.70% 4.78% 4.13% 4.02%

3 11.28% 16.66% 14.81% 14.17% 11.40% 9.35% 7.08% 5.99% 5.71% 3.55%

4 7.46% 13.59% 15.11% 13.85% 13.38% 10.42% 8.74% 7.25% 5.88% 4.33%

5 5.15% 11.23% 12.17% 13.76% 12.58% 12.21% 10.01% 9.20% 8.30% 5.38%

6 3.07% 7.47% 10.73% 11.90% 12.85% 12.60% 13.52% 11.71% 9.67% 6.49%

7 2.63% 5.53% 8.08% 9.49% 11.21% 13.03% 14.41% 14.44% 12.06% 9.12%

8 1.80% 3.96% 6.50% 8.33% 9.89% 12.28% 13.65% 15.54% 15.49% 12.56%

9 1.85% 3.18% 4.46% 6.07% 8.07% 10.61% 12.48% 15.83% 18.18% 19.26%

10 2.22% 3.14% 3.93% 4.09% 6.11% 7.39% 9.92% 12.29% 17.97% 32.94%

Note: Value in ijth entry represents the probability that a �rm in the ith R&D/Investment
decile in year t is in the jth SG&A Capital/Assets decile in year t. Organizational (SG&A) Capital

calculated as
t∑

τ=t−5
(1− .2 ∗ (t− τ))SGAτ . Firm-year observation level. Numbers in each row sum

to 100% (with possible rounding error).
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Table 21: Doublesorts on Gross Pro�tability and R&D/Investment

FF3-Alpha R&D/Investment Quintile
1 2 3 4 5

G
ro
ss

P
ro
�
ta
b
il
it
y
Q
u
in
ti
le

1
-0.696 -0.843 -0.802 0.164 -0.695
(-2.43) (-3.14) (-2.85) (0.52) (-2.24)

2
-0.035 0.022 0.294 0.422 0.326
(-0.31) (0.15) (1.75) (2.28) (1.49)

3
-0.125 -0.087 0.197 0.501 0.581
(-1.03) (-0.85) (2.09) (4.02) (3.21)

4
0.081 -0.073 0.134 0.425 0.437
(0.67) (-0.63) (1.20) (3.20) (2.22)

5
0.259 0.365 0.194 0.067 0.529
(1.85) (2.23) (1.05) (0.28) (2.23)

FF5-Alpha R&D/Investment Quintile
1 2 3 4 5

G
ro
ss

P
ro
�
ta
b
il
it
y
Q
u
in
ti
le

1
0.010 -0.306 -0.419 0.437 -0.512
(0.04) (-1.12) (-1.52) (1.42) (-1.65)

2
0.040 0.426 0.547 0.633 0.612
(0.35) (3.07) (3.09) (3.19) (2.87)

3
-0.162 -0.051 0.215 0.645 0.839
(-1.28) (-0.48) (2.14) (5.00) (4.73)

4
-0.077 -0.134 0.077 0.437 0.698
(-0.64) (-1.11) (0.63) (3.24) (3.46)

5
0.121 0.230 0.267 0.107 0.721
(0.87) (1.31) (1.30) (0.44) (2.93)

Note: Firms sorted �rst into quintiles on Gross Pro�tability and then on quintiles based on
R&D/Investment. Gross Pro�tability de�ned as Revenue/Assets. Table reports Fama-French 3-
factor and 5-factor value-weighted alphas by group. Alphas are reported as basis points (bps) per
month. These results use the same data sample and portfolio construction methodology as the
value-weighted results presented in the paper. Numbers in parentheses are Newey-West t-statistics.
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Table 22: Doublesorts on Net Pro�tability and R&D/Investment

FF3-Alpha R&D/Investment Quintile
1 2 3 4 5

N
et

P
ro
�
ta
b
il
it
y
Q
u
in
ti
le

1
-0.405 -0.171 0.188 -0.525 0.039
(-1.86) (-0.72) (0.80) (-2.22) (0.15)

2
-0.469 -0.180 -0.061 0.033 0.365
(-3.15) (-1.12) (-0.32) (0.17) (1.65)

3
-0.331 -0.010 -0.097 0.107 0.232
(-2.57) (-0.08) (-0.74) (0.67) (1.23)

4
0.096 -0.212 0.104 0.137 0.359
(0.76) (-2.30) (0.86) (1.24) (2.44)

5
0.014 0.092 0.351 0.336 0.588
(0.12) (0.85) (3.27) (3.32) (3.88)

FF5-Alpha R&D/Investment Quintile
1 2 3 4 5

N
et

P
ro
�
ta
b
il
it
y
Q
u
in
ti
le

1
0.038 0.431 0.624 -0.185 0.302
(0.17) (1.96) (2.77) (-0.74) (1.19)

2
-0.368 -0.007 0.170 0.346 0.707
(-2.38) (-0.05) (0.89) (1.79) (3.16)

3
-0.280 -0.074 -0.080 0.301 0.411
(-2.12) (-0.54) (-0.58) (1.85) (2.03)

4
0.094 -0.291 0.071 0.155 0.496
(0.71) (-3.11) (0.58) (1.37) (3.22)

5
-0.145 0.004 0.385 0.287 0.719
(-1.19) (0.03) (3.43) (2.72) (4.61)

Note: Firms sorted �rst into quintiles on Net Pro�tability and then on quintiles based on
R&D/Investment. Net Pro�tability de�ned as Net Income/Assets. Table reports Fama-French 3-
factor and 5-factor value-weighted alphas by group. Alphas are reported as basis points (bps) per
month. These results use the same data sample and portfolio construction methodology as the
value-weighted results presented in the paper. Numbers in parentheses are Newey-West t-statistics.
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Table 23: Doublesorts on Firm Scaled Investment and R&D/Investment

FF3-Alpha R&D/Investment Quintile
1 2 3 4 5

S
ca
le
d
In
ve
st
m
en
t
Q
u
in
ti
le

1
-0.559 0.259 -0.187 -1.102 -0.712
(-2.14) (1.03) (-0.77) (-3.57) (-1.71)

2
-0.435 0.161 0.185 -0.270 0.091
(-2.83) (0.78) (1.22) (-1.52) (0.39)

3
-0.070 0.038 -0.025 0.121 0.343
(-0.58) (0.31) (-0.21) (0.86) (2.00)

4
0.006 -0.077 0.101 0.477 0.315
(0.05) (-0.83) (1.06) (3.65) (1.76)

5
0.182 0.255 0.319 0.043 0.771
(1.10) (2.00) (2.04) (0.23) (3.57)

FF5-Alpha R&D/Investment Quintile
1 2 3 4 5

S
ca
le
d
In
ve
st
m
en
t
Q
u
in
ti
le

1
-0.478 0.130 -0.465 -1.004 -0.513
(-1.82) (0.50) (-1.97) (-2.96) (-1.18)

2
-0.449 -0.034 -0.009 -0.216 0.363
(-2.92) (-0.15) (-0.06) (-1.18) (1.40)

3
-0.136 -0.039 -0.048 0.255 0.518
(-1.06) (-0.29) (-0.39) (1.69) (2.78)

4
0.082 -0.037 0.116 0.596 0.467
(0.76) (-0.39) (1.11) (4.42) (2.57)

5
0.429 0.381 0.537 0.265 1.040
(2.70) (2.89) (3.49) (1.36) (4.90)

Note: Firms sorted �rst into quintiles on Scaled Investment and then on quintiles based on
R&D/Investment. Scaled Investment de�ned as Investment/Assets. Table reports Fama-French
3-factor and 5-factor value-weighted alphas by group. Alphas are reported as basis points (bps)
per month. These results use the same data sample and portfolio construction methodology as the
value-weighted results presented in the paper. Numbers in parentheses are Newey-West t-statistics.
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Table 24: Fama-French 3-factor and QMJ Results

R&D/Investment Decile

0 1 2 3 4 5 6 7 8 9 10 10-1

α
-0.234 0.081 0.027 0.085 0.011 0.201** 0.142 0.329*** 0.679*** 0.417** 0.973*** 0.892***

(-1.57) (0.81) (0.28) (0.85) (0.12) (2.04) (1.34) (2.72) (4.44) (2.38) (4.92) (3.80)

RMRF 1.195 0.835 1.065 1.038 1.022 0.974 0.979 1.012 0.954 0.899 0.918 0.083

HML 0.241 0.112 0.154 -0.042 -0.151 -0.331 -0.333 -0.459 -0.669 -0.931 -0.937 -1.049

SMB 0.431 -0.304 -0.158 0.067 -0.017 -0.027 0.066 0.122 0.121 0.413 0.595 0.898

QMJ 0.458 -0.229 0.002 -0.034 -0.062 -0.181 0.130 -0.045 -0.346 -0.528 -0.746 -0.758

Note: Table reports value-weighted alphas and betas by deciles of R&D/Investment measure
after controlling for Fama-French 3 factors and QMJ factor of Asness, Frazzini, and Pedersen (2014).
Alphas are reported as basis points (bps) per month. In the top row, *** indicates signi�cant at the
1% level, ** indicates signi�cant at the 5% level, and * indicates signi�cant at the 10% level. These
results use the same data sample and portfolio construction methodology as the value-weighted
results presented in the paper. Numbers in parentheses are Newey-West t-statistics.
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Table 25: Fama-French 3-factor and Momentum Results

R&D/Investment Decile

0 1 2 3 4 5 6 7 8 9 10 10-1

α
0.065 -0.076 0.021 0.129 0.052 0.150 0.196** 0.281** 0.512*** 0.087 0.444** 0.520**

(0.47) (-0.79) (0.24) (1.43) (0.59) (1.56) (2.11) (2.41) (3.50) (0.53) (2.38) (2.41)

RMRF 1.081 0.894 1.065 1.032 1.020 1.005 0.953 1.027 1.027 1.027 1.112 0.219

HML 0.145 0.162 0.156 -0.059 -0.167 -0.317 -0.348 -0.443 -0.617 -0.826 -0.766 -0.928

SMB 0.275 -0.226 -0.158 0.078 0.005 0.035 0.022 0.137 0.238 0.592 0.847 1.073

MOM -0.024 0.020 0.007 -0.069 -0.084 -0.062 0.028 0.022 -0.045 0.012 -0.085 0.064

Note: Table reports value-weighted alphas and betas by deciles of R&D/Investment measure
after controlling for Fama-French 3 factors and Momentum (based on 2-12 month prior return).
Alphas are reported as basis points (bps) per month. In the top row, *** indicates signi�cant at the
1% level, ** indicates signi�cant at the 5% level, and * indicates signi�cant at the 10% level. These
results use the same data sample and portfolio construction methodology as the value-weighted
results presented in the paper. Numbers in parentheses are Newey-West t-statistics.
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Figure 5: R&D/Investment Distribution
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Note: Figure plots the histogram of R&D/Investment �rm-year level observations for reported
and nonzero values of R&D. Investment is de�ned as the sum of R&D expenditures and capital
expenditures; see Section 2.1 for more details. Approximately 50% of the �rm-year observations in
the merged sample have missing R&D values, approximately 17% of those with non-missing values
have zero values. Firm-year observation level.
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Figure 6: E�ect of X on Distribution of Consumer Preferences

Note: Figure plots the distribution of consumers' theta prefences under two values of the demand
state variable Xt. Lower values of Xt (blue line) correspond to distributions which skew towards
lower theta values and have fewer high theta values.
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Figure 7: Model Market Shares

Note: Figure plots the model-generated market shares of low- and high-quality �rms as the
preference parameter (Xt) changes. Market shares calculated as the quantity of goods produced
and sold by a given �rm divided by the quantity produced and sold by all �rms. Productivity state
�xed to long-run mean.
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Figure 8: Model Pro�t Margins

Note: Figure plots the pro�t margins of low- , medium-, and high-quality �rms as the preference
parameter (Xt) changes. Pro�t margin calculated as the total pro�t of a �rm (revenue less rental
costs of capital) divided by the quantity sold. Productivity state �xed to long-run mean.
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Appendix B: Proof of Proposition 1

Proposition 1 can be proved by establishing Lemmas 2 and 3.

Lemma 2. In any pure-strategy Nash Equilibrium, there will be at most one �rm producing products

of a given quality level si ∀i .

Proof. Consider �rst the problem of a �rm seeking to enter that previously did not produce products

of any quality level. Since this �rm is switching quality levels (in the sense that it previously had

no quality level and is now entering a quality level) it must pay some switching costs, denoted by c

(without loss of generality, assume that this cost is the same for �rms switching from no previous

quality level as it is for �rms switching from a di�erent previous quality level.) If this �rm enters

a quality level sj where there is an existing �rm producing, then both this new entrant and the

existing �rm will decide to produce the same quantity of products, because these �rms are identical.

Given that these identical �rms are competing for the production of a homogeneous good, they will

compete on the prices they set such that both �rms earn zero pro�ts in equilibrium. Therefore,

the payo� to the entrant from entering any quality level which has an existing �rm will be −c < 0.

Since this is less than the payo� for not entering at all (0), this new entrant will never choose to

enter a quality level which has an existing �rm.

The comparison for a �rm which is producing products of a di�erent quality level si is even

starker. By not switching quality levels, this �rm earns pro�ts πi, which are always weakly positive

since the �rm can choose to produce zero units of goods and rent zero units of capital and thus

earn zero pro�ts. The analysis for the pro�ts of the �rm if it enters a quality level where there is

already an existing �rm is the same as above, and this �rm will earn −c < 0. Since −c < 0 ≤ πi,

this �rm is always strictly better o� by not switching to a quality level where there is an existing

�rm producing goods.

Therefore, no �rm will enter or switch into a quality level where it believes that there will be

another �rm. Since these beliefs are correct in equilibrium, in any pure-strategy Nash Equilibrium,

�rms will have perfect knowledge of the quality levels occupied by every other �rm and will not
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choose to produce products in any of these occupied quality levels. Thus, in any pure-strategy Nash

Equilibrium, there will never be more than one �rm producing products of any given quality level.

Lemma 3. Among all possible Nash Equilibria, the initial allocation where �rm j produces quality

level sj is Pareto-optimal.

Proof. In any pure-strategy Nash Equilibrium, there will always be exactly one �rm per quality

level. This is because each quality level is initially occupied by one �rm, and this �rm earns (weakly)

positive pro�ts in every period. As a result, each of these �rms has no incentive to exit, and so will

always remain in the economy. Then, as long as there are at least N �rms in the economy (the initial

number) and N di�erent quality levels, if there is no more than one �rm producing products of a

given quality then each quality level will have no fewer than one �rm, by the Pigeonhole Principle.

Combining this with Lemma 2, each quality level will have exactly one �rm in a pure-strategy Nash

Equilibrium.

As a result, any pure strategy Nash Equilibrium consists of an assignment ofN �rms toN quality

levels such that each quality level has exactly one �rm. The initial allocation of �rms such that �rm

j produces quality level sj is one such equilibrium. This equilibrium can be shown to be Pareto

optimal as follows. In this equilibrium, the N �rms earn pro�t levels π1, π2, . . . , πi, πj , . . . , πN .

Any pure strategy modi�cation would result in the switching of two pro�t levels, and the deduction

of c from each. If one pro�t level is higher than the other, then the �rm which moves from the

higher to the lower pro�t level will necessarily be worse o�. If the two pro�t levels are equal, then

the switch results in both �rms paying switching costs and both being worse o� as their pro�ts have

been reduced by c. Thus there exist no pure-strategy modi�cations to the initial allocation of �rms

that make one �rm better without making one �rm worse o�. Note that this is not necessarily the

case with other equilibria because if those equilibria involve the switching of �rms, then reducing

those switching costs can potentially make multiple �rms better o� without harming other �rms.

For example, if πi = πj and the Nash Equilibrium involved �rms i and j switching quality levels,
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then a Pareto improvement on this would be for �rm i to stay at quality level si and �rm j to stay

at quality level sj .

There also exist mixed-strategy Nash Equilibria where some �rms have probabilities of occupying

various quality levels. Note that none of these equilibria represent a Pareto improvement over the

initial allocation either. This can be seen in many ways, but one way is to examine the aggregate

pro�t. The aggregate pro�t under any mixed-strategy Nash Equilibrium will be weakly lower than

that under the initial allocation. This is explained by several components. First, since �rms make

identical quantity decisions once they are put into a given quality level, if there are quality levels

with only one �rm under the mixed-strategy Nash Equilibrium, then the �rms in those quality levels

will earn the same pro�ts as the �rms in those quality levels under the initial allocation, less any

switching costs. Therefore the pro�ts of these �rms will be weakly lower. Second, if there are quality

levels with multiple �rms, the �rms in those quality levels will earn zero pro�ts, again weakly lower

than under the initial allocation. If the mixed-strategy Nash Equilibrium involves any switching

at all�that is, if there are any �rms that use mixed strategies�then the aggregate pro�ts will be

strictly lower. In such a mixed-strategy Nash Equilibrium, these lower pro�ts can be split among

a greater, lower, or equal number of �rms. If the lower pro�ts are split among a greater or equal

number of �rms, then it is clear that some �rms must be worse under this equilibrium than in the

initial allocation. If they are split among fewer �rms, then there are some �rms that would earn

positive pro�ts under the initial allocation (since all �rms under the initial allocation earn strictly

positive pro�ts) who now earn zero pro�ts.
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